WO2020110297A1 - 取引価格予測装置および取引価格予測方法 - Google Patents

取引価格予測装置および取引価格予測方法 Download PDF

Info

Publication number
WO2020110297A1
WO2020110297A1 PCT/JP2018/044218 JP2018044218W WO2020110297A1 WO 2020110297 A1 WO2020110297 A1 WO 2020110297A1 JP 2018044218 W JP2018044218 W JP 2018044218W WO 2020110297 A1 WO2020110297 A1 WO 2020110297A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
unit
transaction price
model
information
Prior art date
Application number
PCT/JP2018/044218
Other languages
English (en)
French (fr)
Inventor
飛仙 平田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880099732.7A priority Critical patent/CN113168656B/zh
Priority to PCT/JP2018/044218 priority patent/WO2020110297A1/ja
Priority to JP2019528782A priority patent/JP6752369B1/ja
Priority to DE112018008094.3T priority patent/DE112018008094T5/de
Publication of WO2020110297A1 publication Critical patent/WO2020110297A1/ja
Priority to US17/318,576 priority patent/US20210264483A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a transaction price prediction device and a transaction price prediction method for predicting a transaction price of a product in a wholesale product transaction market.
  • the contracted price and fixed amount of electricity are the bid-sell curve showing the relationship between the bid-sell amount and the bid-sell price of electricity and the bid-bid curve showing the relationship between the bid-bid amount and the bid-price of electricity on the day of bidding. It is determined at the intersection of.
  • JEPX Japanese wholesale electricity trading market
  • the amount of power to be bid or the amount of profit or supply in the market is maximized with respect to a given market power supply curve and power demand curve.
  • To estimate the bid curve By using the bid curve estimated in this way, the bidder can predict the transaction price of electric power even in a market where the bidding trend is closed.
  • the present invention solves the above problems, and an object thereof is to obtain a transaction price prediction device and a transaction price prediction method capable of predicting a transaction price that reflects the transaction status at the forecast target date and time.
  • a transaction price prediction device uses a first prediction model that predicts a bid price, a first prediction unit that predicts a bid price at a prediction target date and time, and a second prediction unit that predicts a transaction price.
  • a second prediction unit that predicts the transaction price at the prediction target date and time by applying the bid amount predicted by the first prediction unit to the prediction model is provided.
  • the bid amount at the forecast target date and time is predicted by using the first forecast model for forecasting the bid amount, and the bid bid at the forecast target date and time is forecast by using the second forecast model for forecasting the transaction price. Predict the transaction price corresponding to the quantity. This makes it possible to predict the transaction price that reflects the transaction status at the prediction target date and time.
  • FIG. 3 is a block diagram showing a configuration example of a transaction price prediction device according to the first embodiment.
  • FIG. 6 is a flowchart showing a transaction price prediction method according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a first prediction model in the first embodiment.
  • FIG. 5 is a diagram showing an example of a second prediction model in the first embodiment.
  • FIG. 5 is a diagram showing an example of a presentation mode of a prediction result in the first embodiment.
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the transaction price prediction device according to the first embodiment.
  • FIG. 6B is a block diagram showing a hardware configuration that executes software that implements the function of the transaction price prediction device according to the first embodiment.
  • Embodiment 1 The transaction price prediction device and the transaction price prediction method according to the first embodiment can be applied to the prediction of the transaction prices of various products for which bidding for selling and buying is performed in the transaction market.
  • the transaction price prediction device and the transaction price prediction method according to the first embodiment are used to predict the contract price of electric power at the forecast target date and time of the spot market of JEPX.
  • FIG. 1 is a block diagram showing a configuration example of the transaction price prediction device 1 according to the first embodiment.
  • the transaction price prediction device 1 uses the first prediction model to predict the bid amount at the prediction target date and time, and uses the second prediction model to predict the contract price of the power at the prediction target date and time.
  • the first predictive model is a predictive model learned to predict the bid amount by using the first information and the second information.
  • the first information is transaction information including the actual value of the bid bid amount, and is, for example, the total bid amount and contract price of the electric power obtained in the past from the forecast target date and disclosed in the JEPX spot market.
  • the first information acquisition unit 2 acquires the first information and stores it in the first information storage unit 3.
  • the first information acquisition unit 2 may be a communication device that acquires the first information via a communication line such as the Internet, or an input device that receives a manual input of the first information by a user. Good.
  • the second information is information indicating the actual value of the condition that affects the bid, and for example, the demand for electric power such as weather information, calendar information, and generator operation information obtained in the past from the prediction target date and time.
  • Information that affects the quantity includes temperature, weather information, and the amount of solar radiation.
  • the calendar information is a day on which an increase/decrease in power demand is expected, such as a holiday and a business day of a company with a large power demand.
  • the generator operation information is, for example, information indicating whether or not the generator is stopped due to a periodic inspection, a failure, or an accident. Further, the presence or absence of disconnection of the interconnection line connecting the electric power systems may be included in the second information.
  • the second information acquisition unit 4 acquires the second information and stores it in the second information storage unit 5.
  • the second information acquisition unit 4 may be a communication device that acquires the second information via a communication line such as the Internet, or an input device that receives a manual input of the second information by the user. Good.
  • the first information storage unit 3 and the second information storage unit 5 are storage devices that allow the transaction price prediction device 1 to read information.
  • the second prediction model is a prediction model learned to predict the contract price (transaction price) of electric power using the bid amount and the second information.
  • the third information is the predicted value of the condition that affects the demand amount at the prediction target date and time, and although the second information has the same condition item, it is different in that it is the prediction information at the prediction target date and time.
  • the third information is weather forecast information, calendar information, and generator operation plan information at the prediction target date and time.
  • the third information acquisition unit 6 may be a communication device that acquires the third information via a communication line such as the Internet, or an input device that accepts manual input of the third information by the user. Good.
  • the transaction price prediction device 1 includes a first model learning unit 11, a second model learning unit 12, a first prediction unit 13, a second prediction unit 14, and a presentation unit 15. Composed.
  • the first model learning unit 11 learns the first prediction model using the first information and the second information.
  • the first prediction model is a prediction model for predicting the bid amount of electric power at the prediction target date and time.
  • the first model learning unit 11 learns the first prediction model using the first information read from the first information storage unit 3 and the second information read from the second information storage unit 5. To do.
  • the second model learning unit 12 learns the second prediction model using the first information and the second information.
  • the second prediction model is a prediction model for predicting the contract price of electric power at the prediction target date and time.
  • the second model learning unit 12 learns the second prediction model using the first information read from the first information storage unit 3 and the second information read from the second information storage unit 5. To do.
  • the first prediction unit 13 applies the third information to the first prediction model to predict the bid amount of electric power at the prediction target date and time.
  • the first prediction unit 13 uses the third information acquired by the third information acquisition unit 6 at the prediction target date and time for the first prediction model learned by the first model learning unit 11. By applying it, the bid amount of electric power at the prediction target date and time is predicted.
  • the second prediction unit 14 predicts the contract price of the power at the prediction target date and time by applying the bid amount and the third information predicted by the first prediction unit 13 to the second prediction model. ..
  • the second predicting unit 14 compares the second predictive model learned by the second model learning unit 12 with the bid amount of the electric power predicted by the first predicting unit 13 and the third information.
  • the contract price of the power at the prediction target date and time is predicted.
  • the presentation unit 15 presents the second prediction model, the bid amount predicted by the first prediction unit 13, and the contract price predicted by the second prediction unit 14. For example, the presentation unit 15 shows the probability distribution of the predicted value of the bid amount of the power and the probability distribution of the predicted value of the contract price of the power, together with the second prediction model used for predicting the contract price of the power. 1 is displayed on a display unit (not shown). Further, the presentation unit 15 may display the third information and the first prediction model used for predicting the bid bid amount on the display unit.
  • the first model learning unit 11, the second model learning unit 12, and the presenting unit 15 may be provided in an external device different from the transaction price prediction device 1. That is, the transaction price prediction device 1 does not include the first model learning unit 11, the second model learning unit 12, and the presentation unit 15, and the first model learning unit 11 and the second model learning unit included in the external device.
  • the prediction model learned by 12 may be received and a prediction may be performed, and a prediction result and a prediction model may be transmitted to an external device and presented to the presentation unit 15.
  • the display unit that displays the prediction result and the prediction model may be included in the transaction price prediction device 1 or may be provided in an external device different from the transaction price prediction device 1.
  • FIG. 2 is a flowchart showing the transaction price prediction method according to the first embodiment.
  • the first model learning unit 11 learns the first prediction model (step ST1). For example, the first model learning unit 11 acquires, from the first information storage unit 3, the first information including the bid amount of the electric power and the contract price together with the date and time when the bid is placed.
  • the date and time when the bid amount and the contract price are obtained are the date and time when the conditions that affect the bid of electric power, for example, the conditions that affect the power demand amount, are expected to be similar to the prediction target date and time. Is desirable.
  • the date and time may be a date and time within a week closest to the prediction target date and time, or a date and time of the same month in the previous year of the prediction target date and time. Dates and times when it is expected that the conditions that affect the power demand will be similar may be specified from the calendar information. In the following description, the date and time when the first information is obtained will be referred to as “similar date and time”.
  • the first model learning unit 11 acquires the second information at the similar date and time from the second information storage unit 5 together with the date and time.
  • the second information For example, weather information, calendar information, and generator operation information at similar dates and times are acquired as the second information.
  • the first model learning unit 11 associates the first information and the second information with the date and time when each information was obtained as a key, and learns the first prediction model using these information.
  • the first prediction model is a model that predicts the bid amount of electric power with the condition affecting the demand amount of electric power as an explanatory variable.
  • the first prediction model may be a simple prediction model as shown in the following formula (1).
  • the first model learning unit 11 learns the value of the parameter ⁇ 1 and the value of the parameter ⁇ 2 included in the following equation (1) using the actual values of the first information and the second information at the similar date and time.
  • the first prediction model is a prediction model based on this finding.
  • the first model learning unit 11 considers an error between the actual value of the condition that affects the power demand amount at the prediction target date and time and the third information that is the predicted value of the same item as the above condition, You may learn the 1st prediction model which predicts the bid amount of electric power as a probability distribution.
  • FIG. 3 is a diagram showing an example of the first prediction model 30 in the first embodiment.
  • the first prediction model 30 shown in FIG. 3 is a model that learns the fluctuation of the bid amount of electric power with respect to the temperature, and predicts the bid amount of electric power according to the predicted value of the temperature at the prediction target date and time. For example, when the temperature rises, the operating rate of the cooling equipment rises and the power demand increases. As the demand for electricity increases, bidders want to ensure that they can secure electricity, so the bid amount for purchase also increases. On the other hand, when the temperature drops to a temperature that does not require cooling, the operating rate of the cooling equipment decreases, so the power demand decreases and the bid amount for power also decreases accordingly.
  • the second model learning unit 12 learns the second prediction model (step ST2). For example, the second model learning unit 12 acquires, from the first information storage unit 3, the set of the bid amount and the contract price of the electric power together with the date and time when the bid is placed.
  • the first information acquired by the second model learning unit 12 is acquired at the same date and time (similar date and time) as the first information and the second information acquired by the first model learning unit 11. Information.
  • the second model learning unit 12 acquires the second information at the similar date and time from the second information storage unit 5 together with the date and time. That is, the second information acquired by the second model learning unit 12 is information acquired at the same date and time as the first information and the second information acquired by the first model learning unit 11.
  • the conditions that affect power demand in the electricity trading market include the operating rate of cooling and heating equipment and the crude oil price.
  • crude oil prices generally fluctuate more slowly than the operating rates of cooling and heating equipment. Therefore, when the second model learning unit 12 acquires the crude oil price as the second information, the crude oil price is not necessarily obtained at the same date and time as the second information acquired by the first model learning unit 11. It does not have to be the one given. For example, it may be a crude oil price obtained in the most recent year. That is, of the information that shows the conditions that affect the power demand, information that has a gentle fluctuation (for example, the fluctuation amount within a certain period is less than the threshold value) is obtained within the period expected to be within the allowable range. As long as it is obtained, it may not be obtained at the same date and time as the second information obtained by the first model learning unit 11.
  • the second model learning unit 12 links the bid amount and the contract price of the electric power acquired as the first information and the second information with the date and time when each information was obtained as a key, and The second predictive model is learned using the information.
  • the second prediction model is a model for predicting the contract price of the electric power using the bid amount of the electric power and the second information as explanatory variables.
  • the distribution of the contract price with respect to the bid amount of electric power is represented by a histogram, and the relationship between the bid amount and the contract price may be learned.
  • the distribution of the contract price with respect to the bid amount may be represented using a probability density estimation method to learn the relationship between the bid amount and the contract price.
  • a linear regression method, a support vector regression, a Bayes regression, and other learning methods may be used for learning the second prediction model.
  • the second model learning unit 12 may select the information used for learning the second prediction model using the second information. For example, the second model learning unit 12 selects the first information corresponding to the second information for narrowing down from the first information, and selects the selected first information as the second prediction model. Used for learning.
  • the second information for narrowing down may be information that is estimated to be similar to the condition at the prediction target date and time among the second information of the similar date and time. For example, the set selected from the second information for narrowing down, out of the set of the bid amount and the contract price of the electric power acquired as the first information, is used for the above-described histogram calculation.
  • the inventor of the present application has examined the tender trend of electric power in the electric power trading market, and as a result, in the electric power trading market, the contract price of electric power changes discontinuously in a stepwise manner with respect to the bid bid amount, and It was found that multiple contract prices may be set. This means that a plurality of contract prices correspond discretely to a certain bid amount.
  • the second prediction model is learned by a learning method capable of expressing that a plurality of discrete contract prices correspond to the bid amount of electric power with a corresponding probability. Therefore, it is expected that the relational expression representing the second prediction model will be complicated.
  • FIG. 4 is a diagram showing an example of the second prediction model 40 in the first embodiment.
  • the second prediction model 40 shown in FIG. 4 shows a relationship in which the contract price discontinuously changes in a stepwise manner with respect to the bid amount of electric power. Further, as shown by an arrow in FIG. 4, a plurality of contract prices may be predicted for the same bid amount.
  • the second model learning unit 12 determines the error between the actual condition and the third information at the prediction target date and time, the bid amount predicted by the first prediction model, and the actual purchase at the prediction target date and time.
  • a second prediction model that predicts the contract price of electric power as a probability distribution may be learned in consideration of an error between the bid price and the bid amount.
  • the first predicting unit 13 predicts the bid amount of electric power at the prediction target date and time (step ST3).
  • the first prediction unit 13 applies the third information at the prediction target date and time acquired by the third information acquisition unit 6 to the first prediction model learned by the first model learning unit 11.
  • the bid amount of electric power at the forecast target date and time is forecast.
  • the first prediction unit 13 may use the first prediction model to calculate the probability distribution of the predicted value of the bid bid amount of power at the prediction target date and time together.
  • the second prediction unit 14 predicts the contract price of electric power at the prediction target date and time (step ST4). For example, the second prediction unit 14 acquires the third information at the prediction target date and time from the third information acquisition unit 6, acquires the bid amount of the power predicted by the first prediction unit 13, and By applying these pieces of information to the second prediction model, the contract price of the power at the prediction target date and time is predicted. The second prediction unit 14 may also use the second prediction model to calculate the probability distribution of the predicted value of the contract price of the power at the prediction target date and time.
  • the presentation unit 15 presents the prediction model and the prediction result (step ST5). For example, the presenting unit 15 predicts the second prediction model that predicts the contract price of the power, the bid bid amount of the power at the prediction target date and time predicted by the first prediction unit 13, and the second prediction unit 14. The contracted price of electric power at the predicted date and time is displayed on the display unit. Further, the presenting unit 15 may display the first prediction model used for predicting the bid amount for power purchase on the display unit together with the bid amount for the prediction result.
  • the presentation unit 15 visualizes the correspondence relationship between the second prediction model, the probability distribution of the bid amount of electric power, and the probability distribution of the contract price of electric power, and uses the second prediction model to purchase the bid amount of the bid.
  • the process of deriving the contract price probability distribution from the above probability distribution may be presented in a recognizable manner.
  • FIG. 5 is a diagram showing an example of a presentation mode of the prediction result in the first embodiment.
  • the presenting unit 15 displays the predicted value 40A of the contract price of electric power calculated using the second prediction model in a graph showing the relationship between the bid amount of electric power and the contract price of electric power. By plotting, the second prediction model is visualized.
  • the bidder can recognize that the predicted value 40A of the contract price of the electric power is discretely changing with respect to the bid amount of the purchase.
  • the presenting unit 15 includes the probability distribution 50 of the bid amount of electric power predicted by the first predicting unit 13, the strip portion 60 indicating the main distribution region of the bid amount of electric power, and the second predicting unit 14.
  • the probability distribution 70 of the contract price of the power predicted by is set in the graph shown in FIG. As a result, when the graph shown in FIG. 5 is displayed on the display unit, the probability distribution 50 of the bid amount of electric power and the probability distribution 70 of the contract price of electric power are visualized.
  • the bidder refers to the strip-shaped portion 60 set in the graph shown in FIG. 5 and finds that the probability distribution 70 of the contracted price of electric power is derived from the predicted value 40A of the contracted price included in the strip-shaped portion 60. I can figure it out.
  • the distribution density of the predicted value 40A of the contract price predicted using the second prediction model may be displayed by contour lines or shades of color. Further, the first prediction model as shown in FIG. 3 may be set in the graph shown in FIG.
  • the transaction price prediction device 1 visualizes the second prediction model used for predicting the contract price of the power, the predicted value of the bid amount of the power and the predicted value of the contract price of the power, and We will present in a recognizable manner the process of deriving the probability distribution of the contract price from the probability distribution of the bid price using a prediction model.
  • the bidder can grasp the transaction status in which the transaction price of the prediction result is determined even in the transaction market where the bidding trend is undisclosed like the spot market of JEPX, and the validity of the prediction result Can be judged.
  • each process from step ST1 to step ST5 shown in FIG. 2 may be executed as a series of processes.
  • the first prediction unit 13 or the second prediction unit 14 may call the first prediction model or the second prediction model created in advance and asynchronously execute the respective prediction processes.
  • the learning process of the prediction model may be executed recursively in accordance with the change of the narrowing condition of the information used in this learning, and the prediction value calculation process may be executed recursively in accordance with the change of the prediction value. Good.
  • the transaction price prediction device 1 uses the steps in the flowchart shown in FIG. The process of ST3 and the process of step ST4 are executed. That is, in the transaction price prediction method according to the first embodiment, the first prediction unit 13 uses the first prediction model to predict the purchase bid amount at the prediction target date and time, and the second prediction unit 14 , And a step of predicting the transaction price at the prediction target date and time using the second prediction model.
  • the transaction price prediction device 1 includes a processing circuit for executing the processing of steps ST1 to ST5 shown in FIG.
  • the processing circuit may be dedicated hardware or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the transaction price prediction device 1.
  • FIG. 6B is a block diagram showing a hardware configuration that executes software that realizes the function of the transaction price prediction device 1.
  • a first interface 100 is an interface that relays exchange of information between the transaction price prediction device 1 and a storage device that realizes the first information storage unit 3 and the second information storage unit 5.
  • the second interface 101 is an interface that relays the exchange of information between the transaction price prediction device 1 and a communication device or an input device that realizes the third information acquisition unit 6.
  • the third interface 102 is an interface for outputting the prediction result output from the transaction price prediction device 1 to the display device.
  • the processing circuit 103 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the functions of the first model learning unit 11, the second model learning unit 12, the first prediction unit 13, the second prediction unit 14, and the presentation unit 15 in the transaction price prediction device 1 are realized by separate processing circuits. Alternatively, these functions may be collectively realized by one processing circuit.
  • the processing circuit is the processor 104 shown in FIG. 6B, the first model learning unit 11, the second model learning unit 12, the first prediction unit 13, the second prediction unit 14 in the transaction price prediction device 1
  • the function of the presentation unit 15 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 105.
  • the processor 104 reads out and executes the program stored in the memory 105, so that the first model learning unit 11, the second model learning unit 12, the first prediction unit 13, and the second model learning unit 11 in the transaction price prediction device 1 are executed.
  • the functions of the prediction unit 14 and the presentation unit 15 are realized. That is, the transaction price prediction device 1 includes a memory 105 for storing a program that, when executed by the processor 104, results in the processes of steps ST1 to ST5 in the flowchart shown in FIG. ..
  • These programs are computer-based procedures or methods of the first model learning unit 11, the second model learning unit 12, the first prediction unit 13, the second prediction unit 14, and the presentation unit 15 in the transaction price prediction device 1.
  • the memory 105 causes the computer to function as the first model learning unit 11, the second model learning unit 12, the first prediction unit 13, the second prediction unit 14, and the presentation unit 15 in the transaction price prediction device 1.
  • the program may be a computer-readable storage medium storing the program.
  • the memory 105 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Memory), an EEPROM (Electrically-volatile, non-volatile semiconductor, or a non-volatile memory such as EEPROM).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Memory)
  • EEPROM Electrically-volatile, non-volatile semiconductor, or a non-volatile memory such as EEPROM.
  • a disc, a flexible disc, an optical disc, a compact disc, a mini disc, a DVD, etc. are applicable.
  • Part of the functions of the first model learning unit 11, the second model learning unit 12, the first prediction unit 13, the second prediction unit 14, and the presenting unit 15 in the transaction price prediction device 1 is dedicated hardware. It may be realized and a part may be realized by software or firmware.
  • the first model learning unit 11 and the second model learning unit 12 realize the functions by the processing circuit 103 that is dedicated hardware, and the first prediction unit 13, the second prediction unit 14, and the presentation unit.
  • the function 15 is realized by the processor 104 reading and executing the program stored in the memory 105. In this way, the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
  • the contract price of the power in which the power transaction status at the prediction target date/time is reflected. can be predicted.
  • the transaction price prediction device 1 includes the second prediction model that predicts the contract price, the presenting unit 15 that presents the bid amount of the prediction result, and the contract price of the prediction result. Can understand the transaction status for which the contract price is determined, and can judge the validity of the forecast result.
  • the first prediction unit 13 applies the third information capable of acquiring the actual value at the prediction target date and time to the first prediction model to calculate the prediction target. Predict the bid amount at the date and time.
  • the second prediction unit 14 applies the third information that can obtain the actual value at the prediction target date and time and the prediction result of the bid amount to the second prediction model to predict the contract price at the prediction target date and time. .. Thereby, the validity of the prediction result by the prediction model can be objectively verified by using the actual value at the prediction target date and time.
  • the prediction value obtained by applying the third information to the prediction model and the actual value at the prediction target date and time that is, the value obtained by applying the actual value of the same condition item as the third information to the prediction model.
  • the reason why the predicted transaction price deviates is examined when a verification result with an error between and exceeds the allowable range is obtained.
  • the reason why the predicted value of the transaction price has deviated is, for example, firstly, as the cause of (1), when the forecasts after the demand forecast are deviated due to the deviation of the weather forecast. Will be considered.
  • the weather forecast is correct, as a cause of (2), a case where the bid bid amount is not predicted due to a problem in the first prediction model is considered.
  • the bid amount predicted by the first prediction model is correct, as a cause of (3), a case where the contract price prediction is wrong due to a problem in the second prediction model is considered.
  • the reason (4) is that the contract price changes discontinuously and stepwise with respect to the bid amount as shown in FIG. Whether or not the contract price error has increased due to this is examined.
  • the conventional prediction of the transaction price generally uses only the prediction model that directly predicts the transaction price from the temperature, etc., it depends on the cause shown in (1) and the causes shown in (2) to (4). Only complex conditions were considered.
  • the first prediction model for predicting the bid amount and the second prediction model for predicting the transaction price using the predicted value of the first prediction model Since the prediction model is used, the causes shown in (3) and (4) can be particularly examined, and more detailed examination can be performed.
  • the information input to the second prediction model and the information output from the second prediction model If it is determined that the forecast price of the transaction price is deviated from the actual value of the transaction price under the same conditions in the past, a large error will occur in the transaction price due to the reason shown in (3). You can judge that In this case, the narrowing-down condition of the data used for learning the second prediction model is reviewed and relearning is performed. This makes it possible to accurately predict the transaction price.
  • the second prediction model, the bid bid amount forecast value and the contract price forecast value are visualized, and the power purchase bid is made using the second forecast model.
  • the bidder can grasp the process in which the predicted value of the contract price is determined, and can judge the validity of the predicted result.
  • the transaction price prediction device 1 may be a product for which bidding for selling and buying is performed in the trading market.
  • it can be applied to products other than electric power.
  • the transaction price prediction device can reflect the transaction status at the prediction target date and time and can judge the validity of the transaction price prediction result, for example, a wholesale power transaction whose power bidding trend is not disclosed It can be used for a system that predicts the contract price of electric power in the market.
  • 1 transaction price prediction device 2 first information acquisition unit, 3 first information storage unit, 4 second information acquisition unit, 5 second information storage unit, 6 3rd information acquisition unit, 11 1st information acquisition unit Model learning unit, 12 second model learning unit, 13 first prediction unit, 14 second prediction unit, 15 presentation unit, 30 first prediction model, 40 second prediction model, 40A prediction value, 50, 70 probability distribution, 60 band, 100 first interface, 101 second interface, 102 third interface, 103 processing circuit, 104 processor, 105 memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Economics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

取引価格予測装置(1)は、買入札量を予測する第1の予測モデルを用いて予測対象日時における買入札量を予測し、取引価格を予測する第2の予測モデルを用いて予測対象日時における取引価格を予測する。

Description

取引価格予測装置および取引価格予測方法
 本発明は、卸商品取引市場における商品の取引価格を予測する取引価格予測装置および取引価格予測方法に関する。
 近年では、卸電力取引市場が活性化しており、電力取引価格予測へのニーズが高まっている。電力の約定価格および約定量は、入札当日における、電力の売入札量と売入札価格との関係を示す売入札曲線と、電力の買入札量と買入札価格との関係を示す買入札曲線との交点で決定される。
 一方、日本卸電力取引市場(以下、JEPXと記載する)のスポット市場は、ブラインドシングルプライスオークション方式という約定方式が採用されており、電力の入札動向が非公開である。このため、入札者は、入札当日の入札曲線の実態を把握できない。
 これに対して、特許文献1に記載された入札支援システムでは、予め与えられた市場の電力供給曲線と電力需要曲線に対して、市場において落札される電力量あるいは収益あるいは供給高が最大になるように入札曲線を推定している。このように推定された入札曲線を用いることで、入札者は、入札動向が非公開の市場であっても、電力の取引価格を予測することができる。
特開2005-339527号公報
 電力の入札動向が非公開であると、特許文献1に記載された入札支援システムによって推定された入札曲線では、予測対象日時における取引状況を反映しているかどうかが把握できず、取引市場における予測結果の妥当性を判断できないという課題があった。
 本発明は上記課題を解決するものであり、予測対象日時における取引状況が反映された取引価格の予測を行うことができる取引価格予測装置および取引価格予測方法を得ることを目的とする。
 本発明に係る取引価格予測装置は、買入札量を予測する第1の予測モデルを用いて、予測対象日時における買入札量を予測する第1の予測部と、取引価格を予測する第2の予測モデルに対して、第1の予測部によって予測された買入札量を適用することで、予測対象日時における取引価格を予測する第2の予測部を備える。
 本発明によれば、買入札量を予測する第1の予測モデルを用いて予測対象日時における買入札量を予測し、取引価格を予測する第2の予測モデルを用いて予測対象日時における買入札量に対応する取引価格を予測する。これにより、予測対象日時における取引状況が反映された取引価格の予測を行うことができる。
実施の形態1に係る取引価格予測装置の構成例を示すブロック図である。 実施の形態1に係る取引価格予測方法を示すフローチャートである。 実施の形態1における第1の予測モデルの例を示す図である。 実施の形態1における第2の予測モデルの例を示す図である。 実施の形態1における予測結果の提示態様の例を示す図である。 図6Aは、実施の形態1に係る取引価格予測装置の機能を実現するハードウェア構成を示すブロック図である。図6Bは、実施の形態1に係る取引価格予測装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。
実施の形態1.
 実施の形態1に係る取引価格予測装置および取引価格予測方法は、取引市場で売り買いの入札が行われる様々な商品の取引価格の予測に適用することができる。以下、実施の形態1に係る取引価格予測装置および取引価格予測方法を用いて、JEPXのスポット市場の予測対象日時における電力の約定価格を予測する場合について説明する。図1は、実施の形態1に係る取引価格予測装置1の構成例を示すブロック図である。取引価格予測装置1は、第1の予測モデルを用いて予測対象日時における買入札量を予測し、第2の予測モデルを用いて予測対象日時における電力の約定価格を予測する。
 第1の予測モデルは、第1の情報と第2の情報とを用いて買入札量を予測するよう学習された予測モデルである。第1の情報は、買入札量の実績値を含む取引情報であり、例えば、予測対象日時よりも過去に得られ、JEPXのスポット市場で公開された電力の買入札総量および約定価格である。第1の情報取得部2は、第1の情報を取得して第1の情報記憶部3に記憶する。第1の情報取得部2は、インターネットなどの通信回線を経由して第1の情報を取得する通信装置であってもよいし、ユーザによる第1の情報の手動入力を受け付ける入力装置であってもよい。
 第2の情報は、入札に影響を与える条件の実績値を示す情報であり、例えば、予測対象日時よりも過去に得られた、気象情報、カレンダ情報、および発電機の運転情報といった電力の需要量に影響を与える情報である。気象情報には、気温、天気情報および日射量が含まれる。カレンダ情報は、電力需要量の増減が予想される日であり、例えば祝祭日および電力需要量の多い企業の営業日がある。発電機の運転情報は、例えば、定期点検、故障または事故によって発電機が停止しているか否かを示す情報である。また、電力系統同士を接続している連系線の分断の有無を第2の情報に含めてもよい。
 第2の情報取得部4は、第2の情報を取得して第2の情報記憶部5に記憶する。第2の情報取得部4は、インターネットなどの通信回線を経由して第2の情報を取得する通信装置であってもよいし、ユーザによる第2の情報の手動入力を受け付ける入力装置であってもよい。また、第1の情報記憶部3および第2の情報記憶部5は、取引価格予測装置1による情報の読み出しが可能な記憶装置である。
 第2の予測モデルは、買入札量と第2の情報とを用いて電力の約定価格(取引価格)を予測するよう学習された予測モデルである。第2の予測モデルに対して第3の情報を適用することで、予測対象日時における電力の約定価格が予測される。第3の情報は、予測対象日時における需要量に影響を与える条件の予測値であり、第2の情報と条件項目は共通しているが、予測対象日時における予測情報である点で異なる。例えば、第3の情報は、予測対象日時における、気象予報情報、カレンダ情報および発電機の運転計画情報である。第3の情報取得部6は、インターネットなどの通信回線を経由して第3の情報を取得する通信装置であってもよく、ユーザによる第3の情報の手動入力を受け付ける入力装置であってもよい。
 取引価格予測装置1は、図1に示すように、第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15を備えて構成される。第1のモデル学習部11は、第1の情報と第2の情報とを用いて第1の予測モデルを学習する。第1の予測モデルは、予測対象日時における電力の買入札量を予測するための予測モデルである。第1のモデル学習部11は、第1の情報記憶部3から読み出した第1の情報と第2の情報記憶部5から読み出した第2の情報とを用いて、第1の予測モデルを学習する。
 第2のモデル学習部12は、第1の情報と第2の情報とを用いて、第2の予測モデルを学習する。第2の予測モデルは、予測対象日時における電力の約定価格を予測するための予測モデルである。第2のモデル学習部12は、第1の情報記憶部3から読み出した第1の情報と第2の情報記憶部5から読み出した第2の情報とを用いて、第2の予測モデルを学習する。
 第1の予測部13は、第3の情報を第1の予測モデルに適用して、予測対象日時における電力の買入札量を予測する。例えば、第1の予測部13は、第1のモデル学習部11によって学習された第1の予測モデルに対して、第3の情報取得部6によって予測対象日時に取得された第3の情報を適用することで、予測対象日時における電力の買入札量を予測する。
 第2の予測部14は、第1の予測部13によって予測された買入札量と第3の情報とを第2の予測モデルに適用することで、予測対象日時における電力の約定価格を予測する。例えば、第2の予測部14は、第2のモデル学習部12によって学習された第2の予測モデルに対して、第1の予測部13によって予測された電力の買入札量と第3の情報取得部6によって取得された第3の情報とを適用することで、予測対象日時における電力の約定価格を予測する。
 提示部15は、第2の予測モデル、第1の予測部13によって予測された買入札量および第2の予測部14によって予測された約定価格を提示する。例えば、提示部15は、電力の約定価格の予測に用いられた第2の予測モデルとともに、電力の買入札量の予測値の確率分布と電力の約定価格の予測値の確率分布とを、図1に不図示の表示部に表示する。また、提示部15は、買入札量の予測に用いられた第3の情報および第1の予測モデルを表示部に表示してもよい。
 なお、図1において、第1のモデル学習部11、第2のモデル学習部12および提示部15は、取引価格予測装置1とは別の外部装置に設けられてもよい。
 すなわち、取引価格予測装置1は、第1のモデル学習部11、第2のモデル学習部12および提示部15を備えず、外部装置が備える第1のモデル学習部11および第2のモデル学習部12によって学習された予測モデルを受信して予測を行い、予測結果および予測モデルを外部装置に送信して提示部15に提示させてもよい。また、予測結果および予測モデルを表示させる表示部は、取引価格予測装置1が備えてもよいし、取引価格予測装置1とは別の外部装置に設けられてもよい。
 次に動作について説明する。
 図2は、実施の形態1に係る取引価格予測方法を示すフローチャートである。
 まず、第1のモデル学習部11が、第1の予測モデルを学習する(ステップST1)。例えば、第1のモデル学習部11が、電力の買入札量と約定価格とを含む第1の情報を、この入札が行われた日時とともに、第1の情報記憶部3から取得する。この買入札量と約定価格が得られた日時は、電力の入札に影響を与える条件、例えば、電力需要量に影響を与える条件が、予測対象日時と類似していると期待される日時であることが望ましい。例えば、当該日時は、予測対象日時の至近1週間内の日時、あるいは予測対象日時の前年で同月の日時であってもよい。電力の需要量に影響を与える条件が類似すると期待される日時をカレンダ情報から特定してもよい。以降の説明では、第1の情報が得られた日時を“類似日時”と呼ぶ。
 続いて、第1のモデル学習部11は、類似日時における第2の情報を、当該日時とともに、第2の情報記憶部5から取得する。例えば、類似日時における、気象情報、カレンダ情報および発電機の運転情報が、第2の情報として取得される。
 第1のモデル学習部11は、第1の情報と第2の情報とを、それぞれの情報が得られた日時をキーとして紐付けし、これらの情報を用いて第1の予測モデルを学習する。第1の予測モデルは、電力の需要量に影響を与える条件を説明変数として電力の買入札量を予測するモデルである。例えば、第1の予測モデルは、下記式(1)に示すような簡易な予測モデルであってもよい。第1のモデル学習部11は、類似日時における第1の情報および第2の情報の実績値を用いて、下記式(1)に含まれるパラメータα1の値とパラメータα2の値を学習する。第1の予測モデルの学習方法として、最も簡易なものに線形回帰法があるが、サポートベクトル回帰、ベイズ回帰およびその他の学習方法を用いてもよい。
 買入札量=α1+α2×気温     ・・・(1)
 一方、本願の発明者は、電力取引市場における入札動向を検討した結果、電力取引市場では、電力の買入札量が需要量と高い相関を持つことを見出した。第1の予測モデルは、この知見に基づいた予測モデルである。また、第1のモデル学習部11は、予測対象日時における電力需要量に影響を与える条件の実績値と、上記条件と同じ項目の予測値である第3の情報との誤差を考慮して、電力の買入札量を確率分布として予測する第1の予測モデルを学習してもよい。
 図3は、実施の形態1における第1の予測モデル30の例を示す図である。図3に示す第1の予測モデル30は、気温に対する電力の買入札量の変動を学習したモデルであり、予測対象日時における気温の予測値に応じた電力の買入札量を予測する。例えば、気温が上昇すると、冷房機器の稼働率が上昇して電力需要量が増加する。電力需要量が増加すると、入札者は確実に電力を確保したいと考えるので、買入札量も増加する。一方、冷房が不要な温度まで気温が低下すると、冷房機器の稼働率が下降するので、電力需要量が減少して、これに伴い電力の買入札量も減少する。
 次に、第2のモデル学習部12が、第2の予測モデルを学習する(ステップST2)。例えば、第2のモデル学習部12が、電力の買入札量と約定価格との組みを、この入札が行われた日時とともに、第1の情報記憶部3から取得する。ここで、第2のモデル学習部12によって取得される第1の情報は、第1のモデル学習部11によって取得された第1の情報および第2の情報と同じ日時(類似日時)に得られた情報である。
 続いて、第2のモデル学習部12は、類似日時における第2の情報を、当該日時とともに、第2の情報記憶部5から取得する。すなわち、第2のモデル学習部12によって取得された第2の情報は、第1のモデル学習部11によって取得された第1の情報および第2の情報と同じ日時に得られた情報である。
 なお、電力取引市場において電力需要に影響を与える条件には、前述した気象情報などの他に、冷熱機器の稼働率があり、原油価格がある。ただし、原油価格は、一般的に冷熱機器の稼働率と比較して緩やかに変動する。このため、第2のモデル学習部12が、第2の情報として原油価格を取得する場合、原油価格は、必ずしも、第1のモデル学習部11によって取得された第2の情報と同じ日時に得られたものでなくてもよい。例えば、至近1年間に得られた原油価格であってもよい。すなわち、電力需要に影響を与える条件を示す情報のうち、変動が緩やか(例えば、一定期間内の変動量が閾値未満)な情報は、許容範囲内の変動であると予想される期間内に得られたものであれば、第1のモデル学習部11によって取得された第2の情報と同じ日時に得られたものでなくてもよい。
 第2のモデル学習部12は、第1の情報として取得した電力の買入札量と約定価格と、第2の情報とを、それぞれの情報が得られた日時をキーとして紐付けし、これらの情報を用いて第2の予測モデルを学習する。第2の予測モデルは、電力の買入札量と第2の情報とを説明変数として、電力の約定価格を予測するモデルである。第2の予測モデルの学習方法は、例えば、電力の買入札量に対する約定価格の分布をヒストグラムで表して、買入札量と約定価格との関係を学習してもよい。また、買入札量に対する約定価格の分布を、確率密度推定法を用いて表して、買入札量と約定価格との関係を学習してもよい。第2の予測モデルの学習には、線形回帰法、サポートベクトル回帰、ベイズ回帰およびその他の学習方法を用いてもよい。
 また、第2のモデル学習部12は、第2の予測モデルの学習に用いる情報を、第2の情報を用いて選別してもよい。例えば、第2のモデル学習部12は、第1の情報の中から、絞り込み用の第2の情報に対応する第1の情報を選別し、選別した第1の情報を、第2の予測モデルの学習に用いる。絞り込み用の第2の情報は、類似日時の第2の情報のうち、予測対象日時における条件に類似すると推定された情報であってもよい。例えば、第1の情報として取得された電力の買入札量と約定価格との組みのうち、絞り込み用の第2の情報で選別した組みが、前述したヒストグラムの算出に用いられる。
 本願の発明者が、電力取引市場における電力の入札動向を検討した結果、電力取引市場において、電力の約定価格は、買入札量に対して不連続に階段状に変化し、同じ買入札量で複数の約定価格が設定されることがあるという知見が得られた。これは、ある買入札量に対して複数の約定価格が離散的に対応していることを意味する。第2の予測モデルは、電力の買入札量に対して複数の離散的な約定価格が相応の確率で対応することを表現可能な学習方法で学習される。このため、第2の予測モデルを表す関係式は複雑なものになることが予想される。ただし、第2の予測モデルを第1の予測モデルと同様な単純な関係式で近似した場合は、例えば、取引価格=α1+α2×買入札量、といった式で第2の予測モデルを表すことができる。この場合、第2のモデル学習部12は、第1の情報と第2の情報を用いて、パラメータα1の値とパラメータα2の値を学習する。
 図4は、実施の形態1における第2の予測モデル40の例を示す図である。図4に示す第2の予測モデル40は、電力の買入札量に対して約定価格が不連続に階段状に変化する関係を示している。また、図4において矢印で示すように、同じ買入札量に対して複数の約定価格が予測されることがある。なお、第2のモデル学習部12は、予測対象日時における実際の条件と第3の情報との間の誤差、および第1の予測モデルによって予測された買入札量と予測対象日時における実際の買入札量との間の誤差を考慮して、電力の約定価格を確率分布として予測する第2の予測モデルを学習してもよい。
 図2の説明に戻る。
 第1の予測部13が、予測対象日時における電力の買入札量を予測する(ステップST3)。例えば、第1の予測部13は、第3の情報取得部6によって取得された予測対象日時における第3の情報を、第1のモデル学習部11によって学習された第1の予測モデルに適用することで、予測対象日時における電力の買入札量を予測する。また、第1の予測部13は、第1の予測モデルを用いて、予測対象日時における電力の買入札量の予測値の確率分布を併せて算出してもよい。
 第2の予測部14が、予測対象日時における電力の約定価格を予測する(ステップST4)。例えば、第2の予測部14は、第3の情報取得部6から予測対象日時における第3の情報を取得し、第1の予測部13によって予測された電力の買入札量を取得して、これらの情報を第2の予測モデルに適用することで、予測対象日時における電力の約定価格を予測する。また、第2の予測部14は、第2の予測モデルを用いて、予測対象日時における電力の約定価格の予測値の確率分布を併せて算出してもよい。
 提示部15が、予測モデルおよび予測結果を提示する(ステップST5)。例えば、提示部15は、電力の約定価格の予測を行った第2の予測モデル、第1の予測部13によって予測された予測対象日時における電力の買入札量および第2の予測部14によって予測された予測対象日時における電力の約定価格を、表示部に表示させる。また、提示部15は、電力の買入札量の予測に用いた第1の予測モデルを予測結果の買入札量と併せて表示部に表示させてもよい。
 電力の約定価格は買入札量に対して離散的に変化するので、電力の約定価格を、平均値または分散値といった代表値で提示するのは困難である。そこで、提示部15が、第2の予測モデルと、電力の買入札量の確率分布と、電力の約定価格の確率分布との対応関係を可視化し、第2の予測モデルを用いて買入札量の確率分布から約定価格の確率分布が導出される過程を認識可能な態様で提示してもよい。
 図5は、実施の形態1における予測結果の提示態様の例を示す図である。図5に示すように、提示部15が、第2の予測モデルを用いて算出された電力の約定価格の予測値40Aを、電力の買入札量と電力の約定価格との関係を示すグラフにプロットすることで、第2の予測モデルが可視化される。入札者は、図5に示すグラフを参照することで、電力の約定価格の予測値40Aが買入札量に対して離散的に変化していることを認識できる。
 さらに、提示部15は、第1の予測部13によって予測された電力の買入札量の確率分布50、電力の買入札量の主要な分布領域を示す帯状部60、および第2の予測部14によって予測された電力の約定価格の確率分布70を、図5に示すグラフに設定している。これにより、図5に示すグラフが表示部に表示されたときに、電力の買入札量の確率分布50および電力の約定価格の確率分布70が可視化される。
 入札者は、図5に示すグラフに設定された帯状部60を参照することで、帯状部60に含まれる約定価格の予測値40Aから、電力の約定価格の確率分布70が導出されることを把握できる。第2の予測モデルを用いて予測された約定価格の予測値40Aの分布密度を等高線または色の濃淡で表示してもよい。また、図3に示したような第1の予測モデルを、図5に示すグラフに設定してもよい。
 このように、取引価格予測装置1では、電力の約定価格の予測に用いられた第2の予測モデル、電力の買入札量の予測値および電力の約定価格の予測値を可視化し、第2の予測モデルを用いて買入札量の確率分布から約定価格の確率分布が導出される過程を認識可能な態様で提示する。これにより、入札者は、JEPXのスポット市場のように入札動向が非公開の取引市場であっても、予測結果の取引価格が決定される取引状況を把握することができ、予測結果の妥当性を判断することができる。
 なお、図2に示したステップST1からステップST5までの各処理は、一連の処理として実行してもよい。また、第1の予測部13または第2の予測部14が、事前に作成された第1の予測モデルまたは第2の予測モデルを呼び出して、それぞれの予測処理を非同期に実行してもよい。予測モデルの学習処理は、この学習に用いる情報の絞り込み条件の変更に応じて再帰的に実行してもよく、予測値の算出処理は、予測値の変更に応じて再帰的に実行してもよい。
 また、前述したように、取引価格予測装置1が、第1の予測部13および第2の予測部14から構成される場合、取引価格予測装置1は、図2に示したフローチャートのうち、ステップST3の処理とステップST4の処理とを実行する。すなわち、実施の形態1に係る取引価格予測方法は、第1の予測部13が、第1の予測モデルを用いて予測対象日時における買入札量を予測するステップと、第2の予測部14が、第2の予測モデルを用いて、予測対象日時における取引価格を予測するステップを備える。
 次に、取引価格予測装置1の機能を実現するハードウェア構成について説明する。
 取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15の機能は、処理回路によって実現される。すなわち、取引価格予測装置1は、図2に示したステップST1からステップST5の処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
 図6Aは、取引価格予測装置1の機能を実現するハードウェア構成を示すブロック図である。図6Bは、取引価格予測装置1の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図6Aおよび図6Bにおいて、第1のインタフェース100は、取引価格予測装置1と、第1の情報記憶部3および第2の情報記憶部5を実現する記憶装置との情報のやり取りを中継するインタフェースである。第2のインタフェース101は、取引価格予測装置1と、第3の情報取得部6を実現する通信装置または入力装置との情報のやり取りを中継するインタフェースである。第3のインタフェース102は、取引価格予測装置1から出力された予測結果を表示装置に出力するインタフェースである。
 処理回路が、図6Aに示す専用のハードウェアの処理回路103である場合、処理回路103は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15の機能を別々の処理回路で実現してもよく、これらの機能をまとめて1つの処理回路で実現してもよい。
 処理回路が、図6Bに示すプロセッサ104である場合、取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ105に記憶される。
 プロセッサ104は、メモリ105に記憶されたプログラムを読み出して実行することで、取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15の機能を実現する。すなわち、取引価格予測装置1は、プロセッサ104によって実行されるときに、図2に示したフローチャートにおけるステップST1からステップST5までの処理が結果的に実行されるプログラムを記憶するためのメモリ105を備える。これらのプログラムは、取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15の手順または方法をコンピュータに実行させる。メモリ105は、コンピュータを、取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。
 メモリ105は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
 取引価格予測装置1における第1のモデル学習部11、第2のモデル学習部12、第1の予測部13、第2の予測部14および提示部15の機能について一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、第1のモデル学習部11および第2のモデル学習部12は、専用のハードウェアである処理回路103で機能を実現し、第1の予測部13、第2の予測部14および提示部15は、プロセッサ104がメモリ105に記憶されたプログラムを読み出して実行することによって機能を実現する。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。
 以上のように、実施の形態1に係る取引価格予測装置1では、第1の予測モデルおよび第2の予測モデルを用いることで、予測対象日時における電力取引状況が反映された電力の約定価格の予測が可能である。
 また、実施の形態1に係る取引価格予測装置1は、約定価格を予測した第2の予測モデル、予測結果の買入札量および予測結果の約定価格を提示する提示部15を備えるので、入札者は、約定価格が決定される取引状況を把握でき、予測結果の妥当性を判断できる。
 また、実施の形態1に係る取引価格予測装置1において、第1の予測部13は、予測対象日時に実績値を取得可能な第3の情報を第1の予測モデルに適用して、予測対象日時における買入札量を予測する。第2の予測部14は、予測対象日時に実績値を取得可能な第3の情報と買入札量の予測結果とを第2の予測モデルに適用して、予測対象日時における約定価格を予測する。これにより、予測モデルによる予測結果の妥当性を、予測対象日時における実績値を用いて客観的に検証することができる。
 例えば、第3の情報を予測モデルに適用して得られた予測値と、予測対象日時における実績値、すなわち第3の情報と同じ条件項目の実績値を予測モデルに適用して得られた値との間の誤差が許容範囲を超える検証結果が得られた場合に、予測した取引価格が外れた原因が検討される。
 実施の形態1に係る取引価格予測装置1において、取引価格の予測値が外れた原因は、例えば、まず、(1)の原因として、天気予報の外れによって需要予測以降の各予測が外れた場合が検討される。天気予報が当たっていた場合、(2)の原因として、第1の予測モデルに問題があるために買入札量の予測が外れた場合が検討される。第1の予測モデルによる買入札量の予測が当たっていた場合、(3)の原因として、第2の予測モデルに問題があるために約定価格の予測が外れた場合が検討される。第2の予測モデルによる約定価格の予測が適切だった場合、(4)の原因として、図4に示したように、買入札量に対して約定価格が不連続に階段状に変化することに起因して約定価格の誤差が大きくなったか否かが検討される。
 従来の取引価格の予測は、一般的に気温などから直接的に取引価格を予測する予測モデルのみを用いるので、(1)に示した原因と、(2)から(4)に示した原因による複合的な状態とが検討されるだけであった。これに対して、実施の形態1に係る取引価格予測装置1では、買入札量を予測する第1の予測モデルと、第1の予測モデルの予測値を用いて取引価格を予測する第2の予測モデルとを用いるので、特に(3)および(4)に示した原因の検討を行うことが可能であり、より詳細な検討ができる。例えば、第1の予測モデルによって予測された買入札量の予測値に問題がないと判断された場合には、第2の予測モデルに入力した情報と第2の予測モデルから出力された情報とを検討して、取引価格の予測値が過去の同一条件における取引価格の実績値から乖離して分布していると判断される場合、(3)に示した原因で取引価格に大きな誤差を生じたと判断することができる。この場合、第2の予測モデルの学習に用いるデータの絞り込み条件を見直して再学習を行う。これにより、精度の高い取引価格の予測が可能となる。
 さらに、実施の形態1に係る取引価格予測装置1において、第2の予測モデル、買入札量の予測値および約定価格の予測値を可視化して、第2の予測モデルを用いて電力の買入札量の確率分布から約定価格の確率分布が導出される過程を認識可能な態様で提示する。これにより、入札者は、約定価格の予測値が決定された過程を把握することができ、予測結果の妥当性を判断することができる。
 なお、これまでの説明では、取引価格の予測対象の商品が電力である場合を示したが、実施の形態1に係る取引価格予測装置1は、取引市場において売り買いの入札が行われる商品であれば、電力以外の商品であっても適用可能である。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態の任意の構成要素の変形もしくは実施の形態の任意の構成要素の省略が可能である。
 本発明に係る取引価格予測装置は、予測対象日時における取引状況が反映され、かつ取引価格の予測結果の妥当性を判定することができるので、例えば、電力の入札動向が非公開の卸電力取引市場における電力の約定価格を予測するシステムに利用可能である。
 1 取引価格予測装置、2 第1の情報取得部、3 第1の情報記憶部、4 第2の情報取得部、5 第2の情報記憶部、6 第3の情報取得部、11 第1のモデル学習部、12 第2のモデル学習部、13 第1の予測部、14 第2の予測部、15 提示部、30 第1の予測モデル、40 第2の予測モデル、40A 予測値、50,70 確率分布、60 帯状部、100 第1のインタフェース、101 第2のインタフェース、102 第3のインタフェース、103 処理回路、104 プロセッサ、105 メモリ。

Claims (10)

  1.  買入札量を予測する第1の予測モデルを用いて、予測対象日時における買入札量を予測する第1の予測部と、
     取引価格を予測する第2の予測モデルに対して、前記第1の予測部によって予測された買入札量を適用することで、予測対象日時における取引価格を予測する第2の予測部と、
     を備えたことを特徴とする取引価格予測装置。
  2.  買入札量の実績値を含む第1の情報と、入札に影響を与える条件の実績値である第2の情報とを用いて、前記第1の予測モデルとして、入札に影響を与える条件に応じた買入札量を予測する予測モデルを学習する第1のモデル学習部と、
     前記第1の情報と前記第2の情報とを用いて、前記第2の予測モデルとして、買入札量および入札に影響を与える条件に応じた取引価格を予測する予測モデルを学習する第2のモデル学習部と、
     を備えたことを特徴とする請求項1記載の取引価格予測装置。
  3.  前記第2の予測モデル、前記第1の予測部によって予測された買入札量および前記第2の予測部によって予測された取引価格を提示する提示部、
     を備えたことを特徴とする請求項1または請求項2記載の取引価格予測装置。
  4.  前記第2の予測モデルは、取引価格を確率分布として予測すること
     を特徴とする請求項1記載の取引価格予測装置。
  5.  前記第2のモデル学習部は、前記第2の予測モデルの学習に用いる情報を、前記第2の情報を用いて選別すること
     を特徴とする請求項2記載の取引価格予測装置。
  6.  前記第2の予測部は、予測対象日時における取引価格の確率分布を算出し、
     前記提示部は、前記第2の予測部によって算出された取引価格の確率分布を提示すること
     を特徴とする請求項3記載の取引価格予測装置。
  7.  前記提示部は、取引価格の確率分布を、前記第2の予測モデルと併せて提示すること
     を特徴とする請求項6記載の取引価格予測装置。
  8.  前記第1の予測部は、予測対象日時における買入札量の確率分布を算出し、
     前記提示部は、前記第1の予測部によって算出された買入札量の確率分布を提示すること
     を特徴とする請求項7記載の取引価格予測装置。
  9.  前記提示部は、前記第2の予測モデルと、買入札量の確率分布と、取引価格の確率分布との対応関係を可視化して、前記第2の予測モデルを用いて買入札量の確率分布から取引価格の確率分布が導出される過程を認識可能な態様で提示すること
     を特徴とする請求項8記載の取引価格予測装置。
  10.  第1の予測部が、買入札量を予測する第1の予測モデルを用いて、予測対象日時における買入札量を予測するステップと、
     第2の予測部が、取引価格を予測する第2の予測モデルに対して、前記第1の予測部によって予測された買入札量を適用することで、予測対象日時における取引価格を予測するステップと、
     を備えたことを特徴とする取引価格予測方法。
PCT/JP2018/044218 2018-11-30 2018-11-30 取引価格予測装置および取引価格予測方法 WO2020110297A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880099732.7A CN113168656B (zh) 2018-11-30 2018-11-30 交易价格预测装置以及交易价格预测方法
PCT/JP2018/044218 WO2020110297A1 (ja) 2018-11-30 2018-11-30 取引価格予測装置および取引価格予測方法
JP2019528782A JP6752369B1 (ja) 2018-11-30 2018-11-30 取引価格予測装置および取引価格予測方法
DE112018008094.3T DE112018008094T5 (de) 2018-11-30 2018-11-30 Transaktionspreisprognosevorrichtung und transaktionsprognoseverfahren
US17/318,576 US20210264483A1 (en) 2018-11-30 2021-05-12 Transaction price prediction device and transaction price prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044218 WO2020110297A1 (ja) 2018-11-30 2018-11-30 取引価格予測装置および取引価格予測方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/318,576 Continuation US20210264483A1 (en) 2018-11-30 2021-05-12 Transaction price prediction device and transaction price prediction method

Publications (1)

Publication Number Publication Date
WO2020110297A1 true WO2020110297A1 (ja) 2020-06-04

Family

ID=70852349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044218 WO2020110297A1 (ja) 2018-11-30 2018-11-30 取引価格予測装置および取引価格予測方法

Country Status (5)

Country Link
US (1) US20210264483A1 (ja)
JP (1) JP6752369B1 (ja)
CN (1) CN113168656B (ja)
DE (1) DE112018008094T5 (ja)
WO (1) WO2020110297A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021192308A (ja) * 2020-10-16 2021-12-16 百度国際科技(深▲セン▼)有限公司 推奨モデルを決定し、物品価格を決定する方法、装置、電子機器、記憶媒体およびコンピュータプログラム
KR102539662B1 (ko) * 2022-07-20 2023-06-07 농업협동조합중앙회 농산물 가격의 예측을 지원하는 전자 장치 및 그 제어 방법
JP7458939B2 (ja) 2020-08-31 2024-04-01 三菱電機株式会社 取引価格予測装置、取引価格予測モデル生成装置、入札支援システムおよび取引価格予測プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070251A1 (ja) * 2020-09-29 2022-04-07 株式会社日立製作所 電力市場取引支援プラットフォーム
JP7476418B1 (ja) 2023-12-14 2024-04-30 東京瓦斯株式会社 電力市場価格予測装置、電力市場価格予測方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163511A (ja) * 2015-03-05 2016-09-05 中国電力株式会社 電力需要量予測システム、電力需要量予測方法及びプログラム
JP2018013934A (ja) * 2016-07-20 2018-01-25 株式会社東芝 電力価格予測装置
JP2018173678A (ja) * 2017-03-31 2018-11-08 三菱重工業株式会社 支援装置、支援システム、支援方法及びプログラム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994910B2 (ja) * 2003-05-08 2007-10-24 株式会社日立製作所 電力売買支援システム
JP4947878B2 (ja) * 2003-11-25 2012-06-06 信行 所 電力市場の取引方法
JP2005339527A (ja) 2004-04-28 2005-12-08 Toshiba Corp 電力市場における入札支援システム
JP2006260431A (ja) * 2005-03-18 2006-09-28 Chugoku Electric Power Co Inc:The 電力入札価格策定支援システム
US7251589B1 (en) * 2005-05-09 2007-07-31 Sas Institute Inc. Computer-implemented system and method for generating forecasts
JP5487125B2 (ja) * 2011-01-11 2014-05-07 株式会社東芝 電力需給調整予備力取引システムおよび電力需給調整予備力取引方法
US20120191439A1 (en) * 2011-01-25 2012-07-26 Power Analytics Corporation Systems and methods for automated model-based real-time simulation of a microgrid for market-based electric power system optimization
JP2016053925A (ja) * 2014-09-04 2016-04-14 株式会社東芝 電力市場価格予測装置、電力市場価格予測方法およびプログラム
US10210568B2 (en) * 2014-09-26 2019-02-19 Battelle Memorial Institute Coordination of thermostatically controlled loads with unknown parameters
US10068286B2 (en) * 2015-08-04 2018-09-04 Ebay Inc. Probability modeling
US20170200229A1 (en) * 2016-01-08 2017-07-13 Genscape Intangible Holding, Inc. Method and system for analyzing and predicting bidding of electric power generation
US11144842B2 (en) * 2016-01-20 2021-10-12 Robert Bosch Gmbh Model adaptation and online learning for unstable environments
EP3449323A4 (en) * 2016-04-28 2020-04-01 Veritone Alpha, Inc. USE OF PREDICTIONS TO CONTROL TARGET SYSTEMS
US10534328B2 (en) * 2016-06-21 2020-01-14 General Electric Company Methods and systems for enhancing control of power plant generating units
US20180225684A1 (en) * 2017-02-03 2018-08-09 General Electric Company Strategic operation of variable generation power plants
JP6987514B2 (ja) * 2017-03-24 2022-01-05 株式会社日立製作所 取引計画装置および取引計画方法
US11022947B2 (en) * 2017-06-07 2021-06-01 Johnson Controls Technology Company Building energy optimization system with economic load demand response (ELDR) optimization and ELDR user interfaces
US11159044B2 (en) * 2017-07-14 2021-10-26 Battelle Memorial Institute Hierarchal framework for integrating distributed energy resources into distribution systems
CN107590694A (zh) * 2017-09-13 2018-01-16 北京理工大学 一种数据交易确定方法及装置
JP2019082935A (ja) * 2017-10-31 2019-05-30 株式会社日立製作所 管理装置および管理方法
US11176589B2 (en) * 2018-04-10 2021-11-16 Ebay Inc. Dynamically generated machine learning models and visualization thereof
CN108876059A (zh) * 2018-07-27 2018-11-23 阿里巴巴集团控股有限公司 交易数据处理方法、装置、电子设备及计算机存储介质
US11055732B2 (en) * 2018-09-12 2021-07-06 Mitsubishi Electric Research Laboratories, Inc. Day-ahead joint generation scheduling and bidding optimization for power plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163511A (ja) * 2015-03-05 2016-09-05 中国電力株式会社 電力需要量予測システム、電力需要量予測方法及びプログラム
JP2018013934A (ja) * 2016-07-20 2018-01-25 株式会社東芝 電力価格予測装置
JP2018173678A (ja) * 2017-03-31 2018-11-08 三菱重工業株式会社 支援装置、支援システム、支援方法及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMICIT: "JEPX", ENERGY & WEATHER, 25 August 2012 (2012-08-25), pages 1 - 17, XP055712959, Retrieved from the Internet <URL:http://transact.up.seesaa.net/file/JEPXpriceMemo_20120826.pdf> [retrieved on 20190207] *
YAMAUCHI, TAKATSUGU ET AL.: "Daily electricity demand forecast by similar day data of temperature area distribution", ANNUAL MEETING RECORD, I.E.E. JAPAN, 2011, 18 March 2011 (2011-03-18), pages 150 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458939B2 (ja) 2020-08-31 2024-04-01 三菱電機株式会社 取引価格予測装置、取引価格予測モデル生成装置、入札支援システムおよび取引価格予測プログラム
JP2021192308A (ja) * 2020-10-16 2021-12-16 百度国際科技(深▲セン▼)有限公司 推奨モデルを決定し、物品価格を決定する方法、装置、電子機器、記憶媒体およびコンピュータプログラム
JP7263463B2 (ja) 2020-10-16 2023-04-24 バイドゥ・インターナショナル・テクノロジー・(シェンチェン)・カンパニー・リミテッド 推奨モデルを決定し、物品価格を決定する方法、装置、電子機器、記憶媒体およびコンピュータプログラム
KR102539662B1 (ko) * 2022-07-20 2023-06-07 농업협동조합중앙회 농산물 가격의 예측을 지원하는 전자 장치 및 그 제어 방법

Also Published As

Publication number Publication date
CN113168656A (zh) 2021-07-23
CN113168656B (zh) 2023-11-14
JP6752369B1 (ja) 2020-09-09
DE112018008094T5 (de) 2021-07-15
US20210264483A1 (en) 2021-08-26
JPWO2020110297A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2020110297A1 (ja) 取引価格予測装置および取引価格予測方法
US11854024B2 (en) Systems and methods for interactive annuity product services using machine learning modeling
Papadimitriou et al. Forecasting energy markets using support vector machines
Märkle-Huß et al. Contract durations in the electricity market: Causal impact of 15 min trading on the EPEX SPOT market
WO2018174030A1 (ja) 取引計画装置および取引計画方法
Kath et al. Conformal prediction interval estimation and applications to day-ahead and intraday power markets
Chukova et al. Warranty cost analysis: Non‐zero repair time
US20150332298A1 (en) Price matching in omni-channel retailing
JP2007122592A (ja) 卸商品市場入札価格設定支援システムと方法、およびプログラム
US20200311749A1 (en) System for Generating and Using a Stacked Prediction Model to Forecast Market Behavior
Arcelus et al. Pricing and rebate policies in the two-echelon supply chain with asymmetric information under price-dependent, stochastic demand
WO2017110171A1 (ja) 取引管理システム、取引管理方法及び取引管理プログラム
Thanos et al. Expectation adjustment in the housing market: Insights from the Scottish auction system
CN111008724A (zh) 一种价格预测方法、装置、电子设备及可读存储介质
Thach et al. Financial econometrics: Bayesian analysis, quantum uncertainty, and related topics
US11288691B2 (en) Systems and methods for price markdown optimization
JP6383209B2 (ja) 電力取引支援装置、電力取引支援方法およびプログラム
JP7030664B2 (ja) 情報処理装置、情報処理方法及びプログラム
Troncoso et al. Algorithm failures and consumers’ response: Evidence from Zillow
Chintagunta Structural models in marketing
US20200302455A1 (en) Industry Forecast Point of View Using Predictive Analytics
Božović Are there macroeconomic predictors of Point-in-Time PD? Results based on default rate data of the Association of Serbian Banks
Božović Postoje li makroekonomski prediktori za Point-in-Time PD? Rezultati na osnovu baze podataka stopa neizmirenja Udruženja banaka Srbije
JP7458939B2 (ja) 取引価格予測装置、取引価格予測モデル生成装置、入札支援システムおよび取引価格予測プログラム
JP2020009272A (ja) 取引市場予測システム、取引市場予測方法、および取引市場予測プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528782

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941326

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18941326

Country of ref document: EP

Kind code of ref document: A1