WO2022070251A1 - 電力市場取引支援プラットフォーム - Google Patents

電力市場取引支援プラットフォーム Download PDF

Info

Publication number
WO2022070251A1
WO2022070251A1 PCT/JP2020/036873 JP2020036873W WO2022070251A1 WO 2022070251 A1 WO2022070251 A1 WO 2022070251A1 JP 2020036873 W JP2020036873 W JP 2020036873W WO 2022070251 A1 WO2022070251 A1 WO 2022070251A1
Authority
WO
WIPO (PCT)
Prior art keywords
bid
price
learning
curve
bid amount
Prior art date
Application number
PCT/JP2020/036873
Other languages
English (en)
French (fr)
Inventor
良和 石井
民圭 曹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022553257A priority Critical patent/JP7436697B2/ja
Priority to PCT/JP2020/036873 priority patent/WO2022070251A1/ja
Publication of WO2022070251A1 publication Critical patent/WO2022070251A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • JEPX Japan Electric Power Exchange
  • This market is a blind auction method, and after the timing of the gate closing when the market transaction is confirmed, the results such as the contract price and the contract amount, the buy bid amount, and the sell bid amount are disclosed.
  • information that shows the relationship between the bid price and the bid amount is not disclosed.
  • Patent Document 1 a contract rate function for selling and buying is generated from information published by JEPX, actual results such as weather, and information such as days of the week, and the relationship between this and the bid amount with respect to the bid price using the total bid amount. How to estimate is shown.
  • the execution rate function is regarded as the bid rate function based on the hypothesis that the execution rate function is generated by spline regression of the disclosed historical data and this closely approximates the bid rate curve representing the relationship between the bid rate and the bid price.
  • the method is shown in which the contract rate function is mapped to the bid function using the actual value of the total bid amount or the total bid amount estimated separately, and the contract price, which is the intersection of the sell and buy bid functions, is estimated.
  • bid rate functions There are two types of bid rate functions, one that represents a sell bid and the other that represents a buy bid, which are called the supply rate function and the demand rate function, respectively.
  • the bid function has a buy / sell function
  • the sell bid function is called the supply function
  • the buy bid function is called the demand function.
  • the supply rate function indicates a relationship in which a bid rate Rs is input and if the bid amount at a rate equal to or less than the bid rate Rs is equal to or higher than the bid price Ps which is the output of the supply rate function, the product is sold.
  • the demand rate function shows a relationship in which a demand rate Rd is input and if the bid amount at a rate equal to or less than the bid rate Rd is equal to or less than the bid price Pd which is the output of the demand rate function, the item is purchased.
  • contract rate function calculates spline regression for each electric power product using calendar information such as months and days of the week and weather conditions as control parameters.
  • Patent Document 2 shows an example in which the relationship between the bid price and the bid amount of the buying and selling bid curve is defined in advance by a parameterized continuous and monotonous function, and the function is given and used. There is no description on how to determine the "average bid price” and “its diversification”, which are the parameters to be determined, based on the contract performance of the market.
  • Patent Document 3 shows that the supply curve and the demand curve of the market as a whole are estimated by synthesizing the marginal cost curve of the company and the marginal cost curve estimated for other companies.
  • Patent Document 1 shows that the spline regression of the contract rate function is performed for each electric power product and the regression is performed in consideration of the factors of the calendar and the weather, but the data is smoothly assumed on the assumption of continuity.
  • the estimation result is irrelevant to the bidder's knowledge about the power generation means and the contract as described above.
  • the present invention has been made to solve the above-mentioned problems, and can provide a technique for predicting a demand curve and a supply curve based on the knowledge of a trading participant regarding power generation cost and unit price of electricity.
  • the purpose is to provide a support platform.
  • the electric power market transaction support platform of the present invention is a model (for example,) in which a bid amount is calculated for a plurality of set bid price ranges by inputting past forecast values of date and time and / or weather. It has bid amount estimation / learning and prediction means111), and for the bid amount calculated by the model, the price set for the buy bid curve so that the value in the price range set for the sell bid curve is the lowest price. To generate the highest price in the band, add the calculated bid amount to generate both supply curve data and demand curve data, or one of them, and reduce the contract price of the corresponding past power market product.
  • the bid price is based on the difference between the quantitative price and the bid amount at the contract price of the supply curve data or the bid amount at the contract price of the demand curve data, and the difference between the total bid amount and the maximum value of the supply curve data or the demand curve data. It is characterized by having a learning means for modifying the model used for calculating the bid amount of the band. Other aspects of the invention will be described in embodiments described below.
  • FIG. 1 is a diagram showing an example of a system configuration at the time of learning of the bidding support device 100 according to the first embodiment.
  • FIG. 2 is a diagram showing processing of the demand curve forming means 112 and the supply curve forming means 113 according to the first embodiment.
  • the expression “device” is used for simplification in FIG. 1, but it may be a device virtually configured on the calculation and storage resource 420 (see FIG. 4) described later. In this case, it also implies a virtual computer called a docker and a virtual computer composed of a virtual computer and a storage device on the storage device. Docker is open source software or an open platform for developing, deploying, and executing applications using container virtualization. As described above, the bid support device 100 is not necessarily limited to the device as actual hardware. FIG. 1 mainly describes a configuration related to learning processing.
  • the bid support device 100 includes a bid amount estimation / learning and prediction means 111 (model), a demand curve forming means 112, a supply curve forming means 113, a contract price and about quantitative calculation means 114, an error calculation and back propagation means 115, and the like. It includes display data generation means 117, display device 119, input means 120, and the like.
  • the bid amount estimation / learning and prediction means 111 correspond to a model.
  • the input means 120 is a price range input means that gives the price value of the bid amount change point of the demand curve (estimated demand curve) and the supply curve (estimated supply curve) described later.
  • the bid amount estimation / learning and prediction means 111 estimates and learns the bid amount of each price range input by the input means 120 regarding the demand curve and the supply curve by inputting the actual data of the weather forecast and the date and time. In addition, the bid amount is predicted based on the learning result.
  • the demand curve forming means 112 and the supply curve forming means 113 form the demand curve data and the supply curve data from the estimation result and the prediction result of the bid amount.
  • the contract price and contract quantity calculation means 114 obtains the intersection of the demand curve data and the supply curve data configured by the demand curve construct means 112 and the supply curve construct means 113, calculates the contract price and the contract quantity, and calculates the contract price and the contract quantity, respectively. Find the maximum value in the axial direction of and find the total bid amount.
  • the error calculation and backpropagation means 115 compares the market data consisting of the total bid amount for buying, the total bid amount for selling and the contracted price with the contracted price and the result of the calculated means 114 for the contracted price and the contracted price, and estimates the error. Is calculated, and the amount of feedback to the bid amount estimation / learning and prediction means 111 is calculated.
  • the display data generation means 117 generates display data from the demand curve data, the supply curve data, the error calculation, and the output of the back propagation means 115.
  • FIG. 2 shows the details of the parts related to the learning process centering on the demand curve forming means 112 and the supply curve forming means 113.
  • the inputs at the learning stage are the learning input 101 composed of the past weather forecast results and the date and time, and the teaching data 102 composed of the contract price, the contract fixed amount, the sell bid amount and the buy bid amount. ..
  • the learning input 101 is given to the bid amount estimation / learning and prediction means 111 which is initialized at random, and the outputs 131 to 135 and 141 to 145 are calculated.
  • the bid amount estimation / learning and the prediction means 111 are configured by a neural network.
  • the number of nodes in the output layer 118 of the neural network is the sum of the number of price ranges 121 to 125 of the demand curve and the price ranges 151 to 155 of the supply curve input through the input means 120 (in the example of the figure). 10) is configured to be.
  • the obtained calculation results, outputs 131 to 135 and 141 to 145, are input to the demand curve forming means 112 and the supply curve forming means 113, respectively.
  • the demand curve forming means 112 is stacked as shown in detail in FIG. 2 according to the price ranges 121 to 125 of the demand curve, and the demand curve data 181 is formed as an envelope thereof.
  • the output 131 of the bid amount estimation / learning and prediction means 111 constitutes the demand bidding step 161 as corresponding to the price range 121 of the demand curve.
  • the output 132 corresponds to the price range 122 of the demand curve
  • the demand bid step 162 the output 133 corresponds to the price range 123 of the demand curve
  • the demand bid step 163 corresponds to the price range 123 of the demand curve.
  • the demand bidding step 164 is configured to correspond to the price range 124, and the demand bidding step 165 is configured to correspond to the price range 125 of the demand curve with the output 135. Therefore, since the demand curve is generated by accumulating the demand bidding steps, it is configured in a stepped manner.
  • the supply curve forming means 113 is stacked as shown in detail in FIG. 2 according to the price ranges 151 to 155 of the supply curve, and the supply curve data 182 is formed as an envelope thereof.
  • the output 145 of the bid amount estimation / learning and prediction means 111 constitutes the supply bid step 175 as corresponding to the price range 151 of the supply curve.
  • output 144 corresponds to the price range 152 of the supply curve
  • supply bid step 174 corresponds to the price range 153 of the supply curve
  • supply bid step 173 corresponds to the price range 152 of the supply curve.
  • the supply bid step 172 is configured as corresponding to the price range 154
  • the supply bid step 171 is configured with the output 141 corresponding to the price range 155 of the supply curve.
  • the outputs 141 to 145 are combined with the values in the price range 151 to 155 of the supply curve input through the input means 120 for the supply curve, respectively, and constitute the supply bidding steps 171 to 175, respectively. Therefore, since the supply curve is generated by accumulating supply bidding steps, it is configured in a stepped manner.
  • the price ranges 121 to 125 of the demand curve are interpreted as representing the price range range equal to or less than the value input by the input means 120, and the price ranges 151 to 155 of the supply curve are interpreted to represent the price range range equal to or higher than the input value.
  • the demand curve data 181 and the supply curve data 182 are input to the contract price and the contract price calculation means 114, and the contract price and the contract price are calculated as the intersection of the demand curve and the supply curve.
  • the maximum bid amount of the demand curve and the maximum bid amount of the supply curve are also acquired, and the error is calculated and the input to the back propagation means 115 is 183.
  • the error feedback to each node of the output layer 118 of the bid amount estimation / learning and prediction means 111 is used by using the teaching data 102 and the output 183 of the calculation means 114 of the contract price and the contraction quantity.
  • the quantities are calculated and these vectors 184 are fed back to the output layer 118.
  • an error 185 for display is also calculated and output to the display data generation means 117.
  • the display data generation means 117 also acquires the demand curve data 181 and the supply curve data 182 as inputs, stores them in the display buffer, and presents them to the user through the display device 119.
  • FIG. 3 is a flowchart showing an example of processing at the time of learning of the bidding support device 100 according to the first embodiment.
  • the weather record data to be input for learning is acquired from, for example, the weather forecast service 430 (see FIG. 4) via the network 471 (see FIG. 4) (step S301).
  • market performance data is acquired from, for example, the power market system 440 (see FIG. 4) via the network 473 (see FIG. 4) (step S302).
  • a pair of data of the same date and time is constructed from the weather record and the market record of the plurality of date and time acquired here (step S303).
  • the results of step S303 are randomly divided into two groups, one of which is used as training data and the other of which is used as test data (step S304). The ratio of these does not have to be 1: 1 and may be, for example, 7: 3.
  • step S305 the price range setting values of the demand curve and the supply curve described above are acquired through the input means 120 or the like.
  • a neural network in which the number of weather data in each time section acquired in step S301 is the number of input nodes and the number of price ranges acquired in step S305 is the number of output nodes is used as the bid amount estimation / learning and prediction means 111. It is configured as a mounting form (step S306).
  • the number of layers of the neural network and the function format of the response function may be arbitrary, but for example, for the layer close to the input layer of meteorological data, several layers of convolutional neural networks are used, and the part close to the output layer.
  • a possible configuration method is to stack several layers of fully connected networks.
  • weather forecast actual data and weather forecast data data of multiple almost even position intervals such as temperature, humidity, pressure, wind speed / direction, solar radiation amount, precipitation amount, etc. on the grid point corresponding to the latitude and longitude in the vicinity of Japan are collected.
  • it can be expected to learn the relationship of bid volume to the characteristics of the spatial distribution of meteorology by convolving in a layer close to the input. This will give you an understanding of the relationship between price and graphical information such as weather maps.
  • the number of input layers is defined as the number of meteorological data in each time section, but the number of continuous meteorological data in a plurality of time sections, for example, 3 hours, 6 hours, or 18 hours. May be. By doing so, you can also learn about the effects of weather changes on bid volume.
  • step S307 From the data set separated for learning, the bidding of the bidding support device 100 in which the weather data (weather data for one frame) and the date and time for the period corresponding to one product in the electricity market are explained with reference to FIGS. 1 and 2. It is input to the quantity estimation / learning and prediction means 111 (step S307).
  • the obtained result (output of the neural network) is input to the demand curve forming means 112 and the supply curve forming means 113, and the demand curve and the supply curve data are generated from the set price range (step S308).
  • supply and demand means supply and demand.
  • the error calculation and the back propagation means 115 calculate the error (difference) from this result and the market performance of the power market product corresponding to the input meteorological data (step S309), and back propagation to the output layer 118 of the neural network. (Step S310).
  • step S311 it is determined whether or not the criteria such as the error index and the number of learnings are satisfied, and if the criteria are not met (steps S311, No), the process returns to step S307 and the criteria are met (step S311). , Yes), end a series of processing. That is, by repeating the processing from step S307 to step S310 based on the criteria such as the error index and the number of learnings, the bid amount and the weather condition of each price range that can explain the plurality of achievements selected for learning well. Learn relationships.
  • FIG. 18 is a diagram illustrating the relationship between the bidding step and the error calculation according to the first embodiment.
  • the method of realizing learning will be described with reference to FIG. 18 and equations (1) to (7).
  • the description of the error back propagation algorithm in a general neural network will be omitted.
  • dp b (j) and dp s (j) are the price ranges 121 to 125 of the demand curve and the prices of the supply curve set in step S305 (see FIG. 3) as shown in 1811 and 1812 of FIG. It represents the difference between the maximum and minimum values of the values in the bands 151 to 155, which are adjacent to each other in the demand curve and the supply curve.
  • the demand bid amount buy is shown by ⁇ ⁇ ⁇ (1802)
  • the supply bid amount up is shown by ⁇ + ⁇ (1801).
  • about quantitative excvids is a value on the vertical axis of ⁇ (1803)
  • contract price excprc is a value on the horizontal axis of ⁇ (1803).
  • (Minimum price range of each supply bid step) is 1 for bid steps (supply bid steps 172 to 175) where the price is less than or equal to the contract price, and the bid step is larger than the contract price (supply bid step 171).
  • the demand bidding step (demand bidding step 165 to 165 to) in which the maximum value of each of the price ranges on the horizontal axis of the demand bidding step (demand bidding steps 161 to 165) is larger than the contract price. It is a function that becomes 1 in 162) and 0 in a small demand bidding step (demand bidding step 161). Further, the value corresponding to the bid amount component (outputs 141 to 145) related to the supply curve is expressed as fc8s (j), and the value corresponding to the bid amount component (outputs 131 to 135) related to the demand curve is expressed as fc8b (j).
  • the quantitative estimated value esbids and the contract price estimated value supply can be calculated as in the equations (3-1) and (3-2).
  • Equation (3-1) refers to a case where the demand curve determines the contracted price esbids and the supply curve determines the contract price espris, and the equation that conditions such a case is described by if ⁇ i, k or less. .. To explain this condition graphically, it shows the condition that the part horizontal to the price axis of the demand curve and the part perpendicular to the price axis of the supply curve intersect. Mathematically, there is a minimum value in the price range of the kth supply bid step between the maximum value of the price range of the i-1st demand bid step and the maximum value of the price range of the i-th demand bid step.
  • Equation (3-2) refers to the case where the supply curve determines the approximately quantitative esbids and the demand curve determines the contract price supply, and if ⁇ i, k and below describe the situation in which such a condition is satisfied. It is a thing. Graphically, it shows the condition that the part horizontal to the price axis of the supply curve and the part perpendicular to the price axis of the supply curve intersect.
  • the difference in the estimated approximately quantitative esbids with respect to the actual value excbids is the step (supply bidding steps 172 to 175) having the minimum bid amount (minimum price range) lower than the contract price among the supply bidding steps (supply bidding steps 171 to 175). Since it can be considered that there is a problem in the estimation of, the simplest error correction method is to uniformly apply feedback to the step indicating this region, that is, the portion where the value of the equation (1) is 1. Equation (4) represents the calculation equation of such an error correction vector.
  • the demand bidding step (demand bidding steps 161 to 165) having a larger maximum value in the price range than the contract price is the target of feedback, so that the formula (5) is used.
  • the error correction vector can be calculated in this way.
  • the difference between the supply bid amount up and the total value of the bid amount fc8s (j) of the supply bid steps may be considered to be due to the size of all supply bid steps.
  • Equation (6) represents the calculation equation of the error correction vector based on such an idea.
  • the difference between the demand bid amount buy and the total value of the bid amount fc8b (j) in the demand bid steps (demand bid steps 161 to 165) is obtained by calculating the error correction vector according to the equation (7).
  • the area to be fed back is determined by the equations (1) and (2), and the feedback is evenly applied to the output layer nodes corresponding to the regions where this value is 1 to 0.
  • the feedback amount may be distributed according to a weight proportional to the installed capacity of the power generation facility corresponding to each step.
  • the area (the height of the demand bid step) away from the area where the contract results (contract price and contract quantity) frequently occur.
  • the weight of the low-priced range should be increased when the amount of solar radiation is large, based on the theoretical solar power generation capacity that changes over time, based on the predicted value of the amount of solar radiation or simply the time. , You may adjust how to apply feedback.
  • FIG. 4 is a diagram showing an overall configuration at the time of learning of the bidding support solution according to the first embodiment.
  • the calculation and storage resource 420 on the server or cloud is a neural network used in the calculation resource 421, the learning model database 422 that stores the learning results, the price range of the demand curve and the supply curve, and the bid amount estimation / learning and prediction means 111.
  • the weather forecast data is acquired from the weather forecast service 430 via the network 471, but depending on the contract form with the weather forecast service 430, the once acquired data is calculated and stored in the resource 420. It may be configured to be cached in a database not described in the above figure.
  • the market execution result database 424 is stored inside the calculation and storage resource 420, and the data of the power market system 440 connected by the network 473 is cached, but it is necessary through the network 473. It can also be configured to acquire data at any time.
  • the weather forecast function may also be configured to be implemented on the computational and storage resource 420.
  • the forecast will be explained again with reference to FIG. 7, but it is also possible to input the weather forecast data into the trained bid support device 100 and use it for forecasting the future market situation and planning a bid strategy.
  • the learning conditions can be changed by using the price range confirmation unit 413 and the price range setting unit 412 while viewing the supply and demand curve estimation result 411 displayed on the illustrated display screen 410.
  • the configuration of the neural network that realizes the bid amount estimation / learning and the prediction means 111 is defined through the table as shown in FIG.
  • six types of data at 1253 points are input, and four sets of convolution layers (Conv1, Conv2, Conv3, Conv4) and pooling layers (Pool1, Pool2, Pool3, Pool4) are passed through, and then the fully connected layer. It is shown that (FC5, FC6, FC7, FC8) are layered in four layers and input to the bid amount estimation / learning and prediction means 111 (described as DSC in this table).
  • FIG. 5 is a diagram showing an example of a system configuration at the time of prediction of the bidding support device 500 according to the first embodiment. That is, FIG. 5 shows a configuration example of a bid support device 500 having no learning function, which is composed of a neural network that has already been learned.
  • the bid support device 500 includes a bid amount predicting means 511, a demand curve forming means 512, a supply curve forming means 513, a display data generating means 517, a display device 119, and the like.
  • the bid amount prediction means 511 corresponds to a model.
  • the forecast input 501 consisting of the weather forecast data and the target date and time is input to the trained bid amount prediction means 511, and the output 131 to 135, which is a part of the result obtained from the output layer 118, is fixed in the price range at the learning stage.
  • the remaining outputs 141 to 145 are input to the demand curve forming means 512, and the supply curve forming means 513 whose price range is fixed at the learning stage is input to generate the demand curve data 181 and the supply curve data 182.
  • the generated data is input to the display data generation means 517 for prediction to generate display data, which is stored in the display buffer and provided to the user through the display device 119.
  • the estimated value of the contracted price and the contracted price which is the intersection of the demand curve and the supply curve
  • the bid amount which is the maximum value of the bid amount of the demand curve and the supply curve
  • the bid amount estimation / learning and prediction means 111 and the bid amount prediction means 511 do not necessarily have to be different as an algorithm or program that realizes the means, or as a memory image on the computer.
  • a neural network it includes only the case of operational difference, such as whether or not to execute the process (step S310 in FIG. 3) of back-propagating the error to correct the coupling coefficient of the network.
  • FIG. 6 is a flowchart showing an example of processing at the time of prediction of the bid support device 500 according to the first embodiment.
  • FIG. 6 shows a processing flow of the bid support device 500 configured by the trained neural network described with reference to FIG.
  • the weather forecast data is acquired (step S601), and the weather forecast data is input to the trained neural network constituting the bid amount prediction means 511 (step S602).
  • the obtained results are input to the demand curve forming means 512 and the supply curve forming means 513 in which the price range is fixed to the price range set in the learning stage, and the supply and demand curve (demand curve and supply curve) is formed (step). S603).
  • the demand curve and the supply curve are displayed on the display device 119 by processing by the display data generation means 517 (step S604). Further, the intersection of the demand curve and the supply curve and the maximum value of the bid amount of the demand curve and the supply curve are acquired and displayed on the display device 119 (step S605).
  • step S606 When the user receives an input as to whether or not to perform risk analysis (step S606), and when performing risk analysis (steps S606, Yes), further bid steps (161 to 165, 171 to 175) of the demand curve or supply curve (see FIG. 2). ))
  • the block selection result is acquired (step S607).
  • step S608 the change amount of the forecast for the bid step is acquired (step S608), the bid amount is changed based on the setting in step S608 with respect to the bid step selected in step S607, and then the processing of step S604 or less. repeat.
  • step S606 If the end of risk analysis is selected in step S606 (step S606, No), the bid amount and bid price are input from the user, and a bid is made based on the input (step S609).
  • Step S610 generate a control command value for each power generation amount, and transmit it to the power generation facility (step S611).
  • step S609 such business support is assumed as a solution, although it is not a function peculiar to this embodiment.
  • the bid amount and bid price setting itself in step S609 may use the functions such as the invention of Patent Document 2, but the output of the linked functions or services such as the specifications of the equipment owned by the user and the power generation prediction.
  • step S604 to S608 Based on the above, based on the demand curve and supply curve provided in this embodiment and the changes to the risk assumptions (steps S604 to S608), whether to bid positively, whether it is possible to make a successful bid no matter how profitable, the power storage device. If you own such things, you should decide whether to bid even if you actively discharge it, or rather to store it and refrain from bidding, then decide the numerical value and enter the data. Processing can also be assumed.
  • FIG. 7 is a diagram showing the overall configuration of the bidding support solution according to the first embodiment at the time of prediction. Similar to the configuration of FIG. 4, the calculation and storage resource 720 on the server or cloud stores the calculation resource 721, the learning model database 722 for storing the learning results, the user preference database 723 for each user, and the market execution results. It is composed of a market contract result database 724 and the like.
  • the weather forecast data is acquired from the weather forecast service 730 via the network 771, but depending on the contract form with the weather forecast service 730, the once acquired data is calculated and stored in the resource 720. It may be configured to be cached in a database not described in the above figure.
  • the data of the power market system 740 can also be acquired at any time through the network 773.
  • a generator information database 725 in addition to the information of the power generation equipment 750 owned by the user 717, the information of the power generation information disclosure system (HJKS) released by JEPX in the case of Japan, the news releases of each company that owns the power generation equipment, and the web.
  • Information on power generation facilities owned by other than the user 717 collected from the site 760, Wikipedia, etc. via the network 774 may be stored.
  • the user 717 commands the weather forecast data 712 to predict the supply and demand curve, and can obtain the prediction result 711 on the display screen 710 via the network 772.
  • the target weather forecast can be specified through the setting unit 713 such as the target time.
  • equipment capacity information 714 including power generation equipment of other companies may be provided.
  • the types of power sources such as coal-fired power, oil-fired power, gas turbine, supercritical or supercritical, simple gas turbine or combined cycle, etc. are listed in ascending order of average price for each power source type.
  • the vertical axis may indicate the installed capacity of the power source type.
  • HJKS provides information such as the operating status of daily power generation facilities, including future plans such as maintenance plans, so even if you follow this information and dynamically update the capacity of each power source type. good.
  • the power generation unit price of the generator changes depending on the deterioration over time due to the number of years of operation, the number of years of operation may be added to the power source type based on such information.
  • the power generation efficiency at the start of operation is disclosed, and such values may be used to estimate the unit price.
  • the Power Generation Cost Working Group of the Agency for Natural Resources and Energy's Comprehensive Resources and Energy Study Group provides tools for evaluating the operating costs of power generation equipment, and this is used for cost evaluation based on power generation methods and efficiency. Tools like this are available.
  • a part of the installed capacity information 714 corresponds to the hypothesis of what happens when the capacity is reduced by that amount, assuming that a specific power plant is shut down, or when the capacity is increased or decreased at a constant rate.
  • the value may be provided with an input unit 718 that can be adjusted for each price range.
  • the bid price and bid amount determined based on such support information are bid on the market through the network 773, and are instructed to the user's power generation facility 750 through the network 775 based on the contract result obtained through the network 773.
  • FIG. 7 unlike FIG. 4, the configuration of the solution for explaining the operation mainly starting from the prediction at the time of bidding is shown.
  • the users 415 and 715 who use the configuration of FIG. 4 and the configuration of FIG. 7 are assumed to be the same specific user (in the sense that they are in charge of bidding in the same organization, not as individuals).
  • the trained neural network corresponding to a part of the user profile such as the price range used for learning is reassigned to another user who uses the calculation and storage resource 720 to execute the bid support device according to the present embodiment. It can be assumed that it will be rented out. In such a case, it is expected to be used in a form that does not provide a learning function.
  • FIGS. 5 to 7 separately from FIGS. 1 to 4 implies such an operation without learning.
  • the price range setting and the estimation / learning of the bid amount of each price range and the validity of the prediction are judged and the price range setting is reviewed for learning and prediction, and the formulas (1) to (formula) to (formula)
  • the feedback amount calculated by the equations (4) to (7) is fed back according to the installed capacity, and the weight set independently is added to the fordback. It is conceivable that the user 717 who can do the above can use the learning result in a business form such as lending it to another user.
  • FIG. 8 is a diagram showing a configuration of the bidding support system 800 according to the second embodiment.
  • the basic configuration shown in FIG. 8 is the same as that of the first embodiment described with reference to FIGS. 1 to 7, but is characterized in that a plurality of models are learned in consideration of the mode of the electric power market.
  • the bid support system 800 includes a clustering means 801 and a market pattern cluster learning means 802, a market pattern cluster weather forecast result selection means 803, and three bid support devices 811, 812, 813 and the like.
  • FIG. 8 describes the time of learning.
  • the area price record (clustering data 822) of the spot market is given to the clustering means 801 and Hokkaido Electric Power, Tohoku Electric Power, Tokyo Electric Power, Chubu Electric Power, Hokuriku Electric Power, Kansai Clustering of price vectors consisting of prices in each area of Electric Power, Chugoku Electric Power, Shikoku Electric Power, and Kyushu Electric Power will be carried out.
  • clustering of multidimensional real number vectors methods such as k-means method and hierarchical clustering are known.
  • the relationship between the market mode classified as a cluster and the weather forecast actual data 821 is learned by the market pattern cluster learning means 802. For example, if the actual area price of the product from AA: 00 to AA: 30 on YY month ZZ of 20XX belongs to cluster A (assumed), it is about AA: 00 to AA: 30 on ZZ day of 20XX year.
  • the relationship can be learned by an algorithm such as a neural network or a decision tree.
  • the bid support device described with reference to FIG. 1 (assuming that there are three clusters here, three bid support devices 811, 812, and 813) are input from each of a plurality of classified weather forecast actual data 831,832,833. ), Learn the relationship between the supply and demand curve corresponding to the market pattern cluster and the weather forecast.
  • the display data generation means 817 at the time of learning is basically the same as the display data generation means 117 in FIG. 1, but the results of a plurality of market price pattern clusters are input to generate display data.
  • FIG. 9 is a diagram showing a configuration at the time of bidding operation of the bidding support system 900 according to the second embodiment.
  • the forecast input 501 which is the weather forecast data including the date and time is input
  • the market pattern cluster prediction means 902 uses the market pattern cluster prediction means 902 to generate the market pattern under the weather forecast.
  • the supply / demand curve prediction means selection means 903 selects the bid support device 100 used for the supply / demand curve prediction, and inputs the weather forecast data only to the selected bid support device.
  • the market pattern cluster prediction means 902 is composed of a trained decision tree and a neural network of the market pattern cluster learning means 802 of FIG. 8 above.
  • the supply and demand curve forecasting means selection means 903 may be basically the same as the market pattern cluster weather forecast actual selection means 803 of FIG.
  • cluster weather forecast result selection means 803 of FIG. 8 which of the bid support devices (811, 812, 813) prepared according to the number of market pattern classes extracted by the clustering means 801 corresponds to the cluster A weather forecast result. It is up to you to let them learn, as long as they are consistent. However, if even one of the weather forecast results related to cluster A is learned, only the weather forecast results data classified into cluster A will be selected thereafter. Keep in mind that one bid support device does not train weather forecast performance for multiple clusters.
  • the supply / demand curve forecasting means selection means 903 selects the bidding support device (811, 812, 813) according to the correspondence between the market pattern cluster and the bidding support device determined by the market pattern cluster weather forecast performance selection means 803 from the beginning. .. Subsequent supply and demand curve prediction processing is the same as in FIG. 5, but since it is desirable that the display data generation means 917 at the time of prediction also indicates which cluster the prediction was made, the market pattern prediction result 931 is also received as an input. It has become like.
  • a decision tree When a decision tree is used as the market pattern cluster learning means 802 and the market pattern cluster prediction means 902, when a certain weather forecast value is given, it is determined which leaf of the decision tree the data set corresponds to. , Will determine the expected cluster. However, since no leaf is usually 100% cluster A or class B, it is probabilistically predicted that cluster A is 60%, cluster C is 20%, cluster D is 10%, and the like. In the case of neural networks as well, in the classification problem, a softmax function is used for the output layer to determine one cluster, but at the input stage, cluster A is 60%, B is 5%, etc., which is similar to a decision tree. It has the same result.
  • the output 931 from the market pattern cluster prediction means 902 to the display data generation means at the time of prediction is provided with the identification information of the cluster expected to be generated from the weather forecast data and the information of the occurrence probability thereof.
  • FIG. 10 is a diagram showing a screen example when the supply and demand curve is predicted for three clusters. It shows how the estimation results 1001, 1002, 1003 of the supply and demand curves in the case of clusters A, D, and E, the information of the probability at that time, and the identification information of the clusters are displayed (1011, 1012, 1013).
  • FIG. 11 is a diagram showing the configuration of the bidding support system according to the third embodiment
  • FIG. 12 is a diagram showing another configuration of the bidding support system according to the third embodiment. 11 and 12 show a system configuration in a market where bid information is disclosed.
  • the system configuration and the screen focused on the prediction are not described, but the prediction phase is supported as well as the learning phase as shown above.
  • there is no teaching data 1102 and the input is also switched from the learning input 101, which is the weather forecast actual data, to the prediction input 501 (see FIG. 5), which is the weather forecast data.
  • the bid support system shown in FIG. 11 is configured to be applied to areas with markets where bid information is disclosed after a certain period of time after the market gate is closed. ..
  • the bid amount learning / predicting means 1111 is a neural network having an output layer 1118 which is the total number of the respective bid prices.
  • the demand curve constructing means by using the demand bid amount predicted values 1131-1135 corresponding to a plurality of demand bid prices and the supply bid amount predicted values 1141-1145 corresponding to a plurality of supply bid prices included in the teaching data 1102.
  • the demand curve data 181 and the supply curve data 182 are generated by the 112 and the supply curve forming means 113, and are used as input of the display data generating means 1117, the error calculation, and the back propagation means 1115.
  • the teaching data 1102 is also input to the display data generation means 1117, the error calculation and the back propagation means 1115.
  • the display data generation means 1117 Based on this information, the display data generation means 1117 generates data for displaying the supply and demand curve estimated in a comparable manner and data for displaying the actual supply and demand curve, and the user is informed or predicted through the display device 119. Present the results.
  • the error calculation and back propagation means 1115 for the bid volume output node of the demand curve and the bid volume output node of the supply curve, if the difference between the forecast and the teaching data is calculated for the price range corresponding to each node and back propagation is performed. Therefore, the processing as shown in the equations (1) to (7) becomes unnecessary.
  • the price ranges 121 to 125 and 151 to 155 for the estimation of the demand curve and the supply curve are not used, but the bid price information of all the bid results included in the teaching data 1102 is used.
  • a price range may be set and the actual bid price may be aggregated as a record in the set price range.
  • the upper limit of the added value of dp b (j) (the item on the left side of the expression on the right side of the if statement in equation (1)) is smaller than the upper limit of the price range from the actual bid price.
  • the actual results may be assigned to the maximum price range.
  • the achievement may be assigned to.
  • the price range may be determined by extracting a price range in which the number of bid bids or the bid amount exceeds a certain value.
  • FIG. 12 is an example in which the learning and prediction of the bid amount for each price range is configured by the separate bid amount learning / prediction means 1211a to 1211j instead of the bid amount learning / prediction means 1111.
  • each can be configured by means such as support vector regression and linear regression, for example. Of course, you can also regress with a neural network. Since learning dedicated to each price range is performed, it is possible to make predictions with higher accuracy than the realization method as in the first embodiment.
  • the error calculation and the processing of the back propagation means 1215 itself are the same as those in the embodiment of FIG. 11, but the back propagation needs to be configured to be returned to the learning means 1211a to 1211j separately (1284a to j). ).
  • FIG. 14 is a diagram showing a configuration of the bidding support system 1400 according to the fourth embodiment.
  • FIG. 15 is a diagram showing a configuration for explanation at the time of operation in the bidding support system 1500 according to the fourth embodiment. 14 and 15 are examples configured to predict the contract price, the contracted amount, and the buy / sell bid amount in parallel with the first embodiment.
  • the bidding support system uses the reference numeral 1400 during learning and the reference numeral 1500 during operation.
  • the contract performance data learning / prediction means 1401 calculates and outputs the contract performance data prediction result 1402 for the learning input consisting of the weather forecast and the date and time.
  • the error calculation and the back propagation means 1415 calculates the error 1484 between the same items of the teaching data 102 and the bid data prediction result 1402, and back-propagates the error to the contract actual data learning / prediction means 1401.
  • a neural network can be used as the contract performance data learning / prediction means 1401. Further, support vector regression or linear regression may be performed for each of the contract price, the contract fixed amount, the sell bid amount, and the buy bid amount.
  • FIG. 15 is basically the same as the first embodiment described with reference to FIG. 5, but the contracted actual data prediction result 1502 (approx. Quantitative amount) is obtained in the contracted actual data predicting means 1501 in parallel with the bid amount predicting means 511. , Contract price, sell bid amount, buy bid amount predicted value) is output.
  • the display data generation means 1517 is basically the same as the embodiment shown in FIG. 5, but the contract actual data prediction result 1502 is also acquired and displayed together with the estimation result of the supply / demand curve on the display device 119 (. 1503, 1504, 1505). By doing so, it is possible to support the judgment of the user 1515 regarding the prediction accuracy of the supply and demand curve, the direction of the fluctuation, the degree of the fluctuation, and the like.
  • the weather forecast actual data (learning input 101) and the weather forecast data (prediction input 501) include atmospheric pressure, temperature, humidity, wind speed, wind direction, solar radiation, and precipitation on a plurality of grid points in the vicinity of Japan exemplified so far. I explained the use of such information, but for example, it is possible to use values such as atmospheric pressure, temperature, humidity, wind speed, wind direction, solar radiation, and precipitation at typical points in Japan.
  • the learning input 101 includes information on the date and time, information on the day type such as weekday or holiday may be added, or the bid support device (100 or the like) described in the present invention may be configured for each day type. You may set it to.
  • the user is supposed to set the price range (the price range 121 to 125 of the demand curve and the price range 151 to 155 of the supply curve), it is also possible to set the predetermined bid price range into a predetermined section. good.
  • FIG. 16 is an example in which the bid amount estimation / learning and the forecasting means are implemented by separate means for the demand curve and the supply curve, although they are basically the same as the first embodiment.
  • the estimated value of the approximately quantitative value was obtained as the intersection of the estimated demand curve data and the estimated supply curve data, but the estimated bid amount at each contract price (formula (1)).
  • the error is calculated as described in region 1821 of FIG. 18 using esbids (the total value of the estimated bid amount of the bid step in which fs (i) and fb (i) are 1). You may.
  • the supply curve may be as shown in the region 1822 of FIG.
  • the error between the demand bid amount buy and its estimated value, and the error between the supply bid amount up and its estimated value are as described in the regions 1821 and 1822, which are described above for finding the intersection of the supply and demand curves. The same applies to the method. In this way, the calculation of the error and its back propagation do not necessarily require a near-quantitative estimate as the intersection of the supply and demand curves. It was
  • FIG. 17 is a diagram showing an example of a bidding support solution according to the implementation form shown in FIG.
  • FIG. 17 is basically the same as FIG. 4, but shows two users, 1715a and 1715b. It is assumed that the user 1715a uses the service based on the present invention for the prediction of the supply curve, and the user 1715b uses the service based on the present invention for the prediction of the demand curve.
  • User 1715a connects to the calculation and storage resource 420 via input means 1720a, network 472, and user 1715b connects to calculation and storage resource 420 via input means 1720b, network 1772.
  • Actions such as setting the price range 121 to 125 of the demand curve and imposing weights based on installed capacity etc. on the back propagation of errors are based on the knowledge of the user, but they are equivalent to both the demand curve and the supply curve. Not all users are knowledgeable.
  • a model trained by a user who has knowledge biased to the demand side is provided as a demand curve prediction service, and the trained demand curve prediction model provided there is used by a user who has knowledge on the supply side, and the user himself / herself uses it. It is also possible to use it in combination with the supply curve modeled and predicted based on the knowledge of. It was
  • a model trained by a user who has biased knowledge on the supply side is provided as a supply curve prediction service, and a trained supply curve prediction model provided there is provided to a user who has knowledge on the demand side. It can be used, and users who do not have enough knowledge to learn the model can use the predicted models of supply and supply provided by the user who has the ability to learn the model.
  • the electricity market transaction support platform is (1) It has a model that calculates the bid amount for a plurality of set bid price ranges by inputting the past forecast value of the date and time and / or the weather. (2) Regarding the bid amount calculated by the model, the value in the set price range is the lowest price for the sell bid curve, and the value in the set price range is the highest price for the buy bid curve. Add the calculated bid amount to generate both supply curve data and demand curve data, or one of them. (3) Difference between the contracted price of the corresponding past electric power market product and the bid amount at the contract price of the supply curve data or the bid amount at the contract price of the demand curve data, and the total bid amount and the supply curve respectively. From the difference from the maximum value of the data or demand curve data (4) Modify the model used to calculate the bid amount in the bid price range. Have learning means.
  • (1) corresponds to the bid amount estimation / learning and prediction means 111
  • (2) corresponds to the demand curve forming means 112 and the supply curve forming means.
  • (3) corresponds to error calculation and backpropagation means 115
  • (4) corresponds to feeding back the vector 184 to the output layer 118.
  • the learning means includes the bid amount estimation / learning and prediction means 111, the curve requiring curve forming means 112, the supply curve forming means 113, the error calculation and the back propagation means 115.
  • the electric power market transaction support platform has a model for calculating the bid amount for a plurality of set bid price ranges by inputting the past forecast values of the date and time and / or the weather, and is a model.
  • the bid amount is calculated so that the value in the set price range is the lowest price for the sell bid curve and the value in the set price range is the highest price for the buy bid curve.
  • the difference from the total bid volume of each price range of the corresponding past electricity market products can be properly grasped. Estimates of supply curve data and demand curve data are improved.
  • the electricity market transaction support platform predicts the bid amount in each bid price range at the delivery time by inputting the weather forecast value at the delivery time of the electricity market product before the gate close into the learning result of the learning means. It is characterized by having means to do so (see, for example, FIG. 5).
  • the electricity market transaction support platform replaces the past forecast value of date and time and / or weather with the relationship between the past actual value and the bid amount for a plurality of set bid price ranges, and the past power corresponding to the forecast value. It is characterized by using the contract results of market products.
  • the electricity market transaction support platform sets the bid price range individually from the input means 20 by the user, or by the user by specifying the price range and the number of sections, or from the bid results of the electricity market products.
  • the feature is that it is set by either setting. That is, in FIG. 1, the price range (price range 121 to 125 of the demand curve, price range 151 to 155 of the supply curve) is set by the user, but the predetermined bid price range is divided into predetermined sections. It may be a setting method or a setting method to be set based on the bid record of the electric power market product.
  • the model is a temperature, humidity, pressure, wind speed, wind direction, at multiple specific points of the observation point of the Japan Meteorological Agency, or at points on the grid point of the mesh on the latitude and longitude. It is characterized in that at least one or more of the amount of precipitation and the amount of solar radiation (for example, the weather forecast data 712 in FIG. 7) is used as input for learning and prediction.
  • a classification means for example, clustering means 801 for classifying market states into a finite number using an area price, and a finite number of market states are used.
  • a finite number of first learning means for example, a bid support device for learning the relationship between the weather forecast value or the actual value and the bid amount in the bid price range by inputting the weather forecast value or the actual value at the corresponding time in the past. 811, 812, 813), a second learning means for learning the relationship between the past weather forecast value, the date and time, and the market division state (for example, the market pattern cluster learning means 802), and the second from the weather forecast value.
  • a first forecasting means (for example, market pattern cluster weather forecast performance selection means 803) that predicts one or more market conditions corresponding to forecast values using the learning results of the learning means, and a prediction of the first forecasting means. Forecasts of weather for one or more market conditions corresponding to the results, using one or more of the learning results of the first learning method that learned the relationship between the weather forecast value and the date and time and the bid amount in the bid price range. It is characterized in that the bid amount of each price range of the demand curve and the bid amount of each price range of the supply curve are estimated from the value.
  • the power market transaction support platform is a means for displaying the user environment connected to the cloud service (for example, from the bid amount of each price range of the demand curve estimated from the forecast value of the weather and the bid amount of each price range of the supply curve.
  • the display screen 710) of FIG. 7 is characterized in that the estimation results of the demand curve and the supply curve are displayed.
  • the electricity market transaction support platform provides a third learning means (for example, contract performance data learning / forecasting means 1401) for learning the relationship between past weather forecast values or weather results and past power market product contract results.
  • the forecast results of the electricity market products obtained by having the weather forecast value as an input to the learning result of the third learning means are predicted, and the predicted results are used as the display means of the user environment to estimate the demand curve and the supply curve. It is characterized in that it is displayed together with (for example, see the display screen of FIG. 15).
  • Bid support device 101 Learning input 102 Teaching data 111 Bid amount estimation / learning and prediction means (model, learning means) 112 Demand curve construction means (learning means) 113 Supply curve construction means (learning means) 114 Contract price and contractual quantitative calculation means 115 Error calculation and backpropagation means (learning means) 117,517 Display data generation means 118 Output layer 119 Display device 120 Input means 121 to 125 Demand curve price range 131 to 135, 141 to 145 Output 151 to 155 Supply curve price range 161 to 165 Demand bidding steps 171 to 175 Supply Bid step 410,710 Display screen (display means) 411 Supply and demand curve estimation result 412 Price range setting part 413 Price range confirmation part 415 User 420,720 Storage resource 421,721 Computation resource 422,722 Learning model database 423,723 User reference database 424,724 Market execution result database 430,730 Meteorological Forecast Service 440,740 Electricity Market System 501 Prediction Input 511 Bid Volume Prediction Means (

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

電力市場取引支援プラットフォームは、日時及び/又は気象の過去の予報値を入力として、設定した複数の入札価格帯に対して入札量を算出するモデル(入札量推定・学習および予測手段(111))を有し、モデルで算出された入札量について、売入札曲線については設定した価格帯の値が最低価格となるように、買入札曲線については設定した価格帯の値が最高価格になるように、入札量の算出値を加算して供給曲線データと需要曲線データの両方ないしいずれか一つを生成し(需要曲線構成手段(112)、供給曲線構成手段(113))、対応する過去の電力市場商品の約定価格における約定量と、供給曲線データの約定価格における入札量ないし需要曲線データの約定価格における入札量との差、およびそれぞれの総入札量と供給曲線データないし需要曲線データの最大値との差から(誤差の計算と逆伝播手段(115))、入札価格帯の入札量算出に使うモデルを修正する学習手段を有する。

Description

電力市場取引支援プラットフォーム
 シングルプライスのブラインドオークション方式の電力市場、炭素市場、容量市場における取引の支援装置および方法に関する。
 現物電力の取引が自由化され、取引所取引が行われている。例えば日本においては、日本卸電力取引所(JEPX)が開設されており、一日前市場で卸電力の取引が行われる。この市場はブラインドオークション方式であり、市場取引が確定するゲートクローズのタイミング以降、約定価格と約定量、買い入札量、売り入札量などの結果が公開されている。一方、入札価格に対する入札量の関係が分かるような情報までは公開していない。
 特許文献1では、JEPXが公開している情報と気象などの実績、曜日などの情報から、売り及び買いの約定率関数を生成し、これと総入札量を用いて入札価格に対する入札量の関係を推定する方法が示されている。
 もう少し詳しく解説すると、過去の取引実績として開示されている約定量を、その時の売り入札量で規格化した売り約定率、ならびに買い入札量で規格化した買い約定率と、約定価格の関係を表す約定率関数を、開示された過去データのスプライン回帰で生成し、これが、入札率と入札価格の関係を表す入札率曲線を良く近似するとの仮説に基づいて、約定率関数を入札率関数とみなして、入札総量の実績値、ないし別途推定した入札総量を用いて約定率関数を入札関数に写像し、売りおよび買い入札関数の交点である約定価格の推定を行う方式を示している。
 なお、入札率関数は、売り入札を表すものと、買い入札を表すものがあり、それぞれ供給率関数、需要率関数と呼んでいる。同様に入札関数は、売り買いそれぞれあり、売りの入札関数は供給関数、買いの入札関数は需要関数と呼んでいる。
 供給率関数は、入札率Rsを入力、その入札率Rs以下の割合の入札量が、供給率関数の出力である入札価格Ps以上なら販売するという関係を示している。需要率関数は、需要率Rdを入力、その入札率Rd以下の割合の入札量が、需要率関数の出力である入札価格Pd以下なら購入するという関係を示している。
 約定率関数は、月や曜日などのカレンダー情報や気象条件などもコントロールパラメータとして電力商品毎にスプライン回帰計算することが示されている。
 特許文献2では、売買入札曲線の入札価格と入札量の関係を、パラメタライズされた連続で単調な関数で予め規定し、パラメータを与えて利用する例が示されているが、その関数を具体的に決定するパラメータである「入札価格の平均値」や「その分散」を市場の約定実績に基づいて決定する方法については記載されていない。
 特許文献3では、自社の限界費用カーブと、他社について推定した限界費用カーブを合成して市場全体として供給曲線および需要曲線を推定することが示されている。
特開2016-033801号公報 特開2018-045615号公報 特開2009-245044号公報
 自由化に伴い、特許文献3のように限界費用カーブを描ける多種で多数の電源や需要家を持つ市場参加者ばかりではなくなっている一方、発電設備の発電コストや売電契約価格などのマージナルな単価を基準に適切な利益を考慮して入札が行われるため、例えば発電サイドの場合、石炭火力か石油火力かガスタービンかであったり、超臨界か超超臨界かであったり、シンプルなガスタービンかコンバインドサイクルかであったりという、電源種別の違いに応じて、おおよその単価が推測できる。
 一方、特許文献1では、約定率関数のスプライン回帰を電力商品毎に実施することやカレンダーや気象の要因を考慮した回帰を行うことが示されているが、連続性を仮定して滑らかにデータをつなぐスプライン回帰では、前述のような発電手段や契約に関する入札者の知識とは無関係な推測結果となる。
 特許文献2のように予め関数形を決めてパラメータを適当に与える場合も同様である。また、需給曲線は入札の積み上げにより生成されるため、階段状の関数となるのに対して、スプライン補間では滑らかな補間を行うため、明確な階段がわかならない。入札する市場参加者が多くなれば、同じ発電方式の電源でも全く同じ価格で入札するわけではないことから、滑らかな関数に近づいて行くことは期待できるが、価格帯に明確な区別がないため、前述のような取引参加者の知識と紐づけて考えることが難しいという課題がある。
 本発明は、前記した課題を解決するためになされたものであり、取引参加者の発電コストや売電単価に関する知識に基づいて、需要曲線及び供給曲線の予測を与える技術を提供できる電力市場取引支援プラットフォームを提供することを目的とする。
 前記目的を達成するため、本発明の電力市場取引支援プラットフォームは、日時及び/又は気象の過去の予報値を入力として、設定した複数の入札価格帯に対して入札量を算出するモデル(例えば、入札量推定・学習および予測手段111)を有し、モデルで算出された入札量について、売入札曲線については設定した価格帯の値が最低価格となるように、買入札曲線については設定した価格帯の値が最高価格になるように、入札量の算出値を加算して供給曲線データと需要曲線データの両方ないしいずれか一つを生成し、対応する過去の電力市場商品の約定価格における約定量と、供給曲線データの約定価格における入札量ないし需要曲線データの約定価格における入札量との差、およびそれぞれの総入札量と供給曲線データないし需要曲線データの最大値との差から、入札価格帯の入札量算出に使うモデルを修正する学習手段を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、取引参加者の発電コストや売電単価に関する知識に基づいて、需要曲線及び供給曲線の予測与える技術を提供できる。
第1実施形態に係る入札支援装置の学習時のシステム構成の一例を示す図である。 第1実施形態に係る需要曲線構成手段並びに供給曲線構成手段の処理を示す図である。 第1実施形態に係る入札支援装置の学習時の処理の一例を示すフローチャートである。 第1実施形態に係る入札支援ソリューションの学習時の全体構成を示す図である。 第1実施形態に係る入札支援装置の予測時のシステム構成の一例を示す図である。 第1実施形態に係る入札支援装置の予測時の処理の一例を示すフローチャートである。 第1実施形態に係る入札支援ソリューションの予測時の全体構成を示す図である。 第2実施形態に係る入札支援システムの構成を示す図である。 第2実施形態に係る入札支援システムの入札運用時の構成を示す図である。 3つのクラスタについて需給曲線の予測を行った場合の画面例を示す図である。 第3実施形態に係る入札支援システムの構成を示す図である。 第3実施形態に係る入札支援システムの他の構成を示す図である。 入札量推定・学習および予測手段に用いるニューラルネットワークの構成定義の一例を示す図である。 第4実施形態に係る入札支援システムの構成を示す図である。 第4実施形態に係る入札支援システムにおける運用時の説明のための構成を示す図である。 入札量推定・学習および予測手段を需要曲線用と供給曲線用に別々の手段で実装する構成を示す図である。 図16に示す実装形態に係る入札支援ソリューションの一例を示す図である。 第1実施形態に係る入札ステップと誤差計算の関係を説明する図である。
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 最初に本発明の特徴を説明すると、ユーザの経験に基づいて入力した各価格帯に関して、「各価格帯にどの程度の入札量があると想定すると、観測された多数の実績をうまく説明できるか」、「各価格帯に対する入札量は、気象条件に対してどのような感度をもつべきか」と云う点を学習し、その学習結果に基づく需給曲線の推定値を示すことで、推定の妥当性や、どの価格帯の推定量が感覚と合わないかと云った推定結果に対するユーザの解釈や判断が容易になる。また、特定の価格帯の推定結果の変動が約定量や約定価格にどの程度の影響があるかを判断しやすくなるという効果がある。
<<第1実施形態>>
 図1は、第1実施形態に係る入札支援装置100の学習時のシステム構成の一例を示す図である。図2は、第1実施形態に係る需要曲線構成手段112並びに供給曲線構成手段113の処理を示す図である。
 実施形態の説明では、図1において単純化のために装置という表現を使っているが、後述する計算および記憶リソース420(図4参照)上に仮想的に構成される装置であってもよい。この場合、ドッカーと呼ばれる仮想的な計算および記憶装置上の仮想的な計算機や記憶装置で構成さる仮想的な装置も含意する。なお、ドッカーは、コンテナ仮想化を用いてアプリケーションを開発・配置・実行するためのオープンソースソフトウェアあるいはオープンプラットフォームである。このように入札支援装置100は、必ずしも実際のハードウェアとしての装置に限定するものではない。図1は、主に学習処理に関わる構成を説明するものである。
 入札支援装置100は、入札量推定・学習および予測手段111(モデル)、需要曲線構成手段112、供給曲線構成手段113、約定価格と約定量の計算手段114、誤差の計算と逆伝播手段115、表示データ生成手段117、表示装置119、入力手段120などを含んで構成される。なお、入札量推定・学習および予測手段111は、モデルに相当する。
 入力手段120は、後述する需要曲線(推定需要曲線)および供給曲線(推定供給曲線)の入札量変化点の価格値を与える価格帯入力手段である。
 入札量推定・学習および予測手段111は、気象予報の実績データと日時などを入力として、需要曲線および供給曲線に関する、入力手段120により入力された各価格帯の入札量を推定して学習し、また、その学習結果を基づいて入札量を予測する。
 需要曲線構成手段112、供給曲線構成手段113は、入札量の推定結果および予測結果から需要曲線データおよび供給曲線データを構成する。
 約定価格と約定量の計算手段114は、需要曲線構成手段112、供給曲線構成手段113が構成した需要曲線データと供給曲線データの交点を求めて約定価格と約定量を算出し、それぞれの入札量の軸方向の最大値を求めて総入札量を求める。
 誤差の計算および逆伝播手段115は、買い総入札量、売り総入札量および約定量と約定価格からなる市場データと、約定価格と約定量の計算手段114の結果とを比較して、推定誤差を計算し、入札量推定・学習および予測手段111へのフィードバック量を計算する。
 表示データ生成手段117は、需要曲線データならびに供給曲線データと誤差の計算および逆伝播手段115の出力から表示データを生成する。
 図2は、需要曲線構成手段112と供給曲線構成手段113を中心とした学習処理に関わる部分の詳細を示したものである。学習段階での入力とするのは、過去の気象予報の実績やその日時で構成される学習入力101と、約定価格、約定量、売入札量と買入札量で構成される教示データ102である。
 初めに学習入力101が、ランダムに初期化するなどされた入札量推定・学習および予測手段111に与えられ、出力131~135、141~145が計算される。図1で示した実施例では、入札量推定・学習および予測手段111をニューラルネットワークで構成する例を示している。この実施例の場合、ニューラルネットワークの出力層118のノード数は、入力手段120を通じて入力された需要曲線の価格帯121~125と供給曲線の価格帯151~155の数の合計(図の例では10)となるように構成する。得られた計算結果である出力131~135,141~145は、それぞれ需要曲線構成手段112と供給曲線構成手段113に入力される。
 需要曲線構成手段112では、需要曲線の価格帯121~125に従って図2に詳細を示したように積み上げられ、その包絡線として需要曲線データ181を構成する。ここでは、入札量推定・学習および予測手段111の出力131は、需要曲線の価格帯121に対応するものとして、需要入札ステップ161を構成する。同様に出力132は需要曲線の価格帯122に対応するものとして、需要入札ステップ162を、出力133は需要曲線の価格帯123に対応するものとして、需要入札ステップ163を、出力134は需要曲線の価格帯124に対応するものとして、需要入札ステップ164を、出力135は需要曲線の価格帯125に対応するものとして、需要入札ステップ165を構成する。よって、需要曲線は需要入札ステップの積み上げにより生成されるため、階段状に構成される。
 供給曲線構成手段113では、供給曲線の価格帯151~155に従って図2に詳細を示したように積み上げられ、その包絡線として供給曲線データ182を構成する。ここでは、入札量推定・学習および予測手段111の出力145は、供給曲線の価格帯151に対応するものとして、供給入札ステップ175を構成する。同様に出力144は供給曲線の価格帯152に対応するものとして、供給入札ステップ174を、出力143は供給曲線の価格帯153に対応するものとして、供給入札ステップ173を、出力142は供給曲線の価格帯154に対応するものとして、供給入札ステップ172を、出力141は供給曲線の価格帯155に対応するものとして、供給入札ステップ171を構成する。
 すなわち、出力141から145は、それぞれ供給曲線用に入力手段120を通じて入力された供給曲線の価格帯151から155の値と組み合わされ、それぞれ供給入札ステップ171から175を構成する。よって、供給曲線は供給入札ステップの積み上げにより生成されるため、階段状に構成される。
 なお、需要曲線の価格帯121~125は、それぞれ入力手段120で入力された値以下の、供給曲線の価格帯151~155は、入力された値以上の価格帯範囲を表すものと解釈する。
 需要曲線データ181と供給曲線データ182は、約定価格と約定量の計算手段114の入力となり、需要曲線と供給曲線の交点として約定量と約定価格を計算する。また合わせて、需要曲線の最大入札量と供給曲線の最大入札量も取得し、誤差の計算と逆伝播手段115への入力183とする。
 誤差の計算と逆伝播手段115では、教示データ102と約定価格と約定量の計算手段114の出力183を用いて、入札量推定・学習および予測手段111の出力層118の各ノードへの誤差フィードバック量を計算し、これらのベクトル184を出力層118へフィードバックする。また、併せて学習段階での推定結果を表示するため、表示用の誤差185も計算し、表示データ生成手段117に出力する。
 表示データ生成手段117は、需要曲線データ181と供給曲線データ182も合わせて入力として取得し、これを表示用バッファに格納して表示装置119を通じて、ユーザに提示する。
 次に図3を用いて学習時の処理の流れを説明する。
 図3は、第1実施形態に係る入札支援装置100の学習時の処理の一例を示すフローチャートである。初めに学習の入力となる気象実績データを、例えば、気象予報サービス430(図4参照)からネットワーク471(図4参照)を介して取得する(ステップS301)。次に市場実績データを、例えば、電力市場システム440(図4参照)からネットワーク473(図4参照)を介して取得する(ステップS302)。次にここで取得した複数の日時に関する気象実績と市場実績の中から、同一日時のデータのペアを構成する(ステップS303)。次にランダムにステップS303の結果を2つのグループに分け、一方を学習用のデータに、他方をテスト用のデータとして分離する(ステップS304)。なお、これらの比率は1:1とする必要はなく、例えば7:3などとしてもよい。
 次に前述した需要曲線および供給曲線の価格帯設定値を、入力手段120などを通じて取得する(ステップS305)。
 次に、ステップS301で取得した各時間断面における気象データの数を入力のノード数、ステップS305で取得した価格帯の数を出力ノード数とするニューラルネットワークを入札量推定・学習および予測手段111の実装形態として構成する(ステップS306)。なお、ニューラルネットワークの層数や応答関数の関数形式は、任意でよいが、例えば、気象データの入力層に近い層には、畳み込みニューラルネットワークを数層分利用するなどし、出力層に近い部分には、全結合ネットワークを数層積み重ねるようにすると云った構成方法が考えられる。
 特に気象予報実績データや気象予報データとして、日本近辺の緯度経度に対応する格子点上の気温や湿度、気圧、風速・風向、日射量や降水量などといった複数のほぼ均等な位置間隔のデータを用いる場合には、入力に近い層で畳み込むことで、気象の空間的な分布の特徴に対する入札量の関係を学習することが期待できる。このようにすることで天気図のようなグラフィカルな情報と価格の関係に関する理解が得られる。
 また、ステップS306の説明では、入力層の数を各時間断面の気象データの数としたが、連続する複数時間断面、例えば3時間とか6時間、あるいは18時間とか言った期間の気象データの数としてもよい。このようにすることで、気象の変化が入札量に及ぼす影響についても学習できる。
 次に、学習用に分離したデータセットから、電力市場の1商品分に対応する期間の気象データ(1コマ分の気象データ)と日時を図1および図2で説明した入札支援装置100の入札量推定・学習および予測手段111に投入する(ステップS307)。
 得られた結果(ニューラルネットワークの出力)を、需要曲線構成手段112および供給曲線構成手段113に入力し、設定された価格帯から、需要曲線と供給曲線データを生成する(ステップS308)。なお、需給とは、需要と供給とをいう。
 誤差の計算と逆伝播手段115で、この結果と、入力した気象データに対応する電力市場商品の市場実績とから誤差(差)を計算し(ステップS309)、ニューラルネットワークの出力層118に逆伝播させる(ステップS310)。
 ステップS311において、誤差の指標や学習回数などの基準に満たしているか否かを判定し、基準を満たしていない場合(ステップS311,No)、ステップS307に戻り、基準を満たしている場合(ステップS311,Yes)、一連の処理を終了する。すなわち、誤差の指標や学習回数などの基準に基づいて、ステップS307からステップS310までの処理を繰り返すことで、学習用に選んだ複数の実績をうまく説明できる各価格帯の入札量と気象条件の関係を学習する。
 図18は、第1実施形態に係る入札ステップと誤差計算の関係を説明する図である。
 以下、学習の実現方法に関して、図18と式(1)~式(7)を用いて説明する。なお、一般的なニューラルネットワークにおける誤差逆伝播のアルゴリズムについては説明を省略する。
 初めに記号について簡単に説明する。
 需要曲線については、i=1を入札価格帯の最大価格が最も大きい需要入札ステップ(165)の識別子とし、i=Nbを入札価格帯の最大値が最小の需要入札ステップ(161)の識別子とする。供給曲線については、i=1を入札価格帯の最小価格が最も小さい供給入札ステップ(175)の識別子とし、i=Nsを入札価格帯の最小値が最大の供給入札ステップ(171)の識別子とする。
 また、dp(j)やdp(j)は、図18の1811と1812に示したようにステップS305(図3参照)で設定された需要曲線の価格帯121~125および供給曲線の価格帯151~155の値の、需要曲線および供給曲線それぞれの隣接する価格帯の最大値および最小値の差を表す。また、図18には需要入札量buyを―×―(1802)で、供給入札量supを―+―(1801)で示した。また約定量excbidsは〇(1803)の縦軸の値、約定価格excprcは、〇(1803)の横軸の値である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)のfs(i)は、j=1~iまでdp(j)を加算した値Σdp(j)、すなわち供給入札ステップ(供給入札ステップ171~175)が階段状に立ち上がる部分の価格(各供給入札ステップの価格帯の最小値)が、約定価格以下となる入札ステップ(供給入札ステップ172~175)については1となり、約定価格よりも大きくなる入札ステップ(供給入札ステップ171)については0となるような関数を意味する。
 同様に、式(2)のfb(i)は、需要入札ステップ(需要入札ステップ161~165)の横軸である価格帯のそれぞれ最大値が約定価格より大きい需要入札ステップ(需要入札ステップ165~162)において1、小さい需要入札ステップ(需要入札ステップ161)で0となる関数である。また、供給曲線に関する入札量成分(出力141~145)に対応する値をfc8s(j)、需要曲線に関する入札量成分(出力131~135)に対応する値をfc8b(j)と表すと、約定量推定値esbidsと約定価格推定値espriceは、式(3-1)、式(3-2)のように計算することができる。
Figure JPOXMLDOC01-appb-M000003
 式(3-1)は、約定量esbidsを需要曲線が、約定価格espriceを供給曲線が決定するケースを指し、そのようなケースを、条件付ける式をif ∃i,k以下で記述している。図形的にこの条件を説明すると、需要曲線の価格軸に水平な部分と供給曲線の価格軸に垂直な部分が交差する条件を示している。数式的にはi-1番目の需要入札ステップの価格帯の最大値とi番目の需要入札ステップの価格帯の最大値の間にk番目の供給入札ステップの価格帯の最小値があって、i番目の需要入札ステップまでの入札量が、k番目の供給入札ステップまでの入札量よりも小さく、k-1番目の供給入札ステップまでの入札量よりも大きくなるようなkとiがあるとき、そのような条件が成立すると判断すればよいことを示している。
 式(3-2)は、約定量esbidsを供給曲線が、約定価格espriceを需要曲線が決定するケースを指し、if ∃i,k以下は、そのような条件が成立する状況を数式で記述したものである。図形的には、供給曲線の価格軸に水平な部分と供給曲線の価格軸に垂直な部分が交差する条件を示している。
 実績値excbidsに対する推定約定量esbidsの差は、供給入札ステップ(供給入札ステップ171~175)の内、約定価格より低い最小入札額(価格帯最小値)を持つステップ(供給入札ステップ172~175)の推定に問題があると考えることができるので、この領域を示すステップ、すなわち、式(1)の値が1となる部分に一様にフィードバックを掛けるのが最も単純な誤差補正方法となる。式(4)はこのような誤差補正ベクトルの計算式を表している。
Figure JPOXMLDOC01-appb-M000004
 同様に需要入札ステップ(需要入札ステップ161~165)については、約定価格より価格帯の最大値が大きい需要入札ステップ(需要入札ステップ162~165)がフィードバックの対象となるので、式(5)のようにして誤差補正ベクトルを計算できる。
Figure JPOXMLDOC01-appb-M000005
 一方、供給入札量supと供給入札ステップ(供給入札ステップ171~175)の入札量fc8s(j)の合計値との差は、すべての供給入札ステップの大きさに起因すると考えてもよいが、式(4)で示した約定量の誤差へのフィードバックとの干渉をなくす観点から、約定価格よりも高い最低入札額(価格帯の最小値)を持つ供給入札ステップ(供給入札ステップ171)にフィードバックすれば効率的になると考えられる。式(6)はこのような考え方に基づく誤差補正ベクトルの計算式を表している。
Figure JPOXMLDOC01-appb-M000006
 同様に、需要入札量buyと需要入札ステップ(需要入札ステップ161~165)の入札量fc8b(j)の合計値との差は、式(7)に従って誤差補正ベクトルを計算することで、入札量推定・学習および予測手段111を構成するニューラルネットワークの出力層118の内、最大入札額(価格帯の最大値)が約定価格より低い需要入札ステップ(需要入札ステップ161)の計算を行うノードにだけフィードバックを行うことができる。
Figure JPOXMLDOC01-appb-M000007
 なお、ここでは、フィードバックを行う領域を式(1)および式(2)で決定し、この値が1ないし0となる領域に対応する出力層ノードへは均等にフィードバックを掛けるようにしているが、例えば、各ステップに該当する発電設備の設備容量などに比例する重みに従ってフィードバック量を配分するようにしてもよい。
 このようにすることで、需要曲線および供給曲線の各入札ステップの入札量成分の推定結果の内、約定実績(約定価格と約定量)が頻出する領域から離れた領域(需要入札ステップの高さをj=Nb~iについて加算した需要入札量Σfc8s(j)や供給入札ステップの高さをj=1~iについて加算した値Σfc8b(j)が、約定価格に比べて大幅に小さい入札ステップにおける推定結果についても、より精度が高いとの仮定の下で、推定結果を見ることができると期待される。
 このような比較的専門的なユーザ知識を活用する以外にも、例えば次のようにしてユーザ知識の一般的な常識に近い知識を活用することもできる。例えば、日射量の予測値や単純に時刻などに基づいて、時間的に変化する理論上の太陽光発電能力などに基づいて低価格帯の重みを、日射量が多いときは大きくなるようにして、フィードバックのかけ方を調整するなどしてもよい。
 図4は、第1実施形態に係る入札支援ソリューションの学習時の全体構成を示す図である。サーバないしクラウド上にある計算および記憶リソース420は、計算リソース421、学習結果を保存する学習モデルデータベース422、需要曲線および供給曲線の価格帯や、入札量推定・学習および予測手段111で用いるニューラルネットワークの層数や使用する応答関数(シグモイド関数やReLUなど)、畳み込み層の構成、過去の学習およびテストで用いた電力商品の識別情報(対応する市場約定結果と気象予報実績を一意に識別するために必要な情報)と学習済のニューラルネットワークの識別情報をユーザ毎に記憶するユーザプレファレンスデータベース423、市場の約定結果を保存する市場約定結果データベース424などで構成される。
 図4では、気象予報データは気象予報サービス430からネットワーク471を介して取得するように記載しているが、気象予報サービス430との契約形態によっては、一旦取得したデータを、計算および記憶リソース420上の図中には非記載のデータベースにキャッシュしておくように構成してもよい。
 逆に、本実施形態では市場約定結果データベース424を計算および記憶リソース420の内部に有し、ネットワーク473で接続された電力市場システム440のデータをキャッシュするように構成したが、ネットワーク473を通じて、必要な時に随時データを取得するように構成することもできる。また、気象予報の機能を計算および記憶リソース420上に実装するように構成してもよい。
 ユーザ415は、ネットワーク472を介して計算および記憶リソース420に接続し、図中には非記載のログインおよび認証処理を行った後、自身のプレファレンスに基づいて過去に学習を指示してあった学習ジョブの学習結果を参照し確認したり、市場実績や過去気象予報データを用いた学習を行ったりすることができる。
 予測については、図7を用いて改めて説明するが、気象予報データを学習済の入札支援装置100に入力し、未来の市場状況の予測や入札戦略立案に使用することもできる。この際、例えば、図示した表示画面410上に表示された需給曲線推定結果411を見たりしながら、価格帯確認部413や価格帯設定部412を用いて学習条件を変更することができる。
 また、図13に示すようなテーブルを通じて、入札量推定・学習および予測手段111を実現するニューラルネットワークの構成を定義する。このケースは、1253地点の6種類のデータを入力とし、畳み込み層(Conv1、Conv2、Conv3、Conv4)とプーリング層(Pool1、Pool2、Pool3、Pool4)のセットを4つ通した後、全結合層(FC5,FC6、FC7、FC8)を4層し、入札量推定・学習および予測手段111(この表中ではDSCとして記載)に入力することを示している。
 図5は、第1実施形態に係る入札支援装置500の予測時のシステム構成の一例を示す図である。すなわち、図5は、既に学習済みのニューラルネットワークで構成した学習機能のない入札支援装置500の構成例を示す。入札支援装置500は、入札量予測手段511、需要曲線構成手段512、供給曲線構成手段513、表示データ生成手段517、表示装置119などから構成される。なお、入札量予測手段511は、モデルに相当する。
 気象予報データおよび対象日時からなる予測入力501を学習済の入札量予測手段511に入力し、出力層118から得られた結果の一部である出力131~135を価格帯が学習段階で固定された需要曲線構成手段512に、残りの出力141~145を、同じく学習段階で価格帯が固定された供給曲線構成手段513に入力して需要曲線データ181と供給曲線データ182を生成する。生成されたデータを予測時用の表示データ生成手段517に入力して表示用データを生成し、それを表示用バッファに格納して表示装置119を通じてユーザに提供する。
 表示データの生成では、需給曲線以外に、需要曲線と供給曲線の交点である約定量や約定価格の推定値や、需要曲線および供給曲線の入札量の最大値である入札量も計算する。なお、図1に示した入札支援装置100とは異なり、ここでは学習を行わないため、学習に使用する価格帯の設定に関わる手段や誤差の計算、その逆伝播の手段は使用しない。また、表示の際も約定結果が分からないことから、それに関する入力は用いない。
 なお、入札量推定・学習および予測手段111と入札量予測手段511は、手段を実現するアルゴリズムやプログラム、あるいはその計算機上のメモリーイメージとして、必ずしも異なるものである必要はない。ニューラルネットワークであれば、誤差を逆伝播してネットワークの結合係数の修整を行う処理(図3のステップS310)を実行するか否かという、運用上の違いだけの場合も含む。
 図6は、第1実施形態に係る入札支援装置500の予測時の処理の一例を示すフローチャートである。図6は、図5で説明した学習済ニューラルネットワークで構成した入札支援装置500の処理の流れを示す。
 初めに気象予報データを取得し(ステップS601)、入札量予測手段511を構成する学習済のニューラルネットワークに気象予報データを入力する(ステップS602)。得られた結果は学習段階で設定されていた価格帯に価格帯が固定された需要曲線構成手段512と供給曲線構成手段513に入力され、需給曲線(需要曲線と供給曲線)が構成され(ステップS603)。その出力から表示データ生成手段517での処理により、需要曲線と供給曲線を表示装置119上に表示する(ステップS604)。また、需要曲線と供給曲線の交点や需要曲線および供給曲線の入札量の最大値を取得し、これも表示装置119上に表示する(ステップS605)。
 ユーザがリスク分析を行うかどうかの入力を受け取り(ステップS606)、リスク分析実施の場合(ステップS606,Yes)、更に需要曲線または供給曲線の入札ステップ(161~165、171~175(図2参照))のブロックの選択結果を取得する(ステップS607)。続いて、当該入札ステップに対する予測の変更量を取得し(ステップS608)、ステップS607で選択された入札ステップに関して、入札量をステップS608での設定に基づいて変更した上で、ステップS604以下の処理を繰り返す。ステップS606でリスク分析の終了を選択した場合は(ステップS606,No)、ユーザからの入札量および入札価格の入力を受け取ってこれを基に入札を行い(ステップS609)、約定結果が出たらそれを受け取って(ステップS610)、各発電量の制御指令値を生成し、発電設備に送信する(ステップS611)。
 なお、ステップS609以降は、本実施形態の固有の機能ではないが、ソリューションとして、このような業務支援が想定される。また、ステップS609の入札量および入札価格の設定自体は、特許文献2の発明などの機能を利用してもよいが、ユーザが所有する設備の仕様や発電予測などの連携する機能ないしサービスの出力も踏まえ、本実施形態で提供した需要曲線および供給曲線と、そのリスク想定(ステップS604~ステップS608)に対する変化から、積極的に入札すべきか、どこまで利益を盛っても落札できそうか、蓄電装置などを所有していれば、それを積極的に放電してでも入札すべきか、むしろ蓄電に回して、入札を控えるかと云った判断を行った上で、数値を決定しデータを入力するといった業務処理も想定できる。
 図7は、第1実施形態に係る入札支援ソリューションの予測時の全体構成を示す図である。図4の構成と同様、サーバないしクラウド上にある計算および記憶リソース720は、計算リソース721、学習結果を保存する学習モデルデータベース722、ユーザ毎のユーザプレファレンスデータベース723、市場の約定結果を保存する市場約定結果データベース724などで構成される。
 図7では、気象予報データは気象予報サービス730からネットワーク771を介して取得するように記載しているが、気象予報サービス730との契約形態によっては、一旦取得したデータを、計算および記憶リソース720上の図中には非記載のデータベースにキャッシュしておくように構成してもよい。電力市場システム740のデータは、ネットワーク773を通じて、必要な時に随時データを取得することもできる。
 また、入札業務の支援の観点から、発電機情報データベース725も有する構成とするのが好ましい。発電機情報データベース725には、ユーザ717の所有する発電設備750の情報に加え、日本の場合JEPXが公開する発電情報公開システム(HJKS)の情報や、発電設備を保有する各社のニュースリリースやウェブサイト760、ウィキペディアなどからネットワーク774を介して取集したユーザ717以外の所有する発電設備に関する情報を格納するようにしてもよい。ユーザ717は、気象予報データ712に対して需給曲線の予測を指令し、ネットワーク772を介して表示画面710上に予測結果711を得ることができる。なお、対象とする気象予報は対象時刻などの設定部713を通じて指定できる。
 同時に、他社の発電設備も含む設備容量情報714を提供してもよい。例えば横軸に、石炭火力か石油火力かガスタービンかとか、超臨界か超超臨界かとか、シンプルなガスタービンかコンバインドサイクルかなどの電源の種別を電源種別毎の平均的な価格の昇順に左からならべ、縦軸には当該電源種別の設備容量を示すようにしてもよい。HJKSでは日々の発電設備の稼働状況などの情報が保守計画などの将来の予定も含めて提供されているので、こうした情報を踏まて、動的に各電源種別の容量を更新するようにしてもよい。また、発電機の発電単価は、稼動年数による経年劣化にもよっても変わるため、このような情報も踏まえて、電源種別に稼動年数も加味したものとしてもよい。あるはい、稼働開始時点での発電効率などが公開されており、そのような値を用いて、単価を推定するようにしてもよい。なお、日本の場合は、資源エネルギー庁総合資源エネルギー調査会の発電コストワーキンググループから発電設備の運転コストを評価するツールなどが提供されており、発電方式や効率を踏まえたコストの評価にはこのようなツールを利用できる。
 また、設備容量情報714の一部を、例えば特定の発電所が停止したことを想定して、容量をその分削減するとか、一定の割合で増減させたときにどうなるかいった仮説に対応する値に、価格帯毎に修整できるような入力部718を設けてもよい。
 日本の場合は、発電設備の全てが市場を通じて取引する形にはなっていないが、価格と設備容量で構成する供給曲線の最大供給量が予測された供給曲線の総入札量と一致するようにゲインを補正して、予測された供給曲線ないし需要曲線と重ねて表示するような機能を設けることで、予測の妥当性の判断やリスクのありそうな入札ステップの判断が容易になる。全量を市場で取引する場合には、このようにして提供される発電設備容量に基づく供給曲線は、再エネ部分の変動を考慮する必要はあるが、予測の不適切さや妥当性を把握する上で、信頼がおける参考情報となることが期待される。
 このような支援情報を踏まえて決定した入札価格と入札量は、ネットワーク773を通じで市場へ入札され、ネットワーク773を通じて取得された約定結果に基づいて、ユーザの発電設備750へ、ネットワーク775を通じて指令される。
 図7では、図4と異なり、主に入札時の予測に始まる運用を説明するためのソリューションの構成を示した。単純には、図4の構成と図7の構成を利用するユーザ415、715は、同一の特定ユーザ(個人と云うことではなく、同一組織の入札担当という役割という意味で)が想定される。しかし、例えば、学習に使用した価格帯などのユーザプロファイルの一部と対応する学習済ニューラルネットワークを、本実施形態に係る入札支援装置を実行する計算および記憶リソース720を利用する他のユーザに再貸出しするようなことも想定できる。このような場合、学習機能を提供しない形での利用も想定される。
 図5から図7を、図1から図4との別に記載したのは、このような学習なしの運用も含意したものである。このような再貸出しは、学習および予測のために価格帯設定や各価格帯の入札量の推定・学習および予測の妥当性を判断し価格帯の設定を見直したり、式(1)~式(7)の説明の際に示したように、式(4)~式(7)で計算するフィードバック量に設備容量に応じたフィードバックや更に、独自に設定した重みを加味してフォードバックしたりするなどができるユーザ717が、その学習結果を他のユーザに貸し出すようなビジネス形態での利用が考えられる。
<<第2実施形態>>
 図8は、第2実施形態に係る入札支援システム800の構成を示す図である。図8に示す基本構成は、図1から図7で説明した第1実施形態と同じであるが、電力市場の様態を考慮して複数のモデルを学習する点に特徴がある。入札支援システム800は、クラスタリング手段801、市場パターンクラスタ学習手段802、市場パターンクラスタ気象予報実績選択手段803、3つの入札支援装置811,812,813などを含んで構成されている。
 図8では学習時について説明する。学習段階では、電力市場の様態を分類するため、例えば、スポット市場のエリア価格実績(クラスタリングデータ822)を、クラスタリング手段801に与え、北海道電力、東北電力、東京電力、中部電力、北陸電力、関西電力、中国電力、四国電力、九州電力の各エリアの価格からなる価格ベクトルについてのクラスタリングを実施する。多次元実数ベクトルのクラスタリングでは、k-means法や階層クラスタリングなどの方法が知られている。いずれにしてもクラスタ数や、データ間の距離を定量的に決める測度、正規化の有無や方法等、ユーザによる設定が必要であり、これらは表示装置119と入力手段804を通じて対話的に、あるいは、繰り返し作業を通じて決定する。
 次に、このようにクラスタとして分類した市場の様態と、気象予報実績データ821の関係を市場パターンクラスタ学習手段802により学習する。例えば20XX年YY月ZZ日のAA:00~AA:30の商品のエリア価格実績がクラスタAに属している(とした)場合、20XX年YY月ZZ日のAA:00~AA:30についての気象予報実績データ821を入力とし、教示データをAとするクラス分類問題としてニューラルネットワークや決定木などのアルゴリズムで関係性を学習することができる。
 このような学習を完了したニューラルネットワークや決定木などを、気象予報データを市場パターン毎にクラスタリングする市場パターンクラスタ気象予報実績選択手段803に適用し、気象予報実績データ821を、対応すると予測されるクラスタに分類する。分類されたそれぞれ複数の気象予報実績データ831,832,833を入力として、図1で説明した入札支援装置(ここでは3つのクラスタがあると想定し、811、812、813の3つの入札支援装置)にて、当該市場パターンクラスタに対応する需給曲線と気象予報との関係を学習する。学習時の表示データ生成手段817も、基本的には図1の表示データ生成手段117と同様だが、複数の市場価格パターンクラスタの結果を入力し、表示データを生成する。
 図9は、第2実施形態に係る入札支援システム900の入札運用時の構成を示す図である。図5で説明した第1実施形態の場合と同様、日時を含む気象予報データである予測入力501を入力とし、初めに、市場パターンクラスタ予測手段902で、当該気象予報の下で発生する市場パターンの推定を行う。この結果を受けて需給曲線予測手段選択手段903では、需給曲線予測に使用する入札支援装置100の選択を行い、気象予報データを選択された入札支援装置のみの入力とする。
 市場パターンクラスタ予測手段902は、前記の図8の市場パターンクラスタ学習手段802の学習済の決定木やニューラルネットワークで構成される。需給曲線予測手段選択手段903は、図8の市場パターンクラスタ気象予報実績選択手段803と基本的には同じでよい。
 図8の市場パターンクラスタ気象予報実績選択手段803では、クラスタリング手段801で抽出した市場パターンクラス数に応じて準備した入札支援装置(811、812、813)のどれをクラスタAに対応する気象予報実績に学習させるかは、一貫性さえあれば任意である。ただし、一つでもクラスタAに関する気象予報実績を学習させたら、それ以降は、クラスタA分類された気象予報実績データしか選択しない。一つの入札支援装置に、複数のクラスタに対応する気象予報実績を学習させないことに留意する。
 需給曲線予測手段選択手段903では、初めから市場パターンクラスタ気象予報実績選択手段803で決定した市場パターンクラスタと入札支援装置の対応関係に従って入札支援装置(811,812、813)を選択する点が異なる。以降の需給曲線予測処理は図5と同様であるが、予測時の表示データ生成手段917では、どのクラスタとして予測を行ったかも示すことが望ましいことから、市場パターンの予測結果931も入力として受け取るようになっている。
 なお、市場パターンクラスタ学習手段802および市場パターンクラスタ予測手段902として、決定木を利用した場合、ある気象予報値を与えた時、そのデータセットが決定木のどのリーフに該当するかを判定して、想定されるクラスタを決めることになる。しかし、通常、どのリーフも、100%クラスタAとかクラスBと云うことはないため、確率的にクラスタAが60%、クラスタCが20%、クラスタDが10%などと云った予測となる。ニューラルネットワークの場合にも、クラス分類問題では出力層にソフトマックス関数を使って一つのクラスタに決めるが、その入力段階では、クラスタAが60%、Bが5%などと云った決定木と似たような結果を持つ。そのため、複数のクラスタにそれぞれの確率で属していると考えて、複数の入札支援装置(811、812、813)を同時に実行するようにしてもよい。その場合、市場パターンクラスタ予測手段902から予測時の表示データ生成手段への出力931には、気象予報データから発生すると想定されるクラスタの識別情報とその発生確率の情報を与える。
 図10は、3つのクラスタについて需給曲線の予測を行った場合の画面例を示す図である。クラスタA、D、Eの場合の需給曲線の推定結果1001、1002、1003とその時の確率の情報、並びにクラスタの識別情報を表示している様子(1011、1012、1013)を示している。
<<第3実施形態>>
 図11は、第3実施形態に係る入札支援システムの構成を示す図であり、図12は、第3実施形態に係る入札支援システムの他の構成を示す図である。図11、図12は、入札情報が公開さる市場におけるシステム構成を示す。なお、第3の実施形態例では、予測の場合にフォーカスしたシステム構成や画面の記載は行わないが、これまでに示したのと同様に学習フェーズだけではなく、予測フェーズにも対応する。予測の場合は、教示データ1102はなく、入力も気象予報実績データである学習入力101から気象予報データである予測入力501(図5参照)に切り替わる。
 図11に示す入札支援システムでは、日本の電力市場と異なり、市場のゲートクローズ後、一定期間を置いてから、入札情報が公開されるような市場を持つ地域への適用を狙った構成である。
 教示データ1102として、売入札価格と売入札量、買入札価格と買入札量が使用できるので、それぞれの入札価格数を合計した数の出力層1118を持つニューラルネットワークで入札量学習・予測手段1111を構成する教示データ1102に含まれる複数の需要入札価格に対応する需要入札量予測値1131~1135、複数の供給入札価格に対応する供給入札量予測値1141~1145を用いて、需要曲線構成手段112および供給曲線構成手段113で需要曲線データ181と供給曲線データ182を生成し、表示用データ生成手段1117と誤差の計算と逆伝播手段1115の入力とする。
 一方、教示データ1102も同様に表示データ生成手段1117と誤差の計算と逆伝播手段1115に入力される。表示データ生成手段1117ではこれらの情報をもとに、比較可能な形で推定した需給曲線の表示用データと実績の需給曲線の表示用データを生成し、表示装置119を通じてユーザに学習経過ないし予測結果を提示する。誤差の計算と逆伝播手段1115では、需要曲線の入札量出力ノードと、供給曲線の入札量出力ノードに関して、各ノードが対応する価格帯に関して予測と教示データの差を計算して逆伝播すればよいので、式(1)~式(7)で示したような処理は不要となる。
 このような実施形態を構成できる場合は、価格ないし価格帯毎の入札量に関する教示データがあるので、より高い精度での学習と予測が可能となる、
 なお、本実施例のここまでの説明では、需要曲線および供給曲線の推定に対する価格帯121~125、151~155を利用せず、教示データ1102に含まれるすべての入札実績の入札価格情報を使う前提で説明したが、価格帯を設定し、実績の入札価格を設定した価格帯のレコードとして集約するようにしてもよい。
 需要曲線の場合、実績入札価格より、dp(j)の加算値(式(1)のif文の右側の式の左辺の項)が価格帯の上限より小さい価格帯の中で上限値が最大の価格帯に、その実績を割り当てるなどすればよい。
 供給曲線の場合は、dp(j)の加算値(式(1)のif文の右側の式の左辺の項)が価格帯の下限より大きい価格帯の中で下限値が最小の価格帯に、その実績を割り当てるなどすればよい。
 また、このような方法とは別に、教示データ1102に含まれる供給入札および需要入札データの入札価格をそれぞれ横軸に、入札量ないし入札札数を縦軸にプロットしてヒストグラムをとるような処理を行い、入札札数ないし入札量が一定値を超える価格帯を抽出することで価格帯を決定してもよい。
 図12は、入札量学習・予測手段1111の代わりに各価格帯に対する入札量の学習および予測を、別々の入札量学習・予測手段1211a~1211jで構成する実施例である。ここまでの実施形態では、単一のニューラルネットワークで構成する例を示してきたが、この実施形態では、例えばそれぞれをサポートベクター回帰や線形回帰などの手段で構成することができる。もちろんニューラルネットワークで回帰することもできる。各価格帯専用の学習を行うため、第1実施形態のような実現方式に比べて精度の高い予測が可能となる。なお、誤差の計算と逆伝播手段1215の処理自体は図11の実施例と同じであるが、逆伝播はそれぞれの学習手段1211a~1211jに別々に戻すように構成する必要がある(1284a~j)。
<<第4実施形態>>
 図14は、第4実施形態に係る入札支援システム1400の構成を示す図である。図15は、第4実施形態に係る入札支援システム1500における運用時の説明のための構成を示す図である。図14および図15は、第1実施形態と並行して、約定価格と約定量、売り買い入札量の予測を行うように構成した実施例である。なお、入札支援システムは、学習時には符号1400を使用し、運用時には符号1500を使用している。
 約定実績データ学習・予測手段1401は、気象予報や日時からなる学習入力に対して、約定実績データ予測結果1402を計算して出力する。誤差の計算と逆伝播手段1415では、教示データ102と入札データ予測結果1402の同じ項目同士の誤差1484を計算し、約定実績データ学習・予測手段1401に逆伝播する。
 ここで、約定実績データ学習・予測手段1401としては、ニューラルネットワークを使うことができる。また、約定価格、約定量、売入札量、買入札量のそれぞれについて、サポートベクター回帰や線形回帰を行うようにしてもよい。
 図15は、基本的には、図5で説明した第1実施形態と同様であるが、入札量予測手段511と並行して約定実績データ予測手段1501において、約定実績データ予測結果1502(約定量、約定価格、売入札量、買入札量の予測値)を出力する。表示データ生成手段1517も、基本的には図5で示した実施形態と同じであるが、約定実績データ予測結果1502も取得し、表示装置119上に需給曲線の推定結果と合わせて表示する(1503、1504、1505)。このようにすることで、需給曲線の予測精度やその変動の方向、変動の程度などについてのユーザ1515の判断を支援することができる。
 なお、ここまでの実施形態では、学習の段階では、学習入力101として過去の気象予報データを利用するように記載してきたが、過去の気象の実績値を利用するようにしてもよい。気象予報実績データ(学習入力101)および気象予報データ(予測入力501)としては、ここまでに例示した日本近辺の複数の格子点上の気圧や気温、湿度、風速、風向、日射量、降水量と云った情報の利用について説明したが、例えば、日本の全体の中で代表的な地点の気圧や気温、湿度、風速、風向、日射量、降水量といった値を使う方法も考えられる。学習入力101には日時の情報を含むことを説明したが、週日か休日かといった日種の情報を加えたり、日種毎に、本発明で説明した入札支援装置(100など)を構成するようにしたりしてもよい。
 また、価格帯(需要曲線の価格帯121~125、供給曲線の価格帯151~155)に関しては、ユーザが設定するとしたが、所定の入札価格範囲を所定区間に区分するような設定方法としてもよい。
<<変形例>>
 図16は、第1実施形態と基本的には同一であるが、入札量推定・学習および予測手段を需要曲線用と供給曲線用に別々の手段で実装する実施例である。式(1)~式(7)の説明では約定量の推定値を、推定した需要曲線データと推定した供給曲線データの交点として求めたが、それぞれの約定価格における推定入札量(式(1)および式(2)で、fs(i)およびfb(i)が1となる入札ステップの推定入札量の合計値)をesbidsとして用いて、図18の領域1821に記載したように誤差を計算してもよい。供給曲線についても同様に、図18の領域1822のようにすればよい。
 なお、需要入札量buyとその推定値の誤差、並びに供給入札量supとその推定値の誤差は、領域1821および領域1822に記載の通りであり、これについては、需給曲線の交点を求める前述の方式においても同様である。このようにすれば、誤差の計算やその逆伝播に関しては、必ずしも需給曲線の交点としての約定量の推定値を必要としない。   
 このため、需要曲線データ1683bがあれば、需要曲線用の入札量推定・学習および予測手段1611bへの逆伝播1684bを計算することが可能であり、供給曲線データ1683aがあれば、供給曲線用の入札量推定・学習および予測手段1684aを計算することができる特徴を活用する形態である。このような構成とすることで、需要曲線のみ、あるいは供給曲線のみの推定と云った利用も可能となる。なお、図1で説明した需要曲線と供給曲線を両方求める場合でも、誤差の計算および逆伝播に関して、ここで説明した方法を用いてもよい。
 図17は、図16に示す実装形態に係る入札支援ソリューションの一例を示す図である。図17は、基本的に図4と同じであるが、ユーザとして1715aと1715bの2者を示した。ユーザ1715aは、供給曲線の予測に本発明を基にしたサービスを利用し、ユーザ1715bは、需要曲線の予測に本発明を基にしたサービスを利用する想定である。ユーザ1715aは、入力手段1720a、ネットワーク472を介して計算および記憶リソース420に接続し、ユーザ1715bは、入力手段1720b、ネットワーク1772を介して計算および記憶リソース420に接続する。
 需要曲線の価格帯121~125の設定や誤差の逆伝播に設備容量などに基づく重みを課するなどの行為は、利用者の知識によるものであるが、需要曲線と供給曲線の両者に同等の知識がある利用者ばかりではない。
 本実施形態によれば、このようなどちらか一方についての知識がメインとなる利用者でも、本実施形態に基づくサービスであれば、利用が可能となる。また、例えば需要側に偏った知識を有するユーザが学習させたモデルを需要曲線予測サービスとして提供し、そこで提供される学習済の需要曲線予測モデルを供給側の知識を有するユーザが利用し、自身の知識でモデル化し予測した供給曲線と組合せて利用すると云った使い方も可能となる。   
 供給側に偏った知識を有するユーザが学習させたモデルを供給曲線予測サービスとして提供し、そこで提供される学習済の供給曲線予測モデルを、需要側の知識を有する利用者に提供するといった逆の使い方も可能となるし、モデルを学習させるほどの知識がないユーザが、モデルを学習させる能力のあるユーザが提供する需要および供給のそれぞれの予測モデルを利用すると云った使い方も可能となる。
 以上説明した本実施形態に係る電力市場取引支援プラットフォームは、
(1)日時及び/又は気象の過去の予報値を入力として、設定した複数の入札価格帯に対して入札量を算出するモデルを有し、
(2)モデルで算出された入札量について、売入札曲線については設定した価格帯の値が最低価格となるように、買入札曲線については設定した価格帯の値が最高価格になるように、入札量の算出値を加算して供給曲線データと需要曲線データの両方ないしいずれか一つを生成し、
(3)対応する過去の電力市場商品の約定価格における約定量と、供給曲線データの約定価格における入札量ないし需要曲線データの約定価格における入札量との差、およびそれぞれの総入札量と供給曲線データないし需要曲線データの最大値との差から、
(4)入札価格帯の入札量算出に使うモデルを修正する、
学習手段を有する。
 前記(1)~(4)と、図1との対応関係は、(1)は、入札量推定・学習および予測手段111に対応し、(2)は、需要曲線構成手段112、供給曲線構成手段113に対応し、(3)は誤差の計算と逆伝播手段115に対応し、(4)は、ベクトル184を出力層118へフィードバックすることに対応する。すなわち、本実施形態において、学習手段とは、入札量推定・学習および予測手段111、要曲線構成手段112、供給曲線構成手段113、誤差の計算と逆伝播手段115を含めたものである。
 本実施形態によれば、ユーザの経験に基づいて入力した各価格帯に関して、「各価格帯にどの程度の入札量があると想定すると、観測された多数の実績をうまく説明できるか」、「各価格帯に対する入札量は、気象条件に対してどのような感度をもつべきか」と云う点を学習し、その学習結果に基づく需給曲線の推定値を示すことで、推定の妥当性や、どの価格帯の推定量が感覚と合わないかと云った推定結果に対するユーザの解釈や判断が容易になる。また、特定の価格帯の推定結果の変動が約定量や約定価格にどの程度の影響があるかを判断しやすくなるという効果がある。
 また、第3実施形態に係る電力市場取引支援プラットフォームは、日時及び/又は気象の過去の予報値を入力として、設定した複数の入札価格帯に対して入札量を算出するモデルを有し、モデルで算出された入札量について、売入札曲線については設定した価格帯の値が最低価格となるように、買入札曲線については設定した価格帯の値が最高価格になるように、入札量の算出値を加算して供給曲線データと需要曲線データの両方ないしいずれか一つを生成し、対応する過去の電力市場商品の各価格帯の入札量の合計との誤差から、入札価格帯の入札量算出に使うモデルを修正する学習手段を有すること(図11、図12参照)が特徴である。市場のゲートクローズ後、一定期間を置いてから、入札情報が公開されるような市場において、対応する過去の電力市場商品の各価格帯の入札量の合計との差が適切に把握できるので、供給曲線データと需要曲線データの推定値が向上する。
 また、電力市場取引支援プラットフォームは、ゲートクローズ前の電力市場商品の受渡時刻における気象の予報値を、学習手段の学習結果に入力することで、受渡時刻における各入札価格帯における入札量の予測を行う手段を有すること(例えば、図5参照)を特徴とする。
 また、電力市場取引支援プラットフォームは、日時及び/又は気象の過去の予報値の代わりに、過去の実績値と設定した複数の入札価格帯に対する入札量の関係を、予報値に対応する過去の電力市場商品の約定実績を用いることを特徴とする。
 また、電力市場取引支援プラットフォームは、入札価格帯を、入力手段20から、個々に利用者が設定するか、価格範囲と区間数の指定で利用者が設定するか、電力市場商品の入札実績から設定するかのいずれかで設定されることを特徴とする。すなわち、図1において、価格帯(需要曲線の価格帯121~125、供給曲線の価格帯151~155)に関しては、ユーザが設定するとしたが、所定の入札価格範囲を所定区間に区分するような設定方法、電力市場商品の入札実績から設定する設定方法としてもよい。
 また、電力市場取引支援プラットフォームであって、モデルは、気象庁の観測点の複数の特定の地点、ないし、緯度経度上のメッシュの格子点上の地点の、気温、湿度、気圧、風速、風向、降水量、日射量の内の少なくとも一つ以上(例えば、図7の気象予報データ712)を学習および予測の入力とすることを特徴とする。
 また、第2実施形態に係る電力市場取引支援プラットフォームであって、市場の状態を、エリア価格を用いて有限個に分類する分類手段(例えば、クラスタリング手段801)と、有限個の市場状態毎に、過去の対応する時刻の気象予報値ないし実績値を入力として、気象予報値ないし実績値と入札価格帯の入札量との関係を学習する有限個の第1の学習手段(例えば、入札支援装置811,812,813)と、過去の気象予報値と日時と市場の分断状態の関係を学習する第2の学習手段(例えば、市場パターンクラスタ学習手段802)と、気象の予報値から第2の学習手段の学習結果を用いて、予報値に対応する市場状態を1つないし複数予測する第1の予測手段(例えば、市場パターンクラスタ気象予報実績選択手段803)と、第1の予測手段の予測結果に対応する一つないし複数の市場状態について、気象予報値および日時と入札価格帯の入札量の関係を学習した第1の学習手段の学習結果の一つないし複数を用いて、気象の予報値から需要曲線の各価格帯の入札量と供給曲線の各価格帯の入札量の推定を行うことを特徴とする。
 また、電力市場取引支援プラットフォームは、気象の予報値から推定した需要曲線の各価格帯の入札量と供給曲線の各価格帯の入札量とから、クラウドサービスに接続するユーザ環境の表示手段(例えば、図7の表示画面710)に、需要曲線と供給曲線の推定結果を表示することを特徴とする。
 また、電力市場取引支援プラットフォームは、過去の気象予報値ないし気象実績と過去の電力市場商品の約定実績との関係を学習する第3の学習手段(例えば、約定実績データ学習・予測手段1401)を有し、気象予報値を第3の学習手段の学習結果への入力として得た電力市場商品の約定実績の予測を行い、該予測結果をユーザ環境の表示手段に需要曲線と供給曲線の推定結果と合わせて表示すること(例えば、図15の表示画面参照)を特徴とする。
 100,500  入札支援装置
 101  学習入力
 102  教示データ
 111  入札量推定・学習および予測手段(モデル、学習手段)
 112  需要曲線構成手段(学習手段)
 113  供給曲線構成手段(学習手段)
 114  約定価格と約定量の計算手段
 115  誤差の計算と逆伝播手段(学習手段)
 117,517  表示データ生成手段
 118  出力層
 119  表示装置
 120  入力手段
 121~125  需要曲線の価格帯
 131~135,141~145  出力
 151~155  供給曲線の価格帯
 161~165  需要入札ステップ
 171~175  供給入札ステップ
 410,710  表示画面(表示手段)
 411  需給曲線推定結果
 412  価格帯設定部
 413  価格帯確認部
 415  ユーザ
 420,720  記憶リソース
 421,721  計算リソース
 422,722  学習モデルデータベース
 423,723  ユーザプレファレンスデータベース
 424,724  市場約定結果データベース
 430,730  気象予報サービス
 440,740  電力市場システム
 501  予測入力
 511  入札量予測手段(入札量の予測を行う手段)
 512  需要曲線構成手段
 513  供給曲線構成手段
 710  表示画面(ユーザ環境の表示手段)
 711  予測結果
 712  気象予報データ
 713  設定部
 714  設備容量情報
 715  ユーザ
 718  入力部
 725  発電機情報データベース
 750  発電設備
 760  ウェブサイト
 800,900  入札支援システム
 801  クラスタリング手段(分類手段)
 802  市場パターンクラスタ学習手段(第2の学習手段)
 803  市場パターンクラスタ気象予報実績選択手段(第1の予測手段)
 804  入力手段
 811,812,813  入札支援装置(第1の学習手段)
 821  気象予報実績データ
 822  クラスタリングデータ
 903  需給曲線予測手段選択手段
 1400,1500  入札支援装置
 1401  約定実績データ学習・予測手段(第3の学習手段)
 1402,1502  約定実績データ予測結果
 1484  誤差
 1415  誤差の計算と逆伝播手段
 1501  約定実績データ予測手段
 1515  ユーザ

Claims (9)

  1.  日時及び/又は気象の過去の予報値を入力として、設定した複数の入札価格帯に対して入札量を算出するモデルを有し、
     前記モデルで算出された入札量について、売入札曲線については設定した価格帯の値が最低価格となるように、買入札曲線については設定した価格帯の値が最高価格になるように、前記入札量の算出値を加算して供給曲線データと需要曲線データの両方ないしいずれか一つを生成し、対応する過去の電力市場商品の約定価格における約定量と、前記供給曲線データの約定価格における入札量ないし前記需要曲線データの約定価格における入札量との差、およびそれぞれの総入札量と前記供給曲線データないし需要曲線データの最大値との差から、入札価格帯の入札量算出に使う前記モデルを修正する学習手段を有する
     ことを特徴とする電力市場取引支援プラットフォーム。
  2.  日時及び/又は気象の過去の予報値を入力として、設定した複数の入札価格帯に対して入札量を算出するモデルを有し、
     前記モデルで算出された入札量について、売入札曲線については設定した価格帯の値が最低価格となるように、買入札曲線については設定した価格帯の値が最高価格になるように、前記入札量の算出値を加算して供給曲線データと需要曲線データの両方ないしいずれか一つを生成し、対応する過去の電力市場商品の各価格帯の入札量の合計との差から、入札価格帯の入札量算出に使うモデルを修正する学習手段を有する
     ことを特徴とする電力市場取引支援プラットフォーム。
  3.  請求項1又は請求項2に記載の電力市場取引支援プラットフォームであって、
     ゲートクローズ前の電力市場商品の受渡時刻における気象の予報値を、前記学習手段の学習結果に入力することで、前記受渡時刻における各入札価格帯における入札量の予測を行う手段を有する
     ことを特徴とする電力市場取引支援プラットフォーム。
  4.  請求項3に記載の電力市場取引支援プラットフォームであって、
     日時及び/又は気象の過去の予報値の代わりに、過去の実績値と設定した複数の入札価格帯に対する入札量の関係を、予報値に対応する過去の電力市場商品の約定実績を用いる
     ことを特徴とする電力市場取引支援プラットフォーム。
  5.  請求項3又は請求項4に記載の電力市場取引支援プラットフォームであって、
     前記入札価格帯を、入力手段から、個々に利用者が設定するか、価格範囲と区間数の指定で利用者が設定するか、電力市場商品の入札実績から設定するかのいずれかで設定される
     ことを特徴とする電力市場取引支援プラットフォーム。
  6.  請求項3から請求項5のいずれか1項に電力市場取引支援プラットフォームであって、
     前記モデルは、気象庁の観測点の複数の特定の地点、ないし、緯度経度上のメッシュの格子点上の地点の、気温、湿度、気圧、風速、風向、降水量、日射量の内の少なくとも一つ以上を学習および予測の入力とする
     ことを特徴とする電力市場取引支援プラットフォーム。
  7.  請求項3から請求項6のいずれか1項に記載の電力市場取引支援プラットフォームであって、
     市場の状態を、エリア価格を用いて有限個に分類する分類手段と、
     前記有限個の市場状態毎に、過去の対応する時刻の気象予報値ないし実績値を入力として、気象予報値ないし実績値と入札価格帯の入札量との関係を学習する有限個の第1の学習手段と、
     過去の気象予報値と日時と市場の分断状態の関係を学習する第2の学習手段と、
     気象の予報値から第2の学習手段の学習結果を用いて、予報値に対応する市場状態を1つないし複数予測する第1の予測手段と、
     前記第1の予測手段の予測結果に対応する一つないし複数の市場状態について、気象予報値および日時と入札価格帯の入札量の関係を学習した前記第1の学習手段の学習結果の一つないし複数を用いて、気象の予報値から需要曲線の各価格帯の入札量と供給曲線の各価格帯の入札量の推定を行う
     ことを特徴とする電力市場取引支援プラットフォーム。
  8.  請求項3から請求項7のいずれか1項に記載の電力市場取引支援プラットフォームであって、
     気象の予報値から推定した需要曲線の各価格帯の入札量と供給曲線の各価格帯の入札量とから、クラウドサービスに接続するユーザ環境の表示手段に、需要曲線と供給曲線の推定結果を表示する
     ことを特徴とする電力市場取引支援プラットフォーム。
  9.  請求項8に記載の電力市場取引支援プラットフォームであって、
     過去の気象予報値ないし気象実績と過去の電力市場商品の約定実績との関係を学習する第3の学習手段を有し、
     気象予報値を第3の学習手段の学習結果への入力として得た電力市場商品の約定実績の予測を行い、該予測結果をユーザ環境の表示手段に需要曲線と供給曲線の推定結果と合わせて表示する
     ことを特徴とする電力市場取引支援プラットフォーム。
PCT/JP2020/036873 2020-09-29 2020-09-29 電力市場取引支援プラットフォーム WO2022070251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022553257A JP7436697B2 (ja) 2020-09-29 2020-09-29 電力市場取引支援プラットフォーム
PCT/JP2020/036873 WO2022070251A1 (ja) 2020-09-29 2020-09-29 電力市場取引支援プラットフォーム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036873 WO2022070251A1 (ja) 2020-09-29 2020-09-29 電力市場取引支援プラットフォーム

Publications (1)

Publication Number Publication Date
WO2022070251A1 true WO2022070251A1 (ja) 2022-04-07

Family

ID=80951515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036873 WO2022070251A1 (ja) 2020-09-29 2020-09-29 電力市場取引支援プラットフォーム

Country Status (2)

Country Link
JP (1) JP7436697B2 (ja)
WO (1) WO2022070251A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476418B1 (ja) 2023-12-14 2024-04-30 東京瓦斯株式会社 電力市場価格予測装置、電力市場価格予測方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150379542A1 (en) * 2014-06-30 2015-12-31 Battelle Memorial Institute Transactive control framework for heterogeneous devices
JP2018045615A (ja) * 2016-09-16 2018-03-22 株式会社東芝 インバランス価格予測装置、方法、プログラム、及び、電力取引システム
WO2019239634A1 (ja) * 2018-06-13 2019-12-19 株式会社日立製作所 電力取引支援装置及び電力取引支援方法
JP6752369B1 (ja) * 2018-11-30 2020-09-09 三菱電機株式会社 取引価格予測装置および取引価格予測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150379542A1 (en) * 2014-06-30 2015-12-31 Battelle Memorial Institute Transactive control framework for heterogeneous devices
JP2018045615A (ja) * 2016-09-16 2018-03-22 株式会社東芝 インバランス価格予測装置、方法、プログラム、及び、電力取引システム
WO2019239634A1 (ja) * 2018-06-13 2019-12-19 株式会社日立製作所 電力取引支援装置及び電力取引支援方法
JP6752369B1 (ja) * 2018-11-30 2020-09-09 三菱電機株式会社 取引価格予測装置および取引価格予測方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476418B1 (ja) 2023-12-14 2024-04-30 東京瓦斯株式会社 電力市場価格予測装置、電力市場価格予測方法及びプログラム

Also Published As

Publication number Publication date
JP7436697B2 (ja) 2024-02-22
JPWO2022070251A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
Li et al. A review on the integration of probabilistic solar forecasting in power systems
US10873209B2 (en) System and method for dynamic energy storage system control
Conejo et al. Decision making under uncertainty in electricity markets
Yu et al. Stochastic valuation of energy storage in wholesale power markets
Xu et al. Residential housing price index forecasting via neural networks
Silva et al. A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets
Hong et al. Locational marginal price forecasting using deep learning network optimized by mapping-based genetic algorithm
Piel et al. Promoting the system integration of renewable energies: toward a decision support system for incentivizing spatially diversified deployment
Silva et al. Generation of realistic scenarios for multi-agent simulation of electricity markets
CN107818386A (zh) 电网企业经营利润预测方法
Qiu et al. Strategic retail pricing and demand bidding of retailers in electricity market: A data-driven chance-constrained programming
Hong et al. Uncertainty in unit commitment in power systems: A review of models, methods, and applications
El-Hawary Advances in Electric Power and Energy Systems: Load and Price Forecasting
Xu et al. Office property price index forecasting using neural networks
Ahmadi et al. Robust methods for identifying optimal reservoir operation strategies using deterministic and stochastic formulations
WO2022070251A1 (ja) 電力市場取引支援プラットフォーム
Kolberg et al. Artificial Intelligence and Nord Pool’s intraday electricity market Elbas: a demonstration and pragmatic evaluation of employing deep learning for price prediction: using extensive market data and spatio-temporal weather forecasts
US20230252285A1 (en) Spatio-temporal graph neural network for time series prediction
Sinitskaya et al. Examining the influence of solar panel installers on design innovation and market penetration
Liang et al. Operation-adversarial scenario generation
Dai et al. Probabilistic model for nondispatchable power resource integration with microgrid and participation in the power market
CN114154696A (zh) 资金流预测方法、系统、计算机设备及存储介质
Morales et al. Impact of stochastic renewable energy generation on market quantities
JP2020115276A (ja) 情報処理方法、情報処理装置、プログラム及び学習済みモデルの生成方法
Steber et al. A comprehensive electricity market model using simulation and optimization techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956181

Country of ref document: EP

Kind code of ref document: A1