WO2020108391A1 - 激光投影显示方法及激光投影设备 - Google Patents

激光投影显示方法及激光投影设备 Download PDF

Info

Publication number
WO2020108391A1
WO2020108391A1 PCT/CN2019/120135 CN2019120135W WO2020108391A1 WO 2020108391 A1 WO2020108391 A1 WO 2020108391A1 CN 2019120135 W CN2019120135 W CN 2019120135W WO 2020108391 A1 WO2020108391 A1 WO 2020108391A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
light
light source
digital micro
state
Prior art date
Application number
PCT/CN2019/120135
Other languages
English (en)
French (fr)
Inventor
肖纪臣
赵一石
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020108391A1 publication Critical patent/WO2020108391A1/zh
Priority to US17/332,692 priority Critical patent/US20210289177A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the present application relates to the field of projection display, in particular to a laser projection display control method, device and projection equipment.
  • each digital micro-reflective lens has its own independent drive device, which is used to support the digital micro-reflective lens to rotate and switch between the open state and the closed state, wherein the digital micro-reflective lens is in the open state and the closed state.
  • the switching speed can reach thousands of times per second.
  • Figure 1 is a schematic diagram of the operation of the digital micro-reflection lens.
  • the digital micro-reflection lens rotates to the open state, that is, a positive deflection angle
  • the light beam output by the light source is reflected by the digital micro-reflection lens Enter the lens for imaging display
  • the digital micro-reflection lens rotates to the off state, that is, the negative deflection angle
  • the light beam output by the light source does not enter the lens after being reflected by the digital micro-reflection lens but enters the light absorption unit or is blocked.
  • the resolution of the light valve determines the resolution of the image. It can be simply understood that a digital micro-reflective lens corresponds to a pixel in the image.
  • the switching between the open and closed states of the digital micro-reflective lens is controlled by the displayed image.
  • the image information that is, the image information of the pixel corresponding to the digital micro-reflective lens determines the number of times the digital micro-reflective lens is switched between the on state and the off state, and the continuous retention time.
  • the light source outputs three primary colors of light beams in time sequence, and the output time of each primary color light beam in the three primary colors (red, green, blue) is very short, so although the three primary colors enter the human body at different time periods The eye, but due to the persistence of the human eye's vision, it is impossible to distinguish the color that enters the human eye in such a nuanced time, so it will form a colorful image from the perception.
  • the digital micro-reflecting lens on the light valve and its corresponding rotating device are high-precision devices, such as the need to display the same picture or the same gray-scale part for a long time, or the content of multiple consecutively displayed pictures has a high degree of overlap, it will make The duration of the digital micro-reflection lens in the same position state is longer, for example, it may be kept in the on or off state for a relatively long time, which may easily cause mechanical fatigue of the driving device corresponding to the digital micro-reflection lens, which affects the operation of the light valve. Reliability and service life may even cause damage to the light valve, which in turn affects the projection display effect.
  • the present application provides a laser projection display control method, device and projection equipment.
  • a laser projection display control method includes a light source for outputting an illumination beam; an optical machine for modulating the illumination beam according to an image display signal; and a lens for imaging the modulated illumination beam.
  • the methods described include:
  • the rotation switching period is less than the output period of a primary color beam
  • the digital micro-reflection lens on the driving light valve is switched between the on state and the off state until the switching end time indicated by the rotation switching period is reached;
  • the digital micro-reflective lens that controls the rotation switching is restored to the state it was in when the rotation switching was started, and the light source is controlled to be turned on.
  • a laser projection device includes:
  • Laser assembly used to emit laser beam
  • Laser drive circuit used to drive the laser component to turn on or off
  • DLP control circuit used to output the image display enable signal and the primary color light brightness adjustment signal to the laser drive circuit
  • the DLP control circuit is also used to output the image display signal to the light valve
  • the light valve includes a plurality of digital micro-reflection lenses, which are used to modulate the received light beam according to the image display signal and project into the projection lens for imaging.
  • the image display enable signal of a primary color light output by the DLP control circuit is valid, the brightness adjustment signal of the primary color light is continuously zero for a period, and the period length is shorter than the effective period of the image display enable signal of the primary color light,
  • the laser component corresponding to the output of the primary color light is turned off; at the same time, the light valve receives a driving signal different from the current image display signal, and a plurality of digital micro-reflective lenses rotate and switch between the on state and the off state.
  • a projection device includes:
  • a memory that stores computer readable instructions, which when executed by the processor implements the method described above.
  • a computer-readable storage medium has stored thereon a computer program, which when executed by a processor implements the method described above.
  • Figure 1 is a schematic diagram of the work of digital micro-reflection lenses
  • FIG. 2 is a schematic diagram of a laser projection device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an optical path architecture of a laser projection device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a circuit system architecture of a laser projection device provided by an embodiment of the present application.
  • Fig. 5 is a flowchart of a method for controlling laser projection display according to an exemplary embodiment
  • step S110 of the embodiment corresponding to FIG. 5 is a flowchart of steps before step S110 of the embodiment corresponding to FIG. 5;
  • Fig. 7 is a flow chart showing a laser projection display control method according to another exemplary embodiment
  • step S130 is a flowchart of step S130 or step S230;
  • Fig. 9 is a schematic diagram showing timing switching of primary light according to an exemplary embodiment
  • FIG. 10 is a schematic diagram of the driving principle according to an exemplary laser assembly
  • Fig. 11 is a schematic diagram of a color filter wheel according to an exemplary embodiment.
  • FIG. 12 is a schematic diagram of the spoke period according to FIG. 11.
  • Fig. 13 is a schematic diagram showing timing switching of primary colors according to another exemplary embodiment
  • 15 is a schematic diagram of a laser projection optical imaging system provided by this application.
  • FIG. 16 is a schematic diagram of a light valve driving signal switching according to FIG. 9.
  • the laser projection device 10 includes a complete casing 101 (only a part of the casing is shown in the figure), and according to the optical function part, further includes a light source 100 and an optical machine 200 assembled in the complete casing 101.
  • the lens 300 these optical parts are sequentially connected along the beam propagation direction, and each has a corresponding casing to wrap to support the optical components and make each optical part meet certain sealing or airtight requirements.
  • one end of the optical machine 200 is connected to the lens 300 and arranged along the first direction of the whole machine, for example, the first direction may be the width direction of the whole machine, or according to the usage mode, the first direction is opposite to the direction viewed by the user.
  • the light source 100 is connected to the other end of the optical machine 200.
  • the light source 100, the optical machine 200, and the lens 300 are connected in an "L" shape.
  • This connection structure can adapt to the optical path characteristics of the reflective light valve in the optical machine 200, on the other hand, it is also conducive to Shorten the length of the optical path in one dimension, which is conducive to the structure of the whole machine.
  • the light source 100 may include a laser assembly and a fluorescence conversion system.
  • FIG. 14 shows a schematic diagram of a laser light source architecture.
  • the laser assembly includes at least the blue laser assembly 110a and emits blue laser light.
  • the fluorescence conversion system may be specifically a fluorescent wheel 140.
  • the blue laser component 110a is used as an excitation light source to excite the fluorescent wheel 140 to emit primary color light other than blue, and the blue laser light emitted by the blue laser is used as the blue primary color light and the fluorescent color generated by the fluorescent wheel to be displayed as an image Used three-color illumination beam.
  • FIG. 11 shows different color divisions of a color wheel. Different color partitions are used to transmit primary colors of different colors. With the rotation of the color filter 150, different primary colors of light are output in time series.
  • FIG. 3 shows a schematic diagram of the optical path architecture of a laser projection device.
  • a schematic diagram of a DLP optical path architecture is provided.
  • the light source 100 is used to provide an illuminating light beam.
  • the illuminating light beam enters the illuminating light path part of the optical machine part, and is processed by the illuminating light path part to homogenize and magnify the light component 220, which is the core component of the optical machine.
  • the light valve 220 is a DMD chip, also known as a digital micromirror device.
  • the DMD chip 220 is a reflective light modulation component that receives the illumination beam and is driven by the image processing signal to invert at different angles, modulate the illumination beam, and project into the lens 300.
  • FIG. 4 shows a circuit system architecture of a laser projection device.
  • the DLP control circuit is the core of the entire projection system control.
  • the DLP control processing section 210 is a specific example of the DLP control circuit, and may be a main control chip.
  • the power supply unit 400 supplies power to the entire DLP circuit system, including power supply to the laser assembly 110.
  • the algorithm processing part 230 is used to receive the image and picture signals decoded by the video signal source.
  • the codec of the video signal source may be provided by the TV signal board, which is not shown in the figure.
  • the algorithm processing unit 230 is used to perform algorithm processing on the decoded image screen signal, such as contrast or brightness gain processing.
  • the algorithm processing 230 is usually composed of FPGA.
  • the image signal output by the algorithm processing section 230 enters the DLP control processing section 210, and the DLP control processing section 230 performs further image processing, and generates an image display enable signal and a PWM brightness adjustment signal to the laser driving circuit 102, and the DLP control processing
  • the part 230 outputs the image display signal to the light valve 220, and converts it into a driving signal corresponding to the light valve DMD chip. Specifically, the tiny mirror on the surface of the DMD chip is flipped at different angles.
  • the DLP control processing section 210 outputs a red primary color light enable signal R_EN and a red primary color light brightness adjustment signal R_PWM to the laser drive circuit 102, and the laser drive circuit 102 processes the above signals After (such as anti-attenuation, and digital-to-analog conversion) output to the laser assembly 110, the laser assembly 110 emits red primary color light of corresponding color and brightness according to the corresponding signal.
  • red primary color light enable signal R_EN and the red primary color light brightness adjustment signal R_PWM are output to the blue laser component, and the fluorescent wheel 140 is illuminated by illuminating the blue laser component 110a to generate red fluorescent primary color light of corresponding brightness.
  • a laser projection optical system shown in FIG. 15 it includes a laser assembly 110 for emitting blue laser light, a laser assembly 120 for emitting green laser light, and a laser assembly 130 , Used to emit red laser light. That is, the laser light source in this example is a three-color laser light source.
  • the DLP control processing section applies the red primary light enable output signal R_EN and the red primary light brightness adjustment signal R_PWM, the above two signals are directly applied to the red device assembly 130 through the laser driving circuit, and the red laser primary colors corresponding to the brightness are emitted according to the timing Light.
  • FIG. 10 shows a schematic diagram of a driving circuit of a three-color laser assembly. In FIG. 10, each color laser receives a corresponding enable output signal, also called a timing signal, and a brightness adjustment signal PWM.
  • the image grayscale signal corresponding to the red primary color light component is received, and the image grayscale signal of the red primary color light component is converted into the light valve DMD drive signal 0 or 1, according to the 0 or 1 signal. Distribution and duration, control the forward and reverse flip of the small mirror on the surface of the DMD, the final output beam brightness corresponds to the gray scale of the image content of the red component in the original image frame, and is finally projected into the lens.
  • the blue primary color light and the green primary color light are processed similarly.
  • the light beams corresponding to the image components of the three colors are projected into the lens in sequence, and then the lens imaging is enlarged and presented on the projection medium. With the effect of retention, the superimposed light beams form a colorful image.
  • algorithm processing unit 230 may also be integrated into the DLP control processing unit 210, and the above content is only an exemplary description of the working principle process.
  • FIG. 5 shows a flowchart of a laser projection display control method.
  • step S110 during the output period of the light source outputting a primary color beam, the light source is controlled to be turned off according to the set rotation switching period, and the rotation switching period is smaller than the output period of the primary color beam.
  • step S130 during the rotation switching period, the digital micro-reflective lens on the light valve is driven to perform rotation switching between the on state and the off state until the switching end time indicated by the rotation switching period is reached.
  • step S150 when the switching end time is reached, the digital micro-reflective lens that controls the rotation switching is restored to the state it was in when the rotation switching was started, and the light source is controlled to be turned on.
  • each frame of the projected image is output by three light beams (red, green, and blue) through the light source to perform projection display.
  • the light source outputting three primary color beams in time-sharing according to the set timing, according to the red brightness, green brightness and blue brightness corresponding to each pixel in the projected display image, the digital micro reflection corresponding to the pixel
  • the red light beam, the green light beam, and the blue light beam output by the light source corresponding to the brightness of the three colors of the pixel corresponding to the lens form an image to be projected and displayed.
  • a color wheel can be configured in the light source, such as a color wheel, a fluorescent wheel, or a combination of a fluorescent wheel and a color wheel, and the light emitted by a light source passes through the rotating color wheel to obtain Red light beam, green light beam and blue light beam output in time sequence;
  • multiple primary color light sources can also be arranged in the light source, for example, red light source, Blue light source and green light source, so as to output three primary color beams through multiple primary color light sources in time sequence; in other embodiments, multiple light sources and multiple color wheels can also be combined to perform sequential output of three primary color light beams, for example Red light source, with color filter and fluorescent wheel.
  • the light source outputs three primary color light beams in a time series.
  • the light source can directly transmit the emitted light as a light beam to the digital micro-reflection lens for projection, for example, the light source is a plurality of monochromatic lasers, so that the monochromatic laser can emit a beam of the corresponding primary color .
  • the light emitted by the light source can also be processed by an optical processing element, such as a fluorescent wheel, a color wheel, etc., to obtain a light beam for projection display. Therefore, the light source may be a light source integrated with an optical processing element or an independent light source, which is not specifically limited herein.
  • the laser projection display control method involved in this application is also performed within the display period of one frame of images.
  • the primary light beam output by the light source may be a red light beam, a blue light beam, or a green light beam.
  • the output period of a primary color light beam is to output the timing of the primary color light beam according to the light beam output timing of the light source.
  • the rotation switching period is configured within the output period of a primary color beam, and the rotation switching period is less than the output period of a primary color beam, so as to ensure the moment when the digital micro-reflective lens starts rotating and the digital micro-reflective lens ends in step S130
  • the moment of rotation switching is not only within the time range of the image display of the same frame, but also within the time range of displaying the primary color in the image display of the frame.
  • the light source may be a single light source or a combined light source composed of multiple sub-light sources.
  • the light source controlled to be turned off is to turn off all light sources that output light beams in the projection device, that is, to ensure that the light source does not emit light during step S130, thereby avoiding the output of the light source during the digital micro-reflection lens rotation switching
  • the light beam reflected by the digital micro-emission lens affects the displayed image.
  • the color wheel for the case of using the color wheel, there is a dividing line on the color wheel that outputs two adjacent color beams, and because the light spot emitted by the light source is transmitted to the color wheel to form a certain spot size, the color wheel rotates To the area near the dividing line that outputs two adjacent color beams, the light beam actually output by the light source is a mixed color beam, such as the mixed color of the blue light beam and the red light beam.
  • the color wheel rotates to the light source output mixed color beam
  • the period is called the spoke zone period. For example, as shown in the color filter wheel shown in FIG.
  • the red light emitted from the light source passes through the color filter wheel, so that the light source outputs a red light beam;
  • the wheel rotates to the blue light transmission area the light emitted by the light source transmits the blue light through the color wheel, so that the light source outputs a blue light beam.
  • the light actually output by the light source is a mixed-color beam, that is, a mixture of a red beam and a blue beam.
  • one processing method is to turn off the light source during the spoke area period, thereby ensuring that the light beams output by the light source are all single in time
  • the drive control of the light valve can be performed in the spoke area, as described in detail below; and for the non-spoke area period, the drive control of the light valve can also be performed according to the method of this embodiment And display the image normally.
  • Another processing method is to keep the light source turned on during the spoke period, and convert the mixed light beam passing through the boundary line or near the boundary line into a single primary color beam through wavelength conversion or a specific wavelength conversion algorithm to transmit the red light
  • the period of the spoke area corresponding to the dividing line between the zone and the blue transmission zone is taken as an example.
  • the mixed color beam passing through the blue light-transmitting area during the spoke area period is converted into a blue beam, and the red light-transmitting area passes through
  • the mixed-color beam is converted into a red beam, so that the period in the spoke area is divided into a period in which two primary-color beams are respectively output.
  • the light beam output by the light source at each moment is still the primary color beam, that is, the output period of the light source outputting a primary color beam includes the output of the primary color beam by the light source without processing
  • the time period and the time period during which the light source outputs the primary color light beam through the special processing in the spoke period period can be configured within any period of the output period of the primary color light beam.
  • the open state of the digital micro-reflective lens is the state that the digital micro-reflective lens is in and can be kept when the light beam output by the light source is reflected by the digital micro-reflective lens;
  • the closed state of the digital micro-reflective lens is the light beam output by the light source When it does not enter the lens after being reflected by the digital micro-reflection lens, the number is the state where the reflection lens is located and can be maintained.
  • the digital micro-reflection lens is on, the light beam output by the light source can enter the lens after being reflected by the digital micro-reflection lens; correspondingly, when the digital micro-reflection lens is off, the light beam output by the light source is reflected by the digital micro-reflection lens Did not enter the lens.
  • the corresponding deflection angles of the reflective lenses when the numbers are on are different.
  • the state at +12° is the on state
  • the state at -12° is the off state
  • the deflection angle between -12° and +12° is not used in practice
  • only the actual digital micro-reflection lens is considered
  • the working state is only on and off.
  • the state at +17° is the on state
  • the state at -17° is the off state.
  • the digital micro-reflective lens needs to be restored to the state where the digital micro-reflective lens itself was when the rotation switch was started.
  • the light source is controlled to be turned off within the set rotation switching period, and the digital micro-reflection lens on the light valve is driven to switch between the on state and the off state during the light source is turned off, thereby eliminating the digital micro reflection
  • the mechanical fatigue state of the driving device corresponding to the lens since the rotation switching period is configured within the output period of a primary color beam during the display of a frame of image, the time to turn off the light source is very short, and the human eye cannot perceive that the light source is off, so even if the light source is turned off during the rotation switching period
  • the number is the rotation switch of the reflective lens, and the image displayed by the orthographic projection, that is, the image displayed when the light source is turned off, can still be displayed normally. The impact on the image displayed is only to reduce the brightness of the displayed image.
  • a primary light beam is a blue light beam. Since the human eye has the least sensitivity to blue relative to red and green, and blue has the smallest contribution to the brightness of the displayed image (only determined based on the viewing function, which is different from the brightness data measured by the instrument), therefore,
  • the rotation switching period is configured within the output period of the light source outputting the blue light beam. Even if the light source is turned off during the rotation switching period, the brightness of the projected displayed image does not change much, and the human eye cannot distinguish it, thereby reducing the projection display The brightness of the image is affected.
  • the method further includes:
  • Step S010 Obtain the timing of the light beam output by the light source, and the timing indicates the output period of the primary light beam output by the light source.
  • Step S030 Configure the rotation switching period according to the output period of the light source outputting the primary color beam, and the rotation switching period indicates the time when the light source is turned off and the time when the light source is turned on.
  • the light source Since the light source outputs red, green, and blue light beams in a time series, correspondingly, it has a time sequence for outputting various primary color light beams, for example, a blue light beam.
  • the rotation switching period is configured according to the output period of the light source outputting the primary color beam. Therefore, it is ensured that the start time and the end time of the rotation switching period are both within the output period of the primary color beam, and the rotation switching period is smaller than the output period of the primary color beam.
  • the rotation switching period is configured within the timing corresponding to the output of the blue light beam, so that the time period during which the light source is turned off is within the timing of the blue light beam to reduce the influence on the projection display brightness after the light source is turned off.
  • Fig. 9 is a schematic diagram of a rotation switching period according to an exemplary embodiment. It is worth noting that the figure only uses the output period of the blue light beam as an example for illustration, and cannot be considered as a limitation on the scope of use of the present application. As shown in FIG.
  • the light source outputs a blue light beam (B) in the time period T1 and a red light beam (R) in the time period T2, and the rotation switching period t1 is configured in the time period according to the timing of the light source outputting the blue light beam In T1, thus, in one cycle, the light source is turned off in the rotation switching period t1, the light source is turned on in the time period t2, and the rotation switching of the digital micro-reflection lens between the on state and the off state is performed in the rotation switching period t1 .
  • FIG. 9 only shows that the light source is turned off only once in a display period, which is merely an exemplary example, and cannot be considered as a limitation on the scope of use of the present application.
  • the light source may be turned off multiple times in one display period, which is not specifically limited herein.
  • the duration of the rotation switching period is 1%-4.5% of the period of the primary color beam output by the light source.
  • the light source performs the timing output of the primary color beams at least once during the display period of a frame of color images, where the time for the light source to complete the timing output of the primary color beams is the light source output primary color beam period.
  • the light source can output the primary light beams of various primary colors once, twice, or even more times within the display period of a frame of color images.
  • the rotation switching period can be configured corresponding to the output period of outputting the blue light beam in the light source output primary color beam period according to the selected primary color light beam, for example, the blue light beam.
  • the light source performs a time-series output of each primary color beam within the display period of the one frame image, that is, the light source output primary color beam period is 8.33ms, it can be set at the output of the light source For example, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.7%, 3.2%, 4%, 4.5%, etc. of the primary color beam period are calculated to obtain the duration of the rotation switching period, and then the rotation switching period is configured.
  • the duration of the rotation switching period can be calculated as a percentage, such as 1%, 1.5%, 1.9%, 2%, 2.5%, 3.2%, 3.6%, 4.2%, and 4.5% correspondingly calculated the duration of the rotation switching period: 41.65us, 62.48us, 79.14us, 83.3us, 104.13us, 133.28 us, 149.94us, 174.93us, 187.43us.
  • the light source is turned off only during the rotation switching period, and the digital micro-reflection lens is switched between the on state and the off state. Due to the short duration of the set rotation switching period, the effect on the brightness of the displayed image is small Therefore, it can not only relieve the fatigue state of the digital micro-reflection lens, but also ensure the normal display of the image and the display effect.
  • the length of the configured rotation switching period needs to ensure that the number within the rotation switching period is that the reflective lens performs an integer number of rotation switches between the on state and the off state.
  • a laser projection display control method is applied to a light valve composed of several digital micro-reflective lenses, which reflect the timing output of the light source
  • the primary color beam is used for the projection display of the color image.
  • the light source is turned off to prevent the light source from outputting a mixed primary color beam.
  • the method includes:
  • Step S210 Obtain a rotation switching period set according to the spoke period of the light source, and the rotation switching period does not exceed the spoke period.
  • Step S230 During the rotation switching period, the digital micro-reflective lens on the light valve is driven to perform rotation switching between an on state and an off state until the switching end time indicated by the rotation switching period is reached.
  • Step S250 When the switching end time is reached, the digital micro-reflective lens that controls the rotation switching is restored to the state it was in when the rotation switching started.
  • the laser projection display control method of this embodiment is applicable to the above-mentioned period in the spoke area of the light source, and in this period, the light source is turned off. It is worth noting that during the display period of a frame of image, the number of spoke periods of the light source is also different according to the number and type of color wheels used (such as color wheel and fluorescent wheel).
  • the laser projection display control may be performed within one spoke area period within the display period of a frame of image, or the light valve may be performed according to the method of this embodiment within multiple spoke area periods
  • the drive control is not specifically limited here.
  • the rotation switching period is configured within the spoke period period. Since the light source is turned off during the spoke period period, a period of certain length can be configured as the rotation switching period within the spoke period period, so that within the rotation switching period The digital micro-reflection lens is switched between the on state and the off state.
  • the rotation switching period may be less than or equal to the spoke period period, which is not specifically limited here.
  • FIG. 13 shows a schematic diagram of a timing sequence of three primary color light switching, and, in FIG. 13, an exemplary spoke period t3, t4 is also exemplarily shown.
  • the spoke period is implemented as a rotation switching period
  • the light valve can be switched only during the period indicated by t3 or t4, and the light-emitting elements of the two colors that constitute the spoke period can be turned off during this period. It is also possible to set the time of multiple spoke areas in one cycle as the rotation switching period.
  • one of the spoke period period composed of the blue primary color light, the red primary color light, and the green primary color light, or both may be used as the rotation switching period.
  • step S130 or step S230 includes:
  • Step S331 Obtain an inversion control signal configured for each digital micro-reflective lens.
  • the inversion control signal indicates that the switching end time indicated by the rotation switching period is reached, the digital micro-reflective lens is in an open state The number of rotations to switch between the off state and the off state.
  • Step S332 During the rotation switching period, the corresponding digital micro-reflective lens is driven by the inversion control signal to perform rotation switching between the on state and the off state according to the indicated number of times.
  • the digital micro-reflection lenses are independent of each other, so that the rotation switching of the digital micro-reflection lenses can also be independent of each other, that is, driven by the corresponding inversion control signal to perform the rotation switch between the on state and the off state . Since it is necessary to ensure that the number is an integer number of rotation switches between the on state and the off state of the reflective lens during the rotation switching period, the rotation of the digital micro-reflective lens during the rotation switching period is set in the reverse control signal The number of times of switching, so that in step S332, the rotation is switched according to the number of times.
  • the inversion control signal configured for each digital micro-reflective lens is the same, so that during the light source is turned off, the digital micro-reflective lens can be uniformly inverted repeatedly, that is, at a certain time, drive The unitary turn to the on state, at another moment, the unitary turn to the off state.
  • the inversion control signal configured for each digital micro-reflection lens may also be different, so that each digital micro-reflection lens may be randomly controlled, and the inversion control signal is not specifically limited here.
  • step S331 the method further includes:
  • the inversion control signal is generated according to the minimum switching time configuration of the digital micro-reflective lens, and the minimum switching time is the shortest time for the digital micro-reflective lens to complete one rotation switch between the on state and the off state.
  • the time set for the digital micro-reflective lens to perform a rotation switch between the on state and the off state in the reverse control signal is greater than or equal to the digital is the minimum switching time of the reflective lens, thereby ensuring that the digital micro-reflective lens is within this time Can complete one rotation switch.
  • the set time is greater than the minimum switching time of the digital micro-reflective lens
  • the time for the digital micro-reflective lens to stay in the on state and/or off state can also be set, so as to ensure that the set time The digital micro-reflection lens correspondingly completes one rotation switch.
  • the minimum switching time of the digital micro-reflection lens depends on the structure of the light valve.
  • the method when the switching end time is reached in step S150 or step S250, after the digital micro-reflective lens that controls rotation switching is restored to the state it was in when the light source was turned off, the method further includes:
  • the digital micro-reflection lens is driven to rotate by the image information of the image to be displayed to project and display the image to be displayed until the next rotation switching period is reached.
  • the image information is suspended during the rotation switching period, and the digital micro-reflective lens rotation switching is performed according to the method of the present application, and during the non-rotation switching period, the digital information is driven by the image information of the image to be displayed.
  • Reflective lenses combined with the primary color light beam output by the light source, realize the projection display of the image to be displayed.
  • the method before step S130, the method further includes:
  • the digital micro-reflection lens includes all the digital micro-reflection lenses constituting the light valve and the digital micro-reflection lens determined corresponding to the projected display image.
  • the digital micro-reflective lenses for rotation switching may be all digital micro-reflective lenses on the light valve, or may be digital micro-reflective lenses determined according to the projected display image, for example, corresponding to the display image, If the image displayed by some pixels in the displayed image is the same grayscale image for a long time, then during the display of the image corresponding to these pixels, the driving device of the digital micro-reflective lens corresponding to these pixels is prone to mechanical fatigue Therefore, the digital micro-reflective lenses need to be switched in rotation to relieve fatigue.
  • the image information of the pixel corresponding to the digital micro-reflection lens is driven to control the digital micro-reflection lens to switch between the on state and the off state to perform the projection display of the image corresponding to the pixel
  • the first digital micro-reflective lens is a digital micro-reflective lens determined corresponding to the projected display image, and one of the digital micro-reflective lenses that needs to be rotated can be performed according to the following steps:
  • the digital micro-reflection lens corresponding to one pixel is repeatedly inverted.
  • the image information of each pixel in the image to be projected and displayed indicates the gray scale of the image displayed by the corresponding pixel.
  • the gray scale of the image displayed by the pixel determines the state of the digital micro-reflection lens corresponding to the pixel when the image is displayed, that is, it is in an on state or an off state.
  • the image information of the image to be projected and stored is stored in the storage unit of the light valve, so that when performing projection display, the image information of the image to be displayed is acquired from the storage unit, and according to the image information Drive and control the digital micro-reflection lenses corresponding to each pixel to rotate to reflect the light beam output by the light source, thereby realizing the projection display of the image. Therefore, the image information of the image to be projected and displayed can be acquired from the storage unit of the light valve.
  • the safety holding time is determined by the mechanical structure corresponding to the rotating device of the digital micro-reflection lens in the light valve, and different rotating devices (including different structures, processing techniques, materials, etc.) have different safety holding times. Therefore, the set safety holding time can be specifically set according to the light valve, which is not specifically limited here.
  • the continuous holding time of the digital micro-reflective lens in a certain state exceeds the set safe holding time, that is, the rotating device of the digital micro-reflective lens will be regarded as a mechanical fatigue state, which requires repeated reversal control.
  • a digital micro-reflective lens that is repeatedly inverted by the image information of the image to be displayed, thereby repeatedly inverting the driven digital micro-reflective lens in a targeted manner, improving efficiency.
  • the laser projection display control method further includes:
  • the state (on state or light state) of each digital micro-reflective lens at the start of rotation switching is determined according to the image information of the image displayed by each pixel.
  • the corresponding digital micro-reflection lens is driven to be repeatedly inverted by a corresponding signal, such as the above-mentioned inversion control signal, and during the light source is turned on, the digital micro-reflection of the corresponding pixel is driven by the image information
  • the lens switches between an open state and a closed state.
  • the image information indicates the gray scale of each pixel in the displayed image, so the image information determines the state of the digital micro-reflection lens corresponding to each pixel at the corresponding time.
  • step S150 and step S250 the digital micro-reflective lens whose control is reversed is restored to the state (ie, the determined state) when the rotation switching is started according to the determined state. After the digital micro-reflective lens that has been rotated and switched back to the state it was in when the switch was started, the digital micro-reflective lens continues to be driven between the on state and the off state by the image information of the image to be displayed.
  • FIG. 16 shows a timing switching diagram of the light valve driving signal.
  • the T1 period is divided into three time periods: tm, t3, and tn, where t3 period is a rotation switching period, and tm and tn are blue image component display periods.
  • tm is a rotation switching period
  • tm and tn are blue image component display periods.
  • the image signal p1 is output to the light valve, and the light valve inverts the mirror according to the driving signal corresponding to the image signal p1.
  • the p1 image signal is decomposed according to different image screen signals and has an irregular grayscale distribution (except for solid color images), then during the period t3, the signal of the image p0 is output to the light valve, and the image p0 Corresponding to the generated 0,1,0,1... this regularly arranged drive signal.
  • the luminance signal of the blue laser is zero, the blue laser component can be turned off.
  • the period t3 ends, the brightness adjustment signal of the blue primary color light is restored, the blue laser component is relighted, and the drive signal corresponding to the p1 image content of the light valve is output again.
  • the light valve receives the drive signal corresponding to the image content of the red component p2 Until the end of the T2 period, and so on.
  • the light valve receives the driving signal corresponding to the image content of the green component p3 until the end of the T3 period.
  • the blue primary color light duration period is divided into three segments as an example for description, and the rotation switching period t3 may also be set at the start time or the end time of the blue primary color light period, in this way, The duration of the blue primary color light can also be divided into two segments, namely the blue laser on period and the off period.
  • the image output to the light valve is output during the rotation switching period shown at t3
  • the signal p0 can be a disordered white noise signal to distinguish it from the situation where the light valve continues to receive the same flip angle signal in the previous period or the latter period, providing the light valve with a driving signal different from the image display signal to achieve relief The purpose of mechanical fatigue.
  • the DLP control processing section outputs the image display signal to the light valve in synchronization with the output of the image display enable signal and the brightness adjustment signal, thereby completing the modulation of the image signal of the illumination beam so that the beam completes the color image Display.
  • the light source in order to cooperate with the action of the light valve during the rotation switching period, the light source also needs to be synchronized to turn off the beam output, otherwise it may cause confusion in the picture.
  • a method for controlling and driving a light source including: The laser driving component receives a blue primary color light display enable signal and a blue primary color light brightness adjustment signal, where the effective duration of the blue primary color light display enable signal is greater than the effective lighting duration of the blue primary color light brightness adjustment signal.
  • the duration of the effective lighting duration of the blue primary color light brightness adjustment signal refers to the period duration of the PWM pulse signal capable of lighting the blue laser assembly.
  • the laser driving component determines that the next period is only used to light the blue laser component, not to light the red laser component and the green laser component, or to not excite fluorescence Red fluorescence excitation area and green fluorescence excitation area on the wheel.
  • the effective duration of the enable signal is determined according to the ratio of the primary colors of the image white balance, for example, blue primary light accounts for 34% of a display period, red laser light accounts for 46% of a display period, and green primary light accounts for one When the display period is 20%, the ratio of the duration of the enable signal corresponding to the blue, red, and green primary colors on the timing diagram is 0.34:0.46:0.2.
  • the PWM brightness adjustment signal will be 0 in the t3 period, that is, while the DLP control processing section outputs the blue primary light display enable signal, the PWM signal output in the t3 period is 0.
  • the laser driving component receives a PWM signal with a value of 0, the blue laser component is turned off, and when the PWM signal with a non-zero value is received again, the blue laser component is turned on again.
  • the blue laser will have a short extinction period, which is used to provide a rotation switching period for the light valve, and because this period accounts for the entire blue primary light
  • the proportion of time that can be displayed is not large, and the change in brightness will not be noticed significantly, and will not affect the brightness of the projected display screen.
  • a laser projection display control device including:
  • the light source turning off module is configured to: during the output period of the light source outputting a primary color beam, control to turn off the light source according to the set rotation switching period, the rotation switching period being smaller than the output period of the primary color beam ;
  • the rotation switching module is configured to: during the rotation switching period, drive the digital micro-reflective lens on the light valve to perform rotation switching between the on state and the off state until the switching indicated by the rotation switching period is reached End Time;
  • the restoring and turning on module is configured to: when the switching end time is reached, control the digital micro-reflective lens that performs the turning and turning back to the state it was in when turning off the light source, and control turning on the light source.
  • a primary beam is a blue beam.
  • the laser projection display control device further includes:
  • the obtaining module is configured to obtain the timing of the light beam output by the light source, the timing indicating the output period of the light beam output by the light source;
  • the configuration module is configured to configure the rotation switching period according to the output period of the light source outputting the primary color beam, and the rotation switching period indicates the time when the light source is turned off and the time when the light source is turned on.
  • the duration of the rotation switching period is 1%-4.5% of the period of the primary light beam output by the light source.
  • a laser projection display control device is applied to a light valve composed of a number of digital micro-reflection lenses that reflect the primary-color light beams output by the light source in time series to project and display color images , During the spoke area period when the light source outputs two adjacent primary color beams, the light source is turned off to prevent the light source from outputting mixed primary color beams, the device includes:
  • the second obtaining module is configured to obtain a rotation switching period set according to the spoke period of the light source, the rotation switching period not exceeding the spoke period;
  • the second rotation switching module is configured to: during the rotation switching period, drive the digital micro-reflective lens on the light valve to perform rotation switching between the on state and the off state until reaching the indication of the rotation switching period End time of switching;
  • the recovery module is configured to: when the switching end time is reached, control the digital micro-reflective lens for rotational switching to recover to the state it was in when the light source was turned off.
  • the rotation switching module and/or the second rotation switching module includes:
  • the acquiring unit is configured to acquire an inversion control signal configured for each digital micro-reflection lens, the inversion control signal indicating that the digital micro-reflection lens is reached when the switching end time indicated by the rotation switching period is reached The number of rotations to switch between the open state and the closed state;
  • the rotation switching unit is configured to: during the rotation switching period, drive the corresponding digital micro-reflective lens through the inversion control signal to switch between the on state and the off state according to the indicated number of times.
  • the laser projection display control device further includes:
  • the reversal control signal configuration module is configured to generate the reversal control signal according to the minimum switching time configuration of the digital micro-reflective lens, the minimum switching time is when the digital micro-reflective lens is in an on state and an off state The shortest time to complete a rotation switch.
  • the laser projection display control device further includes:
  • the driving module is configured to drive the digital micro-reflection lens to rotate by the image signal of the image to be projected and displayed until the next rotation switching period is reached.
  • modules can be implemented by hardware, software, or a combination of both.
  • these modules may be implemented as one or more hardware modules, such as one or more application specific integrated circuits.
  • these modules can be implemented as one or more computer programs executing on one or more processors.
  • the present application further provides a projection device.
  • the projection device includes:
  • a memory on which computer-readable instructions are stored, and when the computer-readable instructions are executed by the processor, the method described in any one of the above method embodiments is implemented.
  • the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method described in any of the above method embodiments is implemented.

Abstract

一种激光投影显示控制方法,包括:在光源(100)输出一基色光束的输出时间段内,按照设定的转动切换时段(t1),控制关闭光源(100),转动切换时段(t1)小于一基色光束的输出时段;在转动切换时段(t1)内,驱动光阀(220)上的数字微反射镜片在开状态和关状态之间进行转动切换;达到切换结束时间内,控制进行转动切换的数字微反射镜片恢复至开始转动切换时自身所处状态,并控制开启光源(100)。

Description

激光投影显示方法及激光投影设备
本申请要求于2018年11月29日提交中国专利局、申请号为201811444372.8,申请名称为“激光投影显示控制方法、装置及投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示领域,特别涉及一种激光投影显示控制方法、装置及投影设备。
背景技术
DLP(Digital Light Procession,数字光处理)投影设备根据内部所配置的由若干个数字微反射镜片所构成的光阀(又称为DMD,Digital Micro-mirror Device数字微镜器件)对光源所输出的光束进行反射,从而进行图像的投影显示。在光阀上,每个数字微反射镜片都有各自独立的驱动装置,用来支持数字微反射镜片在开状态和关状态之间进行转动切换,其中数字微反射镜片在开状态和关状态之间切换的速度可以达到上千次每秒。
图1是数字微反射镜片的工作示意图,在进行投影显示时,如图1所示,当数字微反射镜片转动到开状态即正偏转角度时,光源所输出的光束经过数字微反射镜片反射后进入镜头,进行成像显示;当数字微反射镜片转动到关状态即负偏转角度时,光源所输出的光束经过数字微反射镜片反射后未进入镜头而是进入光吸收单元或者被阻挡。通常光阀的分辨率决定了图像的分辨率,可简单理解为一个数字微反射镜片对应于图像中一个像素,数字微反射镜片在开状态和关状态之间的切换受控于所显示图像的图像信息,即数字微反射镜片所对 应像素的图像信息决定了该数字微反射镜片在开状态、关状态的切换次数、持续保持时间。以显示一种基色分量画面为例,根据基色分量图像信息,经过这多次开关状态的叠加效果,对光束形成不同灰阶、亮度的图像,多种基色的图像最终形成一幅彩色的图像。由于在DLP投影设备中,光源是时序性输出三基色光束的,每次输出三基色(红、绿、蓝)中每种基色光束的时间非常短,所以尽管三基色是在不同时间段进入人眼,但是由于人眼的视觉暂留效应,无法分辨如此细微差别时间内进入人眼的颜色,所以从感觉上来说便会形成色彩丰富的图像。
由于光阀上数字微反射镜片以及其对应的转动装置是高精密器件,比如需要长时间显示同一幅画面,或同一灰阶部分,或者连续显示的多个画面中内容重合度较高,会使得数字微反射镜片在同一位置状态的持续时间较久,比如可能在相对长时间内保持在开状态或关状态,会容易导致数字微反射镜片所对应的驱动装置产生机械疲劳,影响光阀工作的可靠性和使用寿命,甚至易导致光阀损坏,进而影响投影显示效果。
发明内容
为了解决相关技术中存在的问题,本申请提供了一种激光投影显示控制方法、装置及投影设备。
第一方面,一种激光投影显示控制方法,包括光源,用于输出照明光束;光机,用于根据图像显示信号对照明光束进行调制;镜头,用于将调制后的照明光束进行成像,所述方法包括:
在光源输出一基色光束的输出时段内,按照所设定的转动切换时段,控制 关闭光源,转动切换时段小于一基色光束的输出时段;
在转动切换时段内,驱动光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到转动切换时段所指示的切换结束时间;
达到切换结束时间时,控制进行转动切换的数字微反射镜片恢复至开始转动切换时自身所处状态,并控制开启光源。
第二方面,一种激光投影设备,包括:
激光器组件,用于发出激光光束,
激光器驱动电路,用于驱动激光器组件点亮或者关闭;
DLP控制电路,用于输出图像显示使能信号和基色光亮度调节信号至激光器驱动电路,
以及,DLP控制电路还用于输出图像显示信号至光阀,
光阀,包括多个数字微反射镜片,用于根据图像显示信号对接收到的光束进行调制,并投射进入投影镜头成像,
其中,DLP控制电路输出的、一基色光的图像显示使能信号有效期间,该基色光亮度调节信号在一时段内持续为零,时段长度小于该基色光的图像显示使能信号的有效时段,
在该时段内,对应该基色光输出的激光器组件关闭;同时,光阀接收不同于当前图像显示信号的驱动信号,多个数字微反射镜片在开状态和关状态之间进行转动切换。
第三方面,一种投影设备,包括:
处理器;以及
存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所 述处理器执行时实现如上所述的方法。
第四方面,一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的方法。
通过在投影显示过程中控制关闭光源,并在光源关闭期间驱动光阀上的数字微反射镜片进行在开状态和关状态之间进行转动切换,从而解除因在图像的投影显示过程中数字微反射镜片所对应驱动装置的机械疲劳状态。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并于说明书一起用于解释本申请的原理。
图1是数字微反射镜片的工作示意图;
图2是本申请实施例提供的一种激光投影设备示意图;
图3是本申请实施例提供的一种激光投影设备的光路架构示意图;
图4是本申请实施例提供的一种激光投影设备的电路系统架构示意图;
图5是根据一示例性实施例示出的一种激光投影显示控制方法的流程图;
图6是图5对应实施例的步骤S110之前步骤的流程图;
图7是是根据另一示例性实施例示出的一种激光投影显示控制方法的流程图;
图8是步骤S130或步骤S230的流程图;
图9是根据一示例性实施例示出的基色光时序切换示意图;
图10是根据一示例性激光器组件驱动原理示意图;
图11是根据一示例性实施例示出的滤色轮的示意图。
图12是根据图11示出的轮辐区时段示意图。
图13是根据另一示例性实施例示出的基色光时序切换示意图;
图14是本申请提供的一种激光光源光路原理示意图;
图15是本申请提供的一种激光投影光学成像系统示意图;
图16是根据图9示出的一种光阀驱动信号切换示意图。
具体实施方式
这里将详细地对示例性实施例执行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
图2是本申请实施例提供的一种激光投影设备拆解结构示意图。如图2所示,激光投影设备10包括整机壳体101(图中仅示出部分壳体),按照光学功能部分,还包括装配于整机壳体101中的光源100,光机200,以及镜头300,这些光学部分沿着光束传播方向依次连接,各自具有对应的壳体进行包裹,以对光学部件进行支撑并使得各光学部分达到一定的密封或气密要求。其中,光机200的一端和镜头300连接且沿着整机第一方向设置,比如第一方向可以为整机的宽度方向,或者按照使用方式,第一方向与用户观看的方向相对。在光机200的另一端连接有光源100。在本示例中,光源100,光机200,镜头300三者连接呈“L”型,这种连接结构一方面可以适应光机200中反射式光阀的光路特点, 另一方面,还有利于缩短一个维度方向上光路的长度,利于整机的结构排布。
在一种具体实施中,光源100可以包括激光器组件和荧光转换系统,图14示出了一种激光光源架构示意图。在图14的示例中,激光器组件至少包括蓝色激光器组件110a,发出蓝色激光。荧光转换系统可以具体为荧光轮140。其中,蓝色激光器组件110a作为激发光源,激发荧光轮140发出除蓝色以外的基色光,以及,蓝色激光器发出的蓝色激光作为蓝色基色光与荧光轮产生的荧光颜色共同作为图像显示用的三色照明光束。以及,对应地,为了提高荧光的纯度,三基色光经合光镜片160合束后还经过滤色轮150,图11示出了一种滤色轮的不同颜色分区。不同的颜色分区用于透射不同颜色的基色光,随着滤色轮150的转动,不同的基色光时序性的输出。
图3示出了一种激光投影设备的光路架构示意图。如图3所示,提供了了一种DLP光路架构示意图。其中,光源100用于提供照明光束,照明光束进入光机部分的照明光路部分,经照明光路部分进行匀化、放大等处理入射至光机的核心部件-光阀220,具体地,在DLP光路架构中,光阀220为DMD芯片,也称数字微镜器件。DMD芯片220为一种反射型的光调制部件,其接收照明光束,并受图像处理信号的驱动进行不同角度的翻转,对照明光束进行调制,投射进入镜头300中。
相应地,图4示出了一种激光投影设备的电路系统架构。在该电路系统架构中,DLP控制电路是整个投影系统控制的核心。具体地,如图4所示,DLP控制处理部210为DLP控制电路的一种具体示例,可以为主控芯片。电源部400为整个DLP电路系统供电,其中也包括对激光器组件110提供供电。
算法处理部230用于接收视频信号源解码后的图像画面信号,视频信号源 的编解码可以由TV信号板提供,TV信号板未在图中示出。算法处理部230用于对解码后的图像画面信号进行算法处理,比如对比度或亮度增益处理。算法处理230通常为FPGA组成。经算法处理部230输出的图像信号进入DLP控制处理部210,由DLP控制处理部230进行进一步图像处理,并生成图像显示使能信号以及PWM亮度调节信号至激光器驱动电路102,以及,DLP控制处理部230将图像显示信号输出至光阀220,转换成光阀DMD芯片对应的驱动信号,具体DMD芯片表面的微小反射镜进行不同角度的翻转。
比如,当显示一幅图像画面的红色分量时,DLP控制处理部210输出红色基色光使能信号R_EN,以及红色基色光亮度调节信号R_PWM,至激光器驱动电路102,激光器驱动电路102将上述信号处理后(比如防衰减,以及数模转换)输出至激光器组件110,激光器组件110根据对应的信号发出对应颜色和亮度的红色基色光。
在一种具体实施中,如图14所示的一种激光光源示意图中,只有蓝色激光器组件,而红色基色光需要蓝色激光激发荧光轮上的荧光物质转换产生。上述红色基色光使能信号R_EN以及红色基色光亮度调节信号R_PWM则输出至蓝色激光器组件,通过点亮蓝色激光器组件110a来照射荧光轮140,产生对应亮度的红色荧光基色光。
在另一种具体实施中,如图15所示的一种激光投影光学系统图图示中,包括激光器组件110,用于发出蓝色激光,激光器组件120,用于发出绿色激光,激光器组件130,用于发出红色激光。也即,本示例中的激光光源为三色激光光源。当DLP控制处理部将红色基色光使能输出信号R_EN,红色基色光亮度调节信号R_PWM时,上述两种信号则通过激光器驱动电路直接施加于红色器组件130, 根据时序发出对应亮度的红色激光基色光。图10示出了一种三色激光器组件的驱动电路示意图,在图10中,每种颜色的激光器接收对应的使能输出信号,也称时序信号,以及亮度调节信号PWM。
而对于光阀DMD而言,同步地,接收红色基色光分量对应的图像灰阶信号,红色基色光分量的图像灰阶信号转换成光阀DMD的驱动信号0或1,根据0或1信号的分布以及时长,控制DMD表面的小反射镜正向和反向的翻转,最终输出的光束亮度,对应原始图像画面中红色分量的图像内容的灰阶,并最终投射进入镜头中。参照上述原理,对蓝色基色光和绿色基色光也是类似的处理,时序性的将三色的图像分量对应的光束投射进入镜头,再由镜头成像放大呈现于投影介质上,利用人眼视觉暂留效果,时序性的光束叠加形成彩色的图像。
在上述过程中,光阀DMD芯片表面成千上万个微小反射镜持续翻转,完成对照明光束的调制。
需要说明的是,算法处理部230也可以集成至DLP控制处理部210中,上述内容仅示例性的说明工作原理过程。
在上述激光投影设备工作过程的基础上,图5示出了一种激光投影显示控制方法的流程图。包括:
步骤S110,在所述光源输出一基色光束的输出时段内,按照所设定的转动切换时段,控制关闭所述光源,所述转动切换时段小于所述一基色光束的输出时段。
步骤S130,在所述转动切换时段内,驱动所述光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到所述转动切换时段所指示的切换结束时间。
步骤S150,达到所述切换结束时间时,控制进行转动切换的所述数字微反射镜片恢复至开始转动切换时自身所处状态,并控制开启所述光源。
在投影显示过程中,所投影显示的每一帧图像,均通过光源时序性输出三种基色(红、绿、蓝)的光束来进行投影显示。在光源按照设定的时序分时输出三种基色光束的过程中,根据所要投影显示图像中每一像素所对应红色的亮度、绿色的亮度、蓝色的亮度,该像素所对应的数字微反射镜片对应的按照该像素三种颜色的亮度对应的发射光源所输出的红色光束、绿色光束、以及蓝色光束,从而形成所要投影显示的图像。
其中实现三种基色光束的时序性输出可以在光源中配置色轮,例如滤色轮、荧光轮,或者荧光轮与滤色轮的组合,将一个光源发出的光经过旋转的色轮,从而得到时序性输出的红色光束、绿色光束和蓝色光束;在另一实施例中,为了实现三种基色光束的时序性输出,还可以在光源中配置多个基色光源,例如分别配置红光光源、蓝光光源和绿光光源,从而通过多个基色光源时序性输出三种基色光束;在其他实施例中,还可以结合多个光源和多个色轮配合进行三种基色光束的时序性输出,例如红光光源,配合滤色轮和荧光轮。在此不对光源时序性输出三种基色光束的方式进行限制。
如前面所述,在本申请的技术方案中,光源可以直接将发射的光作为光束传输到数字微反射镜片进行投影,例如光源为多个单色激光器,从而单色激光器可以发射对应基色的光束。光源所发射的光还可以经过光学处理元件处理,例如经过荧光轮、色轮等,得到进行投影显示的光束。从而,光源可以是集成有光学处理元件的光源,也可以是独立的光源,在此不进行具体限定。
首先,值得说明的是,由于光源时序性输出三种基色光束进行每一帧图像 的投影显示,本申请所涉及的激光投影显示控制方法,也是在进行一帧图像的显示周期内进行。
其中,光源所输出的一基色光束可以是红色光束,或者蓝色光束,或者绿色光束。一基色光束的输出时段即按照光源的光束输出时序,输出该基色光束的时序。转动切换时段配置与一基色光束的输出时段内,且转动切换时段小于一基色光束的输出时段,从而保证在步骤S130中开始进行数字微反射镜片进行转动切换的时刻,和结束数字微反射镜片进行转动切换的时刻,不仅位于同一帧图像显示的时间范围内,而且为该帧图像显示中显示该一基色的时间范围内。
由上可知光源可以是单一光源,也可以是由多个子光源构成的组合光源。在步骤S110中,所控制关闭的光源是关闭投影设备中进行光束输出的全部光源,即保证在步骤S130的过程中,光源不出光,从而避免在进行数字微反射镜片转动切换期间,光源所输出的光束经数字微发射镜片反射后影响所显示的图像。
其中,对于使用色轮的情况,色轮上存在输出两种相邻颜色光束的分界线,而由于光源所发射的光传输到色轮上所形成的光斑具有一定大小,所以,在色轮旋转到输出两种相邻颜色光束的分界线附近区域,光源所实际输出的光束为混色光束,例如蓝光光束与红光光束的混色,将在光源被开启时,色轮旋转至光源输出混色光束的时段称之为轮辐区时段。举例来说,如图11所示的滤色轮,在滤色轮旋转至红光透过区时,光源所发出的光中红光透过滤色轮,从而光源输出红光光束;在滤色轮旋转至蓝光透过区时,光源所发出的光中蓝光透过滤色轮,从而光源输出蓝色光束。如图12所示,在滤色轮旋转至红色透过区与蓝色透过区的分界线,或者分界线的附近,由于光源所发射的光在色轮上所形成的光斑具有一定的大小,所以光源所实际输出的光为混色光束,即红光光束和 蓝光光束的混合。
现有技术中,为了减少光源在轮辐区时段所输出的混色光束对投影显示效果的影响,一种处理方法是在轮辐区时段内关闭光源,从而保证光源所输出的光束均为时序性的单一基色的光束,在该种处理方法中,可以在轮辐区内进行光阀的驱动控制,详见下文描述;而对于非轮辐区时段内,也可以按照本实施例的方法进行光阀的驱动控制,并正常进行图像的显示。
而另一种处理方法是,在轮辐区时段内仍然保持光源开启,而通过波长转换或者特定的波长转换算法将透过分界线或者分界线附近的混色光束转换为单一基色光束,以将红光透射区和蓝光透射区间的分界线所对应的轮辐区时段为例,在轮辐区时段内透过蓝色透光区的混色光束转换为蓝色光束,在轮辐区时段内透过红色透光区的混色光束转换为红色光束,从而在该轮辐区时段即被分割成了分别输出两种基色光束的时段。在光源的一个时序性输出周期对应为一帧图像的显示周期内,光源每一时刻所输出的光束仍为基色光束,即光源输出一基色光束的输出时段包括不经过处理光源输出该基色光束的时段和在轮辐区时段中经过特殊处理光源输出该基色光束的时段。从而在该种情况下,转动切换时段可以配置于该一基色光束的输出时段的任一段时间内。
数字微反射镜片的开状态为光源所输出的光束经数字微反射镜片反射后可以进入镜头时,数字微反射镜片所处且可以保持的状态;数字微反射镜片的关状态为光源所输出的光束经数字微反射镜片反射后未进入镜头时,数字为反射镜片所处且可以保持的状态。当数字微反射镜片处于开状态时,光源所输出的光束经数字微反射镜片反射后可以进入镜头;对应的,当数字微反射镜片处于关状态时,光源所输出的光束经数字微反射镜片反射后未进入镜头。在示例性 实施例中,对应于偏转角度不同的数字微反射镜片,对应的开状态时数字为反射镜片所对应的偏转角度也不相同,例如对于偏转角度为±12°的数字微反射镜片,位于+12°的状态即为开状态,位于-12°的状态即为关状态,而对于-12°和+12°之间的偏转角度,实际中未使用,仅认为数字微反射镜片的实际工作状态仅开状态和关状态。而对于偏转角度为±17°的数字微反射镜片,位于+17°的状态即为开状态,位于-17°的状态即为关状态。由于在开启光源后需要继续根据图像信息进行所对应图像的投影显示,从而,在转动切换结束后,需要将数字微反射镜片恢复至开始进行转动切换时数字微反射镜片自身所处的状态。
在投影显示过程中,在设定的转动切换时段内控制关闭光源,并在光源关闭期间驱动光阀上的数字微反射镜片进行在开状态和关状态之间进行转动切换,从而解除数字微反射镜片所对应的驱动装置的机械疲劳状态。而且,由于转动切换时段配置于一帧图像的显示过程中某一基色光束的输出时段内,关闭光源的时间很短,人眼并不能察觉到光源关闭,所以即使在转动切换时段内关闭光源并进行数字为反射镜片的转动切换,而正投影显示的图像即在光源关闭时所显示的图像仍然可以正常显示,对所投影显示的图像的影响仅在于降低了所显示图像的亮度。
在一示例性实施例中,一基色光束为蓝色光束。由于相对于红色和绿色,人眼对蓝色的敏感度最小,而且蓝色对显示图像的亮度贡献最小(仅是根据视见函数确定的,与仪器测得的亮度数据不同),从而,将转动切换时段配置于光源输出蓝色光束的输出时段内,即使在转动切换时段内光源被关闭,所投影显示的图像的亮度变换不大,人眼并不能分辨出,从而降低了对所投影显示图像的亮度影响。
在另一示例性实施例中,如图6所示,所述方法还包括:
步骤S010,获取所述光源输出光束的时序,所述时序指示了所述光源输出基色光束的输出时段。
步骤S030,根据所述光源输出基色光束的输出时段配置所述转动切换时段,所述转动切换时段指示了所述光源关闭的时间和所述光源开启的时间。
由于光源时序性输出红色、绿色和蓝色光束,相对应的,具有输出各种基色光束的时序,例如蓝色光束的时序。对应的,根据光源输出基色光束的输出时段进行配置转动切换时段。从而保证转动切换时段的开始时间和结束时间均位于该基色光束的输出时段内,且转动切换时段小于基色光束的输出时段。在一优选实施例中,将转动切换时段配置在输出蓝色光束对应的时序内,从而,在光源关闭的时间段是位于蓝色光束的时序内,降低光源关闭后对投影显示亮度的影响。
图9是根据一示例性实施例示出的转动切换时段的示意图,值得说明的是,该图仅仅以输出蓝色光束的输出时段为例进行说明,不能认为是对本申请使用范围的限制。如图9所示,光源在时间段T1内输出蓝色光束(B),在时间段T2内输出红色光束(R),根据光源输出蓝色光束的时序,将转动切换时段t1配置在时间段T1内,从而,在一个周期内,在转动切换时段t1内关闭光源,在t2时间段内开启光源,且在转动切换时段t1内进行数字微反射镜片在开状态和关状态之间的转动切换。
当然,图9仅仅示出了在一个显示周期内仅进行一次光源的关闭,仅仅是示例性举例,不能认为是对本申请使用范围的限制。在其他实施例中,还可以 在一个显示周期内进行多次光源的关闭,在此不进行具体限定。
在一示例性实施例中,转动切换时段的时长为所述光源输出基色光束周期的1%-4.5%。
为进行彩色图像的投影显示,光源在一帧彩色图像的显示周期内至少进行一次各基色光束的时序性输出,其中光源完成一次各基色光束的时序性输出的时间即为光源输出基色光束周期。在彩色图像的显示过程中,光源在一帧彩色图像的显示周期内可以进行一次、两次、甚至更多次各种基色光束的时序性输出。而在每一次光源输出基色光束周期内,可以根据所述选定的基色光束,例如蓝色光束,从而对应的在该光源输出基色光束周期内输出蓝色光束的输出时段内配置转动切换时段。
以一帧图像8.33ms的显示时长为例,如果在该一帧图像显示周期内,光源进行一次各基色光束的时序性输出即光源输出基色光束周期为8.33ms,则可以设定在该光源输出基色光束周期的例如1%、1.2%、1.5%、1.8%、2%、2.7%、3.2%、4%、4.5%等计算得到转动切换时段的时长,进而配置转动切换时段。如果在该一帧图像显示周期内,光源进行两次各基色光束的时序性输出,即光源输出基色光束周期为4.165ms,则对应的,可以百分比计算得到转动切换时段的时长,例如1%、1.5%、1.9%、2%、2.5%、3.2%、3.6%、4.2%、4.5%对应计算得到转动切换时段的时长分别为:41.65us、62.48us、79.14us、83.3us、104.13us、133.28us、149.94us、174.93us、187.43us。
从而,仅在该转动切换时段内关闭光源,并进行数字微反射镜片在开状态和关状态之间进行转动切换,由于所设定的转动切换时段的时长短,对显示图像的亮度影响很小,所以既实现了解除数字微反射镜片的疲劳状态,又可以保 证正常显示图像,保证显示效果。
在示例性实施例中,所配置的转动切换时段的时长需要保证在转动切换时段内数字为反射镜片在开状态和关状态之间进行整数次转动切换。
以及,在一示例性实施例中,如图7所示,一种激光投影显示控制方法,应用于由若干数字微反射镜片所构成的光阀,所述数字微反射镜片反射光源时序性输出的基色光束来进行彩色图像的投影显示,在所述光源输出相邻两基色光束的轮辐区时段内,所述光源被关闭,以避免所述光源输出混合基色光束,所述方法包括:
步骤S210,获取根据所述光源的轮辐区时段所设定的转动切换时段,所述转动切换时段不超出所述轮辐区时段。
步骤S230,在所述转动切换时段内,驱动所述光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到所述转动切换时段所指示的切换结束时间。
步骤S250,达到所述切换结束时间时,控制进行转动切换的所述数字微反射镜片恢复至开始转动切换时自身所处状态。
其中,本实施例的激光投影显示控制方法即适用于上文提到的在光源的轮辐区时段内,且在该时段内,光源被关闭。值得说明的是,在一帧图像的显示周期内,根据所使用的色轮的数量以及类型(例如滤色轮、荧光轮)的不同,光源的轮辐区时段的数目也不相同,而在本申请的实施例中,所进行的激光投影显示控制,可以是在一帧图像的显示周期内的一个轮辐区时段内,也可以是在多个轮辐区时段内按照本实施例的方法进行光阀的驱动控制,在此不进行具 体限定。
在本实施例中,将转动切换时段配置于轮辐区时段内,由于在轮辐区时段内光源被关闭,则可以在轮辐区时段内配置一定时长的时段为转动切换时段,从而在转动切换时段内进行数字微反射镜片在开状态和关状态之间的转动切换。当然转动切换时段可以小于或者等于轮辐区时段,在此不进行具体限定。
图13示出了一种三基色光切换时序示意图,以及,在图13中,还示例性的示出了一个轮辐区时段t3,t4,根据上述描述的在轮辐区时段作为转动切换时段的实施例,在一个周期内,可以仅在t3或t4所示的时段内进行光阀的转动切换,在此时段内可以关闭构成轮辐区时段的两种颜色的发光元件。也可以将一个周期内的多个轮辐区时间设置为转动切换时段。
在一种具体实施中,可以将蓝色基色光与红色基色光,与绿色基色光组成的轮辐区时段两者之一,或者两者均可作为转动切换时段。
在一示例性实施例中,如图8所示,步骤S130或者步骤S230包括:
步骤S331,获取为每一数字微反射镜片所配置的反转控制信号,所述反转控制信号指示了达到所述转动切换时段所指示的切换结束时间时,所述数字微反射镜片在开状态和关状态之间所要进行转动切换的次数。
步骤S332,在所述转动切换时段内,通过所述反转控制信号驱动所对应数字微反射镜片按照所指示的次数在开状态和关状态之间进行转动切换。
在光阀中,数字微反射镜片是彼此独立的,从而数字微反射镜片的转动切换也可以是彼此独立的,即由对应的反转控制信号驱动进行在开状态和关状态之间进行转动切换。由于在转动切换时段内需要保证数字为反射镜片在开状态 和关状态之间进行整数次的转动切换,从而在反转控制信号中,设定数字微反射镜片在转动切换时段内所要进行的转动切换的次数,从而在步骤S332中,按照该次数进行转动切换。
在一实施例中,为每个数字微反射镜片所配置的反转控制信号是相同的,从而在光源关闭期间,可以统一地进行数字微反射镜片的反复反转,即在某一时刻,驱动统一转动到开状态,在另一时刻,统一转动到关状态。
在其他实施例中,为每个数字微反射镜片所配置的反转控制信号还可以是不同的,从而可以随机的控制每一个数字微反射镜片,在此不对反转控制信号进行具体限定。
在一示例性实施例中,步骤S331之前,还包括:
根据所述数字微反射镜片的最小切换时间配置生成所述反转控制信号,所述最小切换时间为所述数字微反射镜片在开状态和关状态之间完成一次转动切换的最短时间。
即保证反转控制信号中为数字微反射镜片在开状态和关状态之间进行一次转动切换所设定的时间大于等于数字为反射镜片的最小切换时间,从而保证在该时间内数字微反射镜片可以完成一次转动切换。对应的,对于所设定的时间大于数字微反射镜片的最小切换时间的情况,还可以设定数字微反射镜片在开状态和/或关状态停留的时间,从而保证在该设定的时间内数字微反射镜片对应的完成一次转动切换。其中数字微反射镜片的最小切换时间取决于光阀的结构。
在一示例性实施例中,在步骤S150或者步骤S250中达到所述切换结束时 间时,控制进行转动切换的所述数字微反射镜片恢复至关闭所述光源时自身所处状态之后,还包括:
由待显示图像的图像信息驱动所述数字微反射镜片转动以投影显示所述待显示图像,直至达到下一个转动切换时段。
即在投影显示过程中,转动切换时段内图像信息被暂停,而根据本申请的方法进行数字微反射镜片的转动切换,,而在非转动切换时段内,由待显示图像的图像信息驱动数字微反射镜片,从而结合光源输出的基色光束实现待显示图像的投影显示。
在一示例性实施例中,步骤S130之前还包括:
对光阀一进行转动切换的数字微反射镜片,所一的数字微反射镜片包括构成光阀的全部数字微反射镜片和对应于投影显示图像所确定的数字微反射镜片。
即在步骤S130以及步骤S230中,进行转动切换的数字微反射镜片可以是光阀上的全部数字微反射镜片,也可以是根据投影显示图像所确定的数字微反射镜片,例如对应于显示图像,如果显示图像中某些像素所显示的图像长时间为同一灰阶的图像,那么在该些像素所对应图像的显示过程中,该些像素所对应的数字微反射镜片的驱动装置容易出现机械疲劳,从而需要将这些数字微反射镜片进行转动切换,以解除疲劳状态。
在一示例性实施例中,在光源开启期间,由数字微反射镜片所对应像素的图像信息驱动控制数字微反射镜片在开状态和关状态之间进行切换以进行像素所对应图像的投影显示,所一的数字微反射镜片为对应于所投影显示图像所确 定的数字微反射镜片,其中一需要进行转动切换的数字微反射镜片可以按照以下的步骤进行:
获取待投影显示图像中各像素的图像信息。
根据各像素的图像信息判断在进行待投影显示图像的投影显示过程中,像素所对应数字微反射镜片在开状态或关状态的持续保持时间是否超过设定的安全保持时间。
如果超过,则一像素所对应数字微反射镜片进行反复反转。
待投影显示图像中各像素的图像信息中指示了对应像素所显示图像的灰阶。该像素所显示图像的灰阶决定了在进行该图像的显示时该像素所对应的数字微反射镜片的状态,即位于开状态或关状态。
在待投影显示图像的投影显示前,将待投影显示图像的图像信息存储在光阀的存储单元中,从而在进行投影显示时,从存储单元中获取待显示图像的图像信息,并根据图像信息驱动控制各个像素所对应数字微反射镜片进行转动,反射光源输出的光束,从而实现图像的投影显示。因而可以从光阀的存储单元中获取待投影显示图像的图像信息。
其中安全保持时间由光阀中数字微反射镜片的转动装置对应的机械结构决定,不同的转动装置(包括结构、加工工艺、材料等不同)对应有不同的安全保持时间。所以设定的安全保持时间可以根据光阀来具体设定,在此不进行具体限定。数字微反射镜片在某一状态的持续保持时间超过设定的安全保持时间即视为数字微反射镜片的转动装置会出现机械疲劳状态,从而需要进行反复反转控制。
通过待显示图像的图像信息来一进行反复反转的数字微反射镜片,从而有 针对性地对驱动数字微反射镜片进行反复反转,提高了效率。
在一示例性实施例中,激光投影显示控制方法还包括:
在控制关闭光源时,根据各像素所显示图像的图像信息确定开始转动切换时各数字微反射镜片所处的状态(开状态或者光状态)。
由于在转动切换时段内,由对应的信号,例如上文提到的反转控制信号驱动对应的数字微反射镜片进行反复反转,而在光源开启期间,由图像信息驱动对应像素的数字微反射镜片在开状态和关状态之间进行切换。而图像信息指示了显示图像中各像素的灰阶,所以,图像信息决定了各像素所对应的数字微反射镜片在对应时刻的状态。
从而在步骤S150以及步骤S250中,根据所确定的状态,控制反转的数字微反射镜片恢复至开始转动切换时自身所处的状态(即所确定的状态)。在转动切换的数字微反射镜片恢复至开始转动切换时自身所处的状态后,继续由待显示图像的图像信息驱动数字微反射镜片在开状态和关状态之间进行切换。
对应图9所示的时序图,图16示出了一种光阀驱动信号时序切换图示。如图16所示,将T1时段划分为三个时间段:tm,t3,tn,其中t3时段是转动切换时段,tm和tn为蓝色图像分量显示时段。对应地,在tm时段,图像信号p1输出至光阀,光阀根据该图像信号p1对应的驱动信号进行反射镜的翻转。在一种实施中,p1图像信号是根据不同的图像画面信号分解而来,具有不规律的灰阶分布(纯色图像除外),则在t3时段,将图像p0的信号输出至光阀,图像p0对应生成的0,1,0,1…这种规律排布的驱动信号。此时,对应地,如图9和图16所示,此时蓝色激光器的亮度信号为零,即可以关闭蓝色激光器组件。当t3时段结束,则恢复蓝色基色光的亮度调节信号,重新点亮蓝色激光器组件,并 重新输出给光阀对应p1图像内容的驱动信号。
以及,在接下来的时序中,当tn时段结束,需要切换至红色基色分量的显示,则点亮红色激光器,或者使荧光轮输出红色荧光,而光阀接收对应红色分量p2图像内容的驱动信号,直至T2时段结束,以此类推,T3时段,光阀接收对应绿色分量p3图像内容的驱动信号,直至T3时段结束。
需要说明的是,在上述举例中,以蓝色基色光持续时段划分为3段为例进行说明,也可以将转动切换时段t3设置于蓝色基色光时段的起始时刻或者结束时刻,这样,蓝色基色光的持续时段也可以划分为2段,分别为蓝色激光器点亮时段和关闭时段。
在另一实施例中,如果当前显示画面为单色画面或者存在大面积单色区域时,仍以图9对应的时序为例,则在t3所示的转动切换时段,输出至光阀的图像信号p0则可以为无序的白噪声信号,以区别于前一时段或后一时段中,光阀持续接收相同翻转角度信号的情况,为光阀提供不同于图像显示信号的驱动信号,达到缓解机械疲劳的目的。
根据前述描述,DLP控制处理部输出图像显示信号至光阀,与输出图像显示使能信号和亮度调节信号,两者是同步地,从而完成对照明光束进行图像信号的调制,使得光束完成彩色图像的显示。
相对应地,为了配合光阀在转动切换时段的动作,光源也需要同步的进行关闭光束输出,否则可能会造成画面的混乱。
在一种具体实施中,参见图9和图16所示的基色光输出时序图示,以及图4和图10所示的激光器组件的信号传递示意图,提供一种光源的控制驱动方法,包括:激光器驱动组件接收蓝色基色光显示使能信号和蓝色基色光亮度调整信 号,其中,蓝色基色光显示使能信号的有效持续时长大于蓝色基色光亮度调整信号的有效点亮持续时长。具体地,蓝色基色光亮度调整信号的有效点亮持续时长是指能够点亮蓝色激光器组件的PWM脉冲信号的周期时长。激光器驱动组件根据蓝色基色光的显示使能信号,来确定接下来的一个时段仅用于点亮蓝色激光器组件,而不去点亮红色激光器组件和绿色激光器组件,或者,不去激发荧光轮上的红色荧光激发区和绿色荧光激发区。该使能信号的有效持续时长是根据图像白平衡的各基色配比确定的,比如蓝色基色光占一个显示周期的34%,红色激光光占一个显示周期的46%,绿色基色光占一个显示周期的20%,则在时序图上,蓝色、红色、绿色基色光对应的使能信号的持续时长的比即为0.34:0.46:0.2。而在蓝色基色光使能显示时段内,PWM亮度调节信号会在t3时段为0,即DLP控制处理部在输出蓝色基色光显示使能信号的同时,在t3时段内输出的PWM信号为0。激光器驱动组件接收到值为0的PWM信号,则关闭蓝色激光器组件,并在再次接收到非零值的PWM信号时,再次点亮蓝色激光器组件。这样,在蓝色基色光使能显示的时段内,蓝色激光器会有短暂的熄灭时段,该熄灭时段用于为光阀提供一个转动切换时段,而由于该时段占比整个蓝色基色光使能显示的时长比例并不大,并不会明显感觉到亮度的变化,不会对投影显示画面的亮度造成影响。
上述仅对蓝色激光器组件的驱动控制方法进行示例性的说明。当在轮辐区时段进行光阀的转动切换动作时,也应用类似的上述原理,不再赘述。
下述为本申请装置实施例,用于实现上述驱动控制方法中的对应步骤。对于本申请装置实施例中未披露的细节,请参照本申请激光投影显示控制方法实 施例。
在一具体实施例中,提供了一种激光投影显示控制装置,包括:
光源关闭模块,被配置为:在所述光源输出一基色光束的输出时段内,按照所设定的转动切换时段,控制关闭所述光源,所述转动切换时段小于所述一基色光束的输出时段;
转动切换模块,被配置为:在所述转动切换时段内,驱动所述光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到所述转动切换时段所指示的切换结束时间;
恢复与开启模块,被配置为:达到所述切换结束时间时,控制进行转动切换的所述数字微反射镜片恢复至关闭所述光源时自身所处状态,并控制开启所述光源。
在一具体实施例中,一基色光束为蓝色光束。
在一具体实施例中,激光投影显示控制装置还包括:
获取模块,被配置为:获取所述光源输出光束的时序,所述时序指示了所述光源输出基色光束的输出时段;
配置模块,被配置为:根据所述光源输出基色光束的输出时段配置所述转动切换时段,所述转动切换时段指示了所述光源关闭的时间和所述光源开启的时间。
在一具体实施例中,转动切换时段的时长为所述光源输出基色光束周期的1%-4.5%。
在一具体实施例中,一种激光投影显示控制装置,应用于由若干数字微反射镜片所构成的光阀,所述数字微反射镜片反射光源时序性输出的基色光束来 进行彩色图像的投影显示,在所述光源输出相邻两基色光束的轮辐区时段内,所述光源被关闭,以避免所述光源输出混合基色光束,所述装置包括:
第二获取模块,被配置为:获取根据所述光源的轮辐区时段所设定的转动切换时段,所述转动切换时段不超出所述轮辐区时段;
第二转动切换模块,被配置为:在所述转动切换时段内,驱动所述光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到所述转动切换时段所指示的切换结束时间;
恢复模块,被配置为:达到所述切换结束时间时,控制进行转动切换的所述数字微反射镜片恢复至关闭所述光源时自身所处状态。
在一具体实施例中,转动切换模块和/或第二转动切换模块包括:
获取单元,被配置为:获取为每一数字微反射镜片所配置的反转控制信号,所述反转控制信号指示了达到所述转动切换时段所指示的切换结束时间时所述数字微反射镜片在开状态和关状态之间所要进行转动切换的次数;
转动切换单元,被配置为:在所述转动切换时段内,通过所述反转控制信号驱动所对应数字微反射镜片按照所指示的次数在开状态和关状态之间进行转动切换。
在一具体实施例中,激光投影显示控制装置还包括:
反转控制信号配置模块,被配置为:根据所述数字微反射镜片的最小切换时间配置生成所述反转控制信号,所述最小切换时间为所述数字微反射镜片在开状态和关状态之间完成一次转动切换的最短时间。
在一具体实施例中,激光投影显示控制装置还包括:
驱动模块,被配置为:由待投影显示图像的图像信号驱动所述数字微反射 镜片转动,直至达到下一个转动切换时段。
上述装置中各个模块/单元的功能和作用的实现过程具体详见上述激光投影显示控制方法中对应步骤的实现过程,在此不再赘述。
可以理解,这些模块可以通过硬件、软件、或二者结合来实现。当以硬件方式实现时,这些模块可以实施为一个或多个硬件模块,例如一个或多个专用集成电路。当以软件方式实现时,这些模块可以实施为在一个或多个处理器上执行的一个或多个计算机程序。
在一具体实施例中,本申请还提供了一种投影设备,投影设备包括:
处理器;以及
存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所述处理器执行时实现如上任一方法实施例所述的方法。
该实施例中的装置的执行操作的具体方式已经在有关该激光投影显示控制方法的实施例中执行了详细描述,此处将不做详细阐述说明。
以及,在一具体实施例中,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一方法实施例所述的方法。
该实施例中的装置的执行操作的具体方式已经在有关该激光投影显示控制方法的实施例中执行了详细描述,此处将不做详细阐述说明。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围执行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (12)

  1. 一种激光投影显示控制方法,其特征在于,
    包括:光源,用于输出照明光束;
    光机,用于根据图像显示信号对所述照明光束进行调制;
    镜头,用于将调制后的照明光束进行成像;
    所述方法包括:
    在所述光源输出一基色光束的输出时段内,按照所设定的转动切换时段,控制关闭所述光源,所述转动切换时段小于所述一基色光束的输出时段;
    在所述转动切换时段内,驱动所述光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到所述转动切换时段所指示的切换结束时间;
    达到所述切换结束时间时,控制进行转动切换的所述数字微反射镜片恢复至开始转动切换时自身所处状态,并控制开启所述光源。
  2. 根据权利要求1所述的方法,其特征在于,所述一基色光束为蓝色光束。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述光源输出光束的时序,所述时序指示了所述光源输出基色光束的输出时段;
    根据所述光源输出基色光束的输出时段配置所述转动切换时段,所述转动切换时段指示了所述光源关闭的时间和所述光源开启的时间。
  4. 根据权利要求1所述的方法,其特征在于,所述转动切换时段的时长为一帧图像显示周期的1%-2%,或者,所述光源输出基色光束周期的1%-4.5%。
  5. 根据权利要求1所述的方法,其特征在于,所述转动切换时段为光源的轮辐区时段。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述转动切换时段内,驱动所述光阀上的数字微反射镜片在开状态和关状态之间进行转动切换,直至达到所述转动切换时段所指示的切换结束时间,包括:
    获取为每一数字微反射镜片所配置的反转控制信号,所述反转控制信号指示了达到所述转动切换时段所指示的切换结束时间时所述数字微反射镜片在开状态和关状态之间所要进行转动切换的次数;
    在所述转动切换时段内,通过所述反转控制信号驱动所对应数字微反射镜片按照所指示的次数在开状态和关状态之间进行转动切换。
  7. 根据权利要求6所述的方法,其特征在于,所述获取为每一数字微反射镜片所配置的反转控制信号之前,还包括:
    根据所述数字微反射镜片的最小切换时间配置生成所述反转控制信号,所述最小切换时间为所述数字微反射镜片在开状态和关状态之间完成一次转动切换的最短时间。
  8. 一种激光投影设备,其特征在于,包括:
    激光器组件,用于发出激光光束,
    激光器驱动电路,用于驱动所述激光器组件点亮或者关闭;
    DLP控制电路,用于输出图像显示使能信号和基色光亮度调节信号至所述激光器驱动电路,
    以及,所述DLP控制电路还用于输出图像显示信号至光阀,
    所述光阀,包括多个数字微反射镜片,用于根据所述图像显示信号对接收到的光束进行调制,并投射进入投影镜头成像,
    其中,所述DLP控制电路输出的、一基色光的图像显示使能信号有效期间, 该基色光亮度调节信号在一时段内持续为零,所述时段长度小于该基色光的图像显示使能信号的有效时段,
    在所述时段内,对应该基色光输出的激光器组件关闭;同时,所述光阀接收不同于所述当前图像显示信号的驱动信号,所述多个数字微反射镜片在开状态和关状态之间进行转动切换。
  9. 根据权利要求8所述的激光投影设备,其特征在于,所述基色光为蓝色基色光。
  10. 根据权利要求8所述的激光投影设备,其特征在于,所述基色光亮度调节信号为零的时段为一帧图像显示周期的1%-2%,或者,为所述光源输出基色光束周期的1%-4.5%。
  11. 一种激光投影设备,其特征在于,包括:
    处理器;以及
    存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所述处理器执行时实现如权利要求1至7中任一项所述的方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的方法。
PCT/CN2019/120135 2018-11-29 2019-11-22 激光投影显示方法及激光投影设备 WO2020108391A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/332,692 US20210289177A1 (en) 2018-11-29 2021-05-27 Laser projection display method and laser projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811444372.8A CN111240140B (zh) 2018-11-29 2018-11-29 光阀驱动控制方法、装置及投影设备
CN201811444372.8 2018-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/332,692 Continuation-In-Part US20210289177A1 (en) 2018-11-29 2021-05-27 Laser projection display method and laser projection apparatus

Publications (1)

Publication Number Publication Date
WO2020108391A1 true WO2020108391A1 (zh) 2020-06-04

Family

ID=70854035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120135 WO2020108391A1 (zh) 2018-11-29 2019-11-22 激光投影显示方法及激光投影设备

Country Status (3)

Country Link
US (1) US20210289177A1 (zh)
CN (1) CN111240140B (zh)
WO (1) WO2020108391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941039A1 (en) * 2020-07-14 2022-01-19 Coretronic Corporation Light beam generating device, projection device, and light beam generating method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703269A (zh) * 2020-05-21 2021-11-26 中强光电股份有限公司 投影装置以及投影装置的控制方法
WO2023169162A1 (zh) * 2022-03-09 2023-09-14 青岛海信激光显示股份有限公司 图像显示方法、装置、激光投影设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030674A1 (en) * 2000-06-26 2002-03-14 Kazuyuki Shigeta Image display apparatus and method of driving the same
JP2009109711A (ja) * 2007-10-30 2009-05-21 Nippon Seiki Co Ltd 表示装置
CN103827952A (zh) * 2011-09-27 2014-05-28 日本精机株式会社 场序图像显示装置
CN104412318A (zh) * 2012-07-03 2015-03-11 日本精机株式会社 场序制图像显示设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184419A (ja) * 1997-09-09 1999-03-26 Hitachi Ltd 液晶ライトバルブおよび投射型表示装置
JP3766586B2 (ja) * 2000-10-02 2006-04-12 株式会社日立製作所 光学エンジン、映像表示装置及び色切替方法
JP4055610B2 (ja) * 2002-03-22 2008-03-05 セイコーエプソン株式会社 画像表示デバイス及びプロジェクタ
US7944605B2 (en) * 2003-11-01 2011-05-17 Silicon Quest Kabushiki-Kaisha Color display apparatus
US7234821B2 (en) * 2004-10-12 2007-06-26 Coretronic Corporation Projection device having single light valve
JP2008020867A (ja) * 2006-07-10 2008-01-31 Zero Rabo Kk 光源装置
US7561322B1 (en) * 2007-12-19 2009-07-14 Silicon Quest Kabushiki-Kaisha Projection display system for modulating light beams from plural laser light sources
JP5494610B2 (ja) * 2011-10-17 2014-05-21 カシオ計算機株式会社 投影装置、投影制御方法及びプログラム
JP2016180786A (ja) * 2015-03-23 2016-10-13 カシオ計算機株式会社 投影装置、端末、投影システム及び投影方法
US20180192013A1 (en) * 2015-07-21 2018-07-05 Nec Display Solutions, Ltd. Image display device and image display method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030674A1 (en) * 2000-06-26 2002-03-14 Kazuyuki Shigeta Image display apparatus and method of driving the same
JP2009109711A (ja) * 2007-10-30 2009-05-21 Nippon Seiki Co Ltd 表示装置
CN103827952A (zh) * 2011-09-27 2014-05-28 日本精机株式会社 场序图像显示装置
CN104412318A (zh) * 2012-07-03 2015-03-11 日本精机株式会社 场序制图像显示设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941039A1 (en) * 2020-07-14 2022-01-19 Coretronic Corporation Light beam generating device, projection device, and light beam generating method

Also Published As

Publication number Publication date
CN111240140A (zh) 2020-06-05
CN111240140B (zh) 2022-08-30
US20210289177A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US7997737B2 (en) Projection display device, and speckle reduction element
TWI228634B (en) Image display apparatus and projector
TWI439728B (zh) 光源裝置、投影裝置及投影方法
WO2020108391A1 (zh) 激光投影显示方法及激光投影设备
TWI448804B (zh) 光源系統及包含該光源系統之投影裝置
CN108279548B (zh) 投影系统
JP2012525789A (ja) 高ダイナミックレンジ投影システム
JP4810941B2 (ja) プロジェクタ
JP2001222064A (ja) 照光制御装置、プロジェクタ、および照光制御方法
JP2003255465A (ja) 照明装置とこれを用いた投写型表示装置
JP4894442B2 (ja) 映像生成装置
US10104352B2 (en) Projector and image display method
JP3710455B2 (ja) 画像表示装置及び画像表示装置用光源ユニット
JP5010218B2 (ja) 液晶プロジェクタおよび画像表示制御方法
US10935874B2 (en) Illumination system and projection device
JP2005292502A (ja) 投写型ディスプレイの照明装置、及び投写型プロジェクタ
TWI479253B (zh) 光源系統及包含該光源系統之投影裝置
JP2005331705A (ja) 半導体発光素子を光源に含むプロジェクタ
JP2008165126A (ja) 画像表示装置及び方法並びにプロジェクタ
JP2007072241A (ja) カラープロジェクタ
US11785190B2 (en) Projection apparatus and control method for projection apparatus
US11962945B2 (en) Projection apparatus
JP2018124389A (ja) プロジェクター及びプロジェクターの制御方法
WO2015145940A1 (ja) 投射装置、および、投射装置の制御方法
JP2008040092A (ja) プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889630

Country of ref document: EP

Kind code of ref document: A1