WO2020108317A1 - 一种超级双相不锈钢复合钢板及其制造方法 - Google Patents

一种超级双相不锈钢复合钢板及其制造方法 Download PDF

Info

Publication number
WO2020108317A1
WO2020108317A1 PCT/CN2019/118517 CN2019118517W WO2020108317A1 WO 2020108317 A1 WO2020108317 A1 WO 2020108317A1 CN 2019118517 W CN2019118517 W CN 2019118517W WO 2020108317 A1 WO2020108317 A1 WO 2020108317A1
Authority
WO
WIPO (PCT)
Prior art keywords
duplex stainless
stainless steel
composite
steel
steel plate
Prior art date
Application number
PCT/CN2019/118517
Other languages
English (en)
French (fr)
Inventor
梁晓军
焦四海
丁建华
袁向前
王治宇
郝英敏
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to AU2019388670A priority Critical patent/AU2019388670B2/en
Priority to EP19889071.7A priority patent/EP3865296A4/en
Priority to BR112021009678-7A priority patent/BR112021009678A2/pt
Priority to US17/295,114 priority patent/US20220098699A1/en
Priority to JP2021524415A priority patent/JP7098837B2/ja
Publication of WO2020108317A1 publication Critical patent/WO2020108317A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the invention relates to the technical field of production of corrosion-resistant composite steel plates, in particular to a super duplex stainless steel composite steel plate and a manufacturing method thereof.
  • the super duplex stainless steel Due to the high content of chromium and molybdenum, the super duplex stainless steel has a high pitting corrosion resistance constant. It is suitable for the production and storage of pickling environments such as phosphoric acid, sulfuric acid, and nitric acid, as well as the use of corrosive media such as chloride ions and fluoride ions. Yield and high tensile strength characteristics are also particularly suitable for use in environments that have both corrosion resistance and wear resistance requirements.
  • the purpose of the present invention is to provide a super duplex stainless steel composite steel plate and its production method, which can obtain good structural strength and corrosion resistance;
  • the composite steel plate is a rolled composite steel plate, which can realize the metallurgical combination of cladding and base material, In order to obtain a good binding force;
  • the composite steel plate is suitable for environments with high chloride ion concentration such as seawater, which has strict corrosion requirements.
  • a super duplex stainless steel composite steel plate which has a two-layer structure, in which one layer is duplex stainless steel and one layer is carbon steel;
  • composition weight percentage of the duplex stainless steel is: C ⁇ 0.03%, Mn ⁇ 1.20%, Si ⁇ 0.80%, Cr: 24.0-26.0%, Ni: 6.0-8.0%, Mo: 3.0-5.0%, N: 0.24 -0.32%, P ⁇ 0.03%, S ⁇ 0.02%, the balance is Fe and inevitable impurities;
  • the weight percentages of the components of the carbon steel are: C: 0.03 to 0.12%, Si: 0.10 to 0.45%, Mn: 0.70-1.60%, P: 0 to 0.020%; S: 0 to 0.025%, Cu: 0 to 0.35 %, Cr: 0 to 0.40%, Ni: 0 to 0.40%, Nb: 0 to 0.05%, Mo: 0 to 0.40%, Ti: 0 to 0.018%, Al: 0.015 to 0.045%, the balance is Fe and unavailable Avoid impurities.
  • the shear strength of the interface between the duplex stainless steel and carbon steel of the composite steel plate of the present invention is above 290 MPa, the yield strength is 300-650 MPa, and the tensile strength is 400-900 MPa.
  • the yield strength of carbon steel in the composite steel plate of the present invention is 235-550 MPa; the yield strength of duplex stainless steel is above 550 MPa, and the tensile strength is above 795 MPa.
  • C is an austenite stabilizing element, which plays a role of solid solution strengthening in steel and can obviously improve the strength of steel, but the content of C is too high, which is not good for welding performance and toughness.
  • the C content in the carbon steel layer is controlled to be 0.03 to 0.12%.
  • Si is a deoxidizing element; in addition, Si is soluble in ferrite and plays the role of solid solution strengthening. It is second only to carbon, nitrogen, and phosphorus and exceeds other alloying elements. Therefore, Si can significantly increase the strength and hardness of steel .
  • the Si content in the carbon steel layer is controlled to be 0.10 to 0.45%.
  • Mn can delay the transformation of pearlite, reduce the critical cooling rate, improve the hardenability of steel, and at the same time have a solid solution strengthening effect on steel, which is the main solid solution strengthening element in steel. However, if the Mn content is too high, segregation bands and martensite structures are likely to occur, which adversely affects the toughness of the steel.
  • the content of Mn in the carbon steel layer is controlled to be 0.70 to 1.60%.
  • Nb is an important added element in microalloyed steel. Nb easily forms precipitates such as niobium nitride, niobium carbonitride and niobium carbide with nitrogen and carbon. During heating of the billet, niobium can play a role in refining the austenite grains in the steel. Nb can greatly increase the temperature in the non-recrystallization zone, and has a more obvious role in controlling rolling, grain refinement, and strength and toughness control. Moreover, Nb can form nano-scale precipitates, which helps to improve the strength. However, the addition of niobium is easy to cause mixed crystals, and too much niobium has an adverse effect on toughness. Therefore, the addition amount of niobium in the present invention is controlled at 0-0.05%.
  • Ti forms titanium carbide, titanium nitride, or titanium carbonitride with C and N in the steel, and plays a role of refining austenite grains during the heating and rolling of the billet, thereby improving the strength and toughness of the steel.
  • too much Ti will form more coarse titanium nitride, which is harmful to the strength and toughness of the steel, so the upper limit of the Ti content in the carbon steel layer is controlled to 0.018%.
  • Ni is only soluble in matrix phase ferrite and austenite in steel, and does not form carbides. Austenitic stabilization is very strong. In addition, Ni element can also improve the low temperature toughness of steel. The amount of Ni added in the carbon steel layer is controlled within 0.40%.
  • Cu mainly exists in the state of solid solution and precipitation of single phase in steel, and solid solution Cu plays a role of solid solution strengthening; as the solid solubility of Cu in ferrite decreases rapidly with the decrease of temperature, At a lower temperature, the supersaturated solid solution Cu precipitates as a single substance, which plays a role in precipitation strengthening.
  • adding a small amount of Cu to the carbon steel layer can also significantly improve the resistance of the composite steel plate to atmospheric corrosion. Therefore, according to the actual use environment, it may be considered to add Cu element appropriately.
  • Cr is an element that reduces the austenite phase zone, is also a medium-strength carbide element, and is also soluble in ferrite. Cr improves the stability of austenite, making the C curve shift to the right, so it can reduce the critical cooling rate and improve the hardenability of steel. Cr also lowers the austenite transformation temperature, so that the formed (Fe, Cr) 3 C, (Fe, Cr) 7 C 3 and (Fe, Cr) 23 C 7 and other carbides precipitate at a lower temperature, making the structure And carbide refinement can significantly improve the strength and hardness of steel, but Cr has an adverse effect on the toughness of steel. Combining the above factors, the present invention controls the Cr content in the carbon steel layer to within 0.40%.
  • Molybdenum is an element that reduces the austenite phase zone. Can improve the hardenability and thermal strength of steel. With carbon element can form carbide element. Has better tempering stability. Molybdenum has a solid solution strengthening effect on ferrite, and can also improve the stability of carbides, so it can improve the strength of steel. Molybdenum also has good corrosion resistance. In stainless steel, the increase of molybdenum can significantly improve the resistance of stainless steel to chloride ion pitting corrosion.
  • the Al element is a deoxidizing element. Can reduce the oxygen content in molten steel. And the combination of aluminum and nitrogen in steel can play a role in preventing the growth of austenite grains.
  • the method of rolling composite steel plates is based on material design, with base carbon steel as the main guarantee for structural strength and toughness, which can achieve different strength and toughness requirements; stainless steel coating is mainly used to achieve the corrosion resistance and wear resistance of the material. Therefore, the composite steel plate can promote the advantages and avoid the shortcomings in the form of layered distribution, so as to better achieve the superior performance of the two materials.
  • the duplex stainless steel is prone to form ⁇ -equivalent intermetallic compounds in the vicinity of 650-1000°C, especially around 900°C.
  • the formation rate of ⁇ phase is very fast, thus As a result, the toughness and corrosion resistance of the material are reduced.
  • the temperature of the edge and surface will be lower and it is easy to crack.
  • the super duplex stainless steel is used as the cladding material.
  • the design of the composite billet assembly process can be used to ensure the temperature uniformity of the cladding material and avoid the formation of ⁇ phase.
  • the composite billet is composed of a four-layer structure, which is composed of two layers of base carbon steel at the top and bottom, the middle two layers are super duplex stainless steel, and the duplex stainless steel is separated by a separating agent.
  • the upper carbon steel directly contacts the surface of the duplex stainless steel after removing the pollutants and surface oxides to form a vacuum billet; similarly, the lower carbon steel and the duplex stainless steel also form a group of vacuum billets.
  • the two sets of vacuum billets are stacked symmetrically, and a separating agent is filled between the two-phase stainless steel billets of the two sets of vacuum billets, and then the two sets of vacuum billets form a set of vacuum billets to be rolled.
  • the four-layer composite blank is two relatively independent composite systems, and the two vacuum composite blanks form a vacuum system.
  • there are two protective barriers in the vacuum system even if the single composite system occasionally decreases the vacuum.
  • the single-system vacuum method is prone to failure when the welding seam fails and loses vacuum.
  • the rolling power can be reduced when the weld seam fails and vacuum is lost. From 0% to 75%.
  • the separator added on the surface of the duplex stainless steel and the surface of the duplex stainless steel play a role of isolation. After the rolling is completed, it is cut and separated into a finished composite steel plate with a separate two-layer structure.
  • the method for manufacturing a super duplex stainless steel composite steel plate according to the present invention includes the following steps:
  • the thickness of the duplex stainless steel and carbon steel of the combined billet is selected; the carbon steel is selected by the continuous casting billet to heat the billet to the required size; Clean the surface of the carbon steel until the metal surface is completely exposed; clean the scale and contaminants on the surface of the duplex stainless steel;
  • the vacuum degree is controlled below 0.001Pa, as the first vacuum control, forming two independent up and down
  • the vacuum blank formed by the carbon steel and duplex stainless steel forms the first vacuum barrier; then the duplex stainless steel surface and the duplex stainless steel surface are stacked facing each other, and the thickness direction is symmetrically stacked; the duplex stainless steel and the duplex stainless steel surface are separated by brushing
  • the agent is used for isolation, after lamination, and vacuum sealing treatment after four weeks of sealing and welding; the vacuum degree is controlled below 0.01Pa, forming a second vacuum barrier; and forming a four-layer structure composite billet;
  • Heating the composite billet is controlled at 1100-1250°C;
  • the laminated composite steel plate is directly cooled by compressed air or water cooling.
  • the open cooling temperature is controlled at 880°C-1000°C, the cooling rate: 2°C/s-40°C/s, and the final cooling temperature: 250- 680°C;
  • the manufacturing method further includes: adopting a tempering heat treatment with a tempering temperature of 500-600°C, and performing air cooling treatment after tempering.
  • the pass reduction rate is controlled at 10-25%.
  • the production method of the composite steel plate the thickness of the duplex stainless steel and carbon steel of the combined blank is selected according to the requirement of the thickness ratio of the composite steel plate cladding and the base layer.
  • the continuous casting billet of carbon steel is used to heat the billet to the required size; the surface of the carbon steel compounded with the duplex stainless steel is cleaned until the metal surface is completely exposed, and the scale and contaminants on the surface of the duplex stainless steel are cleaned.
  • the carbon steel surface and the duplex stainless steel surface cleaned to the bare metal surface are directly laminated together, and then vacuum sealing is welded, the vacuum degree is controlled below 0.001 Pa, which serves as the first vacuum barrier.
  • a vacuum billet composed of upper and lower carbon steel and duplex stainless steel is formed, and then the duplex stainless steel surface and the duplex stainless steel surface are stacked facing each other, and the thickness direction is stacked symmetrically.
  • a separating agent is used between the duplex stainless steel and the duplex stainless steel surface for isolation. After lamination, vacuum sealing is carried out after sealing and welding around. The vacuum degree is controlled below 0.01Pa.
  • the heating temperature of the vacuum composite billet is controlled at 1100°C-1250°C.
  • the selection of the heating temperature comprehensively considers the physical characteristics of the duplex stainless steel and the carbon steel billet.
  • the heating temperature range on the one hand ensures that the carbon steel has good mechanical properties after production, and on the other hand ensures that the duplex stainless steel is possible
  • the existing carbide and metal mesophase have sufficient time to re-dissolve and re-diffuse at high temperature, and also ensure that through the phase transition at high temperature, the phase ratio of the duplex stainless steel at high temperature can be controlled in the range of 40-60% .
  • the open rolling temperature is 1070-1220°C
  • the final rolling temperature is 900-1020°C.
  • the metal atoms at the interface of the composite material are subjected to sufficient compressive stress, forming the atoms to form interpenetration through diffusion, so that the interface can achieve the bonding between the atoms and sufficient deformation, so that The interface undergoes several recrystallizations.
  • the pass reduction rate is controlled at 10-25% to provide sufficient deformation storage energy for recrystallization or phase transformation.
  • the composite billet is directly cooled by compressed air or water spray cooling. Open cooling temperature is controlled at 880°C-1000°C. The cooling rate is 2°C/s-40°C/s, and the final cooling temperature is 250-680°C.
  • the head and tail and edges of the laminated composite steel plate after plasma cutting and rolling are used to separate the laminated composite steel plate into two groups of finished composite steel plates that are symmetrical up and down.
  • the head and tail of the laminated composite steel plate refer to both ends of the laminated composite steel plate in the longitudinal direction, and the side portion refers to both sides of the laminated composite steel plate in the width direction.
  • composite billets with low final cooling temperature can also be appropriately used with tempering heat treatment, and the tempering temperature can be 500-600°C
  • the short-term treatment of this temperature can ensure that the corrosion resistance of the coated stainless steel is almost not affected. Carry out air cooling after tempering.
  • the base material of the super duplex stainless steel composite steel plate described in the present invention is carbon steel with a yield strength of 235-550 MPa.
  • the composite steel plate manufactured by the rolling process of this scheme has good bonding ability, and the shear strength can reach more than 290MPa.
  • the yield strength of the duplex stainless steel coating in the composite steel plate can reach more than 550MPa, and the tensile strength is higher than 795MPa.
  • the performance of carbon steel can meet the requirements of different yield strengths through design components, such as: yield strengths above 235,345,460,550MPa.
  • the performance of the composite steel plate produced by the invention has good mechanical properties, and the composite steel plate coating material has excellent corrosion resistance.
  • the composite steel plate composite billet of the present invention is rolled by four-layer symmetrical assembly billet.
  • the conventional blank assembly scheme is to form a vacuum system by sealing and welding the uppermost and lowermost materials after two-layer assembly or four-layer assembly.
  • the vacuum failure in the production process will cause the failure of the upper and lower composite steel plates, resulting in greater loss of economic benefits and greater production risk.
  • the invention adopts the double vacuum system method for production, which can ensure that even in the production process, even after a vacuum is broken, the vacuum system in the composite steel plate can still be maintained by the second system.
  • the composite steel plate produced by the method of the invention has excellent bonding strength and good production stability. It is especially suitable for rolled composite steel plate materials where the cladding material is expensive and the bonding performance requirements are high.
  • the present invention can bring two beneficial effects:
  • Two vacuum barrier rolling methods can effectively increase and maintain a higher vacuum degree, and can effectively reduce the risk of vacuum failure during storage.
  • the present invention adopts two vacuum barrier rolling methods, because even in the process of forming or rolling, one of the vacuum barriers has a vacuum failure situation, and the other vacuum barrier can still maintain a good vacuum system, which can effectively improve the compound Billet rolling yield.
  • the high success rate of rolling of composite steel plates can ensure the stability of production performance and obtain good economic benefits for the production of corrosion-resistant alloy composite steel plates with higher alloy content and more expensive.
  • the super duplex stainless steel composite steel plate of the present invention has various advantages such as high strength, excellent corrosion resistance, good low-temperature impact toughness, etc., and is particularly suitable for various corrosion resistance requirements, high requirements for chloride ion pitting corrosion, and wear There are also certain required environments, such as energy, chemical, marine, transportation, power generation, paper, food and other industries.
  • FIG. 1 is a cross-sectional view of the structure of the super duplex stainless steel composite steel plate billet of the present invention.
  • FIG. 2 is a photo of the metallographic structure of the super duplex stainless steel composite steel plate at the junction of the carbon steel layer and the duplex stainless steel layer according to an embodiment of the present invention.
  • the high corrosion-resistant duplex stainless steel composite steel plate composite billet of the present invention has a four-layer structure, in which the middle two layers 1, 2 are duplex stainless steel, and the upper and lower two layers 3, 4 are carbon steel; Agent, 6 is a closed weld.
  • the separating agent is used to isolate two layers of stainless steel to prevent the two layers of stainless steel from sticking.
  • the base carbon steel has a yield strength of 235 MPa or more, and its chemical composition is as follows (wt%): C: 0.032, Si: 0.20, Mn: 1.45, P: 0.015, S: 0.002, Al: 0.02, Cu: 0.01, Cr: 0.01, Ni: 0.01, Nb: 0.003, Mo: 0.01, Ti: 0.003; composition (wt%) of duplex stainless steel: C: 0.014, Si: 0.43, Mn: 0.85, Cr: 25.34, Ni: 7.32, Mo: 4.11, N: 0.30.
  • the four-layer symmetrical separation method is used to form the blanks: carbon steel blanks, duplex stainless steel blanks, duplex stainless steel blanks, and carbon steel blanks are arranged in order from top to bottom, wherein the upper carbon steel blank and its corresponding duplex stainless steel The blank is vacuum-sealed, and the lower carbon steel and its corresponding duplex stainless steel blank are vacuum-sealed to form two sets of independent first vacuum systems; the second vacuum system consists of 1 layer and 6 layers shown in Figure 1 (that is, this implementation In the example, the carbon steel blank and the carbon steel blank are vacuum-sealed. Together to form a composite billet for dual vacuum systems.
  • the Carl Zeiss optical microscope Axio Imager.M2m was used to shoot at a 20x objective lens.
  • the upper layer is the microstructure of super duplex stainless steel, and the lower layer is the microstructure of carbon steel.
  • In the middle is the interface between duplex stainless steel and carbon steel, and a good metallurgical bond has been formed.
  • Compound rolling heating temperature is 1190°C, open rolling temperature is 1170°C, final rolling temperature is 950°C; after rolling, the composite billet is directly cooled by water cooling, open cooling temperature is 920°C, cooling rate is 40°C/ s, the final cooling temperature is 600 °C, and then naturally cooled to room temperature under air.
  • the thickness of the composite steel plate after plasma cutting and separation after rolling is (5+30) mm, that is, the thickness of the coated duplex stainless steel is 5 mm, and the thickness of the base carbon steel is 30 mm.
  • the mechanical properties of the composite steel plate are shown in Table 1.
  • Rp0.2 is the yield strength of the full-thickness composite steel plate
  • Rm is the tensile strength value of the composite steel plate
  • A is the elongation of the composite steel plate sample, reflecting the comprehensive mechanical properties of the coating and base material of the composite steel plate. Due to the obvious low temperature sensitivity of carbon steel, low temperature impact tests are generally carried out on the base carbon steel. As shown in Table 1, the impact resistance of the composite steel sheet is good.
  • Shear strength is a mechanical indicator for evaluating the level of bonding between the coating and the base material. The shear strength values of the three sets of data are all higher than 290MPa.
  • the corrosion resistance of the composite steel plate is processed according to ASTM A923C method, the coating material is processed into 50mm*25mm long and wide sample surface after cleaning, measuring the size, weighing, and immersed in 40% 6% FeCl 3 solution for 24 Hourly corrosion test, take it out after washing and drying, and weigh it. Its weightlessness corrosion needs to meet the corrosion requirement with a corrosion rate of not more than 10mdd. And the intergranular corrosion test was carried out according to ASTM A262E method. Two samples with a length and width of 80mm*20mm were processed with the cladding material. The surface was polished with sandpaper and then sensitized at 675°C for 1 hour. Soaked in boiling sulfuric acid-copper sulfate 15 hours in the solution, 180° bending test after taking out. The test results are shown in Table 2.
  • the base carbon steel adopts a carbon steel with a yield strength of 345MPa, and its chemical composition is (wt%): C: 0.12, Si: 0.24, Mn: 0.70, P: 0.015, S: 0.003, Nb: 0.01, Ti: 0.01, Al: 0.025, Cu, Cr, Ni, Mo were not intentionally added; the composition (wt%) of the duplex stainless steel: C: 0.018, Si: 0.75, Mn: 0.88, Cr: 24.1, Ni: 6.05, Mo: 3.1, N: 0.24 .
  • Example 2 the same four-layer symmetrical separation method as in Example 1 is used to form the blank according to the above-mentioned component system.
  • Composite rolling heating temperature is 1250°C, open rolling temperature is 1220°C, final rolling temperature is 1020°C; after rolling, the composite billet is directly cooled by compressed air, open cooling temperature is 1000°C, cooling rate is 2°C/s , The final cooling temperature is 680 °C, and then naturally cooled to room temperature under air.
  • the thickness of the composite steel plate after plasma cutting and separation after rolling is (3+10) mm, that is, the thickness of the coated duplex stainless steel is 3 mm, and the thickness of the base carbon steel is 10 mm.
  • the mechanical properties of the composite steel plate are shown in Table 3.
  • Rp0.2 is the yield strength of the full-thickness composite steel plate
  • Rm is the tensile strength value of the composite steel plate
  • A is the elongation of the composite steel plate sample, reflecting the comprehensive mechanical properties of the composite steel plate and the base material. Due to the obvious low temperature sensitivity of carbon steel, low temperature impact tests are generally carried out on the base carbon steel. Because the original thickness of the base carbon steel is 10mm, and the sample with a thickness of 10mm cannot be processed, the base carbon steel impact sample with a thickness of 7.5mm is used. Shear strength is a mechanical indicator for evaluating the level of bonding between the coating and the base material. The shear strength values of the three sets of data are all higher than 290MPa.
  • the corrosion resistance of the composite steel plate is processed according to ASTM A923C method, the coating material is processed into 50mm*25mm long and wide sample surface after cleaning, measuring the size, weighing, and immersed in 40% 6% FeCl 3 solution for 24 Hourly corrosion test, take it out after washing and drying, and weigh it. Its weightlessness corrosion needs to meet the corrosion requirement with a corrosion rate of not more than 10mdd. And the intergranular corrosion test was carried out according to ASTM A262E method. Two samples with a length and width of 80mm*20mm were processed with the cladding material. The surface was polished with sandpaper and then sensitized at 675°C for 1 hour. Soaked in boiling sulfuric acid-copper sulfate 15 hours in the solution, 180° bending test after taking out. The test results are shown in Table 4.
  • the base carbon steel adopts grade 460MPa grade carbon steel, and its chemical composition is (wt%): C: 0.09, Si: 0.22, Mn: 0.9, P: 0.013; S: 0.002, Nb: 0.045, Ti: 0.018, Cu: 0.01, Cr: 0.22, Ni: 0.23; composition (wt%) of duplex stainless steel: C: 0.016, Si: 0.40, Mn: 0.92, Cr: 25.97, Ni: 7.96, Mo: 4.98, N: 0.32.
  • Example 2 the same four-layer symmetrical separation method as in Example 1 is used to form the blank according to the above-mentioned component system.
  • Compound rolling heating temperature is 1100°C, open rolling temperature is 1070°C, final rolling temperature is 900°C; after rolling, the composite billet is directly cooled by water cooling, open cooling temperature is 880°C, cooling rate is 20°C/ s, the final cooling temperature is 550 °C, and then naturally cooled to room temperature under air.
  • the thickness of the composite steel plate after plasma cutting and separation after rolling is (2+8) mm, that is, the thickness of the coated duplex stainless steel is 2 mm, and the thickness of the base carbon steel is 8 mm.
  • the mechanical properties of the composite steel plate are shown in Table 5.
  • Rp0.2 is the yield strength of the full-thickness composite steel plate
  • Rm is the tensile strength value of the composite steel plate, which reflects the comprehensive mechanical properties of the cladding and base material of the composite steel plate. Due to the obvious low temperature sensitivity of carbon steel, low temperature impact tests are generally carried out on the base carbon steel. Since the original thickness of the base carbon steel is 10 mm, and a sample with a thickness of 10 mm cannot be processed, the base carbon steel with a thickness of 7.5 mm is used as the impact sample. Shear strength is a mechanical indicator for evaluating the level of bonding between the coating and the base material. The shear strength values of the three sets of data are all higher than 290MPa.
  • the corrosion resistance of the composite steel plate is processed according to ASTM A923C method, the coating material is processed into 50mm*25mm long and wide sample surface after cleaning, measuring the size, weighing, and immersed in 40% 6% FeCl 3 solution for 24 Hourly corrosion test, take it out after washing and drying, and weigh it. Its weightlessness corrosion needs to meet the corrosion requirement with a corrosion rate of not more than 10mdd. And the intergranular corrosion test was carried out according to ASTM A262E method. Two samples with a length and width of 80mm*20mm were processed with the cladding material. The surface was polished with sandpaper and then sensitized at 675°C for 1 hour. Soaked in boiling sulfuric acid-copper sulfate 15 hours in the solution, 180° bending test after taking out. The test results are shown in Table 6.
  • the base carbon steel adopts carbon steel with yield strength of 550MPa, and its chemical composition is (wt%): C: 0.07, Si: 0.32, Mn: 1.55, P: 0.012; S: 0.002, Cu: 0.35, Cr: 0.39, Ni: 0.40, Nb: 0.05, Ti: 0.018; composition (wt%) of duplex stainless steel: C: 0.016, Si: 0.72, Mn: 0.89, Cr: 25.69, Ni: 7.11, Mo: 3.93, N: 0.29.
  • Example 2 the same four-layer symmetrical separation method as in Example 1 is used to form the blank according to the above-mentioned component system.
  • Composite rolling heating temperature is 1150°C, open rolling temperature is 1110°C, final rolling temperature is 990°C; after rolling, the composite billet is directly cooled by water cooling, open cooling temperature is 970°C, cooling rate is 40°C/ s, the final cooling temperature is 250 °C, and then naturally cooled to room temperature under air, and then tempered, the tempering temperature is 550 °C, the tempering time is 1 hour, and then air-cooled to room temperature.
  • the thickness of the composite steel plate after plasma cutting and separation after rolling is (3+12) mm, that is, the thickness of the coated duplex stainless steel is 3 mm, and the thickness of the base carbon steel is 12 mm.
  • the mechanical properties of the composite steel plate are shown in Table 7.
  • the mechanical properties of the composite steel plate are shown in Table 7.
  • Rp0.2 is the yield strength of the full-thickness composite steel plate
  • Rm is the tensile strength value of the composite steel plate
  • A is the elongation of the composite steel plate sample, reflecting the comprehensive mechanical properties of the composite steel plate and the base material. Due to the obvious low temperature sensitivity of carbon steel, low temperature impact tests are generally carried out on the base carbon steel. As shown in Table 7, the impact performance of the composite steel sheet is good.
  • Shear strength is a mechanical indicator for evaluating the level of bonding between the coating and the base material. The shear strength values of the three sets of data are all higher than 290MPa.
  • the corrosion resistance of the composite steel plate is processed according to ASTM A923C method, the coating material is processed into 50mm*25mm long and wide sample surface after cleaning, measuring the size, weighing, and immersed in 40% 6% FeCl 3 solution for 24 Hourly corrosion test, take it out after washing and drying, and weigh it. Its weightlessness corrosion needs to meet the corrosion requirement with a corrosion rate of not more than 10mdd. And the intergranular corrosion test was carried out according to ASTM A262E method. Two samples with a length and width of 80mm*20mm were processed with the cladding material. The surface was polished with sandpaper and then sensitized at 675°C for 1 hour. Soaked in boiling sulfuric acid-copper sulfate 15 hours in the solution, 180° bending test after taking out. The test results are shown in Table 8.
  • a group was rolled using the same material of Example 2 according to the same production process. Compare performance.
  • the base carbon steel adopts the yield strength 345MPa grade carbon steel, and its chemical composition is (wt%): C: 0.12, Si: 0.24, Mn: 0.70, P: 0.015; S: 0.003, Nb: 0.01, Ti: 0.01, Al: 0.025, Cu, Cr, Ni, Mo were not intentionally added.
  • a common four-layer symmetrical separation method is used to form a blank according to the above component system, that is, a single vacuum system.
  • Carbon steel blanks, duplex stainless steel blanks, duplex stainless steel blanks, and carbon steel blanks are arranged in order from top to bottom, and a separating agent is applied between the surfaces of the duplex stainless steel and the duplex stainless steel.
  • the four-layer billet is then welded into a single vacuum system at a time. This method is more efficient for forming blanks, but only a vacuum system can be guaranteed through the welding seam.
  • Composite rolling setting process heating temperature is 1250°C, open rolling temperature is 1220°C, final rolling temperature is 1020°C; after rolling, the composite billet is directly cooled by compressed air, open cold temperature is 1000°C, cooling rate is 20°C/s, the final cooling temperature is 680°C, and then naturally cooled to room temperature under air.
  • the thickness of the composite steel plate after rolling and cutting is (3+10) mm, that is, the thickness of the cladding duplex stainless steel is 3 mm, and the thickness of the base carbon steel is 10 mm.
  • the mechanical properties of the composite steel plate are shown in Table 9.
  • Rp0.2 is the yield strength of the full-thickness composite steel plate
  • Rm is the tensile strength value of the composite steel plate
  • A is the elongation of the composite steel plate, and reflects the comprehensive mechanical properties of the cladding and base material of the composite steel plate. Due to the obvious low temperature sensitivity of carbon steel, low temperature impact tests are generally carried out on the base carbon steel. Since the original thickness of the base carbon steel is 10 mm, and a sample with a thickness of 10 mm cannot be processed, the base carbon steel with a thickness of 7.5 mm is used as the impact sample.
  • the tensile and impact properties of the composite steel plate provided in the comparative example are basically close, but due to the difference between the conventional composite slab and the present invention, the composite steel plate is characterized The shear strength of the bonding ability between the layer and the base layer is lower, and the fluctuation is greater.
  • the corrosion resistance of the composite steel plate is processed according to ASTM A923C method, the coating material is processed into 50mm*25mm long and wide sample surface after cleaning, measuring the size, weighing, and immersed in 40% 6% FeCl 3 solution for 24 Hourly corrosion test, take it out after washing and drying, and weigh it. Its weightlessness corrosion needs to meet the corrosion requirement with a corrosion rate of not more than 10mdd. And the intergranular corrosion test was carried out according to ASTM A262E method. Two samples with a length and width of 80mm*20mm were processed with the cladding material. The surface was polished with sandpaper and then sensitized at 675°C for 1 hour. Soaked in boiling sulfuric acid-copper sulfate 15 hours in the solution, 180° bending test after taking out. The test results are shown in Table 10.
  • the rolling power of the composite billet process provided by the present invention is significantly improved compared with the conventional composite rolling billet process.
  • the conventional composite blank assembly process is a one-time closed-weld single-system vacuum blank assembly mode, which requires high vacuum control processes, is prone to rolling failure, and has a low yield rate.
  • the billet assembly scheme of the present invention is a four-layer symmetric separation method billet assembly, that is, a double vacuum system, and rolling reliability can be greatly improved.
  • the bonding performance of the composite steel plate provided by the billet of the invention is higher and more stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Abstract

一种超级双相不锈钢复合钢板及其制造方法,其为两层结构,其中,一层为双相不锈钢,一层为碳钢;所述双相不锈钢的成分重量百分比为:C≤0.03%,Mn≤1.20%,Si≤0.80%,Cr:24.0-26.0%,Ni:6.0-8.0%,Mo:3.0-5.0%,N:0.24-0.32%,余Fe及不可避免杂质;所述碳钢的成分重量百分比为:C 0.03~0.12%,Si 0.10~0.45%,Mn 0.70-1.60%,P<0.020%;S<0.025%,Cu 0~0.35%,Cr 0~0.40%,Ni 0~0.40%,Nb 0~0.05%,Mo 0~0.40%,Ti 0~0.018%,Al 0.015~0.045%,余Fe及不可避免杂质。复合钢板可获得良好的结构强度与耐蚀性能;该复合钢板为轧制复合钢板,能够实现覆层与基层材料的冶金结合,从而获得良好的结合力。

Description

一种超级双相不锈钢复合钢板及其制造方法 技术领域
本发明涉及耐蚀复合钢板生产技术领域,特别涉及一种超级双相不锈钢复合钢板及其制造方法。
背景技术
材料的腐蚀造成的损失是巨大的,涉及到各个领域。尤其是随着社会的发展与进步,工业领域或民用领域所涉及到的化学物质的品种越来越多,用途越来越广,涉及冶金、化工、建筑、医疗、食品等各个领域,因此对这些原来的储存、运输、应用都需要各种防腐措施。
超级双相不锈钢由于铬、钼含量高,其耐点蚀常数高,适合于磷酸、硫酸、硝酸等酸洗环境生产与储存,以及含氯离子、氟离子等腐蚀介质情况使用,而且因其高屈服、高抗拉强度的特性,也特别适合于既具有耐蚀要求,又具有耐磨要求的环境中使用。
然而由于该超级双相不锈钢生产难度较大,成本较高,使用及推广受到了较大的限制。
发明内容
本发明的目的在于提供一种超级双相不锈钢复合钢板及其生产方法,可以获得良好的结构强度与耐蚀性能;该复合钢板为轧制复合钢板,能够实现覆层与基层材料的冶金结合,从而获得良好的结合力;该复合钢板适用于对腐蚀要求苛刻的海水等氯离子浓度较高的环境使用。
为达到上述目的,本发明的技术方案是:
一种超级双相不锈钢复合钢板,其为两层结构,其中,一层为双相不锈钢,一层为碳钢;
所述双相不锈钢的成分重量百分比为:C≤0.03%,Mn≤1.20%,Si≤0.80%,Cr:24.0-26.0%,Ni:6.0-8.0%,Mo:3.0-5.0%,N:0.24-0.32%, P≤0.03%,S≤0.02%,余量为Fe以及不可避免杂质;
所述碳钢的成分重量百分比为:C:0.03~0.12%,Si:0.10~0.45%,Mn:0.70-1.60%,P:0~0.020%;S:0~0.025%,Cu:0~0.35%,Cr:0~0.40%,Ni:0~0.40%,Nb:0~0.05%,Mo:0~0.40%,Ti:0~0.018%,Al:0.015~0.045%,余量为Fe以及不可避免杂质。
本发明所述复合钢板的双相不锈钢与碳钢之间界面的剪切强度达到290MPa以上,屈服强度在300-650MPa,抗拉强度在400-900MPa。
本发明所述复合钢板中碳钢的屈服强度在235-550MPa;双相不锈钢的屈服强度在550MPa以上,抗拉强度则高于795MPa。
在本发明所述的超级双相不锈钢复合钢板的成分设计中:
C:C是奥氏体稳定化元素,在钢中起固溶强化的作用,可明显提高钢的强度,但是C含量太高,对焊接性能和韧性不利,在本发明中,通过控制冷却的方式实现基层材料的性能与覆层材料性能的平衡。所述碳钢层中C含量控制为0.03~0.12%。
Si:Si是脱氧元素;另外Si可溶于铁素体,起到固溶强化的作用,其仅次于碳、氮、磷而超过其它合金元素,因此,Si能够显著提高钢的强度和硬度。所述碳钢层中Si含量控制为0.10~0.45%。
Mn:Mn可以推迟珠光体转变,降低临界冷却速度,提高钢的淬透性,同时对钢具有固溶强化作用,是钢中的主要固溶强化元素。但Mn含量太高容易出现偏析带以及马氏体组织,对钢的韧性有不利影响。所述碳钢层中Mn含量控制为0.70~1.60%。
Nb:Nb是微合金钢中重要的添加元素。Nb与氮、碳易形成氮化铌,碳氮化铌以及碳化铌等析出物。在钢坯加热过程中,铌在钢中可以起到细化奥氏体晶粒的作用。Nb可以大大提高非再结晶区温度,对于控制轧制,晶粒细化,强度韧性控制有较明显的作用。而且Nb可以形成纳米级的析出物,有助于强度的提升。但是铌的添加易造成混晶,过多的铌对韧性有不利影响。因此,本发明中铌的添加量控制在0-0.05%。
Ti:Ti与钢中C、N形成碳化钛、氮化钛或碳氮化钛,在钢坯加热轧制阶段,起到细化奥氏体晶粒的作用,从而提高钢的强度和韧性。但过多的Ti会形成较多粗大的氮化钛,对钢的强度和韧性有害,因此将碳钢层 中Ti含量的上限控制为0.018%。
Ni:Ni在钢中只溶于基体相铁素体和奥氏体,不形成碳化物,奥氏体稳定化作用非常强,另外Ni元素还可以提高钢的低温韧性,因此在本发明中,碳钢层中Ni的加入量控制在0.40%以内。
Cu:Cu在钢中主要以固溶态和单质相沉淀析出状态存在,固溶的Cu起到固溶强化作用;由于Cu在铁素体中的固溶度随温度降低迅速减小,因而在较低温度下,以过饱和固溶的Cu以单质形式沉淀析出,起到析出强化作用。另外,在碳钢层中加入少量的Cu还可以显著提高复合钢板的抗大气腐蚀能力。因此,根据实际使用环境可以考虑适当添加Cu元素。
Cr:Cr是缩小奥氏体相区元素,也是中强碳化物元素,也可溶于铁素体。Cr提高奥氏体的稳定性,使得C曲线右移,因此可以降低临界冷却速度、提高钢的淬透性。Cr也降低奥氏体转变温度,使得形成的(Fe,Cr) 3C、(Fe,Cr) 7C 3和(Fe,Cr) 23C 7等多种碳化物在较低温度析出,使得组织和碳化物细化,可明显提高钢的强度和硬度,但Cr对钢的韧性有不利影响。综合上述因素,本发明将碳钢层中Cr含量控制在0.40%以内。
Mo:钼是缩小奥氏体相区元素。可以提高钢的淬透性与热强性。与碳元素可以形成碳化物元素。具有较好的回火稳定性。钼对铁素体有固溶强化作用,同时也可以提高碳化物的稳定性,因此可以提高钢的强度。钼还具有良好的耐蚀性能。在不锈钢中,钼元素的增加能够明显提高不锈钢的耐氯离子点腐蚀能力。
Al:Al元素是脱氧元素。可以降低钢水中的含氧量。而且铝与钢中的氮结合后可以起到阻止奥氏体晶粒长大的作用。
轧制复合钢板方法通过材料设计,以基层碳钢为主保证结构强度与韧性,可实现不同强度与韧性的需求;以不锈钢覆层主要实现材料的耐蚀性与耐磨性能。因此,复合钢板可通过层状分布的方式扬长避短,更好地实现两种材料的优势性能。另外,该双相不锈钢由于铬钼氮含量高,在650-1000℃区间附近易于形成σ相等金属间化合物,尤其是在900℃温度附近,由于铬钼含量高,σ相形成速度很快,从而导致材料的韧性降低、耐蚀性能下降。在轧制生产过程中,由于温度控制不均匀,边部、表面温度会较低,易于边裂。通过轧制复合工艺,该超级双相不锈钢作为覆层材 料使用,可以通过复合坯组坯工艺的设计,保证覆层材料的温度均匀性,避免形成σ相。
复合坯采用四层结构组成,由最上面与最下面两层的基层碳钢材料,中间两层为超级双相不锈钢,双相不锈钢之间采用分离剂进行分隔的方式组成。其中上层碳钢与清除污染物以及表面氧化物之后的双相不锈钢表面直接接触,组成一个真空坯;类似地,下层碳钢与双相不锈钢也组成一组真空坯。两组真空坯对称地叠放在一起,并在两组真空坯的双相不锈钢坯料之间填充分离剂,然后将两组真空坯组成一组待轧真空坯料。该方案的优势:四层组合坯为两个相对独立复合系统,两个真空组合坯再组成一个真空系统,这样,真空系统也就存在了两道保护屏障,即使单个复合系统偶尔发生真空度降低的情况,另一个复合系统仍然可以保证复合钢板结合需要的高真空度,从而有效地降低复合轧制过程中可能出现的失真空风险。单系统真空方法在焊缝出现失效失真空的情况下,复合轧制容易失效,与单系统真空方法相比,采用本发明方法,在发生焊缝失效失真空的情况下,轧制成功率可以从0%提升到75%。在轧制过程中,双相不锈钢表面与双相不锈钢表面添加的分离剂起隔离的作用,轧制完成后切割分离成为单独两层结构的成品复合钢板。
本发明所述的超级双相不锈钢复合钢板的制造方法,其包括如下步骤:
1)根据复合钢板覆层与基层厚度配比的要求进行组合坯料的双相不锈钢与碳钢的厚度选择;碳钢选用连铸坯进行加热开坯至要求尺寸;将需要与双相不锈钢复合的碳钢表面清理至完全露出金属表面;双相不锈钢表面氧化皮与污染物清理干净;
2)将清理后的碳钢面与清理后的双相不锈钢面直接叠合在一起,然后进行真空封焊,真空度控制在0.001Pa以下,作为第一道的真空控制,形成上下两个独立的碳钢与双相不锈钢形成的真空坯,形成第一道真空屏障;然后双相不锈钢面与双相不锈钢面相向堆放,厚度方向对称堆放;双相不锈钢与双相不锈钢面之间涂刷分离剂用于隔离,叠合后,四周封焊后进行抽真空处理;真空度控制在0.01Pa以下,形成第二道真空屏障;并形成四层结构的复合坯;
3)复合坯加热,加热温度控制在1100-1250℃;
4)复合坯的轧制开轧温度:1070-1220℃,终轧温度:900℃-1020℃;
5)轧制后直接采用压缩空气或水冷方式对叠合复合钢板进行冷却,开冷温度控制在880℃-1000℃,冷却速度:2℃/s-40℃/s,终冷温度:250-680℃;
6)采用等离子切割轧制后的叠合复合钢板的头尾与边部,使叠合复合钢板分离成为上下对称的两组成品复合钢板。
进一步,制造方法还包括:采用回火热处理,回火温度为500-600℃,回火后进行空冷处理。
优选的,步骤4)中,道次压下率控制在10-25%。
在本发明复合钢板的制造方法中:
复合钢板的生产方法:根据复合钢板覆层与基层厚度配比的要求选择组合坯料的双相不锈钢与碳钢的厚度。碳钢选用连铸坯进行加热开坯至要求尺寸;将需要与双相不锈钢复合的碳钢表面清理至完全裸露出金属表面,双相不锈钢表面氧化皮与污染物清理干净。将清理至完全裸露出金属表面碳钢面与双相不锈钢面直接叠合在一起,然后进行真空封焊,真空度控制在0.001Pa以下,作为第一道的真空屏障。形成上下两个碳钢与双相不锈钢组成的真空坯,然后双相不锈钢面与双相不锈钢面相向堆放,厚度方向对称堆放。双相不锈钢与双相不锈钢面之间使用分离剂用于隔离。叠合后,四周封焊后进行抽真空处理。真空度控制在0.01Pa以下。
真空复合坯加热温度控制在1100℃-1250℃。在本发明中,加热温度的选择综合考虑了双相不锈钢与碳钢坯的物理特性,该加热温度范围一方面保证了碳钢在生产后具有良好的力学性能,另一方面保证了双相不锈钢可能存在的碳化物、金属中间相在高温下有足够的时间发生重溶再扩散,并且还保证了通过高温下的相转变,双相不锈钢高温阶段的相比例可以控制在40-60%的范围内。
复合坯的轧制:开轧温度选用1070-1220℃,终轧温度在900-1020℃。为了在轧制过程中,保证材料的塑性变形,复合材料界面的金属原子在受 到足够的压缩应力,形成原子通过扩散形成相互渗透,使界面能够达到原子间的结合,以及足够的变形,从而使得界面经历几次再结晶。优选地,道次压下率控制在10-25%,以提供足够的形变储存能量进行再结晶或相变。
轧制后直接采用压缩空气或喷水冷方式对复合坯进行冷却。开冷温度控制在880℃-1000℃。冷却速度为2℃/s-40℃/s,终冷温度为250-680℃。
采用等离子切割轧制后的叠合复合钢板的头尾与边部,使叠合复合钢板分离成为上下对称的两组成品复合钢板。
其中叠合复合钢板的头尾是指叠合复合钢板长度方向的两端,边部是指叠合复合钢板宽度方向的两边部分。
对强度级别要求较高的复合钢板,根据用户对交货态的要求,采用低终冷温度(≤300℃)的复合坯也可以适当配合采用回火热处理,回火温度可选用500-600℃,使基层材料的急速冷却所产生的应力得到释放,获得更好的塑性与韧性,同时该温度短时间的处理,可以保证覆层不锈钢的耐蚀性几乎不受影响。回火后进行空冷处理。
本发明所述的超级双相不锈钢复合钢板基层材料选用屈服强度为235-550MPa级别的碳钢。通过本方案轧制工艺制造的复合钢板具有良好的结合能力,剪切强度可以达到290MPa以上。
复合钢板中双相不锈钢覆层的屈服强度可以达到550MPa以上,抗拉强度则高于795MPa。碳钢的性能则可以通过设计成分满足不同屈服强度的要求,如:235,345,460,550MPa以上的屈服强度。
通过本发明生产的复合钢板性能具有良好的力学性能,并且该复合钢板覆层材料具有优良的耐腐蚀性能。
本发明的复合钢板复合坯采用四层对称组坯轧制。常规组坯方案为两层组坯或者四层叠合后,通过最上面与最下面的材料进行封焊形成真空系统。常规组坯方案对于结合强度要求高、成本昂贵的合金复合钢板来说,生产过程中真空失效会造成上下层复合钢板的失效,带来较大的经济效益损失,生产风险较大。
本发明采用双真空系统法进行生产,可以确保在生产过程中,即使在一道真空遭破坏后,仍然可以通过第二道系统保持复合钢板内的真空系 统。通过本发明方法生产的复合钢板具有优良的结合强度以及良好的生产稳定性。特别适合于覆层材料较为昂贵、结合性能要求较高的轧制复合钢板材料。
因此,与现有技术相比,本发明可以带来两方面的有益效果:
1.采用两道真空屏障轧制方法可以有效地提高并维持更高的真空度,并可以有效降低存放过程中真空失效的风险。
2.采用现有的单系统真空组坯方法,一旦组坯或轧制过程真空失效,整组复合坯全部失效。而本发明采用两道真空屏障轧制方法,由于即使在组坯过程或者轧制过程,其中某道真空屏障出现真空失效的情况,另外一道真空屏障仍能保持良好的真空系统,可以有效提升复合坯轧制的成材率。复合钢板轧制的高成功率,对合金含量较高、较昂贵的耐蚀合金复合钢板生产来说,可以确保生产性能的稳定性,并获得良好的经济效益。
本发明超级双相不锈钢复合钢板兼具强度高、耐腐蚀性优异、低温冲击韧性好等多种优势,特别适用于各种耐腐蚀要求高、对氯离子点腐蚀有较高要求,并且对磨损也有一定要求的环境,如能源、化工、海洋、运输、发电、造纸、食品等行业。
附图说明
图1为本发明所述的超级双相不锈钢复合钢板复合坯的结构剖视图。
图2为本发明实施例超级双相不锈钢复合钢板在碳钢层和双相不锈钢层结合处的金相组织照片。
具体实施方式
下面将结合实施例和附图对本发明做进一步说明。
参见图1,本发明的高耐蚀双相不锈钢复合钢板复合坯,其为四层结构,其中,中间两层1、2为双相不锈钢,上下两层3、4为碳钢;5为分离剂,6为封闭焊缝。分离剂用于隔离两层不锈钢,防止两层不锈钢发生粘连。
实施例1
基层碳钢屈服强度为235MPa以上,其化学成分如下(wt%):C:0.032,Si:0.20,Mn:1.45,P:0.015,S:0.002,Al:0.02,Cu:0.01,Cr:0.01,Ni:0.01,Nb:0.003,Mo:0.01,Ti:0.003;双相不锈钢的成分(wt%):C:0.014,Si:0.43,Mn:0.85,Cr:25.34,Ni:7.32,Mo:4.11,N:0.30。
采用如图1所示的四层对称分离方法组坯:从上向下依次设置碳钢坯料、双相不锈钢坯料、双相不锈钢坯料和碳钢坯料,其中上层碳钢坯料与其对应的双相不锈钢坯料进行真空封闭,下层碳钢与其对应的双相不锈钢坯料真空封闭,形成两组彼此独立的第一道真空系统;第二道真空系统由图1所示的1层与6层(即本实施例中的碳钢坯料与碳钢坯料)之间进行真空封闭。共同组成双真空系统复合坯。在两组真空坯的双相不锈钢与双相不锈钢面之间填充分离剂,然后将抽真空复合坯通过加热轧制、切割成成品复合钢板。如图2所示,采用卡尔蔡司光学显微镜Axio Imager.M2m在20倍物镜进行拍摄。其中上层为超级双相不锈钢显微组织,下层为碳钢显微组织。中间为双相不锈钢与碳钢之间界面,已形成良好的冶金结合。
复合轧制:加热温度为1190℃,开轧温度为1170℃,终轧温度为950℃;轧制后直接采用水冷方式对复合坯进行冷却,开冷温度为920℃,冷却速度为40℃/s,终冷温度为600℃,随后在空气下自然冷却至室温。轧制后等离子切割分离后的复合钢板厚度为(5+30)mm,即覆层双相不锈钢的厚度为5mm,基层碳钢的厚度为30mm。
复合钢板的力学性能如表1所示。表1中Rp0.2为全厚度复合钢板的屈服强度,Rm为复合钢板抗拉强度值,A为复合钢板试样的延伸率,反映了复合钢板的覆层与基层材料的综合力学性能。由于碳钢存在较明显的低温敏感性,因此一般对基层碳钢进行低温冲击试验。表1所示,该复合钢板的冲击性能良好。剪切强度是评价覆层与基层材料结合水平的力学指标。三组数据的剪切强度值均高于290MPa。
表1.(5+30)mm厚复合钢板力学性能
Figure PCTCN2019118517-appb-000001
Figure PCTCN2019118517-appb-000002
*采用标准规格厚度×宽度×长度10mm×10mm×55mm试样测试(基层碳钢厚度为10mm)。
复合钢板的覆层耐蚀性能按照ASTM A923C法,将覆层材料加工成50mm*25mm长宽试样表面清理后测量尺寸、称重后,放入40℃的6%的FeCl 3溶液中浸泡24小时腐蚀试验,取出清洗吹干后称重,其失重腐蚀需要满足腐蚀率不大于10mdd的腐蚀要求。并且按照ASTM A262E法进行晶间腐蚀试验,取覆层材料加工两个长宽80mm*20mm的试样,表面用砂纸打磨后在675℃进行1小时敏化处理,浸泡在煮沸的硫酸-硫酸铜溶液中15小时,取出后进行180°弯折试验。其测试结果如表2所示。
表2.(5+30)mm厚复合钢板覆层腐蚀试验结果
Figure PCTCN2019118517-appb-000003
*是指单位面积单位时间内腐蚀失重。
实施例2
基层碳钢采用屈服强度345MPa级碳钢,其化学成分为(wt%):C:0.12,Si:0.24,Mn:0.70,P:0.015,S:0.003,Nb:0.01,Ti:0.01,Al:0.025,Cu、Cr、Ni、Mo未有意添加;双相不锈钢的成分(wt%):C:0.018,Si:0.75,Mn:0.88,Cr:24.1,Ni:6.05,Mo:3.1,N:0.24。
本实施例按照上述成分体系采用与实施例1相同的四层对称分离方法组坯。
复合轧制:加热温度为1250℃,开轧温度为1220℃,终轧温度为1020℃;轧制后直接采用压缩空气对复合坯进行冷却,开冷温度为1000℃,冷却速度2℃/s,终冷温度为680℃,随后在空气下自然冷却至室温。轧制后等离子切割分离后的复合钢板厚度为(3+10)mm,即覆层双相不锈钢 的厚度为3mm,基层碳钢的厚度为10mm。
复合钢板的力学性能如表3所示。表3中Rp0.2为全厚度复合钢板的屈服强度,Rm为复合钢板抗拉强度值,A为复合钢板试样的延伸率,反映了复合钢板的覆层与基层材料的综合力学性能。由于碳钢存在较明显的低温敏感性,因此一般对基层碳钢进行低温冲击试验。由于基层碳钢原始厚度为10mm,无法加工厚度为10mm的试样,所以采用厚度为7.5mm的基层碳钢冲击试样。剪切强度是评价覆层与基层材料结合水平的力学指标。三组数据的剪切强度值均高于290MPa。
表3.(3+10)mm厚复合钢板力学性能
Figure PCTCN2019118517-appb-000004
*采用厚度×宽度×长度7.5mm×10mm×55mm试样测试(基层碳钢厚度为7.5mm)。
复合钢板的覆层耐蚀性能按照ASTM A923C法,将覆层材料加工成50mm*25mm长宽试样表面清理后测量尺寸、称重后,放入40℃的6%的FeCl 3溶液中浸泡24小时腐蚀试验,取出清洗吹干后称重,其失重腐蚀需要满足腐蚀率不大于10mdd的腐蚀要求。并且按照ASTM A262E法进行晶间腐蚀试验,取覆层材料加工两个长宽80mm*20mm的试样,表面用砂纸打磨后在675℃进行1小时敏化处理,浸泡在煮沸的硫酸-硫酸铜溶液中15小时,取出后进行180°弯折试验。其测试结果如表4所示。
表4.(3+10)mm厚复合钢板覆层腐蚀试验结果
Figure PCTCN2019118517-appb-000005
*是指单位面积单位时间内腐蚀失重。
实施例3
基层碳钢采用屈服强度460MPa级碳钢,其化学成分为(wt%):C:0.09,Si:0.22,Mn:0.9,P:0.013;S:0.002,Nb:0.045,Ti:0.018,Cu:0.01,Cr:0.22,Ni:0.23;双相不锈钢的成分(wt%):C:0.016,Si:0.40,Mn:0.92,Cr:25.97,Ni:7.96,Mo:4.98,N:0.32。
本实施例按照上述成分体系采用与实施例1相同的四层对称分离方法组坯。
复合轧制:加热温度为1100℃,开轧温度为1070℃,终轧温度为900℃;轧制后直接采用水冷方式对复合坯进行冷却,开冷温度是880℃,冷却速度为20℃/s,终冷温度为550℃,随后在空气下自然冷却至室温。轧制后等离子切割分离后的复合钢板厚度为(2+8)mm,即覆层双相不锈钢的厚度为2mm,基层碳钢的厚度为8mm。
复合钢板的力学性能如表5所示。表5中Rp0.2为全厚度复合钢板的屈服强度,Rm为复合钢板抗拉强度值,反映了复合钢板的覆层与基层材料的综合力学性能。由于碳钢存在较明显的低温敏感性,因此一般对基层碳钢进行低温冲击试验。由于基层碳钢原始厚度为10mm,无法加工厚度为10mm的试样,所以采用厚度为7.5mm的基层碳钢作为冲击试样。剪切强度是评价覆层与基层材料结合水平的力学指标。三组数据的剪切强度值均高于290MPa。
表5(2+8)mm厚复合钢板力学性能
Figure PCTCN2019118517-appb-000006
**采用厚度×宽度×长度7.5mm×10mm×55mm试样测试(基层碳钢厚度为7.5mm)。
复合钢板的覆层耐蚀性能按照ASTM A923C法,将覆层材料加工成50mm*25mm长宽试样表面清理后测量尺寸、称重后,放入40℃的6%的FeCl 3溶液中浸泡24小时腐蚀试验,取出清洗吹干后称重,其失重腐蚀需要满足腐蚀率不大于10mdd的腐蚀要求。并且按照ASTM A262E法进行晶间腐蚀试验,取覆层材料加工两个长宽80mm*20mm的试样,表面用砂纸打磨后在675℃进行1小时敏化处理,浸泡在煮沸的硫酸-硫酸铜溶液中15小时,取出后进行180°弯折试验。其测试结果如表6所示。
表6.(2+8)mm厚复合钢板覆层腐蚀试验结果
Figure PCTCN2019118517-appb-000007
*是指单位面积单位时间内腐蚀失重。
实施例4
基层碳钢采用屈服强度550MPa级碳钢,其化学成分为(wt%):C:0.07,Si:0.32,Mn:1.55,P:0.012;S:0.002,Cu:0.35,Cr:0.39,Ni:0.40,Nb:0.05,Ti:0.018;双相不锈钢的成分(wt%):C:0.016,Si:0.72,Mn:0.89,Cr:25.69,Ni:7.11,Mo:3.93,N:0.29。
本实施例按照上述成分体系采用与实施例1相同的四层对称分离方法组坯。
复合轧制:加热温度为1150℃,开轧温度为1110℃,终轧温度为990℃;轧制后直接采用水冷方式对复合坯进行冷却,开冷温度是970℃,冷却速度为40℃/s,终冷温度为250℃,随后在空气下自然冷却至室温,再进行回火处理,回火温度为550℃,回火时间为1小时,随后出炉空冷至室温。轧制后等离子切割分离后的复合钢板厚度为(3+12)mm,即覆层双相不锈钢的厚度为3mm,基层碳钢的厚度为12mm。复合钢板的力学性能如表7所示。
复合钢板的力学性能如表7所示。表7中Rp0.2为全厚度复合钢板的屈服强度,Rm为复合钢板抗拉强度值,A为复合钢板试样的延伸率,反映了复合钢板的覆层与基层材料的综合力学性能。由于碳钢存在较明显的低温敏感性,因此一般对基层碳钢进行低温冲击试验。表7所示,该复合钢板的冲击性能良好。剪切强度是评价覆层与基层材料结合水平的力学指标。三组数据的剪切强度值均高于290MPa。
表7.(3+12)mm厚复合钢板力学性能
Figure PCTCN2019118517-appb-000008
*采用标准规格厚度×宽度×长度10mm×10mm×55mm试样测试(基层碳钢厚度为10mm)
复合钢板的覆层耐蚀性能按照ASTM A923C法,将覆层材料加工成50mm*25mm长宽试样表面清理后测量尺寸、称重后,放入40℃的6%的FeCl 3溶液中浸泡24小时腐蚀试验,取出清洗吹干后称重,其失重腐蚀需要满足腐蚀率不大于10mdd的腐蚀要求。并且按照ASTM A262E法进行晶间腐蚀试验,取覆层材料加工两个长宽80mm*20mm的试样,表面用砂纸打磨后在675℃进行1小时敏化处理,浸泡在煮沸的硫酸-硫酸铜溶液中15小时,取出后进行180°弯折试验。其测试结果如表8所示。
表8.(3+12)mm复合钢板覆层腐蚀试验结果
Figure PCTCN2019118517-appb-000009
*是指单位面积单位时间内腐蚀失重。
对比例
采用实施例2相同的材料按照相同的生产工艺轧制一组。进行性能的比较。
基层碳钢采用屈服强度345MPa级碳钢,其化学成分为(wt%):C:0.12,Si:0.24,Mn:0.70,P:0.015;S:0.003,Nb:0.01,Ti:0.01,Al:0.025,Cu、Cr、Ni、Mo未有意添加。双相不锈钢的成分(wt%):C:0.018,Si:0.75,Mn:0.88,Cr:24.1,Ni:6.05,Mo:3.1,N:0.24。
本比较例按照上述成分体系采用普通的四层对称分离方法组坯,即单真空系统。从上向下依次设置碳钢坯料、双相不锈钢坯料、双相不锈钢坯料和碳钢坯料,双相不锈钢与双相不锈钢面之间涂刷分离剂。然后将四层坯料一次性封焊为一个单独的真空系统。该方法组坯效率更高,但是只能通过焊缝保证一道真空系统。
复合轧制设定工艺:加热温度为1250℃,开轧温度为1220℃,终轧温度为1020℃;轧制后直接采用压缩空气对复合坯进行冷却,开冷温度为1000℃,冷却速度为20℃/s,终冷温度为680℃,随后在空气下自然冷却至室温。轧制切割后的复合钢板厚度为(3+10)mm,即覆层双相不锈钢的厚度为3mm,基层碳钢的厚度为10mm。
复合钢板的力学性能如表9所示。表9中Rp0.2为全厚度复合钢板的屈服强度,Rm为复合钢板抗拉强度值,A为复合钢板的延伸率,反映的为复合钢板的覆层与基层材料的综合力学性能。由于碳钢存在较明显的低温敏感性,因此一般对基层碳钢进行低温冲击试验。由于基层碳钢原始厚度为10mm,无法加工厚度为10mm的试样,所以采用厚度为7.5mm的基层碳钢作为冲击试样。由于对比例采用的轧制工艺与实施例2相同,因此对比例提供的复合钢板的拉伸与冲击性能基本接近,但是由于常规复合组坯与本发明组坯工艺的差异,所以表征复合钢板覆层与基层结合能力的剪切强度则数值较低,且波动更大。
表9.(3+10)mm厚复合钢板力学性能
Figure PCTCN2019118517-appb-000010
Figure PCTCN2019118517-appb-000011
*采用厚度×宽度×长度7.5mm×10mm×55mm试样测试(基层碳钢厚度为7.5mm)。
复合钢板的覆层耐蚀性能按照ASTM A923C法,将覆层材料加工成50mm*25mm长宽试样表面清理后测量尺寸、称重后,放入40℃的6%的FeCl 3溶液中浸泡24小时腐蚀试验,取出清洗吹干后称重,其失重腐蚀需要满足腐蚀率不大于10mdd的腐蚀要求。并且按照ASTM A262E法进行晶间腐蚀试验,取覆层材料加工两个长宽80mm*20mm的试样,表面用砂纸打磨后在675℃进行1小时敏化处理,浸泡在煮沸的硫酸-硫酸铜溶液中15小时,取出后进行180°弯折试验。其测试结果如表10所示。
对比对比例的腐蚀试验与实施例2的腐蚀结果可见,由于采用的轧制工艺相同,对覆层材料的耐蚀性能几乎没有影响。两者最主要的差别还是来自于覆层与基层材料的结合控制能力。
表10.(3+10)mm厚复合钢板覆层腐蚀试验结果
Figure PCTCN2019118517-appb-000012
*是指单位面积单位时间内腐蚀失重。
表11.采用常规复合组坯工艺与本案复合组坯工艺的组坯轧制情况比较
工艺方式 试验组坯数量 轧制成功数量 轧制成功率
常规工艺 10 6 60%
本发明复合组坯工艺 9 9 100%
如表11为采用常规复合组坯工艺与本案复合组坯工艺的组坯轧制情况比较所示,对双相不锈钢等较昂贵的耐蚀合金复合钢板采用两道真空屏障轧制方法,试验组坯数量为9组,轧制成功数量为9组,其轧制成功率达到了100%。从组坯轧制成功率来看,采用本发明提供的复合组坯工艺 的轧制成功率与常规复合轧制组坯工艺相比,轧制成功率有显著提高。其中常规复合组坯工艺为一次整体封闭焊接单系统真空的组坯方式,该组坯工艺对真空控制工艺要求高,易出现轧制失败情况,成材率偏低。而本发明的组坯方案为四层对称分离方法组坯,即双真空系统,轧制可靠性可以大幅提高。结合表11中本发明实施例与对比例的组坯轧制情况比较,本发明组坯方案提供的复合钢板的结合性能更高、更稳定。

Claims (6)

  1. 一种超级双相不锈钢复合钢板,其特征在于,其为两层结构,其中,一层为双相不锈钢,一层为碳钢;
    所述双相不锈钢的成分重量百分比为:C≤0.03%,Mn≤1.20%,Si≤0.80%,Cr:24.0-26.0%,Ni:6.0-8.0%,Mo:3.0-5.0%,N:0.24-0.32%,P≤0.03%,S≤0.02%,余量为Fe以及不可避免杂质;
    所述碳钢的成分重量百分比为:C:0.03~0.12%,Si:0.10~0.45%,Mn:0.70-1.60%,P:0~0.020%;S:0~0.025%,Cu:0~0.35%,Cr:0~0.40%,Ni:0~0.40%,Nb:0~0.05%,Mo:0~0.40%,Ti:0~0.018%,Al:0.015~0.045%,余量为Fe以及不可避免杂质。
  2. 如权利要求1所述的超级双相不锈钢复合钢板,其特征在于,所述复合钢板的所述双相不锈钢与所述碳钢之间界面的剪切强度达到290MPa以上,屈服强度在300-650MPa,抗拉强度在400-900MPa。
  3. 如权利要求1或2所述的超级双相不锈钢复合钢板,其特征在于,所述复合钢板中所述碳钢的屈服强度为235-550MPa;所述双相不锈钢的屈服强度550MPa以上,抗拉强度则高于795MPa。
  4. 如权利要求1~3中任何一项所述的超级双相不锈钢复合钢板的制造方法,其特征在于,包括如下步骤:
    1)根据复合钢板覆层与基层厚度配比的要求进行组合坯料的双相不锈钢与碳钢的厚度选择;碳钢选用连铸坯进行加热开坯至要求尺寸;将需要与所述双相不锈钢复合的碳钢表面清理至完全露出金属表面;所述双相不锈钢表面氧化皮与污染物清理干净;
    2)将清理后的碳钢面与清理后的双相不锈钢面直接叠合在一起,然后进行真空封焊,真空度控制在0.001Pa以下,作为第一道的真空控制,形成上下两个独立的碳钢与双相不锈钢形成的真空坯,形成第一道真空屏障;然后双相不锈钢面与双相不锈钢面相向堆放,厚度方向对称堆放;双相不锈钢与双相不锈钢面之间涂刷分离剂用于隔离,叠合后,四周封焊后进行抽真空处理;真空度控制在0.01Pa以下,形成第二道真空屏障;并形成四层结构的复合坯;
    3)复合坯加热,加热温度控制在1100-1250℃;
    4)复合坯的轧制
    开轧温度:1070-1220℃,终轧温度:900-1020℃;
    5)轧制后直接采用压缩空气或水冷方式对叠合复合钢板进行冷却,开冷温度控制在880-1000℃,冷却速度:2℃/s-40℃/s,终冷温度:250-680℃;
    6)采用等离子切割轧制后的叠合复合钢板的头尾与边部,使叠合复合钢板分离成为上下对称的两组成品复合钢板。
  5. 如权利要求4所述的超级双相不锈钢复合钢板的制造方法,其特征在于,所述制造方法还包括:采用回火热处理,回火温度:500-600℃,回火后进行空冷处理。
  6. 如权利要求4所述的超级双相不锈钢复合钢板的制造方法,其特征在于,步骤4)中,道次压下率控制在10-25%。
PCT/CN2019/118517 2018-11-29 2019-11-14 一种超级双相不锈钢复合钢板及其制造方法 WO2020108317A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2019388670A AU2019388670B2 (en) 2018-11-29 2019-11-14 Clad steel plate of super duplex stainless steel and manufacturing method thereof
EP19889071.7A EP3865296A4 (en) 2018-11-29 2019-11-14 STEEL PLATE LAMINATED WITH SUPERDUPLEX STAINLESS STEEL AND METHOD FOR MANUFACTURING IT
BR112021009678-7A BR112021009678A2 (pt) 2018-11-29 2019-11-14 Chapa de aço revestida de aço inoxidável super duplex e método de fabricação da mesma
US17/295,114 US20220098699A1 (en) 2018-11-29 2019-11-14 Super duplex stainless steel clad steel plate and manufacturing method therefor
JP2021524415A JP7098837B2 (ja) 2018-11-29 2019-11-14 スーパー二相ステンレスクラッド鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811444072.X 2018-11-29
CN201811444072.XA CN109532144B (zh) 2018-11-29 2018-11-29 一种超级双相不锈钢复合钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2020108317A1 true WO2020108317A1 (zh) 2020-06-04

Family

ID=65852378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118517 WO2020108317A1 (zh) 2018-11-29 2019-11-14 一种超级双相不锈钢复合钢板及其制造方法

Country Status (7)

Country Link
US (1) US20220098699A1 (zh)
EP (1) EP3865296A4 (zh)
JP (1) JP7098837B2 (zh)
CN (1) CN109532144B (zh)
AU (1) AU2019388670B2 (zh)
BR (1) BR112021009678A2 (zh)
WO (1) WO2020108317A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342351A (zh) * 2020-09-14 2021-02-09 舞阳钢铁有限责任公司 一种特殊轧制工艺生产复合用钢板方法
CN113278871A (zh) * 2021-04-29 2021-08-20 共享铸钢有限公司 一种超级双相不锈钢的熔炼方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532144B (zh) * 2018-11-29 2021-01-12 宝山钢铁股份有限公司 一种超级双相不锈钢复合钢板及其制造方法
CN110835715B (zh) * 2019-10-28 2021-04-02 鞍钢股份有限公司 一种大厚度加氢反应器壳体用复合钢板及其制造方法
CN111020368B (zh) * 2019-10-30 2021-07-20 鞍钢股份有限公司 一种海水淡化用双相不锈钢复合钢板及其制造方法
CN110788137B (zh) * 2019-11-20 2022-04-05 太原科技大学 一种利用铸态坯料制备金属复合板的方法
CN111215781B (zh) * 2020-02-28 2021-05-28 鞍钢股份有限公司 一种钛钢复合板及其焊接接头腐蚀挂片制作方法
CN111468898A (zh) * 2020-04-20 2020-07-31 湖南卡密尔新材料科技有限公司 一种复合耐磨钢板的制备方法
CN111530927B (zh) * 2020-05-09 2022-02-01 柳州钢铁股份有限公司 一种不锈钢复合板的轧制方法
CN112481466B (zh) * 2020-10-30 2022-10-28 四川惊雷科技股份有限公司 碳钢-不锈钢复合板的补救热处理工艺
CN113399457A (zh) * 2021-05-10 2021-09-17 北京交通大学 一种双相不锈钢-碳钢复合板热轧工艺方法
CN114054759B (zh) * 2021-11-17 2023-09-01 成都先进金属材料产业技术研究院股份有限公司 高端厨刀用复合板材的制备方法
CN114618884A (zh) * 2022-03-30 2022-06-14 鞍钢股份有限公司 一种碳钢、不锈钢热轧复合卷板的生产方法
CN116445811A (zh) * 2023-02-28 2023-07-18 张家港宏昌钢板有限公司 420MPa级不锈钢复合板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148540A1 (ja) * 2013-03-19 2014-09-25 新日鐵住金ステンレス株式会社 線状加熱性良好な二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
CN106975834A (zh) * 2017-04-27 2017-07-25 嘉峪关天源新材料有限责任公司 一种大宽幅大面积不锈钢复合板的生产方法
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
JP2018028146A (ja) * 2016-08-10 2018-02-22 新日鐵住金ステンレス株式会社 クラッド鋼用二相ステンレス鋼及びクラッド鋼
CN108246825A (zh) * 2017-12-25 2018-07-06 南京钢铁股份有限公司 一种tmcp型船用双相不锈钢复合板的制备方法
CN108723712A (zh) * 2018-05-29 2018-11-02 南京钢铁股份有限公司 一种高耐蚀容器用超级奥氏体不锈钢复合板及制备方法
CN109532144A (zh) * 2018-11-29 2019-03-29 宝山钢铁股份有限公司 一种超级双相不锈钢复合钢板及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216892A (ja) 1985-07-15 1987-01-26 Nippon Kokan Kk <Nkk> 耐食性および溶接性に優れた高強度ステンレスクラツド鋼板の製造方法
JPH0716792B2 (ja) * 1990-03-30 1995-03-01 新日本製鐵株式会社 クラッド鋼板の製造方法
JPH04263016A (ja) * 1991-02-15 1992-09-18 Nippon Steel Corp 低温靱性の優れたクラッド鋼板の製造法
JP3166798B2 (ja) * 1992-10-06 2001-05-14 住友金属工業株式会社 耐食性、相安定性に優れた二相ステンレス鋼
JP4263016B2 (ja) 2003-05-02 2009-05-13 株式会社Gsiクレオス 複合樹脂材およびその製造方法
JP2010194562A (ja) 2009-02-24 2010-09-09 Hitachi Plant Technologies Ltd 海水用ポンプの構造部材を溶接する溶接金属及び海水ポンプ
KR101301994B1 (ko) * 2011-11-16 2013-09-03 삼성중공업 주식회사 선박용 클래드강 제조 방법
JP5803890B2 (ja) 2012-12-07 2015-11-04 Jfeスチール株式会社 耐孔食性に優れた二相ステンレスクラッド鋼の合せ材及びそれを用いた二相ステンレスクラッド鋼並びにその製造方法
EP2998665B1 (en) 2013-05-16 2018-03-21 Mitsubishi Electric Corporation Refrigeration device
CN104441822A (zh) * 2014-11-29 2015-03-25 首钢总公司 一种不锈钢与碳钢复合钢板及其生产方法
CN105772507A (zh) * 2016-03-25 2016-07-20 首钢总公司 一种碳钢与双相不锈钢复合钢板及其生产方法
JP6477735B2 (ja) * 2017-01-26 2019-03-06 Jfeスチール株式会社 二相ステンレスクラッド鋼およびその製造方法
CN107379671A (zh) * 2017-08-31 2017-11-24 宝钛集团有限公司 2205双相不锈钢板—钢板复合板的制备方法
CN111918979B (zh) * 2018-03-30 2022-01-18 杰富意钢铁株式会社 双相不锈钢包层钢板和其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148540A1 (ja) * 2013-03-19 2014-09-25 新日鐵住金ステンレス株式会社 線状加熱性良好な二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
JP2018028146A (ja) * 2016-08-10 2018-02-22 新日鐵住金ステンレス株式会社 クラッド鋼用二相ステンレス鋼及びクラッド鋼
CN106975834A (zh) * 2017-04-27 2017-07-25 嘉峪关天源新材料有限责任公司 一种大宽幅大面积不锈钢复合板的生产方法
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
CN108246825A (zh) * 2017-12-25 2018-07-06 南京钢铁股份有限公司 一种tmcp型船用双相不锈钢复合板的制备方法
CN108723712A (zh) * 2018-05-29 2018-11-02 南京钢铁股份有限公司 一种高耐蚀容器用超级奥氏体不锈钢复合板及制备方法
CN109532144A (zh) * 2018-11-29 2019-03-29 宝山钢铁股份有限公司 一种超级双相不锈钢复合钢板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865296A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342351A (zh) * 2020-09-14 2021-02-09 舞阳钢铁有限责任公司 一种特殊轧制工艺生产复合用钢板方法
CN113278871A (zh) * 2021-04-29 2021-08-20 共享铸钢有限公司 一种超级双相不锈钢的熔炼方法

Also Published As

Publication number Publication date
AU2019388670A1 (en) 2021-05-27
JP7098837B2 (ja) 2022-07-11
CN109532144B (zh) 2021-01-12
US20220098699A1 (en) 2022-03-31
BR112021009678A2 (pt) 2021-08-24
EP3865296A4 (en) 2021-11-03
JP2022506814A (ja) 2022-01-17
EP3865296A1 (en) 2021-08-18
CN109532144A (zh) 2019-03-29
AU2019388670B2 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2020108317A1 (zh) 一种超级双相不锈钢复合钢板及其制造方法
WO2018099326A1 (zh) 一种超级奥氏体不锈钢轧制复合钢板及其制造方法
EP3219820B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
WO2020134675A1 (zh) 一种耐蚀船用复合钢板及其制造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
JP6149102B2 (ja) 線状加熱性良好な二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
WO2019189871A1 (ja) 二相ステンレスクラッド鋼板およびその製造方法
WO2015059909A1 (ja) オーステナイト系ステンレスクラッド鋼板およびその製造方法
JP5406233B2 (ja) 二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
JP6705569B1 (ja) クラッド鋼板およびその製造方法
WO2013094130A1 (ja) 高強度鋼板およびその製造方法
JP2007262441A (ja) 原油タンク用鋼およびその製造方法
US20230140191A1 (en) High-strength hot-rolled steel sheet and method for manufacturing the same
WO2017169011A1 (ja) Ti含有フェライト系ステンレス鋼板および製造方法並びにフランジ
EP3686306B1 (en) Steel plate and method for manufacturing same
JPWO2019130914A1 (ja) クラッド鋼板
JP2019007055A (ja) 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
EP2843068B1 (en) A METHOD OF MAKING A Cr-CONTAINING STEEL PIPE FOR LINEPIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELDED HEAT AFFECTED ZONE
TWI650431B (zh) 高強度厚鋼板及其製造方法
JP4899885B2 (ja) 靭性および脆性亀裂伝播停止特性に優れた薄肉調質高張力鋼板およびその製造方法
WO2024101317A1 (ja) クラッド鋼板およびその製造方法
JPS61273277A (ja) 耐応力腐蝕割れ性のすぐれた引張強さ90Kgf/mm↑2以上の高張力鋼の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524415

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019889071

Country of ref document: EP

Effective date: 20210511

ENP Entry into the national phase

Ref document number: 2019388670

Country of ref document: AU

Date of ref document: 20191114

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009678

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021009678

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210518