WO2020107721A1 - 热泵热水器控制方法及热泵热水器 - Google Patents

热泵热水器控制方法及热泵热水器 Download PDF

Info

Publication number
WO2020107721A1
WO2020107721A1 PCT/CN2019/075436 CN2019075436W WO2020107721A1 WO 2020107721 A1 WO2020107721 A1 WO 2020107721A1 CN 2019075436 W CN2019075436 W CN 2019075436W WO 2020107721 A1 WO2020107721 A1 WO 2020107721A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
water heater
pump water
temperature
operating frequency
Prior art date
Application number
PCT/CN2019/075436
Other languages
English (en)
French (fr)
Inventor
黄娟
田金城
杨磊
李博
Original Assignee
青岛经济技术开发区海尔热水器有限公司
青岛海尔新能源电器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛经济技术开发区海尔热水器有限公司, 青岛海尔新能源电器有限公司, 海尔智家股份有限公司 filed Critical 青岛经济技术开发区海尔热水器有限公司
Priority to ES19888387T priority Critical patent/ES2945563T3/es
Priority to EP19888387.8A priority patent/EP3889518B1/en
Publication of WO2020107721A1 publication Critical patent/WO2020107721A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of a water heater, in particular, to a control method of a heat pump water heater and a heat pump water heater.
  • the frequency control method of the existing variable frequency air source heat pump water heater usually uses different water temperature and ambient temperature to give the frequency to control, and for the static heating type air source heat pump water heater, the evaporation temperature and the condensation temperature continuously change with the heating process, The method using a given frequency is difficult to maintain at the optimal operating frequency in real time, causing energy waste.
  • a control method of heat pump water heater including:
  • the fitting calculation steps include:
  • Start-up operation steps include:
  • the heat pump water heater starts operation, periodically obtains the evaporation temperature and the condensation temperature, calculates the optimal operating frequency of the compressor according to the optimal operating frequency formula, and adjusts the compressor based on this.
  • step (12) a step of calculating the second derivative of the energy efficiency ratio formula is also included, and it is determined whether the value of the second derivative is less than 0, and if it is less than 0, step (13) is executed.
  • u, v, w, a, b, c, d are constant coefficients
  • f is the compressor frequency
  • Te is the evaporation temperature
  • Tc is the condensation temperature
  • a step of writing the optimal operating frequency formula into the control program is included.
  • the optimal operating frequency formula is called to calculate the optimal operating frequency.
  • the method for obtaining the evaporation temperature and the condensation temperature in step (21) is direct detection or indirect calculation.
  • evaporation temperature Te and the condensation temperature Tc are calculated indirectly by using the following methods:
  • the water temperature Tw is the water temperature in the water tank.
  • the present invention also proposes a heat pump water heater, including a water tank and a heat pump system, which performs control according to the heat pump water heater control method described in any one of the foregoing.
  • the heat pump water heater is any one of a static heating type heat pump water heater, a direct heat type heat pump water heater, and a circulation type heat pump water heater.
  • the water tank has a water inlet and a water outlet, the water inlet is located at the bottom of the water tank, and the water outlet is located at the top of the water tank.
  • the heat pump water heater control method of the present invention fits the energy efficiency ratio formula through the efficiency data of different evaporating temperature, condensing temperature and operating frequency of the inverter compressor, and the When the first derivative of the ratio formula is equal to zero, there is a maximum value, and the optimal operating frequency formula corresponding to the maximum energy efficiency ratio can be obtained, and the compressor operating frequency that can achieve the optimal energy efficiency ratio when the heat pump water heater is operating is calculated, It can maintain the best energy efficiency ratio when the water heater is heated to any water temperature, which is conducive to saving energy.
  • FIG. 1 is a variation curve of compressor unit efficiency with compressor frequency according to an embodiment of the heat pump water heater control method proposed by the present invention
  • FIG. 2 is a flowchart of an embodiment of a control method for a heat pump water heater proposed by the present invention.
  • the power consumption parts of the air source heat pump water heater are compressor, fan and computer control board.
  • the power consumption of the computer control board is a fixed value.
  • the power consumption of the fan is in accordance with the frequency of the compressor.
  • the power consumption in a certain frequency range is also a fixed value.
  • the compressor is the core component of the air source heat pump water heater. Hot water efficiency depends on compressor efficiency.
  • the efficiency of the compressor changes with frequency and then increases first and then decreases.
  • the efficiency has a maximum value, as shown in Figure 1.
  • Fopt frequency efficiency ratio
  • the maximum COP of different condensation temperatures constitute COPmax is the theoretical optimal COP curve.
  • the heat pump water heater is different from the heat pump air conditioner.
  • the air conditioner has a time-sensitive demand, that is, it needs to heat or cool to reach the target temperature within a predetermined time to meet the user's somatosensory needs. It also requires comprehensive heating, power and other factors.
  • the compressor as the main energy-consuming component only needs to seek the maximum energy efficiency ratio when the compressor is used to heat the water to the set temperature.
  • the maximum energy efficiency ratio of the heat pump water heater it does not need to consider the time parameter, that is, the heating power does not need to be considered, the calculation formula is simplified, and the calculation amount can be reduced.
  • this embodiment proposes a heat pump water heater control method, as shown in FIG. 2, including:
  • the fitting calculation steps include:
  • the independent variables of the optimal operating frequency fopt formula are evaporating temperature and condensing temperature, when the heat pump water heater is turned on, it is only necessary to periodically detect the evaporating temperature and condensing temperature, and substitute the optimal operating frequency formula to obtain the current operating conditions.
  • the best operating frequency of the compressor corresponds to the best energy efficiency ratio.
  • boot operation steps include:
  • the heat pump water heater starts operation, periodically obtains the evaporation temperature and the condensation temperature, calculates the optimal operating frequency of the compressor according to the optimal operating frequency formula, and adjusts the compressor based on this.
  • the maximum energy efficiency ratio when heating the water to the set temperature when fitting the compressor unit can be used as the maximum energy efficiency ratio of the heat pump water heater without considering the time parameter, that is, without considering Heating power simplifies the calculation formula, can reduce the amount of calculation, and can maintain the best energy efficiency ratio when the water heater is heated to any water temperature, which is conducive to saving energy consumption.
  • the energy efficiency ratio formula in this solution is:
  • the energy efficiency ratio formula reflects the energy efficiency ratio of the compressor monomer and the evaporation temperature and condensation temperature.
  • This solution can be used as a heat pump water heater by obtaining the maximum energy efficiency ratio of the compressor monomer when heating the water to the set temperature
  • the maximum energy efficiency ratio does not need to consider the time parameter, that is, the heating power does not need to be considered, the calculation formula is simplified, and the calculation amount can be reduced.
  • the only parameters required for the calculation are the evaporation temperature and the condensation temperature, which are easy to obtain.
  • the heat pump water heater may be any one of a static heating type heat pump water heater, a direct heating type heat pump water heater, and a circulation type heat pump water heater.
  • the fitting calculation step also includes the step of writing the above optimal operating frequency formula into the control program of the heat pump water heater.
  • the optimal operating frequency formula is called, and the obtained evaporation temperature and condensation temperature are entered, namely The best operating frequency can be calculated.
  • Adjusting the operating frequency of the compressor is consistent with the collection frequency of the evaporating temperature and the condensing temperature, and can be set according to the actual needs. It can achieve the best energy efficiency ratio when the water heater is heated to any water temperature, which is conducive to saving energy consumption.
  • the method of acquiring the evaporation temperature Te and the condensation temperature Tc in step S21 may be directly detected by using a temperature sensor, or may also be indirectly calculated.
  • the indirect calculation method is adopted in order to prevent the alternative solution taken when the evaporating temperature sensor or the condensing temperature sensor fails.
  • the following method is used to indirectly calculate the evaporation temperature Te and the condensation temperature Tc:
  • the water temperature Tw is the water temperature in the water tank.
  • the above constant coefficients are obtained based on experience.
  • This embodiment proposes a heat pump water heater, including a water tank (not shown in the figure) and a heat pump system, and the control method of the heat pump water heater described in Embodiment 1 performs control.
  • the heat pump system can be an air source heat pump or a solar heat pump, which is not limited here.
  • the principle of making hot water in the heat pump system is to drive the refrigerant circulation through the compressor and absorb the energy in the air or sunlight. The water is heated.
  • the specific control method of the heat pump water heater please refer to the description in Embodiment 1, which will not be repeated here.
  • the control method in this scheme can be used as the maximum energy efficiency ratio of the heat pump water heater by obtaining the maximum energy efficiency ratio of the compressor when heating the water to the set temperature, without considering the time parameter, that is, without considering the heating power, simplifying
  • the calculation formula can reduce the amount of calculation.
  • the only parameters required for the calculation are the evaporation temperature and the condensation temperature, which are easy to obtain.
  • the heat pump water heater may be any one of a static heating type heat pump water heater, a direct heating type heat pump water heater, and a circulation type heat pump water heater.
  • the water tank has a water inlet and a water outlet.
  • the water inlet is located at the bottom of the water tank, and the water outlet is located at the top of the water tank.
  • the heat exchange efficiency of the whole machine is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Resistance Heating (AREA)

Abstract

一种热泵热水器控制方法,包括:拟合计算步骤,包括:(11)、计算压缩机单体在不同蒸发温度、冷凝温度以及压缩机运行频率时的能效比;(12)、拟合能效比公式;(13)、将能效比公式求一阶导数,并另该一阶导数的等式值为0,得到压缩机的最佳运行频率公式;开机运行步骤,包括:(21)、周期性获取蒸发温度与冷凝温度,计算出压缩机的最佳运行频率,并以此调整压缩机。

Description

热泵热水器控制方法及热泵热水器 技术领域
本发明涉及一种热水器技术领域,具体地说,是涉及一种热泵热水器控制方法及热泵热水器。
背景技术
现有变频空气源热泵热水器的频率控制方法通常采用不同水温和环境温度给定频率的方法进行控制,而对于静态加热式空气源热泵热水器其蒸发温度和冷凝温度随着加热过程是不断变化的,采用给定频率的方法难以实时保持在最佳运行频率,造成能源浪费。
发明内容
本发明为了解决现有热泵热水器由于在加热过程中水温逐渐变化,因此其蒸发温度和冷凝温度相应变化,目前采用给定频率的方法难以实时保持在最佳运行频率,造成能源浪费的技术问题,提出了一种热泵热水器控制方法,可以解决上述问题。
为了解决上述技术问题,本发明采用以下技术方案予以实现:
一种热泵热水器控制方法,包括:
拟合计算步骤,包括:
(11)、计算压缩机单体在不同蒸发温度、冷凝温度以及压缩机运行频率时的能效比;
(12)、拟合能效比公式,其中,自变量为蒸发温度、冷凝温度以及压缩机运行频率,因变量为能效比;
(13)、将能效比公式求一阶导数,并另该一阶导数的等式值为0,得到压缩机的最佳运行频率公式,该最佳运行频率公式的自变量为蒸发温度和冷凝温度,因变量为压缩机的最佳运行频率;
开机运行步骤,包括:
(21)、热泵热水器开机运行,周期性获取蒸发温度与冷凝温度,根据所述最佳运行频率公式计算出压缩机的最佳运行频率,并以此调整压缩机。
进一步的,步骤(12)与步骤(13)之间还包括将能效比公式求二阶导数的步骤,并判断二阶导数值是否小于0,若小于0,则执行步骤(13)。
进一步的,所述能效比公式为:
Figure PCTCN2019075436-appb-000001
其中,u,v,w,a,b,c,d均为常系数,f为压缩机频率,Te为蒸发温度,Tc为冷凝温度。
进一步的,最佳运行频率公式为:
Figure PCTCN2019075436-appb-000002
进一步的,拟合计算步骤之后还包括将最佳运行频率公式写入控制程序的步骤,热泵热水器开机运行时,调用该最佳运行频率公式计算出最佳运行频率。
进一步的,步骤(21)中蒸发温度与冷凝温度的获取方式为直接检测或者间接计算。
进一步的,采用以下方式间接计算获取蒸发温度Te与冷凝温度Tc:
检测环境温度Tx以及水温Tw,分别计算出蒸发温度Te以及冷凝温度Tc:
Te=0.7049·Tx-1.8738
Tc=-5.66·ln(Tw)+30.352;
其中,水温Tw为水箱中的水温。
本发明同时提出了一种热泵热水器,包括水箱和热泵系统,其按照前面任一条所记载的热泵热水器控制方法执行控制。
进一步的,所述热泵热水器为静态加热式热泵热水器、直热式热泵热水器、循环式热泵热水器的任一种。
进一步的,所述水箱具有进水口和出水口,所述进水口位于所述水箱的底部,出水口位于所述水箱的顶部。
与现有技术相比,本发明的优点和积极效果是:本发明的热泵热水器控制方法,通过变频压缩机单体不同蒸发温度、冷凝温度以及运行频率的效率数据拟合出能效比公式,能效比公式的一阶导数等于零时有极大值,可求出能效比最大时对应的最佳运行频率公式,并在热泵热水器运行时以此计算出能够达到最佳能效比的压缩机运行频率,可以在热水器加热到任何水温下均能够保持最佳的能效比,有利于节约能耗。
结合附图阅读本发明实施方式的详细描述后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所提出的热泵热水器控制方法的一种实施例压缩机单体效率随压缩机频率变化曲线;
图2是本发明所提出的热泵热水器控制方法的一种实施例流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
空气源热泵热水器整机耗电部件有压缩机、风机以及电脑控制板。电脑控制板功耗是定值,风机是功耗是配合压缩机频率运行,在一定频率范围功耗也是定值,而压缩机为空气源热泵热水器的核心部件,各个部件已确定的热水器其制热水效率取决于压缩机效率。
蒸发温度和冷凝温度一定的条件下,压缩机效率随频率的变化呈现先增后减的规律,效率有极大值,如图1。其中有一个频率Fopt对应的COP(能效比)最大,相同蒸发温度,不同冷凝温度的最大COP就构成了COPmax为理论最优COP曲线。热泵热水器不同于热泵空调,空调具有时效需求,也即需要在预定时间内进行制热或者制冷达到目标温度,以满足用户体感需求,其还需要综合制热量、功率等因素,对于热泵热水器而言,尤其针对静态加热式热泵热水器,可以允许缓慢对水进行加热,因此,压缩机作为主要耗能部件,只需要寻求压缩机单体时将水加热至设定温度时的最大能效比,即可作为热泵热水器的最大能效比,其无需考虑时间参数,也即无需考虑制热功率,简化了计算公式,可以减小计算量。
基于此,本实施例提出了一种热泵热水器控制方法,如图2所示,包括:
拟合计算步骤,包括:
S11、计算压缩机单体在不同蒸发温度、冷凝温度以及压缩机运行频率时的能效比;该步骤可以在实验室完成,测试压缩机单体在不同蒸发温度、冷凝温度以及压缩机运行频率时的能效比,测试的数据样本数量理论上越多,越反应真实的能效比规律。
S12、拟合能效比公式,其中,自变量为蒸发温度、冷凝温度以及压缩机运行频率,因变量为能效比;根据步骤S11中所测试得到的压缩机单体在不同蒸发温度、冷凝温度以及压缩机运行频率时的能效比,可以拟合出能效比公式。
S13、将能效比公式求一阶导数,并另该一阶导数的等式值为0,得到压缩机的最佳运行频率公式,该最佳运行频率公式的自变量为蒸发温度和冷凝温度,因变量为压缩机的最佳运行频率;由图1可知,能效比公式曲线呈抛物线形,另能效比公式的一阶导数为0时,可出现极大值,并因此求出能效比最大时对应的最佳运行频率fopt公式。
由于最佳运行频率fopt公式的自变量为蒸发温度和冷凝温度,在热泵热水器开启运行时,只需周期性检测出蒸发温度和冷凝温度,代入最佳运行频率公式即可得到当前工况下获得最佳能效比时所对应的压缩机最佳运行频率。
因此,开机运行步骤,包括:
S21、热泵热水器开机运行,周期性获取蒸发温度与冷凝温度,根据所述最佳运行频率公式计算出压缩机的最佳运行频率,并以此调整压缩机。本实施例的热泵热水器控制方法,通过拟合压缩机单体时将水加热至设定温度时的最大能效比,即可作为热泵热水器的最大能效比,其无需考虑时间参数,也即无需考虑制热功率,简化了计算公式,可以减小计算量,同时可以在热水器加热到任何水温下均能够保持最佳的能效比,有利于节约能耗。
作为一个优选的实施例,为了防止所拟合的能效比公式曲线为图1中所示曲线之外的其他曲线,其不存在极大值或者具有多个极大值的情况,本方案将不适用于该种情况,因此,在计算压缩机的最佳运行频率公式之前,也即在步骤S12与步骤S13之间还包括将能效比公式求二阶导数的步骤,并判断二阶导数值是否小于0,若小于0,则执行步骤S13。正常情况下,曲线为如图1中所示的能效比公式的二阶导数是小于0的,若不满足小于0的条件,则判断为不存在极大值或者具有多个极大值的情况,不适用于本方案的热泵热水器控制方法,故需要将该种情况排除掉,防止出现控制故障。
作为一个优选的实施例,本方案中能效比公式为:
Figure PCTCN2019075436-appb-000003
其中,u,v,w,a,b,c,d均为常系数,f为压缩机频率,Te为蒸发温度,Tc为冷凝温度。由以上可知,能效比公式反应了压缩机单体的能效比与蒸发温度和冷凝温度,本方案通过获取压缩机单体时将水加热至设定温度时的最大能效比,即可作为热泵热水器的最大能效比,其无需考虑时间参数,也即无需考虑制热功率,简化了计算公式,可以减小计算量。计算所需参数仅是蒸发温度和冷凝温度,易于获取。
本方案尤其适用于热泵热水器的加热控制逻辑中,热泵热水器可以为静态加热式热泵热水器、直热式热泵热水器、循环式热泵热水器的任一种。
另上述能效比公式等于0,可以得到最佳运行频率公式为:
Figure PCTCN2019075436-appb-000004
拟合计算步骤之后还包括将上述最佳运行频率公式写入热泵热水器的控制程序的步骤,热泵热水器开机运行时,调用该最佳运行频率公式,并输入所获取的蒸发温度和冷凝温度,即可计算出最佳运行频率。调节压缩机的运行频率与蒸发温度和冷凝温度的采集频率一致,可以根据实际需要设置,能够实现在热水器加热到任何水温下均能够保持最佳的能效比,有利于节约能耗。
其中,步骤S21中蒸发温度Te与冷凝温度Tc的获取方式可以为采用温度传感器直接检测,或者也可以采用间接计算的方式。
采用间接计算的方式为了防止当蒸发温度感温包或者冷凝温度感温包发生故障时采取的替代方案,本实施例中采用以下方式间接计算获取蒸发温度Te与冷凝温度Tc:
检测环境温度Tx以及水温Tw,分别计算出蒸发温度Te以及冷凝温度Tc:
Te=0.7049·Tx-1.8738;
Tc=-5.66·ln(Tw)+30.352;
其中,水温Tw为水箱中的水温。上述常数系数为根据经验获取。
实施例二
本实施例提出了一种热泵热水器,包括水箱(图中未示出)和热泵系统,其实施例一中所记载的热泵热水器控制方法执行控制。热泵系统可以是空气源热泵,也可以是太阳能热泵,在此不做限制,热泵系统制热水的原理是通过压缩机驱动冷媒循环,吸收空气中或者阳光照射的能量,用于对水箱中的水进行加热,本热泵热水器的控制方法具体可参见实施例一记载,在此不做赘述。本方案中控制方法通过获取压缩机单体时将水加热至设定温度时的最大能效比,即可作为热泵热水器的最大能效比,其无需考虑时间参数,也即无需考虑制热功率,简化了计算公式,可以减小计算量。计算所需参数仅是蒸发温度和冷凝温度,易于获取。
热泵热水器可以为静态加热式热泵热水器、直热式热泵热水器、循环式热泵热水器的任一种。
水箱具有进水口和出水口,优选进水口位于水箱的底部,出水口位于所述水箱的顶部,进水口的补水压力形成水侧强迫对流动力无需增加动力装置,提高冷媒与水的换热性能,使得整机换热效率大幅提高。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种热泵热水器控制方法,其特征在于,包括:
    拟合计算步骤,包括:
    (11)、计算压缩机单体在不同蒸发温度、冷凝温度以及压缩机运行频率时的能效比;
    (12)、拟合能效比公式,其中,自变量为蒸发温度、冷凝温度以及压缩机运行频率,因变量为能效比;
    (13)、将能效比公式求一阶导数,并另该一阶导数的等式值为0,得到压缩机的最佳运行频率公式,该最佳运行频率公式的自变量为蒸发温度和冷凝温度,因变量为压缩机的最佳运行频率;
    开机运行步骤,包括:
    (21)、热泵热水器开机运行,周期性获取蒸发温度与冷凝温度,根据所述最佳运行频率公式计算出压缩机的最佳运行频率,并以此调整压缩机。
  2. 根据权利要求1所述的热泵热水器控制方法,其特征在于,步骤(12)与步骤(13)之间还包括将能效比公式求二阶导数的步骤,并判断二阶导数值是否小于0,若小于0,则执行步骤(13)。
  3. 根据权利要求1所述的热泵热水器控制方法,其特征在于,所述能效比公式为:
    Figure PCTCN2019075436-appb-100001
    其中,u,v,w,a,b,c,d均为常系数,f为压缩机频率,Te为蒸发温度,Tc为冷凝温度。
  4. 根据权利要求3所述的热泵热水器控制方法,其特征在于,最佳运行频率公式为:
    Figure PCTCN2019075436-appb-100002
  5. 根据权利要求1-4任一项所述的热泵热水器控制方法,其特征在于,拟合计算步骤之后还包括将最佳运行频率公式写入控制程序的步骤,热泵热水器开机运行 时,调用该最佳运行频率公式计算出最佳运行频率。
  6. 根据权利要求1-4任一项所述的热泵热水器控制方法,其特征在于,步骤(21)中蒸发温度与冷凝温度的获取方式为直接检测或者间接计算。
  7. 根据权利要求6所述的热泵热水器控制方法,其特征在于,采用以下方式间接计算获取蒸发温度Te与冷凝温度Tc:
    检测环境温度Tx以及水温Tw,分别计算出蒸发温度Te以及冷凝温度Tc:
    Te=0.7049·Tx-1.8738
    Tc=-5.66·ln(Tw)+30.352;
    其中,水温Tw为水箱中的水温。
  8. 一种热泵热水器,包括水箱和热泵系统,其特征在于,其按照权利要求1-7任一项所述的热泵热水器控制方法执行控制。
  9. 根据权利要求8所述的热泵热水器,其特征在于,所述热泵热水器为静态加热式热泵热水器、直热式热泵热水器、循环式热泵热水器的任一种。
  10. 根据权利要求8所述的热泵热水器,其特征在于,所述水箱具有进水口和出水口,所述进水口位于所述水箱的底部,出水口位于所述水箱的顶部。
PCT/CN2019/075436 2018-11-29 2019-02-19 热泵热水器控制方法及热泵热水器 WO2020107721A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES19888387T ES2945563T3 (es) 2018-11-29 2019-02-19 Procedimiento de control para un calentador de agua con bomba de calor
EP19888387.8A EP3889518B1 (en) 2018-11-29 2019-02-19 Control method for heat-pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811446960.5 2018-11-29
CN201811446960.5A CN109916090B (zh) 2018-11-29 2018-11-29 热泵热水器控制方法及热泵热水器

Publications (1)

Publication Number Publication Date
WO2020107721A1 true WO2020107721A1 (zh) 2020-06-04

Family

ID=66959814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075436 WO2020107721A1 (zh) 2018-11-29 2019-02-19 热泵热水器控制方法及热泵热水器

Country Status (4)

Country Link
EP (1) EP3889518B1 (zh)
CN (1) CN109916090B (zh)
ES (1) ES2945563T3 (zh)
WO (1) WO2020107721A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736249B (zh) * 2019-10-29 2020-11-20 珠海格力电器股份有限公司 压缩机的运行频率控制方法及装置、存储介质和处理器
CN114132149B (zh) * 2021-12-30 2022-08-30 镇江东方电热科技股份有限公司 电动汽车热泵空调温度规划方法
CN114659236B (zh) * 2022-04-29 2023-11-21 深圳市英维克信息技术有限公司 节能控制方法、装置、设备及存储介质
IT202200024204A1 (it) * 2022-11-24 2024-05-24 Ferroli Spa Sistema di monitoraggio energetico per una pompa di calore.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003772A (zh) * 2010-11-30 2011-04-06 中国建筑西南设计研究院有限公司 一种水源热泵节能优化控制方法
US20110144811A1 (en) * 2009-12-14 2011-06-16 Mingsheng Liu Optimizer for single staged refrigeration systems
CN104501421A (zh) * 2014-12-12 2015-04-08 顺德职业技术学院 一种变频双级压缩热泵热水器的控制方法
CN104613651A (zh) * 2014-12-12 2015-05-13 顺德职业技术学院 一种变频热泵热水器频率调节方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809076B2 (ja) * 2006-02-28 2011-11-02 三菱電機株式会社 冷凍システムおよび冷凍システムの運転方法
JP2009008308A (ja) * 2007-06-27 2009-01-15 Sanden Corp 給湯装置
CN106134472B (zh) * 2008-03-26 2011-11-30 西安空间无线电技术研究所 基于微分的am-fm信号瞬时频率计算方法
US8782234B2 (en) * 2008-05-05 2014-07-15 Siemens Industry, Inc. Arrangement for managing data center operations to increase cooling efficiency
JP5195543B2 (ja) * 2009-03-12 2013-05-08 パナソニック株式会社 空気調和装置の制御方法
JP5218276B2 (ja) * 2009-05-19 2013-06-26 富士通株式会社 空調制御システム、空調制御方法および空調制御プログラム
JP5610042B2 (ja) * 2011-09-30 2014-10-22 ダイキン工業株式会社 冷媒サイクルシステム
CN103245155A (zh) * 2012-02-14 2013-08-14 珠海格力节能环保制冷技术研究中心有限公司 双级增焓热泵系统控制方法
JP5818734B2 (ja) * 2012-03-30 2015-11-18 三菱電機株式会社 空気調和機
CN103064285B (zh) * 2012-12-29 2015-08-26 杭州电子科技大学 一种基于模型的热泵供暖多目标优化控制方法
CN104121700B (zh) * 2013-04-23 2016-12-28 珠海格力电器股份有限公司 变频热水机及其控制方法和装置
CN104633829A (zh) * 2013-11-06 2015-05-20 上海思控电气设备有限公司 楼宇冷冻站节能控制装置及方法
CN103994548A (zh) * 2014-05-23 2014-08-20 南京师范大学 通过干湿球温度允差等级划分来调节空调制冷量的方法
CN105634473B (zh) * 2014-11-05 2019-01-11 联芯科技有限公司 移动终端的频率调整方法及装置
CN104566797A (zh) * 2014-12-18 2015-04-29 珠海格力电器股份有限公司 中央空调冷却塔风机频率控制方法
JP6716333B2 (ja) * 2016-04-28 2020-07-01 ダイキン工業株式会社 給湯システム
CN107796122B (zh) * 2016-09-06 2021-07-23 艾欧史密斯(中国)热水器有限公司 热泵热水器及其控制方法
JP6574227B2 (ja) * 2016-10-03 2019-09-11 ジョンソン コントロールズ テクノロジー カンパニー 複数の単一変数極値探索コントローラを使用した多変数最適化を伴うhvacシステム
CN106766450A (zh) * 2016-11-28 2017-05-31 天津城建大学 制冷热泵系统最小能耗优化控制装置及控制方法
CN106909734B (zh) * 2017-02-24 2020-01-17 重庆大学 一种蒸气增压有机朗肯循环发电系统温度的设定方法
CN106895601B (zh) * 2017-02-24 2019-06-18 重庆大学 一种蒸气增压喷射制冷系统发生温度设定方法
CN106940075B (zh) * 2017-05-15 2019-05-07 特灵空调系统(中国)有限公司 基于能效自主寻优的中央空调冷凝器风机控制系统
CN107329403B (zh) * 2017-07-17 2020-06-26 电子科技大学 一种基于分数阶牛顿算法的照明平台最小能耗搜索方法
CN107763857A (zh) * 2017-10-27 2018-03-06 顺德职业技术学院 变频喷气增焓热泵热水器频率动态优化及控制方法
CN108168030B (zh) * 2017-12-14 2020-06-16 南京师范大学 一种基于制冷性能曲线的智能控制方法
CN108695877B (zh) * 2018-05-29 2021-07-06 广东工业大学 一种互联非线性电力系统的负荷频率控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144811A1 (en) * 2009-12-14 2011-06-16 Mingsheng Liu Optimizer for single staged refrigeration systems
CN102003772A (zh) * 2010-11-30 2011-04-06 中国建筑西南设计研究院有限公司 一种水源热泵节能优化控制方法
CN104501421A (zh) * 2014-12-12 2015-04-08 顺德职业技术学院 一种变频双级压缩热泵热水器的控制方法
CN104613651A (zh) * 2014-12-12 2015-05-13 顺德职业技术学院 一种变频热泵热水器频率调节方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889518A4 *

Also Published As

Publication number Publication date
EP3889518B1 (en) 2023-03-01
CN109916090B (zh) 2022-10-18
ES2945563T3 (es) 2023-07-04
EP3889518A4 (en) 2022-02-09
CN109916090A (zh) 2019-06-21
EP3889518A1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
WO2020107721A1 (zh) 热泵热水器控制方法及热泵热水器
CN105371437B (zh) 一种空调控制方法
CN106969564B (zh) 包括压缩机的系统
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
CN103486700A (zh) 一种空调器及其控制方法
CN110145906B (zh) 冷媒循环系统及其控制方法和计算机可读存储介质
CN105042799A (zh) 空调器控制方法、控制装置及空调器
CN109375684A (zh) Pid控制方法
CN106322640A (zh) 空调室内负荷突变的电子膨胀阀控制方法
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN110671796A (zh) 空调器及其控制方法
CN107270583B (zh) 热泵机组的控制方法
WO2021175202A1 (zh) 变频空调的制热控制方法和变频空调
CN109990463B (zh) 一种变频太阳能热泵热水器控制方法及系统
WO2022155940A1 (zh) 泳池热泵系统的水温控制方法、装置、设备及存储介质
CN111895624B (zh) 一种空调温湿度控制方法、装置、存储介质及空调
WO2024093236A1 (zh) 空调内机控制方法、装置、电控盒及存储介质
WO2020063310A1 (zh) 一种衣物处理装置的控制方法及衣物处理装置
CN109990491B (zh) 一种变频太阳能热泵热水器控制方法及系统
CN109990492B (zh) 一种变频太阳能热泵热水器控制方法及系统
CN115127268A (zh) 一种热泵机组压缩机频率的控制方法、控制器及热泵系统
CN109990479B (zh) 一种变频太阳能热泵热水器控制方法及系统
CN111336692B (zh) 太阳能热泵热水器控制方法及太阳能热泵热水器
CN113550129A (zh) 热泵干衣机的压缩机频率控制方法
CN113293584A (zh) 热泵系统的辅冷装置的控制方法及热泵式烘干设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888387

Country of ref document: EP

Effective date: 20210629