WO2020105712A1 - トリアジン誘導体の製造方法及び有機銅化合物 - Google Patents

トリアジン誘導体の製造方法及び有機銅化合物

Info

Publication number
WO2020105712A1
WO2020105712A1 PCT/JP2019/045677 JP2019045677W WO2020105712A1 WO 2020105712 A1 WO2020105712 A1 WO 2020105712A1 JP 2019045677 W JP2019045677 W JP 2019045677W WO 2020105712 A1 WO2020105712 A1 WO 2020105712A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
fluorine atom
atom
formula
Prior art date
Application number
PCT/JP2019/045677
Other languages
English (en)
French (fr)
Inventor
昇一 川満
川口 佳秀
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2020105712A1 publication Critical patent/WO2020105712A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds

Definitions

  • the present invention relates to a method for producing a triazine derivative, particularly a triazine derivative suitable as a refractive index adjusting agent, and an organocopper compound.
  • Non-Patent Document 1 discloses 2,4,6-tris (pentafluorophenyl) -1,3,5-triazine as a refractive index adjusting agent.
  • 2,4,6-Tris pentafluorophenyl -1,3,5-triazine can be synthesized by treating pentafluorobenzonitrile with fluorosulfuric acid.
  • an object of the present invention is to provide a method for producing a triazine derivative suitable for industrial production.
  • the present invention is to obtain a compound having a triazine skeleton in which a substituent derived from the organocopper compound is introduced by a reaction using an organocopper compound represented by the following formula (1):
  • a method for producing a triazine derivative comprising: Cu-R 1 (1)
  • R 1 represents a perfluoroaryl group in which a fluorine atom may be substituted, a perfluoroheteroaryl group in which a fluorine atom may be substituted, or a perfluoroalkyl group in which a fluorine atom may be substituted.
  • a method for producing a triazine derivative suitable for industrial production can be provided.
  • R 1 is a perfluoroaryl group optionally substituted with a fluorine atom.
  • the reaction using the organic copper compound represented by the formula (1) is a reaction between the organic copper compound and the cyanuric halide represented by the following formula (2).
  • X 1 to X 3 are each independently a chlorine atom, a bromine atom or an iodine atom.
  • X 1 to X 3 are chlorine atoms.
  • a compound having a triazine skeleton is represented by the following formula (3).
  • a plurality of R 1 s are independently of each other, a perfluoroaryl group optionally substituted with a fluorine atom, a perfluoroheteroaryl group optionally substituted with a fluorine atom, or a fluorine atom substituted.
  • a method for producing a triazine derivative is that a Grignard reagent represented by the following formula (4) is reacted with a copper halide represented by the following formula (5) to obtain an organocopper compound.
  • a Grignard reagent represented by the following formula (4) is reacted with a copper halide represented by the following formula (5) to obtain an organocopper compound.
  • X 4 -Mg-R 1 (4) Cu-X 5 (5)
  • R 1 represents a perfluoroaryl group in which a fluorine atom may be substituted, a perfluoroheteroaryl group in which a fluorine atom may be substituted, or a perfluoroalkyl group in which a fluorine atom may be substituted.
  • X 4 is a chlorine atom, a bromine atom or an iodine atom
  • X 5 is a chlorine atom, a bromine atom or an iodine atom.
  • the present invention provides an organic copper compound represented by the above formula (1).
  • a substituent derived from the organic copper compound (A1) is introduced by the reaction (I) using the organic copper compound (A1) represented by the following formula (1).
  • the substituents introduced into the triazine derivative include R 1 , preferably all of which are R 1 .
  • R 1 is a perfluoroaryl group in which a fluorine atom may be substituted, a perfluoroheteroaryl group in which a fluorine atom may be substituted, a perfluoroalkyl group in which a fluorine atom may be substituted, A perfluoroalkenyl group in which a fluorine atom may be substituted, or a perfluoroalkynyl group in which a fluorine atom may be substituted.
  • Perfluoro means that all hydrogen atoms bonded to carbon atoms are replaced by fluorine atoms.
  • R 1 is preferably a perfluoroaryl group in which a fluorine atom may be substituted.
  • the substituent of a fluorine atom is preferably a group composed of at least one selected from the group consisting of carbon atom, hetero atom, fluorine atom, chlorine atom, bromine atom and hydrogen atom, and more preferably carbon atom and It is a group composed of a fluorine atom.
  • the hydrogen atom contained in the substituent of the fluorine atom may be a deuterium atom.
  • the fluorine atom substituent preferably does not include a hydrogen atom.
  • the perfluoroaryl group contains an aromatic ring composed of carbon atoms.
  • the aromatic ring may be monocyclic or polycyclic.
  • the carbon number of the aromatic ring is, for example, 6-12.
  • Examples of the perfluoroaryl group include a perfluorophenyl group, a perfluoronaphthyl group, a perfluorofluorenyl group, and a perfluorobiphenyl group.
  • examples of the substituent include a perfluoroalkyl group.
  • the carbon number of the perfluoroalkyl group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 3.
  • the perfluoroalkyl group may be linear or cyclic. When the perfluoroalkyl group is linear, the perfluoroalkyl group may be linear or branched.
  • the perfluoroalkyl group is preferably a trifluoromethyl group.
  • the plurality of substituents may be the same as or different from each other.
  • the perfluoroheteroaryl group includes a heteroaromatic ring containing a hetero atom such as an oxygen atom, a nitrogen atom and a sulfur atom.
  • the heteroaromatic ring may be monocyclic or polycyclic.
  • the carbon number of the heteroaromatic ring is, for example, 4-11.
  • Examples of the perfluoroheteroaryl group include a perfluoropyridyl group and a perfluorothiophenyl group.
  • examples of the substituent include a perfluoroalkyl group.
  • examples of the perfluoroalkyl group include those described above for the perfluoroaryl group.
  • the carbon number of the perfluoroalkyl group in R 1 is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 3.
  • the perfluoroalkyl group may be linear or cyclic. When the perfluoroalkyl group is linear, the perfluoroalkyl group may be linear or branched.
  • the fluorine atom of the perfluoroalkyl group may be substituted with a hydrogen atom, a chlorine atom or a bromine atom.
  • the hydrogen atom substituting the fluorine atom of the perfluoroalkyl group may be a deuterium atom.
  • the fluorine atom of the perfluoroalkyl group may be substituted with a group containing a carbon atom.
  • the carbon number of the perfluoroalkenyl group in R 1 is, for example, 2 to 8, preferably 2 to 6, and more preferably 2 to 3.
  • the perfluoroalkenyl group may be linear or cyclic. When the perfluoroalkenyl group is linear, the perfluoroalkenyl group may be linear or branched.
  • the fluorine atom of the perfluoroalkenyl group may be substituted with a hydrogen atom, a chlorine atom or a bromine atom.
  • the hydrogen atom substituting the fluorine atom of the perfluoroalkenyl group may be a deuterium atom.
  • the fluorine atom of the perfluoroalkenyl group may be substituted with a group containing a carbon atom.
  • the carbon number of the perfluoroalkynyl group in R 1 is, for example, 2 to 8, preferably 2 to 6, and more preferably 2 to 3.
  • the perfluoroalkynyl group may be linear or cyclic. When the perfluoroalkynyl group is linear, the perfluoroalkynyl group may be linear or branched.
  • the fluorine atom of the perfluoroalkynyl group may be substituted with a hydrogen atom, a chlorine atom or a bromine atom.
  • the hydrogen atom substituting the fluorine atom of the perfluoroalkynyl group may be a deuterium atom.
  • the fluorine atom of the perfluoroalkynyl group may be substituted with a group containing a carbon atom.
  • R 1 are perfluorophenyl group, perfluoronaphthyl group, 2,3,5,6-tetrafluoro-4- (trifluoromethyl) phenyl group, pyridyl group and the like.
  • the reaction (I) is, for example, a reaction between the organocopper compound (A1) and the cyanuric halide (B1) represented by the following formula (2).
  • X 1 to X 3 are each independently a chlorine atom, a bromine atom or an iodine atom. X 1 to X 3 are preferably chlorine atoms.
  • the condition of reaction (I) is not particularly limited.
  • the reaction (I) is performed, for example, under an inert gas atmosphere.
  • the inert gas include nitrogen gas and argon gas.
  • the reaction (I) is performed, for example, in the presence of a solvent.
  • the solvent used in the reaction (I) is, for example, an aprotic solvent.
  • the aprotic solvent is, for example, at least one selected from the group consisting of tetrahydrofuran, dioxane and toluene.
  • the reaction temperature of the reaction (I) is, for example, 20 ° C to 100 ° C, preferably 80 ° C to 100 ° C.
  • the reaction time of the reaction (I) is, for example, 1 hour to 72 hours.
  • the charged amount of the organic copper compound (A1) is, for example, 3 equivalents or more with respect to the cyanuric halide (B1).
  • the upper limit of the charged amount of the organic copper compound (A1) is not particularly limited, but is, for example, 10 equivalents with respect to the cyanuric halide (B1).
  • a triazine derivative (C1) represented by the following formula (3) is obtained.
  • the triazine derivative (C1) has a triazine skeleton in which the substituent R 1 derived from the organocopper compound (A1) is introduced.
  • the plurality of R 1's are, independently of each other, the same as described above for formula (1).
  • the plurality of R 1 s may not be the same as each other or may be the same.
  • Preferred examples of the triazine derivative (C1) include the following compounds.
  • triazine derivatives (C1-a) and (C1-b) are particularly useful as a refractive index adjusting agent added to an optical member such as a plastic optical fiber.
  • the triazine derivative (C1-b) is more suitable as the refractive index adjusting agent because it is not highly amorphous and has a high effect of suppressing light absorption.
  • a triazine derivative can be synthesized without using fluorosulfuric acid. Therefore, the manufacturing method of this embodiment is suitable for industrial production.
  • the charged amount of the organic copper compound (A1) may be less than 3 equivalents based on the cyanuric halide (B1).
  • the cyanuric halide (B2) represented by the following formula (6) is obtained by the reaction (I). Can be obtained.
  • R 1 is the same as that described above for formula (1)
  • X 2 and X 3 are the same as those described above for formula (2).
  • the production method of the present embodiment further comprises performing reaction (II) between the cyanuric halide (B2) represented by the formula (6) and the organic copper compound (A2) represented by the following formula (7). May be included.
  • reaction (II) between the cyanuric halide (B2) represented by the formula (6) and the organic copper compound (A2) represented by the following formula (7). May be included.
  • R 2 is the same as described above for R 1 in formula (1), for example.
  • reaction (II) conditions are not particularly limited.
  • the conditions of the reaction (II) are the same as those described above for the reaction (I), except for the charged amount of the organic copper compound (A2).
  • the charged amount of the organic copper compound (A2) is, for example, 2 equivalents or more with respect to the cyanuric halide (B2).
  • the upper limit of the charged amount of the organic copper compound (A2) is not particularly limited, but is, for example, 10 equivalents with respect to the cyanuric halide (B2).
  • a triazine derivative (C2) represented by the following formula (8) is obtained.
  • the triazine derivative (C2) has a triazine skeleton in which the substituent R 2 derived from the organocopper compound (A2) is introduced.
  • R 1 is the same as described above for formula (1), and the plurality of R 2 is the same as described above for formula (7). R 1 and the plurality of R 2 may not be the same as each other or may be the same.
  • the charged amount of the organic copper compound (A2) may be less than 2 equivalents based on the cyanuric halide (B2).
  • the cyanuric halide (B3) represented by the following formula (9) is obtained by the reaction (II). Can be obtained.
  • R 1 is the same as that described above for formula (1)
  • R 2 is the same as that described above for formula (7)
  • X 3 is the same as that described for formula (2). It is the same as what was done.
  • the production method of the present embodiment further comprises performing reaction (III) between the cyanuric halide (B3) represented by formula (9) and the organic copper compound (A3) represented by formula (10) below. May be included.
  • reaction (III) between the cyanuric halide (B3) represented by formula (9) and the organic copper compound (A3) represented by formula (10) below. May be included.
  • Cu-R 3 (10)
  • R 3 is the same as that described above for R 1 in formula (1), for example.
  • reaction (III) conditions are not particularly limited.
  • the conditions of the reaction (III) are the same as those described above for the reaction (I) except for the charged amount of the organic copper compound (A3).
  • the charged amount of the organic copper compound (A3) is, for example, 1 equivalent or more with respect to the cyanuric halide (B3).
  • the upper limit of the charged amount of the organic copper compound (A3) is not particularly limited, but is, for example, 10 equivalents with respect to the cyanuric halide (B3).
  • a triazine derivative (C3) represented by the following formula (11) is obtained.
  • the triazine derivative (C3) has a triazine skeleton in which the substituent R 3 derived from the organic copper compound (A3) is introduced.
  • R 1 is the same as described above for formula (1)
  • R 2 is the same as described above for formula (7)
  • R 3 is described above for formula (10). It is the same as what was done.
  • R 1 to R 3 may or may not be the same as each other.
  • the method for producing the organic copper compound (A1) is not particularly limited.
  • the organocopper compound (A1) can be synthesized, for example, by performing a reaction (i) of a Grignard reagent (D) represented by the following formula (4) and a copper halide represented by the following formula (5). .. X 4 -Mg-R 1 (4) Cu-X 5 (5)
  • R 1 is the same as described above for formula (1).
  • X 4 is a chlorine atom, a bromine atom or an iodine atom, preferably a bromine atom.
  • X 5 is a chlorine atom, a bromine atom or an iodine atom, preferably a bromine atom.
  • the condition of reaction (i) is not particularly limited.
  • the reaction (i) is performed, for example, under an inert gas atmosphere.
  • Examples of the inert gas include those described above for the reaction (I).
  • the reaction (i) is performed, for example, in the presence of a solvent.
  • Examples of the solvent used in the reaction (i) include those described above for the reaction (I).
  • Reaction (i) is performed at room temperature (20 ° C ⁇ 15 ° C), for example. Reaction (i) may be performed under heating conditions. The reaction time of the reaction (i) is, for example, 1 hour to 10 hours.
  • the method for producing the Grignard reagent (D) is not particularly limited.
  • the Grignard reagent (D) can be synthesized, for example, by reacting magnesium with an organic halogen compound represented by the following formula (12) (ii).
  • the production method of the present embodiment further includes, for example, reacting magnesium with an organic halogen compound represented by the following formula (12) to obtain a Grignard reagent (D).
  • R 1 is the same as that described above for formula (1)
  • X 4 is the same as that described above for formula (4).
  • the shape of magnesium used in the reaction (ii) is, for example, scraped.
  • the magnesium used in reaction (ii) may have been previously treated with an activator such as iodine (I 2 ).
  • the reaction (ii) conditions are not particularly limited.
  • the reaction (ii) is performed, for example, under an inert gas atmosphere.
  • Examples of the inert gas include those described above for the reaction (I).
  • the reaction (ii) is performed in the presence of a solvent, for example.
  • Examples of the solvent used in the reaction (ii) include those described above for the reaction (I).
  • the reaction temperature of the reaction (ii) is, for example, 20 ° C to 100 ° C. Since the reaction (ii) is an exothermic reaction, it is preferable to appropriately cool it at the initial stage of the reaction.
  • the reaction time of the reaction (ii) is, for example, 1 hour to 48 hours.
  • Example 1 [Synthesis of Grignard reagent] First, a reactor equipped with a magnetic rotor, a reflux condenser and a three-way cock was prepared. 3.90 g (160 mmol) of magnesium was charged into the reactor, and the inside of the reactor was replaced with nitrogen. Next, 100 ml of tetrahydrofuran and 0.20 g (0.79 mmol) of iodine were added into the reactor, and the resulting mixture was stirred for 15 minutes.
  • the triazine derivative was purified.
  • 10 g of Celite was filled in a glass column, and the reaction liquid was filtered. Celite was washed 3 times with 50 ml of tetrahydrofuran. 40 g of silica gel was added to the obtained filtrate, and the mixture was stirred at room temperature for 5 minutes.
  • the obtained mixture was heated under reduced pressure using a rotary pump and an oil bath at 60 ° C. As a result, the mixture was concentrated and dried to obtain 63.8 g of silica gel having the triazine derivative adsorbed thereon.
  • a glass column was filled with 400 g of silica gel, 63.8 g of silica gel adsorbing a triazine derivative, and sodium sulfate in this order.
  • Column chromatography was performed using a mixed liquid of hexane and dichloromethane as a developing solvent, and a filtrate containing a triazine derivative was collected. The filtrate was dried to obtain 5.56 g of a light brown solid.
  • the filtered product contained by-products such as pentafluorobenzonitrile and components derived from raw materials.
  • by-products such as pentafluorobenzonitrile and components derived from raw materials.
  • Example 1 and Comparative Examples 1 to 4 according to the production method of the present embodiment, a triazine derivative having no C—H bond can be synthesized without using fluorosulfuric acid.
  • the production method of the present embodiment does not use fluorosulfuric acid, and is suitable for industrial production.
  • the triazine derivative obtained by the production method of the present embodiment is useful as a refractive index adjusting agent added to an optical member such as a plastic optical fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明は、工業的な生産に適したトリアジン誘導体の製造方法を提供する。本発明によるトリアジン誘導体の製造方法は、下記式(1)で表される有機銅化合物を用いた反応によって、有機銅化合物に由来する置換基が導入されたトリアジン骨格を有する化合物を得ること、を含む。 Cu-R1 (1) [式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。]

Description

トリアジン誘導体の製造方法及び有機銅化合物
 本発明は、トリアジン誘導体、特に、屈折率調整剤に適したトリアジン誘導体の製造方法及び有機銅化合物に関する。
 フッ素原子を有するトリアジン誘導体は、例えば、プラスチック光ファイバーなどの光学部材に添加される屈折率調整剤として用いられる。例えば、非特許文献1には、屈折率調整剤として、2,4,6-トリス(ペンタフルオロフェニル)-1,3,5-トリアジンが開示されている。
 2,4,6-トリス(ペンタフルオロフェニル)-1,3,5-トリアジンは、ペンタフルオロベンゾニトリルをフルオロ硫酸で処理することによって合成することができる。
Masaki Naritomi、外2名、「Bulletin of the Chemical Society of Japan」、第77版、2004年11月11日、p.2121-2127
 しかし、フルオロ硫酸は、毒性が高いだけでなく、空気中で容易に加水分解され、フッ化水素酸を生じる。そのため、フルオロ硫酸を用いたトリアジン誘導体の製造方法は、工業的な生産には適していない。
 そこで本発明は、工業的な生産に適したトリアジン誘導体の製造方法を提供することを目的とする。
 本発明は、
 下記式(1)で表される有機銅化合物を用いた反応によって、前記有機銅化合物に由来する置換基が導入されたトリアジン骨格を有する化合物を得ること、
 を含む、トリアジン誘導体の製造方法を提供する。
Cu-R1  (1)
[式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。]
 本発明によれば、工業的な生産に適したトリアジン誘導体の製造方法を提供できる。
 本発明の一形態では、式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基である。
 本発明の一形態では、式(1)で表される有機銅化合物を用いた反応が、有機銅化合物と下記式(2)で表されるハロゲン化シアヌルとの反応である。
Figure JPOXMLDOC01-appb-C000003
[式(2)において、X1~X3は、互いに独立して、塩素原子、臭素原子又はヨウ素原子である。]
 本発明の一形態では、式(2)において、X1~X3が塩素原子である。
 本発明の一形態では、トリアジン骨格を有する化合物が下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000004
[式(3)において、複数のR1は、互いに独立して、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。]
 本発明の一形態では、トリアジン誘導体の製造方法は、下記式(4)で表されるグリニャール試薬と、下記式(5)で表されるハロゲン化銅とを反応させ、有機銅化合物を得ること、
 をさらに含む。
4-Mg-R1  (4)
Cu-X5  (5)
[式(4)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基であり、X4は、塩素原子、臭素原子又はヨウ素原子である。式(5)において、X5は、塩素原子、臭素原子又はヨウ素原子である。]
 さらに、本発明は、上記式(1)で表される有機銅化合物を提供する。
 以下、本発明の実施形態を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。
(トリアジン誘導体の製造方法)
 本実施形態のトリアジン誘導体の製造方法は、下記式(1)で表される有機銅化合物(A1)を用いた反応(I)によって、有機銅化合物(A1)に由来する置換基が導入されたトリアジン骨格を有する化合物(トリアジン誘導体)を得ること、を含む。トリアジン誘導体に導入される置換基は、R1を含み、好ましくはそのすべてがR1である。
Cu-R1  (1)
 式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。「ペルフルオロ」は、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることを意味する。R1は、好ましくは、フッ素原子が置換されていてもよいペルフルオロアリール基である。フッ素原子の置換基は、好ましくは、炭素原子、ヘテロ原子、フッ素原子、塩素原子、臭素原子及び水素原子からなる群より選ばれる少なくとも1つにより構成された基であり、より好ましくは炭素原子及びフッ素原子により構成された基である。フッ素原子の置換基に含まれる水素原子は、重水素原子であってもよい。フッ素原子の置換基は、水素原子を含まないことが好ましい。
 R1において、ペルフルオロアリール基は、炭素原子から構成されている芳香環を含む。芳香環は、単環式であってもよく、多環式であってもよい。芳香環の炭素数は、例えば6~12である。ペルフルオロアリール基としては、例えば、ペルフルオロフェニル基、ペルフルオロナフチル基、ペルフルオロフルオレニル基及びペルフルオロビフェニル基が挙げられる。
 ペルフルオロアリール基のフッ素原子が置換されている場合、置換基としては、例えば、ペルフルオロアルキル基が挙げられる。ペルフルオロアルキル基の炭素数は、例えば1~8であり、好ましくは1~6であり、より好ましくは1~3である。ペルフルオロアルキル基は、鎖状であってもよく、環状であってもよい。ペルフルオロアルキル基が鎖状であるとき、ペルフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。ペルフルオロアルキル基は、好ましくはトリフルオロメチル基である。ペルフルオロアリール基において、複数のフッ素原子が置換されている場合、複数の置換基は、互いに同じであってもよく、異なっていてもよい。
 R1において、ペルフルオロヘテロアリール基は、酸素原子、窒素原子、硫黄原子などのヘテロ原子を含む複素芳香環を含む。複素芳香環は、単環式であってもよく、多環式であってもよい。複素芳香環の炭素数は、例えば4~11である。ペルフルオロヘテロアリール基としては、例えば、ペルフルオロピリジル基及びペルフルオロチオフェニル基が挙げられる。
 ペルフルオロヘテロアリール基のフッ素原子が置換されている場合、置換基としては、例えば、ペルフルオロアルキル基が挙げられる。ペルフルオロアルキル基としては、ペルフルオロアリール基について上述したものが挙げられる。
 R1におけるペルフルオロアルキル基の炭素数は、例えば1~8であり、好ましくは1~6であり、より好ましくは1~3である。ペルフルオロアルキル基は、鎖状であってもよく、環状であってもよい。ペルフルオロアルキル基が鎖状であるとき、ペルフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。ペルフルオロアルキル基のフッ素原子は、水素原子、塩素原子又は臭素原子によって置換されていてもよい。ペルフルオロアルキル基のフッ素原子を置換している水素原子は、重水素原子であってもよい。ペルフルオロアルキル基のフッ素原子は、炭素原子を含む基によって置換されていてもよい。
 R1におけるペルフルオロアルケニル基の炭素数は、例えば2~8であり、好ましくは2~6であり、より好ましくは2~3である。ペルフルオロアルケニル基は、鎖状であってもよく、環状であってもよい。ペルフルオロアルケニル基が鎖状であるとき、ペルフルオロアルケニル基は、直鎖状であってもよく、分岐鎖状であってもよい。ペルフルオロアルケニル基のフッ素原子は、水素原子、塩素原子又は臭素原子によって置換されていてもよい。ペルフルオロアルケニル基のフッ素原子を置換している水素原子は、重水素原子であってもよい。ペルフルオロアルケニル基のフッ素原子は、炭素原子を含む基によって置換されていてもよい。
 R1におけるペルフルオロアルキニル基の炭素数は、例えば2~8であり、好ましくは2~6であり、より好ましくは2~3である。ペルフルオロアルキニル基は、鎖状であってもよく、環状であってもよい。ペルフルオロアルキニル基が鎖状であるとき、ペルフルオロアルキニル基は、直鎖状であってもよく、分岐鎖状であってもよい。ペルフルオロアルキニル基のフッ素原子は、水素原子、塩素原子又は臭素原子によって置換されていてもよい。ペルフルオロアルキニル基のフッ素原子を置換している水素原子は、重水素原子であってもよい。ペルフルオロアルキニル基のフッ素原子は、炭素原子を含む基によって置換されていてもよい。
 R1の好ましい具体例は、ペルフルオロフェニル基、ペルフルオロナフチル基、2,3,5,6-テトラフルオロ-4-(トリフルオロメチル)フェニル基、ピリジル基などである。
 反応(I)は、例えば、有機銅化合物(A1)と下記式(2)で表されるハロゲン化シアヌル(B1)との反応である。
Figure JPOXMLDOC01-appb-C000005
 式(2)において、X1~X3は、互いに独立して、塩素原子、臭素原子又はヨウ素原子である。X1~X3は、好ましくは塩素原子である。
 反応(I)の条件は、特に限定されない。反応(I)は、例えば、不活性ガス雰囲気下で行われる。不活性ガスとしては、例えば、窒素ガス及びアルゴンガスが挙げられる。反応(I)は、例えば、溶媒存在下で行われる。反応(I)で用いられる溶媒は、例えば、非プロトン性溶媒である。非プロトン性溶媒は、例えば、テトラヒドロフラン、ジオキサン及びトルエンからなる群より選ばれる少なくとも1つである。
 反応(I)の反応温度は、例えば20℃~100℃であり、好ましくは80℃~100℃である。反応(I)の反応時間は、例えば1時間~72時間である。
 反応(I)において、有機銅化合物(A1)の仕込み量は、例えば、ハロゲン化シアヌル(B1)に対して3等量以上である。有機銅化合物(A1)の仕込み量の上限値は、特に限定されないが、例えば、ハロゲン化シアヌル(B1)に対して10等量である。反応(I)によって、例えば、下記式(3)で表されるトリアジン誘導体(C1)が得られる。トリアジン誘導体(C1)は、有機銅化合物(A1)に由来する置換基R1が導入されたトリアジン骨格を有している。
Figure JPOXMLDOC01-appb-C000006
 式(3)において、複数のR1は、互いに独立して、式(1)について上述したものと同じである。複数のR1は、互いに同一でなくてもよく、同一であってもよい。
 トリアジン誘導体(C1)の好ましい例としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記のトリアジン誘導体(C1-a)及び(C1-b)は、プラスチック光ファイバーなどの光学部材に添加される屈折率調整剤として特に有用である。特に、トリアジン誘導体(C1-b)は、非結晶性が高くなく、光の吸収を抑制する効果が高いため、屈折率調整剤により適している。
 以上のとおり、本実施形態の製造方法によれば、フルオロ硫酸を用いずにトリアジン誘導体を合成することができる。そのため、本実施形態の製造方法は、工業的な生産に適している。
(トリアジン誘導体の製造方法の変形例)
 反応(I)において、有機銅化合物(A1)の仕込み量は、ハロゲン化シアヌル(B1)に対して3等量未満であってもよい。例えば、有機銅化合物(A1)の仕込み量がハロゲン化シアヌル(B1)に対して1等量以下である場合、反応(I)によって、下記式(6)で表されるハロゲン化シアヌル(B2)を得ることができる。
Figure JPOXMLDOC01-appb-C000008
 式(6)において、R1は、式(1)について上述したものと同じであり、X2及びX3は、式(2)について上述したものと同じである。
 本実施形態の製造方法は、式(6)で表されるハロゲン化シアヌル(B2)と、下記式(7)で表される有機銅化合物(A2)との反応(II)を行うことをさらに含んでいてもよい。
Cu-R2  (7)
 式(7)において、R2は、例えば、式(1)のR1について上述したものと同じである。
 反応(II)の条件は、特に限定されない。反応(II)の条件は、例えば、有機銅化合物(A2)の仕込み量を除き、反応(I)について上述したものと同じである。
 反応(II)において、有機銅化合物(A2)の仕込み量は、例えば、ハロゲン化シアヌル(B2)に対して2等量以上である。有機銅化合物(A2)の仕込み量の上限値は、特に限定されないが、例えば、ハロゲン化シアヌル(B2)に対して10等量である。反応(II)によって、例えば、下記式(8)で表されるトリアジン誘導体(C2)が得られる。トリアジン誘導体(C2)は、有機銅化合物(A2)に由来する置換基R2が導入されたトリアジン骨格を有している。
Figure JPOXMLDOC01-appb-C000009
 式(8)において、R1は、式(1)について上述したものと同じであり、複数のR2は、式(7)について上述したものと同じである。R1及び複数のR2は、互いに同一でなくてもよく、同一であってもよい。
(トリアジン誘導体の製造方法の他の変形例)
 反応(II)において、有機銅化合物(A2)の仕込み量は、ハロゲン化シアヌル(B2)に対して2等量未満であってもよい。例えば、有機銅化合物(A2)の仕込み量がハロゲン化シアヌル(B2)に対して1等量以下である場合、反応(II)によって、下記式(9)で表されるハロゲン化シアヌル(B3)を得ることができる。
Figure JPOXMLDOC01-appb-C000010
 式(9)において、R1は、式(1)について上述したものと同じであり、R2は、式(7)について上述したものと同じであり、X3は、式(2)について上述したものと同じである。
 本実施形態の製造方法は、式(9)で表されるハロゲン化シアヌル(B3)と、下記式(10)で表される有機銅化合物(A3)との反応(III)を行うことをさらに含んでいてもよい。
Cu-R3  (10)
 式(10)において、R3は、例えば、式(1)のR1について上述したものと同じである。
 反応(III)の条件は、特に限定されない。反応(III)の条件は、例えば、有機銅化合物(A3)の仕込み量を除き、反応(I)について上述したものと同じである。
 反応(III)において、有機銅化合物(A3)の仕込み量は、例えば、ハロゲン化シアヌル(B3)に対して1等量以上である。有機銅化合物(A3)の仕込み量の上限値は、特に限定されないが、例えば、ハロゲン化シアヌル(B3)に対して10等量である。反応(III)によって、例えば、下記式(11)で表されるトリアジン誘導体(C3)が得られる。トリアジン誘導体(C3)は、有機銅化合物(A3)に由来する置換基R3が導入されたトリアジン骨格を有している。
Figure JPOXMLDOC01-appb-C000011
 式(11)において、R1は、式(1)について上述したものと同じであり、R2は、式(7)について上述したものと同じであり、R3は、式(10)について上述したものと同じである。R1~R3は、互いに同一でなくてもよく、同一であってもよい。
(有機銅化合物の製造方法)
 有機銅化合物(A1)の製造方法は、特に限定されない。有機銅化合物(A1)は、例えば、下記式(4)で表されるグリニャール試薬(D)と、下記式(5)で表されるハロゲン化銅との反応(i)を行うことによって合成できる。
4-Mg-R1  (4)
Cu-X5  (5)
 式(4)において、R1は、式(1)について上述したものと同じである。X4は、塩素原子、臭素原子又はヨウ素原子であり、好ましくは臭素原子である。式(5)において、X5は、塩素原子、臭素原子又はヨウ素原子であり、好ましくは臭素原子である。
 反応(i)の条件は、特に限定されない。反応(i)は、例えば、不活性ガス雰囲気下で行われる。不活性ガスとしては、例えば、反応(I)について上述したものが挙げられる。反応(i)は、例えば、溶媒存在下で行われる。反応(i)で用いられる溶媒としては、例えば、反応(I)について上述したものが挙げられる。
 反応(i)は、例えば室温(20℃±15℃)で行われる。反応(i)は、加熱条件下で行われてもよい。反応(i)の反応時間は、例えば1時間~10時間である。
(グリニャール試薬の製造方法)
 グリニャール試薬(D)の製造方法は、特に限定されない。グリニャール試薬(D)は、例えば、マグネシウムと、下記式(12)で表される有機ハロゲン化合物との反応(ii)を行うことによって合成できる。本実施形態の製造方法は、例えば、マグネシウムと、下記式(12)で表される有機ハロゲン化合物とを反応させ、グリニャール試薬(D)を得ることをさらに含む。
4-R1  (12)
 式(12)において、R1は、式(1)について上述したものと同じであり、X4は、式(4)について上述したものと同じである。
 反応(ii)に用いられるマグネシウムの形状は、例えば、削り状である。反応(ii)に用いられるマグネシウムは、ヨウ素(I2)などの活性化剤によって予め処理されていてもよい。
 反応(ii)の条件は、特に限定されない。反応(ii)は、例えば、不活性ガス雰囲気下で行われる。不活性ガスとしては、例えば、反応(I)について上述したものが挙げられる。反応(ii)は、例えば、溶媒存在下で行われる。反応(ii)で用いられる溶媒としては、例えば、反応(I)について上述したものが挙げられる。
 反応(ii)の反応温度は、例えば20℃~100℃である。反応(ii)は、発熱反応であるため、反応初期において、適宜冷却を行うことが好ましい。反応(ii)の反応時間は、例えば1時間~48時間である。
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
[グリニャール試薬の合成]
 まず、磁気回転子、還流冷却器及び三方コックを備えた反応器を準備した。反応器にマグネシウム3.90g(160mmol)を仕込み、反応器内を窒素で置換した。次に、反応器内に、テトラヒドロフラン100mlとヨウ素0.20g(0.79mmol)とを加え、得られた混合物を15分間撹拌した。
 次に、窒素雰囲気下でブロモペンタフルオロベンゼン37.7g(153mmol)をテトラヒドロフラン200mlに溶解させた。得られた溶液を注射器に収容した。この注射器を用いて、ブロモペンタフルオロベンゼンの溶液を15分間かけて反応器内に滴下した。滴下は、反応器を水冷した状態で行った。滴下終了後、室温(25℃)で反応器内を30分間撹拌した。
 次に、反応器を加熱し、60分間還流を行った。次に、反応器を室温まで冷却して、反応器内を2時間撹拌した後、反応器を13時間静置した。これにより、グリニャール試薬を得た。
[有機銅化合物の合成]
 まず、磁気回転子、還流冷却器及び三方コックを備えた反応器を準備した。反応器に臭化銅43.9g(305mmol)を仕込み、反応器内を窒素で置換した。次に、グリニャール試薬を含む反応液の上澄み液を注射器で採取した。この注射器を用いて、上澄み液を15分間かけて反応器内に滴下した。滴下終了後、反応器内を2時間撹拌した。さらに、ジオキサン200mlを反応器内に加えて、反応器内を8時間撹拌した。これにより、有機銅化合物を得た。
[トリアジン誘導体の合成]
 まず、窒素雰囲気下で塩化シアヌル3.13g(17.0mmol)をトルエン200mlに溶解させた。得られた溶液を注射器に収容した。この注射器を用いて、塩化シアヌルの溶液を5分間かけて、有機銅化合物を収容している反応器内に滴下した。次に、90℃のオイルバスを用いて反応器を加熱し、反応器内を43時間撹拌した。次に、反応器を室温まで冷却した。
 次に、反応器内の反応液を採取し、高速液体クロマトグラフィー(HPLC)を用いて反応液を分析した。HPLCの分析により、2,4,6-トリス(ペンタフルオロフェニル)-1,3,5-トリアジン(トリアジン誘導体)が合成されていることを確認した。
 次に、トリアジン誘導体の精製を行った。まず、ガラスカラムにセライト10gを充填し、反応液をろ過した。セライトは、50mlのテトラヒドロフランで3回洗浄した。得られたろ液にシリカゲル40gを添加して、室温で5分間撹拌した。次に、ロータリーポンプ及び60℃のオイルバスを用いて、得られた混合物を減圧下で加熱した。これにより、混合物が濃縮及び乾固され、トリアジン誘導体を吸着したシリカゲル63.8gを得た。
 次に、ガラスカラムに、シリカゲル400g、トリアジン誘導体を吸着したシリカゲル63.8g及び硫酸ナトリウムをこの順番で充填した。ヘキサン及びジクロロメタンの混合液体を展開溶媒として用いてカラムクロマトグラフィーを行い、トリアジン誘導体が含まれるろ液を分取した。ろ液を乾燥させることによって、淡い褐色の固体5.56gを得た。
 次に、得られた固体にトルエン30mlを添加し、60℃に加熱することによって固体をトルエンに溶解させた。次に、得られた溶液を室温まで徐冷した後に、溶液を冷蔵保存した。これにより、溶液に結晶が析出した。析出物をろ過し、冷蔵保存されたトルエン20mlで5回洗浄した。ロータリーポンプ及び75℃のオイルバスを用いて、析出物を減圧下で加熱した。これにより、析出物が乾固し、白色固体4.09gを得た。
 次に、得られた白色固体4.06gにトルエン20mlを添加し、60℃に加熱することによって白色固体をトルエンに溶解させた。次に、得られた溶液を室温まで徐冷した後に、溶液を冷蔵保存した。これにより、溶液に結晶が析出した。析出物をろ過し、冷蔵保存されたトルエン20mlで3回洗浄した。ロータリーポンプ及び75℃のオイルバスを用いて、析出物を減圧下で加熱した。これにより、析出物が乾固し、白色固体3.32gを得た。白色固体におけるトリアジン誘導体の純度は、HPLCによる分析で98.8%であった。
(比較例1)
 まず、100mlの二口フラスコにマグネシウム1.46g(60mmol)を加えた。フラスコに、還流冷却管及び滴下ロートを取り付けた。ロータリーポンプ及びヒートガンを用いて、マグネシウムを減圧下で加熱した。これにより、マグネシウムの表面に形成されている酸化被膜を取り除き、マグネシウムを活性化させた。
 次に、窒素気流下で、滴下ロートにブロモペンタフルオロベンゼン12.3g(50.0mmol)及び脱水テトラヒドロフラン(THF)50mlを加えた。得られた溶液をマグネシウムに滴下した。滴下終了後、フラスコを加熱し、10時間還流を行った。これにより、グリニャール試薬を得た。
 次に、200mlの二口フラスコにトリクロロシアヌル酸1.84g(10mmol)及び脱水THF25mlを加え、フラスコに還流冷却管及び滴下ロートを取り付けた。次に、窒素気流下で、滴下ロートにグリニャール試薬を加えた。フラスコ内にグリニャール試薬を常温で滴下した。滴下終了後、フラスコを加熱し、10時間還流を行った。
 反応終了後、反応液からTHFを留去した。得られた反応物をクロロホルムに溶解させ、蒸留水で3回洗浄した。反応物について、ヘキサン:クロロホルム=1:1の混合液体を展開溶媒として用いたフラッシュカラムクロマトグラフィーを行い、目的とするトリアジン誘導体が含まれると予想されるろ液を回収した。ろ液に含まれる溶媒を留去することによって得られたろ過物について、ガスクロマトグラフ飛行時間質量分析装置(GC/TOFMS)を用いて分析を行った。GC/TOFMSでは、ろ過物におけるトリアジン誘導体の含有率は6%程度であった。ろ過物には、ペンタフルオロベンゾニトリルなどの副生物、原料由来の成分などが含まれていた。比較例1の製造方法では、グリニャール試薬によるトリアジン環の開環反応が生じたと予想される。
(比較例2)
 まず、アルゴン(Ar)気流下で、200mlのフラスコにブロモペンタフルオロベンゼン及び脱水THFを加えた。フラスコの内温を-68℃まで冷却し、1.57Mのn-BuLiのヘキサン溶液を滴下した。ヘキサン溶液の温度は、-62℃以下であった。滴下終了後、フラスコ内を1時間撹拌した。次に、フラスコ内に、トリクロロシアヌル酸の脱水THF溶液を内温-64℃以下で滴下した。滴下終了後、内温を室温まで昇温し、反応を停止した。しかし、比較例2の製造方法では、トリアジン誘導体の生成は確認できなかった。
(比較例3)
 まず、フラスコ内にトリクロロシアヌル酸、ペンタフルオロフェニルボロン酸及びジメチルエーテル(DME)を加えた。さらに、フラスコ内にPd(PPh34を加えた。次に、フラスコ内に2MのNa2CO3水溶液を加えた。フラスコ内を75℃まで昇温し、一晩撹拌した後、反応を停止させた。しかし、比較例3の製造方法では、トリアジン誘導体の生成は確認できなかった。
(比較例4)
 まず、フラスコに、ペンタフルオロベンゾニトリル及びトリフルオロメチルスルホン酸を溶媒量加えた。トリフルオロメチルスルホン酸は、フルオロ硫酸と同程度の酸性度を有する超酸である。フラスコ内を100℃に加熱し、3日撹拌した後、反応を停止させた。ガスクロマトグラフ質量分析計(GC/MS)を用いて反応生成物の分析を行ったところ、トリアジン誘導体は、2%程度しか得られていないことが確認された。
 実施例1及び比較例1~4からわかるとおり、本実施形態の製造方法によれば、フルオロ硫酸を用いることなく、C-H結合を有さないトリアジン誘導体を合成することができる。
 本実施形態の製造方法は、フルオロ硫酸を使用しないため、工業的な生産に適している。本実施形態の製造方法によって得られたトリアジン誘導体は、例えば、プラスチック光ファイバーなどの光学部材に添加される屈折率調整剤として有用である。

Claims (7)

  1.  下記式(1)で表される有機銅化合物を用いた反応によって、前記有機銅化合物に由来する置換基が導入されたトリアジン骨格を有する化合物を得ること、
     を含む、トリアジン誘導体の製造方法。
    Cu-R1  (1)
    [式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。]
  2.  前記式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基である、請求項1に記載の製造方法。
  3.  前記反応が、前記有機銅化合物と下記式(2)で表されるハロゲン化シアヌルとの反応である、請求項1又は2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(2)において、X1~X3は、互いに独立して、塩素原子、臭素原子又はヨウ素原子である。]
  4.  前記式(2)において、X1~X3が塩素原子である、請求項3に記載の製造方法。
  5.  前記トリアジン骨格を有する前記化合物が下記式(3)で表される、請求項1~4のいずれか1項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式(3)において、複数のR1は、互いに独立して、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。]
  6.  下記式(4)で表されるグリニャール試薬と、下記式(5)で表されるハロゲン化銅とを反応させ、前記有機銅化合物を得ること、
     をさらに含む、請求項1~5のいずれか1項に記載の製造方法。
    4-Mg-R1  (4)
    Cu-X5  (5)
    [式(4)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基であり、X4は、塩素原子、臭素原子又はヨウ素原子である。式(5)において、X5は、塩素原子、臭素原子又はヨウ素原子である。]
  7.  下記式(1)で表される有機銅化合物。
    Cu-R1  (1)
    [式(1)において、R1は、フッ素原子が置換されていてもよいペルフルオロアリール基、フッ素原子が置換されていてもよいペルフルオロヘテロアリール基、フッ素原子が置換されていてもよいペルフルオロアルキル基、フッ素原子が置換されていてもよいペルフルオロアルケニル基、又は、フッ素原子が置換されていてもよいペルフルオロアルキニル基である。]
PCT/JP2019/045677 2018-11-22 2019-11-21 トリアジン誘導体の製造方法及び有機銅化合物 WO2020105712A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018219231A JP2020083808A (ja) 2018-11-22 2018-11-22 トリアジン誘導体の製造方法及び有機銅化合物
JP2018-219231 2018-11-22

Publications (1)

Publication Number Publication Date
WO2020105712A1 true WO2020105712A1 (ja) 2020-05-28

Family

ID=70773216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045677 WO2020105712A1 (ja) 2018-11-22 2019-11-21 トリアジン誘導体の製造方法及び有機銅化合物

Country Status (3)

Country Link
JP (1) JP2020083808A (ja)
TW (1) TW202030194A (ja)
WO (1) WO2020105712A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108102A (ja) * 2004-10-11 2009-05-21 Korea Electronics Telecommun トリアジン基を有する有機半導体素子用化合物と、それを含む有機半導体薄膜及び有機半導体素子、並びにそれらの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108102A (ja) * 2004-10-11 2009-05-21 Korea Electronics Telecommun トリアジン基を有する有機半導体素子用化合物と、それを含む有機半導体薄膜及び有機半導体素子、並びにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEIDENHAIN, S.B. ET AL., J.AM.CHEM.SOC., vol. 122, 2000, pages 10240 - 10241, XP000966298 *

Also Published As

Publication number Publication date
TW202030194A (zh) 2020-08-16
JP2020083808A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
TWI549927B (zh) 新穎的螺聯茀化合物
JP6927975B2 (ja) 重合性トリプチセン誘導体化合物
EP3088391B1 (en) Method for producing benzyl ester 2-aminonicotinate derivative
WO2020105712A1 (ja) トリアジン誘導体の製造方法及び有機銅化合物
KR101546143B1 (ko) 티오노카르복시산의 아릴 에스테르의 제조 방법
JP2015003875A (ja) リン系化合物及びその製造方法
JP7079494B2 (ja) 新規化合物とその合成方法
KR101546144B1 (ko) 티오노카르복시산 에스테르의 제조 방법
Bai et al. Highly regio-and stereoselective palladium-catalyzed allene bifunctionalization cascade via π-allyl intermediate
WO2020256045A1 (ja) ヘキサメチル置換/ジメチル置換4,4'-ビス(2-プロペン-1-イルオキシ)-1,1'-ビフェニルの結晶体
WO2017090746A1 (ja) ペンタフルオロスルファニルピリジン
WO2011118625A1 (ja) 光学活性なn-モノアルキル-3-ヒドロキシ-3-アリールプロピルアミン化合物の製造方法
Haroutounian et al. Aromatic fluorination by silver-ion promoted decomposition of aryl diazo sulfides: efficient utilization of substoichiometric levels of fluoride ion
JP2010126468A (ja) スルホンアミド化合物の製造方法
JP2006063049A (ja) フェニルシクロヘキセン誘導体またはスチレン誘導体の製造方法
JP4602732B2 (ja) 新規なジ(メタ)アクリレート類
JP7301337B2 (ja) 化合物及びその製造方法
JP5296109B2 (ja) 反応活性な基を有する新規なビフェニル化合物
JP2012153642A (ja) スルホニウム化合物
JP2018135292A (ja) 光学活性アルコールの製造方法及び不斉触媒
JP4617643B2 (ja) フッ素含有光学活性四級アンモニウム塩、その製造方法、並びにそれを用いた光学活性α−アミノ酸誘導体の製造方法
JP4150168B2 (ja) 多エチニル置換芳香族化合物の製造法
JPH03109389A (ja) ビス(3,4―ジメチルフエニル)ジメチルシランの製造法
JPH0399084A (ja) マロンアミド誘導体金属錯体及び芳香族化合物用分離剤
JP6868890B2 (ja) 環上に置換基を有する含窒素環状化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886780

Country of ref document: EP

Kind code of ref document: A1