WO2020105414A1 - 電力変換装置 - Google Patents

電力変換装置

Info

Publication number
WO2020105414A1
WO2020105414A1 PCT/JP2019/043248 JP2019043248W WO2020105414A1 WO 2020105414 A1 WO2020105414 A1 WO 2020105414A1 JP 2019043248 W JP2019043248 W JP 2019043248W WO 2020105414 A1 WO2020105414 A1 WO 2020105414A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
circuit
voltage
switching element
semiconductor switching
Prior art date
Application number
PCT/JP2019/043248
Other languages
English (en)
French (fr)
Inventor
央 上妻
二宮 隆典
尊衛 嶋田
馬淵 雄一
光 目黒
じゅん 鳴島
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Priority to CN201980075167.5A priority Critical patent/CN113056864B/zh
Publication of WO2020105414A1 publication Critical patent/WO2020105414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents

Definitions

  • the present invention relates to a power conversion device.
  • IGBTs Insulated Gate Bipolar Transistors
  • power MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • power MOSFETs and IGBTs made of wide bandgap semiconductors such as SiC (Silicon Carbide) have an electron saturation speed that is about twice or more that of Si (Silicon), and the thickness of the element can be reduced. It is possible to operate.
  • a MOSFET made of SiC hereinafter referred to as “SiC-MOSFET”
  • Si-MOSFET a MOSFET made of Si (Silicon)
  • Si-MOSFET a MOSFET made of Si (Silicon) (hereinafter referred to as “Si-MOSFET”) is used.
  • Si-MOSFET MOSFET made of Si (hereinafter referred to as “Si-MOSFET”)
  • the permissible vibration range of the gate voltage for avoiding malfunction (turn-on) and exceeding the rating is narrow.
  • the magnitude of the gate voltage jumping up and down when the gate voltage oscillates has a trade-off relationship with the speeding up of the switching operation.
  • Patent Document 1 As a conventional technique for driving a semiconductor switching element at high speed and with high reliability, for example, the technique described in Patent Document 1 is known.
  • a gate terminal and a source sense terminal are provided in each of the two MISFETs (Metal Insulator Semiconductor Field Effect Transistor) that configure the half-bridge conversion circuit.
  • a gate diode and an active mirror clamp transistor are connected between the gate terminal and the source sense terminal. As a result, the oscillation of the gate-source voltage is suppressed.
  • Patent Document 1 does not consider a change in the gate driving state such as a change in the gate threshold voltage. Therefore, it is difficult to surely improve the reliability in driving the gate of a high-speed switching element such as a SiC-MOSFET.
  • the present invention provides a power converter that can drive and control a high-speed semiconductor switching element with high reliability.
  • a power conversion device includes a main circuit including a half-bridge conversion circuit, and a gate circuit that drives the half-bridge conversion circuit, and an arm that configures the half-bridge conversion circuit, It has a pair of main terminals and a control terminal to which a gate drive signal for driving a semiconductor switching element included in the arm is given from a gate circuit, and the gate circuit is provided between one of the pair of main terminals and the control terminal.
  • a clamp circuit that is connected and has a bidirectional switch and a resistor connected in series is connected between one of the pair of main terminals and the control terminal.
  • the semiconductor switching element can be driven and controlled with high reliability.
  • FIG. 1 shows a schematic configuration of a main circuit unit of the power conversion device 100.
  • 3 shows a circuit configuration of the converter 102.
  • the circuit configuration of the inverter 103 is shown.
  • 3 shows a circuit configuration of the chopper 104.
  • An example of the power device applied to Example 1 is shown.
  • An example of mounting a power device in a power converter is shown.
  • 3 illustrates a part of a main circuit and a gate circuit unit according to the first embodiment.
  • 9 shows schematic operation waveforms of the half-bridge conversion circuit shown in FIG. 8.
  • 9 shows schematic operation waveforms of the half-bridge conversion circuit shown in FIG. 8.
  • FIG. 7 illustrates a part of a main circuit and a gate circuit unit in a power converter that is Embodiment 2.
  • 11 illustrates a part of a main circuit and a gate circuit unit in a power conversion device that is Embodiment 3.
  • 13 shows a schematic operation waveform of the half-bridge conversion circuit shown in FIG. It is a flowchart which shows the gate threshold voltage determination process performed by the gate control circuit.
  • 11 illustrates a part of a main circuit and a gate circuit unit in a power conversion device that is Embodiment 4.
  • 16 shows a schematic operation waveform of the half-bridge conversion circuit shown in FIG. It is a flowchart which shows the gate threshold voltage determination process performed by the gate control circuit.
  • FIG. 16 illustrates a part of a main circuit and a gate circuit unit in a power conversion device that is Embodiment 5.
  • 19 shows a schematic operation waveform of the half-bridge conversion circuit shown in FIG. 16 illustrates a part of a main circuit and a gate circuit unit in a power conversion device that is Embodiment 6.
  • FIG. 16 is a flowchart showing a gate threshold voltage determination process executed by the gate control circuit in the sixth embodiment.
  • Embodiment 1 is a schematic configuration diagram of a power conversion device that is Embodiment 1 of the present invention.
  • the power conversion device according to the first embodiment is applied to, for example, an uninterruptible power supply device.
  • the power conversion device 100 includes a converter 102, an inverter 103, a chopper 104, and a host control circuit 105 that controls these.
  • the converter 102 converts the three-phase AC power supplied from the commercial power supply 106 (AC power supply) into DC power and supplies the DC power to the inverter 103.
  • the inverter 103 converts the DC power supplied from the converter 102 into three-phase AC power again and supplies it to the load 108.
  • the chopper 104 boosts or lowers the DC power supplied from the storage battery 107 (DC power supply) to a predetermined voltage, converts the DC power into a predetermined DC power, and supplies the DC power to the inverter 103.
  • the upper control circuit 105 controls the converter 102, the inverter 103, and the chopper 104.
  • the upper control circuit 105 is composed of a microcomputer including a processor, a memory, an input / output circuit and the like.
  • the chopper 104 supplies the electric power stored in the storage battery 107 to the inverter 103 as DC power.
  • the inverter 103 converts the DC power supplied from the chopper 104 into AC power and supplies the AC power to the load 108.
  • the power conversion apparatus 100 continuously supplies power to the load 108 even during a power failure.
  • FIG. 2 shows a schematic configuration of a main circuit unit of the power conversion device 100. In the figure, for simplification, only the circuit portion including the power semiconductor element is shown. The circuit configuration of each unit (converter, inverter, chopper) will be described later (Fig. 3-5).
  • the converter 102 includes a plurality of circuit parts (hereinafter referred to as “arms”) (six in FIG. 2) in which a semiconductor switching element (MOSFET in FIG. 2) and a rectifying element (reflux diode in FIG. 2) are connected in antiparallel. ), And a plurality of arms constitute a three-phase bridge conversion circuit.
  • the AC input terminals R, S, T of the converter 102 are connected to the commercial power supply 106.
  • a plurality of arms form a three-phase bridge conversion circuit.
  • a load 108 is connected to the AC terminals U, V, W of the inverter 103.
  • the DC side of the converter 102 and the DC side of the inverter 103 are connected to each other via a DC link including a capacitor.
  • chopper 104 two parallel connection bodies of a plurality of arms (two in FIG. 2) are connected in series to form a half bridge conversion circuit.
  • the storage battery 107 is connected to the series connection point. Further, both ends of the half bridge conversion circuit are connected to the DC link.
  • FIG. 3 shows a circuit configuration of the converter 102.
  • the converter 102 includes three half bridge conversion circuits 201, 202, 203 (power conversion units).
  • the half bridge conversion circuits 201, 202, and 203 are drive-controlled by a converter control unit 204 including a drive unit of the power conversion unit.
  • Converter 102 converts three-phase AC power from commercial power supply 106 connected to AC input terminals R, S, T into DC power output at positive terminal P and negative terminal N.
  • the half-bridge conversion circuit 201 includes an upper arm semiconductor switching element 21 and a rectifying element 23, and a lower arm semiconductor switching element 22 and a rectifying element 24.
  • the source of the semiconductor switching element 21 is connected to the drain of the semiconductor switching element 22.
  • the semiconductor switching element 21 and the semiconductor switching element 22 are connected in series.
  • the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is connected to the AC input terminal R.
  • the capacitors (25, 26) are connected between the drain of the semiconductor switching element 21 and the source of the semiconductor switching element 22. That is, the capacitors (25, 26) are connected in parallel to both ends of the half bridge conversion circuit 201. Note that, in FIG. 3, for simplification, a parallel connection of a plurality of (two) capacitors (25, 26) is shown by a symbol of a single capacitor.
  • the rectifying element 23 is a semiconductor switching element such that the direction from one main terminal (hereinafter referred to as “source”) of the semiconductor switching element 21 to the other main terminal (hereinafter referred to as “drain”) is a forward direction.
  • the element 21 is connected in antiparallel between the source and the drain.
  • the rectifying element 24 is connected in antiparallel between the source and the drain of the semiconductor switching element 22 so that the direction from the source to the drain of the semiconductor switching element 22 is the forward direction.
  • a control terminal (hereinafter, referred to as “gate”) of the semiconductor switching element 21 is connected to the converter control unit 204. Further, the gate of the semiconductor switching element 22 is connected to the converter control unit 204.
  • the control terminal of each semiconductor switching element is an insulated gate (the same applies to other embodiments).
  • the configuration of the half-bridge conversion circuit 202 is almost the same as that of the half-bridge conversion circuit 201, but unlike the half-bridge conversion circuit 201, the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is connected to the AC input terminal S. ..
  • the configuration of the half-bridge conversion circuit 203 is almost the same as that of the half-bridge conversion circuit 201, but unlike the half-bridge conversion circuit 201, the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is connected to the AC input terminal T. ..
  • the three-phase AC power supplied from the commercial power supply 106 is supplied to the half-bridge conversion circuits 201, 202, 203 of each phase of the converter 102 via the AC terminals R, S, T.
  • the switching timing of the semiconductor switching element 21 and the rectifying element 23 in the upper arm of the half bridge conversion circuits 201, 202, 203 and the semiconductor switching element 22 and the rectifying element 24 in the lower arm are controlled by the converter control unit 204.
  • the three-phase AC power supplied from the commercial power supply 106 is converted into DC power.
  • FIG. 4 shows a circuit configuration of the inverter 103.
  • the inverter 103 includes three half bridge conversion circuits 301, 302, 303 (power conversion units).
  • the half bridge conversion circuits 301, 302, 303 are drive-controlled by an inverter control unit 304 including a drive unit of the power conversion unit.
  • the inverter 103 converts the DC power output at the positive terminal P and the negative terminal N by the converter 102 into three-phase AC power, and outputs this three-phase AC power from the AC output terminals U, V, W. To do.
  • the configuration of the half-bridge conversion circuit 301 is almost the same as that of the half-bridge conversion circuit 201 (FIG. 3), but unlike the half-bridge conversion circuit 201, the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is the AC output terminal U. Connected to.
  • the configuration of the half-bridge conversion circuit 302 is almost the same as that of the half-bridge conversion circuit 202, but unlike the half-bridge conversion circuit 202, the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is connected to the AC output terminal V. ..
  • the configuration of the half-bridge conversion circuit 303 is almost the same as that of the half-bridge conversion circuit 203, but unlike the half-bridge conversion circuit 203, the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is connected to the AC output terminal W. ..
  • the DC power output by the converter 102 is supplied to the half-bridge conversion circuits 301, 302, 303 of each phase of the inverter 103 via the positive side terminal P and the negative side terminal N.
  • the switching timing of the semiconductor switching element 21 and the rectifying element 23 in the upper arm of the half bridge conversion circuits 301, 302, 303 and the semiconductor switching element 22 and the rectifying element 24 in the lower arm are controlled by the inverter control unit 304.
  • the DC power supplied from the converter 102 is converted into three-phase AC power.
  • FIG. 5 shows a circuit configuration of the chopper 104.
  • the chopper 104 includes a half-bridge conversion circuit 401 (power conversion unit) and a reactor 406, and is driven and controlled by a chopper control unit 405 including a drive unit of the power conversion unit.
  • the chopper 104 mutually converts the low-voltage DC power from the storage battery 107 and the DC power having a higher voltage than the storage battery 107 between the positive-side terminal P and the negative-side terminal N.
  • the configuration of the half-bridge conversion circuit 401 is almost the same as that of the half-bridge conversion circuit 201 (FIG. 3), but unlike the half-bridge conversion circuit 201, the series connection point of the semiconductor switching element 21 and the semiconductor switching element 22 is at the DC terminal C. Connected.
  • the upper arm and the lower arm of the chopper 104 each have a plurality (two) of arms connected in parallel, but in FIG. 5, for simplicity, the upper arm and the lower arm are shown. Are each represented by a single arm.
  • the reactor 406 is connected between the DC terminal C and the positive electrode of the storage battery 107.
  • the chopper 104 boosts the DC voltage of the storage battery 107.
  • the chopper control unit 405 controls the switching timing of the half bridge conversion circuit 401 to arbitrarily set the boost ratio.
  • the chopper 104 repeatedly turns on and off the semiconductor switching element 21 of the upper arm by the chopper control unit 405 to step down the DC voltage between the positive side terminal P and the negative side terminal N, and the DC terminal. Output to C. In this case, the chopper 104 charges the storage battery 107 with the DC power output by the converter 102.
  • the lower arm connected in anti-parallel has a basic configuration of a two-level half bridge conversion circuit connected in series.
  • the semiconductor switching element is not limited to the MOSFET, and an IGBT (insulated gate bipolar transistor) having an insulated gate like the MOSFET can be applied.
  • a PN junction diode, a Schottky barrier diode, or the like can be applied as the rectifying element.
  • the rectifying element may be externally attached to the semiconductor switching element or may be built in the semiconductor switching element.
  • the semiconductor material forming the semiconductor switching element and the rectifying element may be Si or a wide gap semiconductor such as SiC.
  • FIG. 6 shows an example of the power device applied to the first embodiment. The equivalent circuit of the power device is also shown.
  • the power device 30 constitutes an arm in the half bridge conversion circuit described above.
  • the power device 30 has an anti-parallel connection of a semiconductor chip of a MOSFET (semiconductor switching element) and a semiconductor chip of a diode (rectifying element) in one resin package.
  • the power device 30 also includes three terminals that are drawn out of the resin package, that is, a source (S), a drain (D), and a gate (G).
  • the power device 30 is a so-called general-purpose power device.
  • the power device 30 is suitable for reducing the loss and increasing the speed of the main circuit section of the power conversion device.
  • one source also serves as a main terminal through which a main current flows and an auxiliary terminal (“source sense terminal” described in Patent Document 1 described above) that connects the drive circuit. Therefore, a wiring inductance common to the main circuit and the gate drive circuit exists at the connection portion between the source (S) and the external circuit. Such wiring inductance influences the gate drive control, but the influence becomes more remarkable as the speed of the power device 30 is increased. On the other hand, according to the first embodiment, the reliability of the gate drive can be improved even when there is such an influence of the wiring inductance.
  • FIG. 7 shows an implementation example of the power device in the power conversion device.
  • the power device 30 is mounted on the heat sink having the cooling fins 40.
  • the cooling fin 40 can be downsized.
  • FIG. 8 shows a part of the main circuit and the gate circuit unit in the first embodiment.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • the half bridge conversion circuit includes an upper arm 30H and a lower arm 30L connected in series to the upper arm 30H, that is, a pair of arms of the upper arm 30H.
  • Gate drive circuits 50H and 50L turn on / off the semiconductor switching elements of the upper arm 30H and the lower arm 30L, respectively.
  • Each of the gate drive circuits 50H and 50L includes a gate clamp switch (SWc) that conducts between the gate and the source when the semiconductor switching element is off, a gate clamp switch control circuit (included in the gate control circuit 51L), and a gate. It includes a clamp resistor (Rc) connected in series with the clamp switch (SWc), and a clamp resistor voltage detection circuit (60L (for lower arm)).
  • the series connection circuit of the gate clamp switch (SWc) and the clamp resistor (Rc) is connected between the gate and the source of the semiconductor switching element in each arm.
  • a semiconductor switching element MOSFET in FIG. 8 is used as the gate clamp switch.
  • GDS gate drive signal
  • Gate drive signals (GDS) from gate drive circuits 50H and 50L are applied to the gates of upper arm 30H and lower arm 30L, that is, the gates of semiconductor switching elements, respectively. On / off drive control of the semiconductor switching element is performed by the gate drive signal (GDS).
  • the gate drive circuit 50L charges and discharges the capacitance of the semiconductor switching element gate in the lower arm 30L.
  • the gate clamp switch (SWc) and the clamp resistor (Rc) form a gate clamp circuit.
  • the gate clamp circuit uses the gate-source of the semiconductor switching element when the gate-source voltage VgsL of the semiconductor switching element of the lower arm 30L is smaller than the gate threshold voltage Vthc, that is, when the semiconductor switching element of the lower arm 30L is off. Conduction (short circuit) between the two.
  • the gate clamp switch (SWc) is a bidirectional semiconductor switching element capable of bidirectionally passing a current. As a result, bidirectional gate voltage oscillation can be suppressed. The same applies to the gate drive circuit 50H.
  • the gate clamp switch (SWc) is a MOSFET. In the case of a MOSFET, it functions as a bidirectional semiconductor switching element by causing a reverse current to flow in a parasitic diode (body diode).
  • FIG. 9 shows a schematic operation waveform of the half-bridge conversion circuit shown in FIG.
  • FIG. 9 shows operation waveforms when the semiconductor switching element of the upper arm is turned on when the operation of the lower arm is in the freewheeling mode.
  • the rectifying element the diode in FIG. 8 forming the arm is made conductive, and the current flows in the rectifying element in the forward direction of the rectifying element.
  • the gate signal of the upper arm changes from the Low state to the High state (see the gate-source voltage VgsH).
  • the gate signal of the lower arm in the freewheeling mode is in the Low state.
  • the lower arm gate clamp switch control signal (SWc) is in the high state, and the lower arm gate-source is electrically connected through the gate clamp switch and the clamp resistance circuit.
  • the source current IsH of the upper arm increases and the source current IsL (diode current) of the lower arm decreases.
  • the magnitude of VssL is proportional to the time change rate of IsL (dIsL / dt).
  • the magnitude of dIsL / dt that is, the magnitude of dIsH / dt is inversely proportional to the gate threshold voltage (VthH) of the upper arm. That is, as VthH is smaller than the gate drive voltage VgsH, dIsL / dt and dIsH / dt increase, and as a result, the voltage VssL across the LCM increases.
  • the common source inductance LCM is the inductance of the wiring between the source electrode of the semiconductor switching element and the source terminal of the arm in each arm.
  • such an inductance is referred to as “common source inductance” because it is an inductance common to the main circuit and the gate drive circuit.
  • the gate current IgL of the lower arm flows in the direction of discharging the gate-source capacitance Cgs.
  • the clamp resistor (Rc) since the clamp resistor (Rc) is connected in series to the gate clamp switch, the clamp line voltage VcL jumps to the positive side in the same phase as VssL.
  • the magnitude of the negative peak voltage is reduced. Therefore, the negative oscillation of the gate-source voltage can be suppressed.
  • the IgL bypassed by the gate clamp circuit flows as VssL increases.
  • the magnitude of VssL is proportional to “dIsL / dt”
  • the magnitude of dIsL / dt is equal to the magnitude of dIsH / dt, so the magnitude of VssL is eventually proportional to the magnitude of “dIsH / dt”. ..
  • the magnitude of “dIsH / dt” is inversely proportional to the gate threshold voltage (VthH) of the upper arm. Therefore, there is a predetermined relationship between IgL and the upper arm gate threshold voltage (VthH). Therefore, in the first embodiment, the clamp resistor both-end voltage detection circuit 60L (FIG.
  • the gate control circuit 51L determines the state of the gate threshold voltage of the semiconductor switching element of the upper arm 30H, and diagnoses the presence or absence of deterioration or abnormality of the semiconductor switching element.
  • the magnitude of the clamp resistor Rc is set so that “IgL ⁇ Rc” does not exceed the gate threshold voltage based on the characteristics required for the semiconductor switching element according to the specifications of the power converter.
  • the value of Rc is set.
  • the gate control circuit 51L can detect an abnormal circuit operation (for example, an upper and lower arm short circuit) by detecting the temporal change amount of VcL. it can.
  • the gate control circuit 51L can detect the abnormality in the circuit operation by detecting the temporal change amount of VcL.
  • gate vibration can be reduced by connecting a clamp resistor in series with the gate clamp switch. Furthermore, by detecting the voltage across the clamp resistor, it is possible to detect changes in the gate threshold voltage and circuit operation abnormalities.
  • FIG. 10 shows a schematic operation waveform of the half-bridge conversion circuit shown in FIG. FIG. 10 shows operation waveforms when the upper arm semiconductor switching element is turned off. The lower arm goes from the off state to the reflux mode.
  • the gate signal of the upper arm changes from the High state to the Low state (see the gate-source voltage VgsH).
  • the gate signal of the lower arm is in the Low state.
  • the lower arm gate clamp switch control signal (SWc) is in a high state, and the lower arm gate-source is electrically connected via the gate clamp switch and the clamp resistance circuit.
  • the drain-source voltage VdsH of the upper arm increases, and the drain-source voltage VdsL of the lower arm decreases.
  • IgL Cgd ⁇ (dVdsL / dt): mirror current
  • Cgd gate-drain capacitance
  • the magnitude of the clamp resistance Rc is based on the characteristics required for the semiconductor switching element according to the specifications of the power converter, and “IgL ⁇ Rc” does not exceed the rating of the gate negative bias. Thus, the value of Rc is set.
  • the source current IsH of the upper arm decreases and the source current IsL (diode current) of the lower arm increases.
  • the gate current IgL of the lower arm flows in a direction of charging the gate-source capacitance Cgs as the voltage VssL across the common source inductance drops.
  • the positive peak voltage of the gate-source voltage becomes equal to or higher than the gate threshold voltage, the upper and lower arms are simultaneously turned on, and a large short-circuit current can flow in the upper and lower arms.
  • the clamp resistor (Rc) since the clamp resistor (Rc) is connected in series to the gate clamp switch, the clamp line voltage VcL jumps to the negative side in the same phase as VssL.
  • the magnitude of the positive peak voltage decreases. As a result, abnormal turn-on of the lower arm semiconductor switching element can be prevented.
  • the circuit operation as described above in the first embodiment is the same when the lower arm is turned on and off.
  • the gate voltage generated in the other arm that is, the anti-arm, accompanying the turn-on and turn-off operations of one of the upper and lower arms of the half-bridge conversion circuit in the power conversion device. Vibration can be reduced. Further, by detecting the voltage VcL across the clamp resistor, it is possible to detect deterioration of the gate threshold voltage and abnormal circuit operation. Therefore, according to the first embodiment, the semiconductor switching element forming the main circuit in the power conversion device can be driven and controlled with high reliability. This improves the reliability of the power converter.
  • the first embodiment is suitable for a power conversion device that uses a high-speed element such as a SiC-MOSFET, and can reduce gate voltage oscillation due to high-speed switching.
  • a high-speed element such as a SiC-MOSFET
  • FIG. 11 shows a part of a main circuit and a gate drive circuit section in a power conversion device that is Embodiment 2 of the present invention.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • the power conversion device includes a converter, an inverter, a chopper, and a host control circuit that controls these (see FIG. 1).
  • the configuration of each unit is the same as that of the first embodiment (see FIGS. 2-7).
  • FIG. 11 shows a part of the main circuit and the gate circuit part in the second embodiment.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • the gate drive circuit includes a gate clamp circuit including a gate clamp switch and a clamp resistor Rc connected in series with the gate clamp switch.
  • a diode Dc is connected in parallel with the clamp resistor Rc.
  • the diode Dc is connected in parallel to the clamp resistor Rc so that the direction from the series connection point of the gate clamp switch and the clamp resistor Rc toward the gate of the lower arm 30L is the forward direction.
  • the circuit operation in the second embodiment is similar to that in the first embodiment when the semiconductor switching element of the upper arm 30H is turned on (see FIG. 9).
  • the gate current IgL (mirror current) due to the change in VdsL (dVdsL / dt) (see period Ph.1 in FIG. 10) and the change in IsL (dIsL / dt)
  • the gate current IgL due to the voltage VssL across the common source inductance generated by (dt) is bypassed by the gate clamp switch SWc via the clamp diode Dc.
  • the ON voltage (forward voltage drop) of the diode Dc causes the voltage drop of Rc in the same manner as in the first embodiment. The abnormal turn-on is prevented.
  • the negative side gate vibration generated in the other can be reduced. Therefore, in the power converter, when a semiconductor switching element having a relatively small gate negative bias rating is used, such as a SiC-MOSFET, deterioration of the gate threshold voltage is prevented and the life of the semiconductor switching element can be improved.
  • a semiconductor switching element having a relatively small gate negative bias rating such as a SiC-MOSFET
  • FIG. 12 shows a part of a main circuit and a gate circuit part in a power conversion device according to a third embodiment of the present invention.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • the power conversion device includes a converter, an inverter, a chopper, and a host control circuit that controls these (see FIG. 1).
  • the configuration of each unit is the same as that of the first embodiment (see FIGS. 2-7).
  • the lower arm side gate control circuit 51L includes a gate threshold voltage determination unit (not shown).
  • the gate threshold voltage determination unit inputs the both-end voltage VcL of the clamp resistance Rc detected by the clamp resistance both-end voltage detection circuit 60L from the clamp resistance both-end voltage detection circuit 60L as a Vth (threshold voltage) determination signal, and outputs this Vth determination signal. Based on this, the threshold voltage of the semiconductor switching element of the upper arm 30H is monitored, and the presence or absence of deterioration or abnormality of the semiconductor switching element in the upper arm is diagnosed. The same applies to the gate control circuit 51H on the upper arm side.
  • FIG. 13 shows a schematic operation waveform of the half-bridge conversion circuit shown in FIG. 13 shows the waveforms of the source current IsL and the voltage VcL across the clamp resistor (Rc) in the lower arm 30L when the upper arm 30H is turned on (see period Ph.1 in FIG. 9). Note that these waveforms are the same as in Example 1 (FIG. 9).
  • FIG. 14 is a flowchart showing the gate threshold voltage determination processing executed by the gate control circuit. Note that the description will be made below with reference to FIGS. 12 and 13 as appropriate.
  • step S11 the power converter is operated steadily.
  • the gate threshold voltage determination unit of the gate control circuit 51L determines that the period Ph. 1 (FIG. 13), a Vth (threshold voltage) determination signal (that is, VcL) is input from the voltage detection circuit 60L across the clamp resistor.
  • step S12 the gate threshold voltage determination unit determines whether the voltage VcL across the clamp resistor is equal to or higher than a predetermined specified value, based on the input Vth determination signal. If VcL is less than the specified value (No in step S12), the gate threshold voltage determination unit returns to step S11 and continuously inputs the Vth determination signal. When VcL is equal to or higher than the specified value (Yes in step S12), the gate threshold voltage determination unit next executes step S13.
  • step S13 the gate threshold voltage determination unit determines that the gate threshold voltage (Vth) of the upper arm semiconductor switching element has deteriorated (decreased).
  • the gate threshold voltage determination unit executes step S13 and then step S14.
  • step S14 the gate control circuit 51L outputs a gate block command to turn off all gate drive signals (Low), thereby stopping the operation of the main circuit of the power conversion device.
  • the upper arm gate control circuit 51H executes the same gate threshold voltage determination process during the period when the lower arm is turned on.
  • the power conversion device when the circuit operation abnormality due to the gate threshold voltage of the semiconductor switching element occurs, the power conversion device can be quickly stopped, so that the reliability of the power conversion device is improved.
  • the gate threshold voltage decreases under high temperature conditions, and di / dt increases as the load current increases. Therefore, the turn-on period Ph. 1, the voltage across the clamp resistor has the maximum value under the conditions of high temperature and large load current. Therefore, the maximum allowable voltage of the voltage across the clamp resistor is set based on the operable temperature of the power converter and the range of the load current, and the set value of such maximum allowable voltage is set to the above-mentioned VcL specified value (step in FIG. 14). S12) is preferable.
  • the gate drive signal is turned off, so that it is possible to avoid an abnormal operation such as exceeding the rating in the power converter.
  • FIG. 15 shows a part of a main circuit and a gate circuit part in a power conversion device according to a fourth embodiment of the present invention.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • FIG. 15 also shows the circuit configuration of the gate drive circuit for the upper arm. Further, in FIG. 15, the gate control circuit for the upper arm and the gate control circuit for the lower arm are shown in one block diagram for convenience.
  • the power conversion device includes a converter, an inverter, a chopper, and a host control circuit that controls these (see FIG. 1).
  • the configuration of each unit is the same as that of the first embodiment (see FIGS. 2-7).
  • the gate control circuit 52 includes a gate threshold voltage determination unit (not shown), as in the third embodiment. Similar to the third embodiment, the gate threshold voltage determination unit monitors the threshold voltage of the upper arm semiconductor switching element based on the voltage VcL across the clamp resistance Rc for the lower arm, and detects the semiconductor switching element of the upper arm. Diagnose for deterioration or abnormality. Further, the gate threshold voltage determination unit monitors the threshold voltage of the semiconductor switching element of the lower arm based on the voltage VcH across the clamp resistor Rc for the upper arm, and determines whether the semiconductor switching element in the lower arm is deteriorated or abnormal. To diagnose.
  • the gate control circuit 52 has a function of adjusting the voltage of the gate drive power supply (“variable DC power supply” in FIG. 15).
  • FIG. 16 shows a schematic operation waveform of the half bridge conversion circuit shown in FIG. 16 shows the waveforms of the source current IsL and the voltage VcL across the clamp resistor (Rc) in the lower arm when the upper arm is turned on (see period Ph.1 in FIG. 9). Note that these waveforms are the same as in Example 1 (FIG. 9).
  • FIG. 17 is a flowchart showing the gate threshold voltage determination processing executed by the gate control circuit.
  • steps S21, S22, and S23 correspond to steps S11, S12, and S13 in the third embodiment (FIG. 14), respectively.
  • the gate control circuit 52 determines in step S24 The magnitude of the voltage of the gate drive power supply for the arm is reduced below the normal value. As a result, it is possible to suppress a change in the switching speed of the semiconductor switching element in the upper arm, that is, an increase in the switching speed due to a decrease in the gate threshold voltage.
  • the gate control circuit 52H executes similar gate threshold voltage determination processing during the period when the lower arm is turned on. That is, the gate control circuit 52 detects the voltage VcH across the clamp resistor for the upper arm during the period when the lower arm is turned on, and when VcH becomes equal to or higher than the specified value, the gate threshold voltage of the lower arm deteriorates (decreases). If it is determined that the voltage is lower than the normal value, the magnitude of the voltage of the gate drive power supply for the lower arm is reduced.
  • the gate threshold voltage of the semiconductor switching element fluctuates, it is possible to suppress the change in the switching speed of the semiconductor switching element and suppress the abnormal operation of the conversion circuit. Therefore, the reliability of the power converter is improved.
  • the maximum allowable voltage across the clamp resistor is set based on the operable temperature range of the power converter and the range of the load current. It is preferable to set the value to the above-mentioned VcL specified value (see step S22 in FIG. 17). Thus, when the voltage across the clamp resistor exceeds the maximum allowable voltage, the gate drive signal is turned off, so that it is possible to avoid an abnormal operation such as exceeding the rating in the power converter.
  • FIG. 18 shows a part of a main circuit and a gate circuit part in a power conversion device according to a fifth embodiment of the present invention.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • FIG. 18 also shows the circuit configuration of the gate drive circuit for the upper arm. Further, in FIG. 18, the gate control circuit for the upper arm and the gate control circuit for the lower arm are shown in one block diagram for convenience.
  • the power conversion device includes a converter, an inverter, a chopper, and a host control circuit that controls these (see FIG. 1).
  • the configuration of each unit is the same as that of the first embodiment (see FIGS. 2-7).
  • the gate control circuit 52 includes a first gate threshold voltage determination unit (not shown).
  • the first gate threshold voltage determining unit determines the voltage VcL across the clamp resistor Rc for the lower arm detected by the clamp resistor voltage across detection circuit 60L to determine whether the gate threshold voltage of the upper arm semiconductor switching element is abnormal. Is input as the Vth (H) determination signal.
  • the first gate threshold voltage determination unit monitors the gate threshold voltage of the semiconductor switching element of the upper arm based on the Vth (H) determination signal, and diagnoses the presence or absence of deterioration or abnormality of the semiconductor switching element of the upper arm. ..
  • the gate control circuit 52 includes a second gate threshold voltage determination unit (not shown).
  • the second gate threshold voltage determination unit determines the gate-source voltage of the lower arm detected by the gate-source voltage detection circuit 70L as Vth (L to determine the abnormality of the gate threshold of the semiconductor switching element of the lower arm. ) Input as a judgment signal.
  • the second gate threshold voltage determination unit determines the state of the gate threshold voltage of the semiconductor switching element in the lower arm based on the Vth (L) determination signal, and diagnoses the presence or absence of deterioration or abnormality of the semiconductor switching element in the lower arm. To do.
  • the gate control circuit 52 has a function of adjusting the voltage of the upper arm gate drive power supply (“variable DC power supply” in the upper part of FIG. 15) and the lower arm gate drive power supply (lower part in FIG. 15). “Variable DC power supply”) voltage adjustment function.
  • the circuit operation when determining the abnormality of the gate threshold voltage of the semiconductor switching element of the upper arm is the same as that of the first embodiment (see period Ph.1 in FIG. 9).
  • the gate control circuit 52 determines that the gate threshold voltage (Vth) of the semiconductor switching element of the upper arm has deteriorated (decreased), it reduces the magnitude of the voltage of the gate drive power supply for the upper arm from the normal value. As a result, it is possible to suppress a change in the switching speed of the semiconductor switching element in the upper arm, that is, an increase in the switching speed due to a decrease in the gate threshold voltage.
  • FIG. 19 shows a schematic operation waveform of the half bridge conversion circuit shown in FIG. FIG. 19 shows operation waveforms when the lower arm semiconductor switching element is turned on.
  • the jump voltage of the gate-source voltage VgsLL depends on the gate threshold voltage of the semiconductor switching element of the lower arm
  • the change of the jump voltage of VgsLL is detected to detect the gate of the semiconductor switching element of the lower arm.
  • a change in the threshold voltage can be detected.
  • the gate control circuit determines that the gate threshold voltage (Vth (H)) of the semiconductor switching element in the upper arm has deteriorated (decreased)
  • the voltage of the gate drive power supply for the upper arm increases. Is less than the normal value.
  • the gate control circuit determines that the gate threshold voltage (Vth (L)) of the semiconductor switching element in the lower arm has deteriorated (decreased), the voltage of the gate drive power supply for the lower arm becomes large. Is less than the normal value. As a result, it is possible to suppress a change in the switching speed of the semiconductor switching element of the lower arm, that is, an increase in the switching speed due to a decrease in the gate threshold voltage.
  • the abnormality of the gate threshold voltage of the power semiconductor switching elements in both the upper and lower arms can be determined based on VcL and VgsL in the lower arm, so that the configuration of the gate circuit is simplified and the gate circuit is simplified.
  • the circuit can be miniaturized.
  • FIG. 20 shows a part of a main circuit and a gate circuit part in a power conversion device that is Embodiment 6 of the present invention.
  • One half-bridge conversion circuit is shown as part of the main circuit.
  • a gate drive circuit and a gate control circuit are shown as the gate circuit portion.
  • FIG. 20 the configuration of the gate drive circuit is similar to that of the above-described fourth embodiment (FIG. 15). Further, in FIG. 20, the gate control circuit for the upper arm and the gate control circuit for the lower arm are shown as one block diagram for convenience.
  • the power conversion device includes a converter, an inverter, a chopper, and a host control circuit that controls these (see FIG. 1).
  • the configuration of each unit is the same as that of the first embodiment (see FIGS. 2-7).
  • the gate control circuit 52 includes a gate control unit 13 and a device abnormality determination unit 12.
  • the gate control unit 13 has the same function as the gate control circuit (“52” in FIG. 15) in the fourth embodiment described above.
  • the device abnormality determination unit 12 includes the memory device 10 that sequentially stores the detected values of the voltage across the clamp resistor in time series, and also stores information about the load current, the element temperature, and the voltage across the clamp circuit resistor. Further, the device abnormality determination unit 12 detects the history of the detected voltage across the clamp resistor, which is input from the voltage detected across the clamp resistor at the current time point, and the history of the detected voltage value across the clamp circuit resistor stored in the memory device 10. An operation abnormality determination unit 11 that determines deterioration or abnormality of the semiconductor switching element in the arm based on the detected voltage across the clamp resistor at the previous time point is provided.
  • Information about the load current, the element temperature, and the voltage across the clamp circuit resistance is, for example, between each range of the load current and the element temperature and the specified value (maximum value) of the voltage across the clamp circuit resistance allowed in these ranges. It is information (for example, table data) representing the relationship.
  • the operation abnormality determination unit 11 can accurately determine the abnormality of the semiconductor switching element even when the temperature dependency of the gate threshold voltage and the load current dependency of di / dt are remarkable as in the SiC-MOSFET. You can
  • the operation abnormality determination unit 11 can accurately determine the deterioration of the semiconductor switching element even when the temperature dependency of the gate threshold voltage and the load current dependency of di / dt are remarkable as in the SiC-MOSFET. You can
  • the memory device 10 stores both the specified value of the voltage across the clamp circuit resistance and the specified value of the increment of the voltage across the clamp circuit resistance.
  • the temperature and the load current are detected by, for example, a sensor (not shown).
  • FIG. 21 is a flowchart showing the gate threshold voltage determination processing executed by the gate control circuit in the sixth embodiment.
  • description will be given with reference to FIG. 20 as appropriate.
  • step S31 the power converter is operated steadily.
  • the gate control unit 13 controls the period Ph. 1 (FIG. 13), the detected value of the clamp resistor both-end voltage VcL is input from the clamp resistor both-end voltage detection circuit 60L as a gate threshold voltage determination signal (Vth (H) determination signal, that is, VcL) of the upper arm semiconductor switching element. ..
  • step S32 the operation abnormality determination unit 11 acquires the detection value of the clamp resistor voltage VcL via the gate control unit 13, and determines whether the acquired detection value is equal to or greater than a predetermined specified value.
  • the operation abnormality determination unit 11 reads out the specified value applied to the determination from the memory device 10.
  • the operation abnormality determination unit 11 next executes step S33, and when the detected value of VcL is less than the specified value (No in step S32). Then, step S35 is executed.
  • step S33 the operation abnormality determination unit 11 determines that the gate threshold voltage (Vth) of the semiconductor switching element of the upper arm is abnormal, and sends the determination result to the gate control unit 13.
  • Vth gate threshold voltage
  • step S34 when the gate control unit 13 receives the determination result from the operation abnormality determination unit 11 that the gate threshold voltage (Vth (H)) of the semiconductor switching element of the upper arm is abnormal, all gate drive is performed. By turning off the signal (Low), the operation of the main circuit of the power conversion device is stopped. This makes it possible to stop the operation of the power conversion device immediately after detecting an overcurrent due to a load short circuit or the like and an abnormal operation of the arm due to an increase in overtemperature, thereby preventing the spread of failures in the power conversion device.
  • Vth (H) gate threshold voltage
  • step S35 the operation abnormality determination unit 11 detects the detected value of the voltage VcL across the clamp resistor (the current detected value used in step S32) and the voltage across the clamp circuit resistor VcL stored in the memory device 10.
  • the increment value of the detected value of VcL is calculated from the detected value of the time point before the current point acquired from the value history. Furthermore, in step S35, the operation abnormality determination unit 11 determines whether the calculated increment value is equal to or greater than a predetermined specified value. Here, the operation abnormality determination unit 11 reads out the specified value applied to the determination from the memory device 10.
  • step S35 When the increment value of the detected value of VcL is less than the specified value (No in step S35), the operation abnormality determination unit 11 returns to step S31 and continuously inputs the detected value of VcL. If VcL is equal to or greater than the specified value (Yes in step S35), the operation abnormality determination unit 11 next executes step S36.
  • step S36 the operation abnormality determination unit 11 determines that the gate threshold voltage (Vth) of the semiconductor switching element of the upper arm is deteriorated, and sends the determination result to the gate control unit 13.
  • Vth gate threshold voltage
  • step S37 when the gate control unit 13 receives from the operation abnormality determination unit 11 a determination result that the gate threshold voltage (Vth (H)) of the semiconductor switching element of the upper arm is deteriorated, the upper arm The magnitude of the voltage of the gate drive power supply for the IC is reduced below the normal value.
  • a change in the switching speed of the semiconductor switching element in the upper arm that is, an increase in the switching speed due to a decrease in the gate threshold voltage can be suppressed, so that the progress of the decrease in the gate threshold voltage can be suppressed. Therefore, the life of the power conversion device can be extended and the operation of the power conversion device can be continued.
  • the reliability of the power conversion device is improved.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of the respective embodiments.
  • a MISFET or IGBT may be applied as a semiconductor switching element in the main circuit of the power converter.
  • the wide band gap semiconductor that constitutes the semiconductor switching element is not limited to SiC, but may be GaN (Gallium Nitride) or the like.
  • the semiconductor switching element in the arm is a MOSFET
  • the body diode of the MOSFET may be used as the rectifying element in the arm.
  • the main circuit of the power conversion device may have a half-bridge conversion circuit. Further, one arm may be composed of a plurality of power devices (see FIG. 6) connected in parallel.
  • Storage battery 108 ... Load, 201, 202, 203 ... Half-bridge conversion circuit, 204 ... Converter control unit, 301, 302, 303 ... Half-bridge conversion circuit, 304 ... Inverter control unit, 401 ... Half-bridge conversion circuit, 405 ... Chopper control unit, 406 ... Reactor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

高速半導体スイッチング素子を高信頼に駆動制御できる電力変換装置が開示される。この電力変換装置は、ハーフブリッジ変換回路を含む主回路と、ハーフブリッジ変換回路を駆動するゲート回路と、を備え、ハーフブリッジ変換回路を構成するアーム(30H,30L)が、一対の主端子と、アームに含まれる半導体スイッチング素子を駆動するゲート駆動信号(GDS)がゲート回路から与えられる制御端子と、を有し、ゲート回路は、一対の主端子の一方と制御端子との間に接続され、双方向スイッチ(SWc)と抵抗(Rc)とが直列接続されるクランプ回路が、一対の主端子の一方と制御端子との間に接続される。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 近年の電力変換装置においては、その主要部品であるパワー半導体モジュールの技術革新によって、より高速なスイッチング動作が実現され、パワー半導体素子(半導体スイッチング素子やダイオード)から発する損失が低減されている。これにより、特に冷却器が小型化され、その結果、電力変換装置が小型化される。また、パワー半導体素子の損失低減により、電力変換装置の効率が向上する。
 IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体スイッチング素子の高速化にともない、電力変換装置における半導体スイッチング素子の駆動には、高速性および高信頼性について、考慮すべき種々の問題が生じる。
 例えば、SiC(Silicon Carbide)等のワイドバンドギャップ半導体からなるパワーMOSFETやIGBTは、電子飽和速度がSi(Silicon)に対し約2倍以上であり、また素子の厚さを低減できることから、高速スイッチング動作が可能である。しかし、このようなワイドバンドギャップ半導体からなる半導体スイッチング素子、例えば、SiCからなるMOSFET(以下、「SiC-MOSFET」と記す)では、Si(Silicon)からなるMOSFET(以下、「Si-MOSFET」と記す)に比べ、ゲート負バイアスに対して、保証電圧の大きさが小さく、またゲート閾値電圧が低下する。このため、誤動作(ターンオン)や定格超過を回避するためのゲート電圧の許容振動範囲が狭い。しかも、ゲート電圧の振動時における、ゲート電圧の跳ね上がりや跳ね下がりの大きさは、スイッチング動作の高速化とトレードオフの関係にある。
 さらに、SiC-MOSFETにおいて、ゲート負バイアスが保証電圧を長期間超過すると、ゲート閾値電圧が低下する。このため、スイッチング速度の高速化に伴いノイズ特性が劣化(スイッチングノイズ増大)する。また、複数の半導体スイッチング素子を並列接続する場合、ゲート閾値電圧のばらつきのために電流アンバランスが増大する。
 半導体スイッチング素子を高速かつ高信頼に駆動するための従来技術として、例えば、特許文献1に記載の技術が知られている。
 特許文献1に記載の技術では、ハーフブリッジ変換回路を構成する2個のMISFET(Metal Insulator Semiconductor Field Effect Transistor)のそれぞれに、ゲート端子とソースセンス端子が設けられる。ゲート端子とソースセンス端子との間には、ゲートダイオードやアクティブミラークランプ用トランジスタが接続される。これにより、ゲート・ソース間電圧の振動が抑制される。
特開2015-126342号公報
 しかしながら、特許文献1に記載の技術においては、ゲート閾値電圧の変動などゲート駆動状態の変化については考慮されていない。このため、SiC-MOSFETなどの高速スイッチング素子のゲート駆動において、確実に信頼性を向上することが難しい。
 そこで、本発明は、高速半導体スイッチング素子を高信頼に駆動制御できる電力変換装置を提供する。
 上記課題を解決するために、本発明による電力変換装置は、ハーフブリッジ変換回路を含む主回路と、ハーフブリッジ変換回路を駆動するゲート回路と、を備え、ハーフブリッジ変換回路を構成するアームが、一対の主端子と、アームに含まれる半導体スイッチング素子を駆動するゲート駆動信号がゲート回路から与えられる制御端子と、を有し、ゲート回路は、一対の主端子の一方と制御端子との間に接続され、双方向スイッチと抵抗とが直列接続されるクランプ回路が、一対の主端子の一方と制御端子との間に接続される。
 本発明によれば、半導体スイッチング素子を高信頼に駆動制御できる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
実施例1である電力変換装置の概略構成図である。 電力変換装置100の主回路部の概略構成を示す。 コンバータ102の回路構成を示す。 インバータ103の回路構成を示す。 チョッパ104の回路構成を示す。 実施例1に適用されるパワーデバイスの一例を示す。 電力変換装置内におけるパワーデバイスの実装例を示す。 実施例1における主回路の一部およびゲート回路部を示す。 図8に示すハーフブリッジ変換回路の概略的な動作波形を示す。 図8に示すハーフブリッジ変換回路の概略的な動作波形を示す。 実施例2である電力変換装置における主回路の一部およびゲート回路部を示す。 実施例3である電力変換装置における主回路の一部およびゲート回路部を示す。 図12に示すハーフブリッジ変換回路の概略的な動作波形を示す。 ゲート制御回路によって実行されるゲート閾値電圧判定処理を示すフロー図である。 実施例4である電力変換装置における主回路の一部およびゲート回路部を示す。 図15に示すハーフブリッジ変換回路の概略的な動作波形を示す。 ゲート制御回路によって実行されるゲート閾値電圧判定処理を示すフロー図である。 実施例5である電力変換装置における主回路の一部およびゲート回路部を示す。 図18に示すハーフブリッジ変換回路の概略的な動作波形を示す。 実施例6である電力変換装置における主回路の一部およびゲート回路部を示す。 実施例6におけるゲート制御回路によって実行されるゲート閾値電圧判定処理を示すフロー図である。
 以下、本発明の実施形態について、下記の実施例1~6により、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の実施例1である電力変換装置の概略構成図である。なお、本実施例1の電力変換装置は、例えば、無停電電源装置に適用される。
 図1に示すように、電力変換装置100は、コンバータ102と、インバータ103と、チョッパ104と、これらを制御する上位制御回路105とを備える。
 コンバータ102は、商用電源106(交流電源)から供給される三相交流電力を直流電力に変換して、インバータ103に供給する。
 インバータ103は、コンバータ102から供給された直流電力を再び三相交流電力に変換して負荷108に供給する。
 チョッパ104は、蓄電池107(直流電源)から供給される直流電力を、所定電圧に昇圧または降圧し、所定の直流電力に変換して、インバータ103に供給する。
 上位制御回路105は、コンバータ102と、インバータ103と、チョッパ104とを制御する。なお、本実施例1において、上位制御回路105は、プロセッサ、メモリ、入出力回路等を含むマイクロコンピュータによって構成される。
 商用電源106が停電した場合、チョッパ104は、蓄電池107に蓄えられた電力をインバータ103に直流電力として供給する。インバータ103は、チョッパ104から供給された直流電力を交流電力に変換して負荷108に供給する。これにより、電力変換装置100は、停電時においても、負荷108へ継続的に給電する。
 図2は、電力変換装置100の主回路部の概略構成を示す。本図においては、簡単のため、パワー半導体素子からなる回路部のみを示す。なお、各部(コンバータ、インバータ、チョッパ)の回路構成については、後述する(図3-5)。
 コンバータ102は、半導体スイッチング素子(図2ではMOSFET)と整流素子(図2では還流ダイオード)が逆並列に接続される回路部(以下、「アーム」と記す)を複数個(図2では6個)有し、複数のアームが三相ブリッジ変換回路を構成する。コンバータ102の交流入力端子R,S,Tは、商用電源106に接続される。
 インバータ103においても、コンバータ102と同様に、複数のアームが三相ブリッジ変換回路を構成する。インバータ103の交流端子U,V,Wには、負荷108が接続される。
 なお、コンバータ102の直流側と、インバータ103の直流側とは、コンデンサを備える直流リンクを介して、互いに接続される。
 チョッパ104においては、複数(図2では2個)のアームの並列接続体が、2個、直列接続され、ハーフブリッジ変換回路が構成される。直列接続点に蓄電池107が接続される。また、ハーフブリッジ変換回路の両端が直流リンクに接続される。
 図3は、コンバータ102の回路構成を示す。
 図3に示すように、コンバータ102は、3個のハーフブリッジ変換回路201,202,203(電力変換ユニット)を備えている。これらハーフブリッジ変換回路201,202,203は、電力変換ユニットの駆動部を含むコンバータ制御部204によって駆動制御される。コンバータ102は、交流入力端子R,S,Tに接続される商用電源106からの三相交流電力を、正側端子Pと負側端子Nとにおいて出力される直流電力に変換する。
 ハーフブリッジ変換回路201は、上アームの半導体スイッチング素子21および整流素子23と、下アームの半導体スイッチング素子22および整流素子24とを備えている。
 半導体スイッチング素子21のソースは、半導体スイッチング素子22のドレインに接続される。これにより、半導体スイッチング素子21と半導体スイッチング素子22は直列に接続される。半導体スイッチング素子21と半導体スイッチング素子22の直列接続点は交流入力端子Rに接続される。
 コンデンサ(25,26)は、半導体スイッチング素子21のドレインと半導体スイッチング素子22のソースとの間に接続される。すなわち、コンデンサ(25,26)は、ハーフブリッジ変換回路201の両端に並列接続される。なお、図3では、簡単のために、複数(2個)のコンデンサ(25,26)の並列接続を、単一のコンデンサの記号で示している。
 整流素子23は、半導体スイッチング素子21の一方の主端子(以下、「ソース」と記す)から他方の主端子(以下、「ドレイン」と記す)へ向かう方向が順方向となるように、半導体スイッチング素子21のソース・ドレイン間に逆並列に接続される。また、整流素子24は、半導体スイッチング素子22のソースからドレインへ向かう方向が順方向となるように、半導体スイッチング素子22のソース・ドレイン間に逆並列に接続される。
 半導体スイッチング素子21の制御端子(以下、「ゲート」と記す)は、コンバータ制御部204に接続される。また、半導体スイッチング素子22のゲートは、コンバータ制御部204に接続される。なお、本実施例1において、各半導体スイッチング素子の制御端子は絶縁ゲートである(他の実施例も同様)。
 ハーフブリッジ変換回路202の構成はハーフブリッジ変換回路201とほぼ同様であるが、ハーフブリッジ変換回路201とは異なり半導体スイッチング素子21と半導体スイッチング素子22の直列接続点が交流入力端子Sに接続される。
 ハーフブリッジ変換回路203の構成はハーフブリッジ変換回路201とほぼ同様であるが、ハーフブリッジ変換回路201とは異なり半導体スイッチング素子21と半導体スイッチング素子22の直列接続点が交流入力端子Tに接続される。
 次に、図3に示すコンバータ102の動作について説明する。
 商用電源106から供給される三相交流電力は、交流端子R,S,Tを介して、コンバータ102の各相のハーフブリッジ変換回路201,202,203に供給される。ハーフブリッジ変換回路201,202,203の上アームの半導体スイッチング素子21および整流素子23と、下アームの半導体スイッチング素子22および整流素子24とが、コンバータ制御部204によってスイッチングタイミングが制御されることにより、商用電源106から供給される三相交流電力が直流電力を変換される。
 図4は、インバータ103の回路構成を示す。
 図4に示すように、インバータ103は、3個のハーフブリッジ変換回路301,302,303(電力変換ユニット)を備えている。これらハーフブリッジ変換回路301,302,303は、電力変換ユニットの駆動部を含むインバータ制御部304によって駆動制御される。インバータ103は、コンバータ102によって、正側端子Pと負側端子Nとにおいて出力される直流電力を三相交流電力に変換して、この三相交流電力を交流出力端子U,V,Wから出力する。
 ハーフブリッジ変換回路301の構成はハーフブリッジ変換回路201(図3)とほぼ同様であるが、ハーフブリッジ変換回路201とは異なり半導体スイッチング素子21と半導体スイッチング素子22の直列接続点が交流出力端子Uに接続される。
 ハーフブリッジ変換回路302の構成はハーフブリッジ変換回路202とほぼ同様であるが、ハーフブリッジ変換回路202とは異なり半導体スイッチング素子21と半導体スイッチング素子22の直列接続点が交流出力端子Vに接続される。
 ハーフブリッジ変換回路303の構成はハーフブリッジ変換回路203とほぼ同様であるが、ハーフブリッジ変換回路203とは異なり半導体スイッチング素子21と半導体スイッチング素子22の直列接続点が交流出力端子Wに接続される。
 次に、図4に示すインバータ103の動作について説明する。
 コンバータ102が出力する直流電力は、正側端子Pおよび負側端子Nを介して、インバータ103の各相のハーフブリッジ変換回路301,302,303に供給される。ハーフブリッジ変換回路301,302,303の上アームの半導体スイッチング素子21および整流素子23と、下アームの半導体スイッチング素子22および整流素子24とが、インバータ制御部304によってスイッチングタイミングが制御されることにより、コンバータ102から供給される直流電力が三相交流電力に変換される。
 図5は、チョッパ104の回路構成を示す。
 図5示すように、チョッパ104は、ハーフブリッジ変換回路401(電力変換ユニット)とリアクトル406とを備えており、電力変換ユニットの駆動部を含むチョッパ制御部405によって駆動制御される。チョッパ104は、蓄電池107からの低電圧の直流電力と、正側端子Pと負側端子Nとの間における、蓄電池107よりも高電圧の直流電力とを、相互に変換する。
 ハーフブリッジ変換回路401の構成はハーフブリッジ変換回路201(図3)とほぼ同様であるが、ハーフブリッジ変換回路201とは異なり半導体スイッチング素子21と半導体スイッチング素子22の直列接続点が直流端子Cに接続される。なお、図2では、チョッパ104の上アームおよび下アームにおいては、各々、複数(2個)のアームが並列接続されているが、本図5においては、簡単のために、上アームおよび下アームを、各々、単一のアームで示している。
 リアクトル406は、直流端子Cと蓄電池107の正極との間に接続される。
 次に、図5に示すチョッパ104の動作について説明する。
 ハーフブリッジ変換回路401の下アームの半導体スイッチング素子22がオンしている間に、蓄電池107と端子Cとの間に接続されているリアクトル406にエネルギーが蓄積される。次に、半導体スイッチング素子22がオフすると、リアクトル406が発生する逆起電圧により上アームの整流素子23が導通する。これにより、チョッパ104の出力端には、蓄電池107の直流電圧とリアクトル406の逆起電圧とを加算した電圧が生じる。
 すなわち、チョッパ104は、蓄電池107の直流電圧を昇圧する。チョッパ制御部405は、ハーフブリッジ変換回路401のスイッチングタイミングを制御することにより、昇圧比を任意に設定する。
 また、チョッパ104は、チョッパ制御部405によって上アームの半導体スイッチング素子21を繰り返してオン・オフすることにより、正側端子Pと負側端子Nとの間の直流電圧を降圧して、直流端子Cに出力する。この場合、チョッパ104は、コンバータ102が出力する直流電力を蓄電池107に充電する。
 上述のように、電力変換装置100におけるコンバータ102、インバータ103およびチョッパ104は、いずれも、半導体スイッチング素子21および整流素子23が逆並列接続される上アームと、半導体スイッチング素子22および整流素子24が逆並列接続される下アームとが、直列に接続される2レベルのハーフブリッジ変換回路を基本構成としている。
 なお、半導体スイッチング素子としては、MOSFETに限らず、MOSFETと同様に絶縁ゲートを備えるIGBT(絶縁ゲートバイポーラトランジスタ)などが適用できる。また、整流素子としては、PN接合ダイオードやショットキーバリアダイオードなどが適用できる。整流素子は、半導体スイッチング素子に外付けされてもよいし、半導体スイッチング素子に内蔵されてもよい。なお、半導体スイッチング素子および整流素子を構成する半導体材料は、Siでもよいし、SiCなどのワイドギャップ半導体でもよい。
 図6は、本実施例1に適用されるパワーデバイスの一例を示す。なお、パワーデバイスの等価回路も併記する。
 等価回路が示すように、パワーデバイス30は、前述のハーフブリッジ変換回路におけるアームを構成する。
 パワーデバイス30は、一つの樹脂パッケージ内に、MOSFET(半導体スイッチング素子)の半導体チップとダイオード(整流素子)の半導体チップの逆並列接続を有している。また、パワーデバイス30は、樹脂パッケージ外に引き出される三個の端子、すなわちソース(S)、ドレイン(D)およびゲート(G)を備えている。パワーデバイス30は、いわゆる汎用型のパワーデバイスである。
 MOSFETがSiC-MOSFETである場合、パワーデバイス30は、電力変換装置の主回路部の低損失化および高速化に好適である。
 パワーデバイス30においては、1個のソースが、主電流が流れる主端子と駆動回路を接続する補助端子(前述の特許文献1に記載の「ソースセンス端子」)とを兼ねている。このため、ソース(S)と外部回路との接続部において、主回路とゲート駆動回路とに共通の配線インダクタンスが存在する。このような配線インダクタンスはゲート駆動制御に影響するが、パワーデバイス30が高速化されるほど、影響が顕著になる。これに対し、本実施例1によれば、このような配線インダクタンスの影響がある場合でも、ゲート駆動の信頼性を向上できる。
 図7は、電力変換装置内におけるパワーデバイスの実装例を示す。
 電力変換装置内において、パワーデバイス30は、冷却フィン40を有するヒートシンク上に搭載される。なお、MOSFETがSiC-MOSFETである場合、冷却フィン40を小型化できる。
 以下、実施例1におけるパワー半導体素子の駆動制御について説明する。
 図8は、実施例1における主回路の一部およびゲート回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 図8に示すように、ハーフブリッジ変換回路は、上アーム30Hと、上アーム30Hの対アーム、すなわち上アーム30Hに直列接続される下アーム30Lと、を含む。
 ゲート駆動回路50Hおよび50Lは、それぞれ上アーム30Hおよび下アーム30Lの半導体スイッチング素子をオン・オフ駆動する。ゲート駆動回路50Hおよび50Lの各々は、半導体スイッチング素子のオフ時にゲートとソース間を導通するゲートクランプ用スイッチ(SWc)と、ゲートクランプ用スイッチ制御回路(ゲート制御回路51Lに含まれる)と、ゲートクランプ用スイッチ(SWc)と直列接続されるクランプ抵抗(Rc)と、クランプ抵抗両端電圧検出回路(60L(下アーム用))とを含む。ゲートクランプ用スイッチ(SWc)とクランプ抵抗(Rc)の直列接続回路は、各アームにおける半導体スイッチング素子のゲート・ソース間に接続される。本実施例1では、ゲートクランプ用スイッチとして、半導体スイッチング素子(図8中ではMOSFET)が適用される。
 図8における表記「GDS」はゲート駆動信号を表す。ゲート駆動回路50Hおよび50Lからのゲート駆動信号(GDS)は、それぞれ、上アーム30Hおよび下アーム30Lのゲート、すなわち半導体スイッチング素子のゲートに与えられる。このゲート駆動信号(GDS)によって、半導体スイッチング素子はオン・オフ駆動制御される。
 ゲート駆動回路50Lは、下アーム30Lにおける半導体スイッチング素子ゲートの容量を充放電する。ゲートクランプ用スイッチ(SWc)とクランプ抵抗(Rc)はゲートクランプ回路を構成する。ゲートクランプ回路は、下アーム30Lの半導体スイッチング素子のゲート・ソース間の電圧VgsLがゲート閾値電圧Vthcより小さい場合、すなわち、下アーム30Lの半導体スイッチング素子がオフ状態において、半導体スイッチング素子のゲート・ソース間を導通(短絡)する。本実施例1において、ゲートクランプ用スイッチ(SWc)は、双方向に電流を流すことができる双方向半導体スイッチング素子である。これにより、双方向のゲート電圧振動を抑制することができる。なお、ゲート駆動回路50Hについても同様である。
 図8では、ゲートクランプ用スイッチ(SWc)がMOSFETである。MOSFETの場合、逆方向電流を寄生ダイオード(ボディダイオード)に流すことにより、双方向半導体スイッチング素子として機能する。
 次に、回路動作について説明する。
 図9は、図8に示すハーフブリッジ変換回路の概略的な動作波形を示す。本図9は、下アームの動作が環流モードである時に上アームの半導体スイッチング素子がターンオンする場合の動作波形を示す。なお、環流モードにおいては、アームを構成する整流素子(図8ではダイオード)が導通して、整流素子において、整流素子の順方向に電流が流れる。
 図9における各波形の縦軸の記号は、図8における各部の電圧および電流を示す記号に相当する。
 上アームの半導体スイッチング素子がターンオンする期間(Ph.1)において、上アームのゲート信号はLow状態からHigh状態になる(ゲート・ソース間電圧VgsHを参照)。なお、環流モードにある下アームのゲート信号はLow状態である。また、下アームのゲートクランプ用スイッチ制御信号(SWc)はHigh状態であり、下アームのゲート・ソース間は、ゲートクランプ用スイッチとクランプ抵抗回路を介して導通している。
 上アームのターンオン動作に伴い、上アームのソース電流IsHは増加し、下アームのソース電流IsL(ダイオード電流)は減少する。このとき、IsLの変化(dIsL/dt)に応じて、下アームにおけるコモンソースインダクタンスLCMの両端電圧VssL(=LCM×(dIsL/dt))が跳ね上がる。ここで、VssLの大きさはIsLの時間変化率(dIsL/dt)に比例する。さらに、dIsL/dtの大きさ、すなわちdIsH/dtの大きさは、上アームのゲートしきい値電圧(VthH)に反比例する。すなわち、VthHがゲート駆動電圧VgsHよりも小さいほど、dIsL/dtおよびdIsH/dtは増大し、その結果、LCMの両端電圧VssLが増大する。
 なお、コモンソースインダクタンスLCMは、各アームにおいて、半導体スイッチング素子のソース電極と、アームのソース端子との間の配線が有するインダクタンスである。このようなインダクタンスを、本明細書においては、主回路とゲート駆動回路に共通するインダクタンスであることから、「コモンソースインダクタンス」と呼称している。
 コモンソースインダクタンスLCMの両端電圧VssLの増大に伴い、下アームのゲート電流IgLは、ゲート・ソース間容量Cgsを放電する方向に流れる。
 このようなゲート電流を、従来のミラークランプ回路のようにクランプ抵抗が接続されていない半導体スイッチによって、低インピーダンスでゲート・ソース間をバイパスすると、ゲートクランプ回路の両端電圧(クランプライン電圧)VcLはほとんど変動しない。このため、下アームのゲート・ソース間電圧VgsL(=VcL-VssL)が、コモンソースインダクタンスの両端電圧VssLの変動に起因して負側に大きく振動する。このゲート・ソース間電圧の負側ピーク電圧が、ゲート負バイアスの定格を超過すると、ゲートしきい値電圧の低下が発生し得る。このため、スイッチング速度の高速化に伴う耐ノイズ特性劣化や、素子並列構成における電流アンバランスの増大が引き起される。このような、コモンソースインダクタンスの両端電圧VssLの変動の影響は、SiC-MOSFETでは顕著である。
 これに対し、本実施例1では、ゲートクランプ用スイッチにクランプ抵抗(Rc)が直列接続されているので、クランプライン電圧VcLは、VssLと同位相で正側に跳ね上がる。このとき、ゲート・ソース間電圧VgsL(=VcL-VssL)は、VssLの増大とともに、クランプ抵抗(Rc)にIgLが流れることによるクランプ抵抗(Rc)の電圧降下により跳ね上がり電圧VcLも増大するので、負側ピーク電圧の大きさが低減する。したがって、ゲート・ソース間電圧の負側振動が抑制できる。
 上述のように、ゲートクランプ回路によってバイパスされるIgLは、VssLの増大に伴い流れる。VssLの大きさは「dIsL/dt」に比例するが、dIsL/dtの大きさはdIsH/dtの大きさに等しいので、結局、VssLの大きさは「dIsH/dt」の大きさに比例する。さらに、「dIsH/dt」の大きさは、上アームのゲートしきい値電圧(VthH)に反比例する。したがって、IgLと上アームのゲートしきい値電圧(VthH)との間には所定の関係がある。そこで、本実施例1においては、クランプ抵抗両端電圧検出回路60L(図8)がクランプ抵抗Rcの両端電圧VcLを検出し、Vth(閾値電圧)判定信号として出力する。このVth判定信号に基づいて、ゲート制御回路51L(図8)は、上アーム30Hの半導体スイッチング素子のゲート閾値電圧の状態を判定し、半導体スイッチング素子の劣化や異常の有無を診断する。
 次に、図9に示す期間Ph.1に続く期間Ph.2における回路動作について説明する。
 期間Ph.2においては、上アームの半導体スイッチング素子がオン状態となるため、下アームにおける環流動作モードが終了し(IsL=0)、下アームのドレイン・ソース間電圧VdsLが上昇する。このとき、VdsLの上昇速度(時間変化率)「dVdsL/dt」に応じて、下アームのゲートに、ゲート・ドレイン間容量Cgd(ミラー容量)を介して、IgL(=Cgd×(dVdsL/dt):ミラー電流)が流れ込む。このミラー電流がゲートクランプ用スイッチを介してソースに流れるとき、下アーム近傍のゲート・ソース間電圧VgsLに跳ね上がり電圧(=IgL×Rc)が発生する。この跳ね上がり電圧が下アームのゲート閾値電圧以上になると、上下アームが同時にオン状態となり、上下アームに大きな短絡電流が流れ得る。
 そこで、本実施例1においては、クランプ抵抗Rcの大きさが、電力変換装置の仕様に応じて半導体スイッチング素子に要求される特性に基づき、「IgL×Rc」がゲート閾値電圧を超えないようにRcの値が設定される。
 また、期間Ph.2におけるIgL(ミラー電流)はdVdsL/dtに比例するので、クランプ抵抗両端電圧VcLもdVdsL/dtに比例する。したがって、dVdsL/dtの変化に応じてVcLも変化するため、ゲート制御回路51Lは、VcLの時間的変化量を検出することで、回路動作の異常(例えば、上下アーム短絡)を検出することができる。
 なお、前述のように、期間Ph.1において、IgLはVssLの増大とともに流れ、VssLの大きさはdIsL/dt(=dIsH/dt)に比例する。dIsL/dt(=dIsH/dt)の変化に応じてVcLも変化するため、ゲート制御回路51Lは、VcLの時間的変化量を検出することで、回路動作の異常を検出することができる。
 上述のように、上アームがターンオンする場合、ゲートクランプ用スイッチにクランプ抵抗を直列接続することにより、ゲート振動を低減することができる。さらに、クランプ抵抗両端電圧を検出することにより、ゲート閾値電圧の変化や、回路動作異常を検出できる。
 図10は、図8に示すハーフブリッジ変換回路の概略的な動作波形を示す。本図10は、上アームの半導体スイッチング素子がターンオフする場合の動作波形を示す。なお、下アームはオフ状態から環流モードになる。
 図10における各波形の縦軸の記号は、図8における各部の電圧および電流を示す記号に相当する。
 上アームの半導体スイッチング素子がターンオフする期間(Ph.1)において、上アームのゲート信号はHigh状態からLow状態になる(ゲート・ソース間電圧VgsHを参照)。なお、下アームのゲート信号はLow状態である。また、下アームのゲートクランプ用スイッチ制御信号(SWc)はHigh状態であり、下アームのゲート・ソース間は、ゲートクランプ用スイッチとクランプ抵抗回路を介して導通している。
 上アームのターンオフ動作に伴い、上アームのドレイン・ソース間電圧VdsHは増加し、下アームのドレイン・ソース間電圧VdsLは減少する。このとき、VdsLの変化(dVdsL/dt)に応じて、下アームのゲートにはゲート・ドレイン間容量Cgd(ミラー容量)を介して、IgL(=Cgd×(dVdsL/dt):ミラー電流)が流れ込む。このミラー電流がゲートクランプ用スイッチを介してソースに流れるとき、下アーム近傍のゲート・ソース間電圧に跳ね上がり電圧(=IgL×Rc)が発生する。この跳ね上がり電圧がゲート負バイアスの定格を超過すると、ゲート閾値電圧の低下や素子寿命の低下を招き得る。
 そこで、本実施例1においては、クランプ抵抗Rcの大きさが、電力変換装置の仕様に応じて半導体スイッチング素子に要求される特性に基づき、「IgL×Rc」がゲート負バイアスの定格を超えないようにRcの値が設定される。
 次に、図10に示す期間Ph.1に続く期間Ph.2における回路動作について説明する。
 上アームのターンオフ動作に伴い、上アームのソース電流IsHは減少し、下アームのソース電流IsL(ダイオード電流)は増加する。このとき、IsLの変化(dIsL/dt)に応じて、下アームにおけるコモンソースインダクタンスの両端電圧VssL(=LCM×dIsL/dt)が跳ね下がる。
 コモンソースインダクタンスの両端電圧VssLの跳ね下がりに伴い、下アームのゲート電流IgLは、ゲート・ソース間容量Cgsを充電する方向に流れる。
 このようなゲート電流を、従来のミラークランプ回路のようにクランプ抵抗が接続されていない半導体スイッチによって、低インピーダンスでバイパスすると、ゲートクランプ回路の両端電圧(クランプライン電圧)VcLはほとんど変動しない。このため、下アームのゲート・ソース間電圧VgsL(=VcL-VssL)が、コモンソースインダクタンスの両端電圧VssLに起因して正側に大きく振動する。このゲート・ソース間電圧の正側ピーク電圧が、ゲート閾値電圧以上になると、上下アームが同時にオン状態となり、上下アームに大きな短絡電流が流れ得る。
 これに対し、本実施例1では、ゲートクランプ用スイッチにクランプ抵抗(Rc)が直列接続されているので、クランプライン電圧VcLは、VssLと同位相で負側に跳ね下がる。このとき、ゲート・ソース間電圧VgsL(=VcL-VssL)は、VssLが負側へ増大するとともに、クランプ抵抗(Rc)にIgLが流れることによるクランプ抵抗(Rc)の電圧降下により跳ね上がり電圧VcLも増大するので、正側ピーク電圧の大きさが低減する。これにより、下アームの半導体スイッチング素子の異常ターンオンが防止できる。
 このように、上アームがターンオフする場合においても、ゲートクランプ用スイッチにクランプ抵抗を直列接続することにより、ゲート振動を低減することできる。
 なお、本実施例1における上述のような回路動作は、下アームがターンオンおよびターンオフする場合も同様である。
 以上のように、本発明の実施例1によれば、電力変換装置におけるハーフブリッジ変換回路の上下アームの一方のアームのターンオンおよびターンオフ動作に伴って、他方のアームすなわち対アームに発生するゲート電圧振動を低減できる。さらに、クランプ抵抗両端電圧VcLを検出することで、ゲート閾値電圧の劣化や回路動作異常を検出することができる。したがって、本実施例1によれば、電力変換装置において主回路を構成する半導体スイッチング素子を高信頼に駆動制御できる。これにより、電力変換装置の信頼性が向上する。
 なお、本実施例1は、SiC-MOSFETのような高速素子が用いられる電力変換装置に好適であり、高速スイッチングに伴うゲート電圧振動を低減できる。
 図11は、本発明の実施例2である電力変換装置における主回路の一部およびゲート駆動回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 本実施例2の電力変換装置は、実施例1と同様に、コンバータと、インバータと、チョッパと、これらを制御する上位制御回路とを備える(図1参照)。また、各部の構成は、実施例1と同様である(図2-7参照)。
 図11は、実施例2における主回路の一部およびゲート回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 図11に示すように、実施例1と同様に、ゲート駆動回路は、ゲートクランプ用スイッチと、ゲートクランプ用スイッチに直列接続されるクランプ抵抗Rcとから構成されるゲートクランプ回路を備える。実施例1とは異なり、クランプ抵抗Rcには、ダイオードDcが並列接続される。ダイオードDcは、ゲートクランプ用スイッチとクランプ抵抗Rcとの直列接続点から、下アーム30Lのゲートへ向かう方向が順方向となるように、クランプ抵抗Rcに並列接続される。
 本実施例2における回路動作は、上アーム30Hの半導体スイッチング素子がターンオンする場合、実施例1と同様である(図9参照)。
 これに対し、上アーム30Hの半導体スイッチング素子がターンオフする場合、VdsLの変化(dVdsL/dt)によるゲート電流IgL(ミラー電流)(図10の期間Ph.1参照)、並びにIsLの変化(dIsL/dt)により発生するコモンソースインダクタンス両端電圧VssLによるゲート電流IgL(図10の期間Ph.2参照)は、クランプダイオードDcを介して、ゲートクランプ用スイッチSWcによってバイパスされる。したがって、ゲートクランプ用スイッチSWcとダイオードDcの直列接続によって、ゲート・ソース間が、比較的(すなわちSWcとRcの直列接続よりも)低インピーダンスでバイパスされる。これにより、上アーム30Hをターンオフする場合(図10の期間Ph.1)において、ミラー電流に起因する負側のゲート振動が低減できる。
 なお、上アーム30Hをターンオフする場合(図10の期間Ph.2)、本実施例2においては、ダイオードDcのオン電圧(順方向電圧降下)により、Rcの電圧降下による実施例1と同様に、異常ターンオンが防止される。
 実施例2によれば、上下アームの一方がターンオンおよびターンオフする場合に、他方に発生する負側のゲート振動を低減できる。したがって、電力変換装置において、SiC-MOSFETのように、ゲート負バイアスの定格が比較的小さな半導体スイッチング素子が用いられる場合に、ゲート閾値電圧の劣化が防止され、半導体スイッチング素子の寿命が向上できる。
 図12は、本発明の実施例3である電力変換装置における主回路の一部およびゲート回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 本実施例3の電力変換装置は、実施例1と同様に、コンバータと、インバータと、チョッパと、これらを制御する上位制御回路とを備える(図1参照)。また、各部の構成は、実施例1と同様である(図2-7参照)。
 本実施例3において、下アーム側のゲート制御回路51Lは、図示されないゲート閾値電圧判定部を備える。ゲート閾値電圧判定部は、クランプ抵抗両端電圧検出回路60Lが検出するクランプ抵抗Rcの両端電圧VcLを、クランプ抵抗両端電圧検出回路60LからVth(閾値電圧)判定信号として入力し、このVth判定信号に基づいて、上アーム30Hの半導体スイッチング素子の閾値電圧を監視するとともに、上アームにおける半導体スイッチング素子の劣化や異常の有無を診断する。なお、上アーム側のゲート制御回路51Hについても同様である。
 図13は、図12に示すハーフブリッジ変換回路の概略的な動作波形を示す。なお、図13には、上アーム30Hがターンオンする場合における、下アーム30Lにおけるソース電流IsLとクランプ抵抗(Rc)の両端電圧VcLの波形を示す(図9の期間Ph.1参照)。なお、これらの波形は、実施例1(図9)と同様である。
 図14は、ゲート制御回路によって実行されるゲート閾値電圧判定処理を示すフロー図である。なお、以下、適宜、図12および図13を参照しながら説明する。
 まず、ステップS11において、電力変換装置が定常運転される。本ステップS11において、ゲート制御回路51Lのゲート閾値電圧判定部は、上アームがターンオンする期間Ph.1(図13)において、クランプ抵抗両端電圧検出回路60LからVth(閾値電圧)判定信号(すなわちVcL)を入力する。
 次に、ステップS12において、ゲート閾値電圧判定部は、入力したVth判定信号に基づいて、クランプ抵抗両端電圧VcLが所定の規定値以上であるかを判定する。VcLが規定値未満である場合(ステップS12のNo)、ゲート閾値電圧判定部は、ステップS11に戻って、Vth判定信号を継続して入力する。また、VcLが規定値以上である場合(ステップS12のYes)、ゲート閾値電圧判定部は、次にステップS13を実行する。
 ステップS13において、ゲート閾値電圧判定部は、上アームの半導体スイッチング素子のゲート閾値電圧(Vth)が劣化(低下)したと判定する。ゲート閾値電圧判定部は、ステップS13を実行後、次にステップS14を実行する。
 ステップS14において、ゲート制御回路51Lは、ゲートブロック指令を出力して、全ゲート駆動信号をオフ(Low)にすることにより、電力変換装置の主回路の動作を停止させる。
 なお、上アームのゲート制御回路51Hは、下アームがターンオンする期間において、同様のゲート閾値電圧判定処理を実行する。
 本実施例3によれば、半導体スイッチング素子のゲート閾値電圧による回路動作異常が発生する場合に電力変換装置を速やかに停止することができるので、電力変換装置の信頼性が向上する。
 例えば、SiC-MOSFETでは、高温条件下でゲート閾値電圧は低下し、また負荷電流の増大とともにdi/dtが大きくなる。このため、ターンオン期間Ph.1において、高温かつ負荷電流大の条件下で、クランプ抵抗両端電圧は最大値をとる。したがって、電力変換装置の動作可能な温度および負荷電流の範囲に基づいてクランプ抵抗両端電圧の最大許容電圧を設定し、このような最大許容電圧の設定値を上述のVcL規定値(図14のステップS12参照)とすることが好ましい。これにより、クランプ抵抗両端電圧が最大許容電圧を超過したとき、ゲート駆動信号をオフすることで、電力変換器における定格超過等の異常動作を回避することが可能となる。
 図15は、本発明の実施例4である電力変換装置における主回路の一部およびゲート回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 図15においては、上アーム用のゲート駆動回路についても、回路構成を示す。また、図15においては、上アーム用のゲート制御回路と下アーム用のゲート制御回路を、便宜上、一つのブロック図で表している。
 本実施例4の電力変換装置は、実施例1と同様に、コンバータと、インバータと、チョッパと、これらを制御する上位制御回路とを備える(図1参照)。また、各部の構成は、実施例1と同様である(図2-7参照)。
 本実施例4において、ゲート制御回路52は、前述の実施例3と同様に、図示されないゲート閾値電圧判定部を備える。ゲート閾値電圧判定部は、実施例3と同様に、下アーム用のクランプ抵抗Rcの両端電圧VcLに基づいて、上アームの半導体スイッチング素子の閾値電圧を監視するとともに、上アームにおける半導体スイッチング素子の劣化や異常の有無を診断する。また、ゲート閾値電圧判定部は、上アーム用のクランプ抵抗Rcの両端電圧VcHに基づいて、下アームの半導体スイッチング素子の閾値電圧を監視するとともに、下アームにおける半導体スイッチング素子の劣化や異常の有無を診断する。
 さらに、本実施例4において、ゲート制御回路52は、ゲート駆動電源(図15中の、「可変直流電源」)の電圧を調整する機能を有する。
 図16は、図15に示すハーフブリッジ変換回路の概略的な動作波形を示す。なお、図16には、上アームがターンオンする場合における、下アームにおけるソース電流IsLとクランプ抵抗(Rc)の両端電圧VcLの波形を示す(図9の期間Ph.1参照)。なお、これらの波形は、実施例1(図9)と同様である。
 図17は、ゲート制御回路によって実行されるゲート閾値電圧判定処理を示すフロー図である。
 図17において、ステップS21,S22およびS23は、それぞれ、実施例3(図14)におけるステップS11,S12およびS13に相当する。
 本実施例4においては、実施例3と異なり、ステップS23において上アームの半導体スイッチング素子のゲート閾値電圧(Vth)が劣化(低下)したと判定すると、ゲート制御回路52は、ステップS24において、上アーム用のゲート駆動電源の電圧の大きさを、通常値よりも低減する。これにより、上アームの半導体スイッチング素子のスイッチング速度の変化、すなわちゲート閾値電圧低下に伴うスイッチング速度の増大を抑えることができる。
 なお、ゲート制御回路52Hは、下アームがターンオンする期間において、同様のゲート閾値電圧判定処理を実行する。すなわち、ゲート制御回路52は、下アームがターンオンする期間において、上アーム用クランプ抵抗の両端電圧VcHを検出し、VcHが規定値以上となったとき、下アームのゲート閾値電圧が劣化(低下)したと判定し、下アーム用のゲート駆動電源の電圧の大きさを、通常値よりも低減する。
 本実施例4によれば、半導体スイッチング素子のゲート閾値電圧が変動した場合に、半導体スイッチング素子のスイッチング速度の変化を抑え、変換回路の異常動作を抑えることができる。したがって、電力変換装置の信頼性が向上する。
 なお、実施例3と同様に、SiC-MOSFETでは、電力変換装置の動作可能な温度および負荷電流の範囲に基づいてクランプ抵抗両端電圧の最大許容電圧を設定し、このような最大許容電圧の設定値を上述のVcL規定値(図17のステップS22参照)とすることが好ましい。これにより、クランプ抵抗両端電圧が最大許容電圧を超過したとき、ゲート駆動信号をオフすることで、電力変換器における定格超過等の異常動作を回避することが可能となる。
 図18は、本発明の実施例5である電力変換装置における主回路の一部およびゲート回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 図18においては、上アーム用のゲート駆動回路についても、回路構成を示す。また、図18においては、上アーム用のゲート制御回路と下アーム用のゲート制御回路を、便宜上、一つのブロック図で表している。
 本実施例5の電力変換装置は、実施例1と同様に、コンバータと、インバータと、チョッパと、これらを制御する上位制御回路とを備える(図1参照)。また、各部の構成は、実施例1と同様である(図2-7参照)。
 本実施例5において、ゲート制御回路52は、図示されない第1のゲート閾値電圧判定部を備える。第1のゲート閾値電圧判定部は、クランプ抵抗両端電圧検出回路60Lによって検出される下アーム用のクランプ抵抗Rcの両端電圧VcLを、上アームの半導体スイッチング素子のゲート閾値電圧の異常を判定するためのVth(H)判定信号として入力する。第1のゲート閾値電圧判定部は、Vth(H)判定信号に基づいて、上アームの半導体スイッチング素子のゲート閾値電圧を監視するとともに、上アームにおける半導体スイッチング素子の劣化や異常の有無を診断する。
 さらに、本実施例5において、ゲート制御回路52は、図示されない第2のゲート閾値電圧判定部を備える。第2のゲート閾値電圧判定部は、ゲート・ソース間電圧検出回路70Lによって検出される下アームのゲート・ソース間電圧を、下アームの半導体スイッチング素子のゲート閾値の異常を判定するためVth(L)判定信号として入力する。第2のゲート閾値電圧判定部は、Vth(L)判定信号に基づいて、下アームの半導体スイッチング素子のゲート閾値電圧の状態を判定し、下アームにおける半導体スイッチング素子の劣化や異常の有無を診断する。
 なお、本実施例5において、ゲート制御回路52は、上アーム用ゲート駆動電源(図15上方の「可変直流電源」)の電圧を調整する機能と、下アーム用ゲート駆動電源(図15下方の「可変直流電源」)の電圧を調整する機能と、を有する。
 次に、回路動作について説明する。
 まず、上アームの半導体スイッチング素子のゲート閾値電圧の異常を判定する場合の回路動作は実施例1と同様である(図9における期間Ph.1参照)。
 ゲート制御回路52は、上アームの半導体スイッチング素子のゲート閾値電圧(Vth)が劣化(低下)したと判定すると、上アーム用のゲート駆動電源の電圧の大きさを、通常値よりも低減する。これにより、上アームの半導体スイッチング素子のスイッチング速度の変化、すなわちゲート閾値電圧低下に伴うスイッチング速度の増大を抑えることができる。
 次に、下アームの半導体スイッチング素子のゲート閾値電圧の異常を判定する場合の回路動作について説明する。
 図19は、図18に示すハーフブリッジ変換回路の概略的な動作波形を示す。本図19は、下アームの半導体スイッチング素子がターンオンする場合の動作波形を示す。
 図19における各波形の縦軸の記号は、図18における各部の電圧および電流を示す記号に相当する。
 下アームの半導体スイッチング素子がターンオンする期間Ph.1において、ソース電流IsLは増大する。期間Ph.1において、コモンソースインダクタンス両端電圧VssLは、コモンソースインダクタンスの大きさとIsLの時間変化(dIsL/dt)に応じて跳ね上がる。このとき、ゲート・ソース間電圧VgsLLも、コモンソースインダクタンス両端電圧の変化に伴い跳ね上がる。したがって、VgsLLの跳ね上がり電圧の大きさは、コモンソースインダクタンスの大きさとdIsL/dtに比例する。ここで、dIsL/dtの大きさは、下アームの半導体スイッチング素子のゲート閾値電圧に反比例する。したがって、ゲート・ソース間電圧VgsLLの跳ね上がり電圧は、下アームの半導体スイッチング素子のゲート閾値電圧に依存しているので、VgsLLの跳ね上がり電圧の変化を検出することにより、下アームの半導体スイッチング素子のゲート閾値電圧の変化を検出することができる。
 なお、本実施例5において、ゲート制御回路は、上アームの半導体スイッチング素子のゲート閾値電圧(Vth(H))が劣化(低下)したと判定すると、上アーム用のゲート駆動電源の電圧の大きさを、通常値よりも低減する。これにより、上アームの半導体スイッチング素子のスイッチング速度の変化、すなわちゲート閾値電圧低下に伴うスイッチング速度の増大を抑えることができる。
 さらに、本実施例5において、ゲート制御回路は、下アームの半導体スイッチング素子のゲート閾値電圧(Vth(L))が劣化(低下)したと判定すると、下アーム用のゲート駆動電源の電圧の大きさを、通常値よりも低減する。これにより、下アームの半導体スイッチング素子のスイッチング速度の変化、すなわちゲート閾値電圧低下に伴うスイッチング速度の増大を抑えることができる。
 本実施例5によれば、半導体スイッチング素子のゲート閾値電圧が変動した場合に、半導体スイッチング素子のスイッチング速度の変化を抑え、変換回路の異常動作を抑えることができる。したがって、電力変換装置の信頼性が向上する。また、本実施例5によれば、下アームにおけるVcLおよびVgsLに基づいて、上下アームの両方におけるパワー半導体スイッチング素子のゲート閾値電圧の異常を判定できるので、ゲート回路の構成が簡素化され、ゲート回路を小型化できる。
 なお、上アームにおけるVcHおよびVgsHに基づいても、同様に、上下アームの両方におけるパワー半導体スイッチング素子のゲート閾値電圧の異常を判定することができる。
 図20は、本発明の実施例6である電力変換装置における主回路の一部およびゲート回路部を示す。なお、主回路の一部として、一つのハーフブリッジ変換回路を示す。また、ゲート回路部として、ゲート駆動回路およびゲート制御回路を示す。
 図20においては、ゲート駆動回路の構成は上述の実施例4(図15)と同様である。また、図20においては、上アーム用のゲート制御回路と下アーム用のゲート制御回路を、便宜上、一つのブロック図で表している。
 本実施例6の電力変換装置は、実施例1と同様に、コンバータと、インバータと、チョッパと、これらを制御する上位制御回路とを備える(図1参照)。また、各部の構成は、実施例1と同様である(図2-7参照)。
 図20に示すように、本実施例6において、ゲート制御回路52は、ゲート制御部13とデバイス異常判定部12を含む。
 ゲート制御部13は、前述の実施例4におけるゲート制御回路(図15における「52」)と同様の機能を有する。
 デバイス異常判定部12は、クランプ抵抗両端電圧検出値を、時系列で、逐次記憶するとともに、負荷電流、素子温度、クランプ回路抵抗両端電圧に関する情報を記憶するメモリ装置10を備える。さらに、デバイス異常判定部12は、現時点でクランプ抵抗両端電圧検出回路から入力するクランプ抵抗両端電圧検出値と、メモリ装置10に記憶されているクランプ回路抵抗両端電圧検出値の履歴、すなわち現時点よりも前の時点におけるにクランプ抵抗両端電圧検出値に基づいて、アームにおける半導体スイッチング素子の劣化や異常を判定する動作異常判定部11を備える。
 なお、負荷電流、素子温度、クランプ回路抵抗両端電圧に関する情報は、例えば、負荷電流および素子温度の各範囲と、これらの範囲において許容されるクランプ回路抵抗両端電圧の規定値(最大値)との関係を表す情報(例えば、テーブルデータ)である。これにより、動作異常判定部11は、SiC-MOSFETのようにゲート閾値電圧の温度依存性や、di/dtの負荷電流依存性が顕著な場合でも、精度よく半導体スイッチング素子の異常を判定することができる。
 負荷電流、素子温度、クランプ回路抵抗両端電圧に関する情報は、負荷電流および素子温度の各範囲と、これらの範囲において許容されるクランプ回路抵抗両端電圧の増分の規定値(最大値)との関係を表す情報(例えば、テーブルデータ)を含んでもよい。これにより、動作異常判定部11は、SiC-MOSFETのようにゲート閾値電圧の温度依存性や、di/dtの負荷電流依存性が顕著な場合でも、精度よく半導体スイッチング素子の劣化を判定することができる。
 なお、本実施例6において、メモリ装置10は、クランプ回路抵抗両端電圧の規定値およびクランプ回路抵抗両端電圧の増分の規定値の両方を記憶している。また、温度や負荷電流は、例えば、図示されないセンサによって検出される。
 図21は、本実施例6におけるゲート制御回路によって実行されるゲート閾値電圧判定処理を示すフロー図である。以下、適宜、図20を参照しながら説明する。
 まず、ステップS31において、電力変換装置が定常運転される。本ステップS31において、ゲート制御部13は、上アームがターンオンする期間Ph.1(図13)において、クランプ抵抗両端電圧検出回路60Lからクランプ抵抗両端電圧VcLの検出値を、上アームの半導体スイッチング素子のゲート閾値電圧判定信号(Vth(H)判定信号すなわちVcL)として入力する。
 次に、ステップS32において、動作異常判定部11は、ゲート制御部13を介してクランプ抵抗両端電圧VcLの検出値を取得し、取得した検出値が所定の規定値以上であるかを判定する。ここで、動作異常判定部11は、メモリ装置10から判定に適用する規定値を読み出す。動作異常判定部11は、VcLの検出値が規定値以上である場合(ステップS32のYes)、次にステップS33を実行し、VcLの検出値が規定値未満である場合(ステップS32のNo)、次にステップS35を実行する。
 ステップS33において、動作異常判定部11は、上アームの半導体スイッチング素子のゲート閾値電圧(Vth)が異常であると判定し、この判定結果をゲート制御部13へ送る。
 次に、ステップS34において、ゲート制御部13は、動作異常判定部11から、上アームの半導体スイッチング素子のゲート閾値電圧(Vth(H))が異常であるという判定結果を受けると、全ゲート駆動信号をオフ(Low)にすることにより、電力変換装置の主回路の動作を停止させる。これにより、負荷短絡等による過電流や、過温度上昇などによるアームの動作異常を検出したら、ただちに電力変換装置の動作を停止し、電力変換装置における故障の拡大を防ぐことができる。
 また、ステップS35において、動作異常判定部11は、クランプ抵抗両端電圧VcLの検出値(ステップS32で用いた現時点の検出値)と、メモリ装置10に記憶されているクランプ回路抵抗両端電圧VcLの検出値の履歴から取得する現時点よりも一時点前の検出値から、VcLの検出値の増分値を算出する。さらに、ステップS35において、動作異常判定部11は、算出した増分値が所定の規定値以上であるかを判定する。ここで、動作異常判定部11は、メモリ装置10から判定に適用する規定値を読み出す。動作異常判定部11は、VcLの検出値の増分値が規定値未満である場合(ステップS35のNo)、ステップS31に戻って、VcLの検出値を継続して入力する。また、VcLが規定値以上である場合(ステップS35のYes)、動作異常判定部11は、次にステップS36を実行する。
 ステップS36において、動作異常判定部11は、上アームの半導体スイッチング素子のゲート閾値電圧(Vth)が劣化していると判定し、この判定結果をゲート制御部13へ送る。
 次に、ステップS37において、ゲート制御部13は、動作異常判定部11から、上アームの半導体スイッチング素子のゲート閾値電圧(Vth(H))が劣化しているという判定結果を受けると、上アーム用のゲート駆動電源の電圧の大きさを、通常値よりも低減する。これにより、上アームの半導体スイッチング素子のスイッチング速度の変化、すなわちゲート閾値電圧低下に伴うスイッチング速度の増大を抑えることができるので、ゲート閾値電圧の低下の進行を抑制することができる。したがって、電力変換装置の寿命を延ばしたり、電力変換装置の運転を継続したりすることができる。
 上述のように、本実施例6によれば、電力変換装置の信頼性が向上する。
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 たとえば、電力変換装置の主回路における半導体スイッチング素子として、MISFETやIGBTを適用してもよい。
 半導体スイッチング素子を構成するワイドバンドギャップ半導体は、SiCに限らず、GaN(Gallium Nitride)などでもよい。
 また、アームにおける半導体スイッチング素子をMOSFETとする場合、アームにおける整流素子としてMOSFETのボディダイオードを用いてもよい。
 電力変換装置の主回路の構成は、ハーフブリッジ変換回路を備えるものであればよい。また、一つのアームが、複数のパワーデバイス(図6参照)の並列接続から構成されてもよい。
10…メモリ装置、11…動作異常判定部、12…デバイス異常判定部、13…ゲート制御部、21,22…半導体スイッチング素子、23,24…整流素子、25,26…コンデンサ、30…パワーデバイス、40…冷却フィン、30H…上アーム、30L…下アーム、50H,50L…ゲート駆動回路、51H,51L…ゲート制御回路、52…ゲート制御回路、60L…クランプ抵抗両端電圧検出回路、70L…ゲート・ソース間電圧検出回路、100…電力変換装置、102…コンバータ、103…インバータ、104…チョッパ、105…上位制御回路、106…商用電源、107…蓄電池、108…負荷、201,202,203…ハーフブリッジ変換回路、204…コンバータ制御部、301,302,303…ハーフブリッジ変換回路、304…インバータ制御部、401…ハーフブリッジ変換回路、405…チョッパ制御部、406…リアクトル

Claims (10)

  1.  ハーフブリッジ変換回路を含む主回路と、
     前記ハーフブリッジ変換回路を駆動するゲート回路と、
    を備え、
     前記ハーフブリッジ変換回路を構成するアームが、
     一対の主端子と、
     前記アームに含まれる半導体スイッチング素子を駆動するゲート駆動信号が前記ゲート回路から与えられる制御端子と、
    を有し、
     前記ゲート回路は、前記一対の主端子の一方と前記制御端子との間に接続される電力変換装置において、
     双方向スイッチと抵抗とが直列接続されるクランプ回路が、前記一対の主端子の前記一方と前記制御端子との間に接続されることを特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記アームは、前記一対の主端子の前記一方に接続されるインダクタンス成分を有し、 前記インダクタンス成分は、前記主回路と前記ゲート回路とに共通することを特徴とする電力変換装置。
  3.  請求項1に記載の電力変換装置において、
     前記クランプ回路は、前記半導体スイッチング素子のオフ時に、前記一対の主端子の前記一方と前記制御端子との間を導通することを特徴とする電力変換装置。
  4.  請求項1に記載の電力変換装置において、
     さらに、前記ゲート回路は、前記抵抗の両端電圧を検出する第1の電圧検出回路を備えることを特徴とする電力変換装置。
  5.  請求項4に記載の電力変換装置において、
     前記ゲート回路は、前記第1の電圧検出回路によって検出される前記抵抗の前記両端電圧に基づいて、前記アームに直列接続される対アームのゲート閾値電圧の状態を判定することを特徴とする電力変換装置。
  6.  請求項5に記載の電力変換装置において、
     前記ゲート回路は、前記抵抗の前記両端電圧の増分に応じて前記対アームのゲート駆動電源の電圧を調整することを特徴とする電力変換装置。
  7.  請求項1に記載の電力変換装置において、
     前記クランプ回路は、前記抵抗に並列接続されるダイオードを備えることを特徴とする電力変換装置。
  8.  請求項7に記載の電力変換装置において、
     前記ダイオードは、前記双方向スイッチと前記抵抗との直列接続点から前記制御端子へ向かう方向が順方向となるように、前記抵抗に並列接続されることを特徴とする電力変換装置。
  9.  請求項4に記載の電力変換装置において、
     さらに、前記ゲート回路は、前記主端子の前記一方と前記制御端子との間の電圧を検出する第2の電圧検出回路を備えることを特徴とする電力変換装置。
  10.  請求項9に記載の電力変換装置において、
     前記ゲート回路は、前記第2の電圧検出回路によって検出される前記主端子の前記一方と前記制御端子との間の前記電圧に基づいて、前記アームのゲート閾値電圧の状態を判定することを特徴とする電力変換装置。
PCT/JP2019/043248 2018-11-20 2019-11-05 電力変換装置 WO2020105414A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980075167.5A CN113056864B (zh) 2018-11-20 2019-11-05 电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-217192 2018-11-20
JP2018217192A JP7132099B2 (ja) 2018-11-20 2018-11-20 電力変換装置

Publications (1)

Publication Number Publication Date
WO2020105414A1 true WO2020105414A1 (ja) 2020-05-28

Family

ID=70774086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043248 WO2020105414A1 (ja) 2018-11-20 2019-11-05 電力変換装置

Country Status (3)

Country Link
JP (1) JP7132099B2 (ja)
CN (1) CN113056864B (ja)
WO (1) WO2020105414A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323264B2 (ja) * 2020-09-24 2023-08-08 東芝三菱電機産業システム株式会社 電力変換装置
JP7438157B2 (ja) 2021-03-02 2024-02-26 東芝三菱電機産業システム株式会社 故障検出装置、故障検出方法及び半導体スイッチ装置
JP2024037340A (ja) * 2022-09-07 2024-03-19 株式会社 日立パワーデバイス 過電流状態判定装置、過電流状態判定方法および電力変換システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324966A (ja) * 2002-04-26 2003-11-14 Denso Corp インバータ駆動回路
JP2009224667A (ja) * 2008-03-18 2009-10-01 Fujitsu Telecom Networks Ltd 電界効果型トランジスタと半導体装置と制御回路とそれらの制御方法及び絶縁ゲート型バイポーラトランジスタ
JP2018148745A (ja) * 2017-03-08 2018-09-20 株式会社デンソー 半導体スイッチの駆動装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960702B2 (en) * 2013-09-25 2018-05-01 Mitsubishi Electric Corporation Switch device, power conversion device, motor drive device, air blower, compressor, air conditioner, refrigerator, and freezer
JP6362996B2 (ja) * 2014-10-24 2018-07-25 株式会社日立製作所 半導体駆動装置ならびにそれを用いた電力変換装置
WO2016075056A1 (en) * 2014-11-11 2016-05-19 Maschinenfabrik Reinhausen Gmbh Resistor emulation and gate boost

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324966A (ja) * 2002-04-26 2003-11-14 Denso Corp インバータ駆動回路
JP2009224667A (ja) * 2008-03-18 2009-10-01 Fujitsu Telecom Networks Ltd 電界効果型トランジスタと半導体装置と制御回路とそれらの制御方法及び絶縁ゲート型バイポーラトランジスタ
JP2018148745A (ja) * 2017-03-08 2018-09-20 株式会社デンソー 半導体スイッチの駆動装置

Also Published As

Publication number Publication date
CN113056864A (zh) 2021-06-29
CN113056864B (zh) 2023-10-13
JP2020088968A (ja) 2020-06-04
JP7132099B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
US8351231B2 (en) Power conversion device
US7538587B2 (en) Power semiconductor device
US10038438B2 (en) Power semiconductor element driving circuit
JP4719746B2 (ja) カスコード整流器
JP5752234B2 (ja) 電力変換装置
WO2020105414A1 (ja) 電力変換装置
CN110401335B (zh) 驱动电路、功率模块以及电力变换系统
US10476495B2 (en) Drive device
US20090001410A1 (en) Driver Circuit and Electrical Power Conversion Device
AU2014297873A1 (en) Semiconductor device and power conversion device
JP2019193406A (ja) ゲート駆動回路およびゲート駆動方法
JPWO2019193834A1 (ja) 半導体駆動装置および電力変換装置
US11146163B2 (en) Switching device and method for controlling switching device
US20220311431A1 (en) Power semiconductor module and power converter
US11824464B2 (en) Semiconductor device with switching element protection
US11962291B2 (en) Driver circuit for a low inductive power module and a low inductive power module with enhanced short circuit withstand capability
US11063506B2 (en) Power converter
US20240014813A1 (en) Semiconductor device
JP7371393B2 (ja) 駆動装置、半導体装置及びゲート駆動方法
WO2023157185A1 (ja) ゲート駆動回路及び電力変換装置
Velander et al. Optimal switching of SiC lateral MOSFETs
US20230261562A1 (en) Power conversion device and control method thereof
JP7259570B2 (ja) 駆動装置およびスイッチ装置
US20240178831A1 (en) Cascode Switching Module
JP2023028645A (ja) パワー半導体モジュール、並びにそれを用いたモータ駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19886351

Country of ref document: EP

Kind code of ref document: A1