WO2020105141A1 - 電力供給システム - Google Patents

電力供給システム

Info

Publication number
WO2020105141A1
WO2020105141A1 PCT/JP2018/042992 JP2018042992W WO2020105141A1 WO 2020105141 A1 WO2020105141 A1 WO 2020105141A1 JP 2018042992 W JP2018042992 W JP 2018042992W WO 2020105141 A1 WO2020105141 A1 WO 2020105141A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
load
converter
power supply
circuit
Prior art date
Application number
PCT/JP2018/042992
Other languages
English (en)
French (fr)
Inventor
一正 松岡
健太 林
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2019552926A priority Critical patent/JP6886040B2/ja
Priority to US17/056,920 priority patent/US20210210978A1/en
Priority to PCT/JP2018/042992 priority patent/WO2020105141A1/ja
Priority to KR1020217001167A priority patent/KR102566563B1/ko
Publication of WO2020105141A1 publication Critical patent/WO2020105141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a power supply system in which a plurality of AC output converters for converting power from DC to AC are connected in parallel to supply power to a load.
  • a power supply system in which a plurality of AC output converters that convert power from DC to AC are connected in parallel to supply power to a load.
  • Japanese Patent Laid-Open No. 2017-50933 discloses a power supply system in which a plurality of AC output converters such as inverters are connected in parallel and operate in parallel with a common load.
  • the power supply system in the above publication is capable of high-efficiency power supply by supplying the load from each AC output converter, for example, when a power failure occurs, it becomes a method to switch to the bypass circuit. ing.
  • the power supply capacity from the storage battery to the load may differ for each AC output converter.
  • the power supply of other AC output converters may not be operating normally until the power supply to some AC output converters is terminated, and it may be difficult to switch the bypass circuit. There is.
  • the power supply system may not be restored normally when the power is restored.
  • the purpose of the present invention is to solve the above problems, and to realize a power supply system that can be safely switched to a bypass circuit when a power failure occurs.
  • a power supply system includes a plurality of AC output converters connected in parallel to supply power to an AC load.
  • Each AC output converter is connected in parallel with an AC / DC converter that converts an external AC voltage into a DC voltage, a DC / AC converter that converts a DC voltage into an AC voltage and supplies the AC load, and a DC / AC converter.
  • a secondary battery that stores a DC voltage, a first switching circuit provided between the AC load and the DC / AC converter, and an external AC voltage instead of the AC voltage supplied from the DC / AC converter
  • a switching control circuit and a control power supply circuit for receiving a supply of an external AC voltage and an AC voltage to generate a control voltage of the control circuit are included.
  • the switching control circuit turns off the first switching circuit when detecting a decrease in the voltage supply from the secondary battery to the AC load during a power failure of the external AC voltage, and switches the plurality of AC output converters during a power failure of the external AC voltage.
  • the second switching circuit is turned on when it is detected that the supply of the voltage from the AC load to the AC load is completely stopped.
  • the switching control circuit normally turns on the first switching circuit and turns off the second switching circuit.
  • the switching control circuit of each AC output converter is connected to the switching control circuit of another AC output converter and receives a voltage stop signal input to the AC load from another AC output converter.
  • the power supply system of the present invention can be safely switched to the bypass circuit when a power failure occurs.
  • UPS Uninterruptible Power Supply
  • an uninterruptible power supply system will be described using a parallel configuration of a plurality of AC output converters.
  • FIG. 1 is a diagram illustrating a configuration of an uninterruptible power supply system 1 based on the embodiment.
  • uninterruptible power supply system 1 includes a plurality (n) of AC output converters 10-1 to 10-n.
  • AC output converters 10-1 to 10-n (also collectively referred to as AC output converter 10) are connected to external AC power supply 3 and operate in parallel with common load 20.
  • the number n can be set to an arbitrary value depending on the load to be supplied, especially if the number is two or more.
  • the AC output converter 10 is connected to the external AC power supply 3, and is a converter 5 that converts the AC voltage from the external AC power supply 3 into a DC voltage; and the inverter 7 that is connected to the converter 5 and that converts the DC voltage into an AC voltage. , And storage battery 6 connected to converter 5 in parallel with inverter 7.
  • the AC output converter 10 includes a switching circuit 9 provided between the inverter 7 and a load, a bypass path for supplying an AC voltage provided separately from the supply paths of the converter 5 and the inverter 7, the bypass path and the load. And a controller 4 (switching control circuit) that controls the switching circuits 8 and 9, and a control power supply circuit 2 that generates a drive voltage for the controller 4.
  • the control power supply circuit 2 is connected to the input side of the converter 5 and the output side of the inverter 7, detects the AC voltage of each, and receives the supply of the AC voltage to generate the drive voltage of the controller 4. That is, the control power supply circuit 2 can generate the drive voltage based on the AC voltage supplied from the inverter 7 even when the external AC power supply 3 fails. Further, the control power supply circuit 2 outputs a detection signal of a power failure or a decrease in the supply voltage from the inverter 7 to the controller 4 according to the AC voltage detected at the input side of the converter 5 and the output side of the inverter 7.
  • the storage battery 6 supplies the power to the load.
  • FIG. 2 is a diagram illustrating voltage supply of the uninterruptible power supply system 1 in a normal time based on the embodiment.
  • the switching circuit 9 is on and the load 20 and the inverter 7 are connected.
  • the converter 5 converts the AC voltage from the external AC power supply 3 into a DC voltage.
  • the inverter 7 is connected to the converter 5 and converts a DC voltage into an AC voltage. Further, the storage battery 6 stores the DC voltage converted by the converter 5.
  • Electric power is supplied from the inverter 7 to the load 20 via the switching circuit 9. Due to the parallel configuration of the plurality of AC output converters 10, necessary power is supplied from each AC output converter 10 to the load 20.
  • FIG. 3 is a diagram illustrating voltage supply of the conventional uninterruptible power supply system 1 during a power failure. As shown in FIG. 3A, a configuration including two AC output converters 10-1 and 10-2 will be described as an example.
  • the switching circuit 9 is on and the load 20 and the inverter 7 are connected.
  • the converter 5 converts the AC voltage from the external AC power supply 3 into a DC voltage.
  • the inverter 7 is connected to the converter 5 and converts a DC voltage into an AC voltage. Further, the storage battery 6 stores the DC voltage converted by the converter 5.
  • Electric power is supplied from the inverter 7 to the load 20 via the switching circuit 9. Due to the parallel configuration of the plurality of AC output converters 10, necessary power is supplied from each AC output converter 10 to the load 20.
  • the AC output converter 10-2 needs to wait for a switching command from the switching circuit 9 to the switching circuit 8 until the supply from the AC output converter 10-1 to the load 20 is completed.
  • the control power supply circuit 2 needs to continue to secure the drive voltage of the controller 4. However, when the standby period is long, it may be difficult for the control power supply circuit 2 to continue to secure the drive voltage of the controller 4. If the drive voltage of the controller 4 cannot be secured, the control power supply circuit 2 cannot output a switching command from the switching circuit 9 to the switching circuit 8, and the switching circuit 8 maintains the off state. Will be done.
  • the conventional uninterruptible power supply system may not be able to execute normal power recovery processing.
  • FIG. 4 is a diagram illustrating voltage supply of the uninterruptible power supply system 1 at the time of power failure according to the embodiment.
  • the controller 4 when the controller 4 according to the embodiment detects that the supply voltage from the storage battery 6 of the AC output converter 10-2 to the load 20 has decreased, the controller 4 turns off the switching circuit 9 of the AC output converter 10-2. .. Further, the controller 4 notifies the controller 4 of the AC output converter 10-1 that the supply voltage has dropped and the switching circuit 9 has been turned off.
  • the inverter 7 receives the DC voltage from the storage battery 6 and continues to supply the drive voltage for the controller 4.
  • the controller 4 of the AC output converters 10-1 and 10-2 turns on the switching circuit 8 and turns off the switching circuit 9. Set to.
  • the controller 4 of the AC output converter 10-1 notifies the controller 4 of the AC output converter 10-2 that the supply voltage has dropped and the switching circuit 9 has been turned off.
  • the controller 4 of the AC output converter 10-2 receives a notification from the controller 4 of the AC output converter 10-1 that the switching circuit 9 is turned off, and all the AC output converters 10 are informed of the voltage to the load 20. Upon detecting that the supply has been stopped, the switching circuit 8 is turned on.
  • the controller 4 of the AC output converter 10-1 detects the decrease in the supply voltage from the storage battery 6 of the AC output converter 10-1 to the load 20. Upon receiving the notification that the switching circuit 9 has been turned off, it is detected that all the AC output converters 10 have stopped supplying voltage to the load 20, and the switching circuit 8 is turned on.
  • FIG. 4 (B) there is shown a case where power recovery occurs while the switching circuit 8 of the AC output converters 10-1 and 10-2 is on.
  • the load 20 is supplied with electric power from the AC output converters 10-1 and 10-2, and it is possible to suppress the overload state and normally execute the restoration process. is there. That is, the uninterruptible power supply system 1 according to the embodiment can execute normal power recovery processing.
  • FIG. 5 is a flowchart illustrating the operation of the controller 4 of the AC output converter 10 according to the embodiment during a power failure.
  • the controller 4 determines whether or not a power failure is detected (step S2). Since the control power supply circuit 2 is connected to the input side of the converter 5, it detects a power failure of the external AC power supply 3. The control power supply circuit 2 notifies the controller 4 of a power failure. The control power supply circuit 2 also generates and outputs a drive voltage for the controller 4 based on the AC voltage output from the inverter 7.
  • step S2 If the power failure is detected in step S2 (YES in step S2), the controller 4 starts discharging the storage battery (step S4).
  • the controller 4 receives the notification of the power failure from the control power supply circuit 2, the controller 4 stops the operation of the converter 5. Then, the supply from the storage battery 6 to the load 20 is started.
  • step S6 the controller 4 determines whether the discharge voltage from the storage battery has begun to decrease. Since the control power supply circuit 2 is connected to the output side of the inverter 7, the control power supply circuit 2 detects a decrease in the supply voltage from the inverter 7 and notifies the controller 4 of it. The controller 4 determines a decrease in the discharge voltage from the storage battery according to the notification.
  • step S6 when the discharge voltage from the storage battery starts to decrease (YES in step S6), the controller 4 turns off the switching circuit 9 on the inverter side (step S8). The controller 4 turns off the switching circuit 9 according to the notification from the control power supply circuit 2.
  • step S9 the controller 4 notifies that the switching circuit 9 has been turned off.
  • the controller 4 notifies the controller 4 of the other AC output converter 10 that the switching circuit 9 has been turned off.
  • the controller 4 determines whether or not all the devices have stopped (step S10).
  • the controller 4 determines whether or not a signal notifying that the switching circuit 9 of the other AC output converter 10 has been turned off has been received from all the devices.
  • step S10 when the controller 4 determines that all the devices have stopped (YES in step S10), the switching circuit 8 on the bypass side is turned on (step S12).
  • step S10 when the controller 4 determines that all the devices do not stop (NO in step S10), the controller 4 maintains the state of step S10.
  • the control power supply circuit 2 is connected to the input side of the converter 5 and the output side of the inverter 7, detects the AC voltage of each, and causes the controller 4 to have a power failure or supply voltage from the inverter 7.
  • the method of notifying a drop has been described.
  • another sensor may be used to detect the voltage and notify the controller 4 of the voltage.
  • the controller 4 may be directly connected to the input side of the converter 5 and the output side of the inverter 7 to detect the AC voltage of each and detect a power failure or a drop in the supply voltage from the inverter 7.
  • 1 uninterruptible power supply system 2 control power supply circuit, 3 external AC power supply, 4 controller, 5 converter, 6 storage battery, 7 inverter, 8, 9 switching circuit, 10 AC output converter, 20 load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電力供給システムは、交流負荷に電力を供給する並列接続した複数の交流出力変換器を備える。各交流出力変換器は、外部交流電圧を直流電圧に変換する交流直流変換器と、直流電圧を交流電圧に変換して交流負荷に供給する直流交流変換器と、直流交流変換器と並列に接続され、直流電圧を蓄電する2次電池と、交流負荷と直流交流変換器との間に設けられた第1の切替回路と、直流交流変換器から供給する交流電圧の代わりに、外部交流電圧を直接的に交流負荷に供給するためのバイパス経路と、交流負荷とバイパス経路との間に設けられた第2の切替回路と、停電時および復電時に第1および第2の切替回路を制御する切替制御回路と、外部交流電圧および交流電圧の供給を受けて制御回路の制御電圧を生成するための制御電源回路とを含む。切替制御回路は、外部交流電圧の停電時に2次電池から交流負荷への電圧供給の低下を検知した場合に、第1の切替回路をオフし、外部交流電圧の停電時に複数の交流出力変換器から交流負荷への電圧の供給がすべて停止したことを検知した場合に、第2の切替回路をオンする。

Description

電力供給システム
 本発明は、直流から交流に電力変換を行う交流出力変換器を複数並列に接続し、負荷に電力を供給する電力供給システムに関する。
 直流から交流に電力変換を行う交流出力変換器を複数並列に接続し、負荷に電力を供給する電力供給システムが知られている。
 この点で、特開2017-50933公報においては、インバータのような交流出力変換器を複数台並列に接続し、共通の負荷に対して並列運転する電力供給システムが開示されている。
特開2017-50933号公報
 一方で、上記公報における電力供給システムは、それぞれの交流出力変換器から負荷に供給することにより高効率な給電が可能であるが、例えば停電が生じた際には、バイパス回路に切り替える方式となっている。
 しかしながら、停電が生じた後、蓄電池から負荷への電力供給能力は、それぞれの交流出力変換器で異なる場合がある。
 その場合、一部の交流出力変換器の蓄電池からの給電が継続している場合に、他の交流出力変換器がバイパス回路に切り替えると、逆流してしまう恐れがあるためすべての交流出力変換器の給電が終了した時点でバイパス回路に切り替える必要がある。
 しかしながら、一部の交流出力変換器の給電が終了する状態の時まで、他の交流出力変換器の電源が正常に動作しているとは限らず、バイパス回路の切替が難しい状況が生じる可能性がある。
 バイパス回路の切替が正常にできていない場合には、復電した場合に正常に電力供給システムが復旧しない可能性がある。
 本発明の目的は、上記の課題を解決するためのものであって、停電が生じた場合に安全にバイパス回路に切替可能な電力供給システムを実現する。
 ある局面に従う電力供給システムは、交流負荷に電力を供給する並列接続した複数の交流出力変換器を備える。各交流出力変換器は、外部交流電圧を直流電圧に変換する交流直流変換器と、直流電圧を交流電圧に変換して交流負荷に供給する直流交流変換器と、直流交流変換器と並列に接続され、直流電圧を蓄電する2次電池と、交流負荷と直流交流変換器との間に設けられた第1の切替回路と、直流交流変換器から供給する交流電圧の代わりに、外部交流電圧を直接的に交流負荷に供給するためのバイパス経路と、交流負荷とバイパス経路との間に設けられた第2の切替回路と、停電時および復電時に第1および第2の切替回路を制御する切替制御回路と、外部交流電圧および交流電圧の供給を受けて制御回路の制御電圧を生成するための制御電源回路とを含む。切替制御回路は、外部交流電圧の停電時に2次電池から交流負荷への電圧供給の低下を検知した場合に、第1の切替回路をオフし、外部交流電圧の停電時に複数の交流出力変換器から交流負荷への電圧の供給がすべて停止したことを検知した場合に、第2の切替回路をオンする。
 好ましくは、切替制御回路は、通常時は第1の切替回路をオンし、第2の切替回路をオフしている。
 好ましくは、各交流出力変換器の切替制御回路は、他の交流出力変換器の切替制御回路と接続され、他の交流出力変換器から交流負荷への電圧の停止信号の入力を受ける。
 本発明の電力供給システムは、停電が生じた場合に安全にバイパス回路に切替可能である。
実施形態に基づく無停電電源システム1の構成を説明する図である。 実施形態に基づく通常時の無停電電源システム1の電圧供給を説明する図である。 従来の停電時の無停電電源システム1の電圧供給を説明する図である。 実施形態に従う停電時の無停電電源システム1の電圧供給を説明する図である。 実施形態に従う交流出力変換器10のコントローラ4の停電時の動作について説明するフロー図である。
 以下、実施形態について図に基づいて説明する。本例においては、一例として電力供給システムとして、無停電電源システム(以降、UPS(Uninterruptible Power Supply))について説明する。
 本実施形態においては、無停電電源システムにおいて、複数の交流出力変換器の並列構成を用いて説明する。
 図1は、実施形態に基づく無停電電源システム1の構成を説明する図である。
 図1を参照して、無停電電源システム1は、複数(n個)の交流出力変換器10-1~10-nを含む。交流出力変換器10-1~10-n(総称して交流出力変換器10とも称する)は、外部交流電源3と接続されるとともに、共通の負荷20に対して並列運転する。なお、n個は、特に2個以上であれば供給する負荷に応じて任意の値に設定することが可能である。
 以下、各交流出力変換器10の構成について説明する。
 交流出力変換器10は、外部交流電源3と接続され、外部交流電源3からの交流電圧を直流電圧に変換するコンバータ5と、コンバータ5と接続され、直流電圧を交流電圧に変換するインバータ7と、インバータ7と並列にコンバータ5と接続される蓄電池6とを含む。
 交流出力変換器10は、インバータ7と負荷との間に設けられた切替回路9と、コンバータ5およびインバータ7の供給経路とは別に設けられた交流電圧を供給するバイパス経路と、バイパス経路と負荷との間に設けられた切替回路8と、切替回路8,9を制御するコントローラ4(切替制御回路)と、コントローラ4の駆動電圧を生成する制御電源回路2とをさらに含む。
 制御電源回路2は、コンバータ5の入力側およびインバータ7の出力側と接続され、それぞれの交流電圧を検知するとともに、交流電圧の供給を受けてコントローラ4の駆動電圧を生成する。すなわち、制御電源回路2は、外部交流電源3が停電した場合であっても、インバータ7から供給される交流電圧に基づいて駆動電圧を生成することが可能である。また、制御電源回路2は、コンバータ5の入力側およびインバータ7の出力側で検知される交流電圧に従ってコントローラ4に停電あるいはインバータ7からの供給電圧の低下の検知信号を出力する。
 外部交流電源3が停電により電力の供給が停止した場合には、蓄電池6から負荷に電力を供給する。
 図2は、実施形態に基づく通常時の無停電電源システム1の電圧供給を説明する図である。
 図2に示されるように、一例として、2台の交流出力変換器10-1,10-2を含む構成について説明する。
 外部交流電源3が正常に動作している通常時においては、切替回路9がオンしており、負荷20とインバータ7とが接続されている状態である。
 コンバータ5は、外部交流電源3からの交流電圧を直流電圧に変換する。インバータ7は、コンバータ5と接続され、直流電圧を交流電圧に変換する。また、蓄電池6は、コンバータ5が変換した直流電圧を蓄電する。
 インバータ7から切替回路9を介して負荷20に電力が供給される。
 複数の交流出力変換器10の並列構成であるため、それぞれの交流出力変換器10から負荷20に対して必要な電力が供給される。
 図3は、従来の停電時の無停電電源システム1の電圧供給を説明する図である。
 図3(A)に示されるように、一例として、2台の交流出力変換器10-1,10-2を含む構成について説明する。
 外部交流電源3が停電した場合について説明する。この場合には、コンバータ5からの電圧供給が低下するため蓄電池6からインバータ7および切替回路9を介して負荷20に対する電力供給を継続する。この状態の場合には、切替回路8はオフしている。
 動作している通常時においては、切替回路9がオンしており、負荷20とインバータ7とが接続されている状態である。
 コンバータ5は、外部交流電源3からの交流電圧を直流電圧に変換する。インバータ7は、コンバータ5と接続され、直流電圧を交流電圧に変換する。また、蓄電池6は、コンバータ5が変換した直流電圧を蓄電する。
 インバータ7から切替回路9を介して負荷20に電力が供給される。
 複数の交流出力変換器10の並列構成であるため、それぞれの交流出力変換器10から負荷20に対して必要な電力が供給される。
 次に、例えば、交流出力変換器10-1の蓄電池6と、交流出力変換器10-2の蓄電池6の供給能力が異なる場合について説明する。
 本例においては、交流出力変換器10-1の蓄電池6の方が、交流出力変換器10-2の蓄電池6よりも供給能力が大きい場合について説明する。
 この場合には、交流出力変換器10-2の蓄電池6から負荷20への供給が停止した場合であっても、交流出力変換器10-1から負荷20に対する供給を継続する場合には、逆流が生じる恐れがあるため交流出力変換器10-2の切替回路8をオンすることができない。
 したがって、交流出力変換器10-1から負荷20に対する供給が終了するまで交流出力変換器10-2は、切替回路9から切替回路8への切替指令を待機する必要がある。
 この待機の期間に、制御電源回路2は、コントローラ4の駆動電圧を確保し続ける必要がある。しかしながら、待機の期間が長い場合には、制御電源回路2は、コントローラ4の駆動電圧を確保し続けるのが難しくなる可能性がある。仮に、制御電源回路2は、コントローラ4の駆動電圧を確保できなくなった場合には、切替回路9から切替回路8への切替指令を出力することができず、切替回路8はオフした状態を維持することになる。
 図3(B)に示されるように、交流出力変換器10-1の切替回路9がオンしており、交流出力変換器10-2の切替回路8がオフしている状態において復電が生じた場合が示されている。
 この場合には、交流出力変換器10-1の切替回路8はオンしているため、バイパス経路を介して負荷20に対して電力が供給される。
 一方、交流出力変換器10-2の切替回路8はオフしているため、バイパス経路を介して負荷20に対して電力を供給することができない。
 したがって、負荷20に対しては、交流出力変換器10-1のみが電力を供給する結果となり、過負荷状態となって交流出力変換器10-1からの供給も停止することになる。
 すなわち、従来の無停電電源システムは、正常な復電処理を実行することができない可能性がある。
 図4は、実施形態に従う停電時の無停電電源システム1の電圧供給を説明する図である。
 図4(A)に示されるように、一例として、2台の交流出力変換器10-1,10-2を含む構成について説明する。
 外部交流電源3が停電した場合について説明する。
 この場合には、コンバータ5からの電圧供給が低下するため蓄電池6からインバータ7および切替回路9を介して負荷20に対する電力供給を継続する。この状態の場合には、切替回路8はオフしている。
 上記したように、例えば、交流出力変換器10-1の蓄電池6と、交流出力変換器10-2の蓄電池6の供給能力が異なる場合について説明する。
 本例においては、交流出力変換器10-1の蓄電池6の方が、交流出力変換器10-2の蓄電池6よりも供給能力が大きい場合について説明する。
 上記したように、交流出力変換器10-2の蓄電池6から負荷20への供給が停止した場合であっても、交流出力変換器10-1から負荷20に対する供給を継続する場合には、逆流が生じる恐れがあるため交流出力変換器10-2の切替回路8をオンすることができない。
 したがって、実施形態に従うコントローラ4は、交流出力変換器10-2の蓄電池6から負荷20に対する供給電圧が低下したことを検知した場合には、交流出力変換器10-2の切替回路9をオフする。また、コントローラ4は、交流出力変換器10-1のコントローラ4に対して供給電圧が低下して切替回路9をオフしたことを通知する。
 インバータ7は、蓄電池6からの直流電圧の供給を受けてコントローラ4の駆動電圧を供給し続ける。
 そして、交流出力変換器10-1から負荷20に対する供給が終了した場合に、交流出力変換器10-1,10-2のコントローラ4は、切替回路8をオンし、切替回路9をオフする状態に設定する。
 具体的には、交流出力変換器10-1のコントローラ4は、交流出力変換器10-2のコントローラ4に対して供給電圧が低下して切替回路9をオフしたことを通知する。
 交流出力変換器10-2のコントローラ4は、交流出力変換器10-1のコントローラ4から切替回路9をオフしたことの通知を受けて、すべての交流出力変換器10が負荷20への電圧の供給を停止したことを検知して、切替回路8をオンする。
 交流出力変換器10-1のコントローラ4についても同様であり、交流出力変換器10-1の蓄電池6から負荷20に対する供給電圧の低下を検知するとともに、交流出力変換器10-2のコントローラ4から切替回路9をオフしたことの通知を受けて、すべての交流出力変換器10が負荷20への電圧の供給を停止したことを検知して、切替回路8をオンする。
 図4(B)に示されるように、交流出力変換器10-1,10-2の切替回路8がオンしている状態において復電が生じた場合が示されている。
 この場合には、交流出力変換器10-1,10-2の切替回路8はオンしているため、バイパス経路を介して負荷20に対して電力が供給される。
 したがって、負荷20に対して、交流出力変換器10-1,10-2から電力が供給される結果となり、過負荷状態となることを抑制して、復帰処理を正常に実行することが可能である。すなわち、実施形態に従う無停電電源システム1は、正常な復電処理を実行することが可能である。
 なお、本例においては、2台の交流出力変換器10について主に説明したが、特にこれに限られず3台以上でも同様に適用可能である。
 図5は、実施形態に従う交流出力変換器10のコントローラ4の停電時の動作について説明するフロー図である。
 図5を参照して、コントローラ4は、停電を検知したか否かを判断する(ステップS2)。制御電源回路2は、コンバータ5の入力側と接続されるため外部交流電源3の停電を検知する。制御電源回路2は、コントローラ4に停電を通知する。また、制御電源回路2は、インバータ7から出力される交流電圧に基づいてコントローラ4の駆動電圧を生成して出力する。
 ステップS2において、コントローラ4は、停電を検知した場合(ステップS2においてYES)には、蓄電池放電を開始する(ステップS4)。コントローラ4は、制御電源回路2からの停電の通知を受け付けた場合には、コンバータ5の動作を停止する。そして、蓄電池6から負荷20への供給が開始される。
 次に、コントローラ4は、蓄電池からの放電電圧が低下し始めたか否かを判断する(ステップS6)。制御電源回路2は、インバータ7の出力側と接続されるためインバータ7からの供給電圧の低下を検知して、コントローラ4に通知する。コントローラ4は、当該通知に従って蓄電池からの放電電圧の低下を判断する。
 ステップS6において、コントローラ4は、蓄電池からの放電電圧が低下し始めた場合(ステップS6においてYES)には、インバータ側の切替回路9をオフする(ステップS8)。コントローラ4は、制御電源回路2からの通知に従って切替回路9をオフする。
 次に、コントローラ4は、切替回路9をオフしたことを通知する(ステップS9)。コントローラ4は、他の交流出力変換器10のコントローラ4に対して切替回路9をオフしたことを通知する。
 次に、コントローラ4は、全装置が停止したか否かを判断する(ステップS10)。コントローラ4は、他の交流出力変換器10の切替回路9をオフしたことを通知する信号を全装置から受信したか否かを判断する。
 ステップS10において、コントローラ4は、全装置が停止したと判断した場合(ステップS10においてYES)には、バイパス側の切替回路8をオンする(ステップS12)。
 ステップS10において、コントローラ4は、全装置が停止しないと判断した場合(ステップS10においてNO)には、ステップS10の状態を維持する。
 そして、処理を終了する(エンド)。
 なお、上記の構成においては、制御電源回路2は、コンバータ5の入力側およびインバータ7の出力側と接続され、それぞれの交流電圧を検知して、コントローラ4に停電あるいはインバータ7からの供給電圧の低下を通知する方式について説明した。一方で、制御電源回路2の代わりに別のセンサを用いて電圧を検知してコントローラ4に通知する方式を採用するようにしても良い。あるいは、コントローラ4が直接、コンバータ5の入力側およびインバータ7の出力側と接続され、それぞれの交流電圧を検知して、停電あるいはインバータ7からの供給電圧の低下を検知するようにしても良い。
 以上、本発明の実施形態について説明したが、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1 無停電電源システム、2 制御電源回路、3 外部交流電源、4 コントローラ、5 コンバータ、6 蓄電池、7 インバータ、8,9 切替回路、10 交流出力変換器、20 負荷。

Claims (3)

  1.  交流負荷に電力を供給する並列接続した複数の交流出力変換器を備え、
     各前記交流出力変換器は、
     外部交流電圧を直流電圧に変換する交流直流変換器と、
     前記直流電圧を交流電圧に変換して前記交流負荷に供給する直流交流変換器と、
     前記直流交流変換器と並列に接続され、前記直流電圧を蓄電する2次電池と、
     前記交流負荷と前記直流交流変換器との間に設けられた第1の切替回路と、
     前記直流交流変換器から供給する前記交流電圧の代わりに、前記外部交流電圧を直接的に前記交流負荷に供給するためのバイパス経路と、
     前記交流負荷と前記バイパス経路との間に設けられた第2の切替回路と、
     停電時および復電時に前記第1および第2の切替回路を制御する切替制御回路と、
     前記外部交流電圧および前記交流電圧の供給を受けて前記制御回路の制御電圧を生成するための制御電源回路とを含み、
     前記切替制御回路は、
     前記外部交流電圧の停電時に前記2次電池から前記交流負荷への電圧供給の低下を検知した場合に、前記第1の切替回路をオフし、
     前記外部交流電圧の停電時に前記複数の交流出力変換器から前記交流負荷への電圧の供給がすべて停止したことを検知した場合に、前記第2の切替回路をオンする、電力供給システム。
  2.  前記切替制御回路は、通常時は前記第1の切替回路をオンし、前記第2の切替回路をオフしている、請求項1記載の電力供給システム。
  3.  各前記交流出力変換器の切替制御回路は、他の前記交流出力変換器の切替制御回路と接続され、前記他の前記交流出力変換器から前記交流負荷への電圧の停止信号の入力を受ける、請求項1記載の電力供給システム。
PCT/JP2018/042992 2018-11-21 2018-11-21 電力供給システム WO2020105141A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019552926A JP6886040B2 (ja) 2018-11-21 2018-11-21 電力供給システム
US17/056,920 US20210210978A1 (en) 2018-11-21 2018-11-21 Power supply system
PCT/JP2018/042992 WO2020105141A1 (ja) 2018-11-21 2018-11-21 電力供給システム
KR1020217001167A KR102566563B1 (ko) 2018-11-21 2018-11-21 전력 공급 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042992 WO2020105141A1 (ja) 2018-11-21 2018-11-21 電力供給システム

Publications (1)

Publication Number Publication Date
WO2020105141A1 true WO2020105141A1 (ja) 2020-05-28

Family

ID=70773363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042992 WO2020105141A1 (ja) 2018-11-21 2018-11-21 電力供給システム

Country Status (4)

Country Link
US (1) US20210210978A1 (ja)
JP (1) JP6886040B2 (ja)
KR (1) KR102566563B1 (ja)
WO (1) WO2020105141A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455737B2 (ja) 2020-12-03 2024-03-26 東芝三菱電機産業システム株式会社 電力供給システムおよび電力供給システムの制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280640A (ja) * 1989-04-20 1990-11-16 Toshiba Corp 無停電電源装置の制御電源回路
JPH0511751U (ja) * 1991-07-23 1993-02-12 東洋電機製造株式会社 無停電電源装置の制御電源回路
JP2002010527A (ja) * 2000-06-27 2002-01-11 Mitsubishi Electric Corp 無停電電源装置の並列運転システム
JP2008283788A (ja) * 2007-05-10 2008-11-20 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置の制御電源回路
JP2015180136A (ja) * 2014-03-19 2015-10-08 東芝三菱電機産業システム株式会社 無停電電源システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698231B1 (ko) * 1998-10-12 2007-03-21 산요 덴키 가부시키가이샤 무정전 전원장치
JP2007020263A (ja) * 2005-07-06 2007-01-25 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置およびその運転方法
JP4519077B2 (ja) * 2006-01-24 2010-08-04 日本電信電話株式会社 電源システムならびに電源システム制御のためのプログラムおよびそれを記録した記録媒体
US7638899B2 (en) * 2006-03-10 2009-12-29 Eaton Corporation Nested redundant uninterruptible power supply apparatus and methods
JP4406655B2 (ja) * 2007-06-28 2010-02-03 日本電信電話株式会社 電源システム
JP2009044923A (ja) * 2007-08-10 2009-02-26 Origin Electric Co Ltd 電源システム
JP2009100502A (ja) * 2007-10-15 2009-05-07 Nippon Telegr & Teleph Corp <Ntt> 電源切替装置およびこれを用いた電源システム
CA2774063C (en) * 2009-09-16 2016-01-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system and uninterruptible power supply system
SG11201705208UA (en) * 2015-03-11 2017-09-28 Mitsubishi Electric Corp Power supply device
JP6418109B2 (ja) 2015-08-31 2018-11-07 東芝三菱電機産業システム株式会社 無停電電源システム
WO2018154948A1 (ja) * 2017-02-21 2018-08-30 富士電機株式会社 無停電電源システムおよび無停電電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280640A (ja) * 1989-04-20 1990-11-16 Toshiba Corp 無停電電源装置の制御電源回路
JPH0511751U (ja) * 1991-07-23 1993-02-12 東洋電機製造株式会社 無停電電源装置の制御電源回路
JP2002010527A (ja) * 2000-06-27 2002-01-11 Mitsubishi Electric Corp 無停電電源装置の並列運転システム
JP2008283788A (ja) * 2007-05-10 2008-11-20 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置の制御電源回路
JP2015180136A (ja) * 2014-03-19 2015-10-08 東芝三菱電機産業システム株式会社 無停電電源システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455737B2 (ja) 2020-12-03 2024-03-26 東芝三菱電機産業システム株式会社 電力供給システムおよび電力供給システムの制御方法

Also Published As

Publication number Publication date
US20210210978A1 (en) 2021-07-08
JP6886040B2 (ja) 2021-06-16
KR20210020121A (ko) 2021-02-23
KR102566563B1 (ko) 2023-08-11
JPWO2020105141A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2018087876A1 (ja) 無停電電源装置
WO2020105135A1 (ja) 電源装置
JP2010016996A (ja) 無停電電源装置
US20110010568A1 (en) Power supply apparatus and power supply control method
JP4530919B2 (ja) 無停電電源装置
JP5477813B2 (ja) 無停電電源システム
JP5079363B2 (ja) 半導体電力変換システム
JP5882884B2 (ja) 無停電電源装置
JP5717173B2 (ja) 電源システム、電源制御方法、電源制御装置、及び、プログラム
JP6886040B2 (ja) 電力供給システム
JP2001069689A (ja) 無停電電源装置のバイパス回路
JP7278800B2 (ja) 電力供給システム
JP4868575B2 (ja) 電力変換装置
JP2017011910A (ja) 無停電電源装置
JP7455737B2 (ja) 電力供給システムおよび電力供給システムの制御方法
JP6585833B2 (ja) 無停電電源装置
WO2022219805A1 (ja) 無停電電源装置
JP2010220339A (ja) 無停電電源システム
JP2002218674A (ja) 無停電電源システムおよびその運転方法
JP6996942B2 (ja) 無停電電源システム
JP6668274B2 (ja) 無停電電源システム
JP4497760B2 (ja) 無停電電源システム
JP5792698B2 (ja) 無停電電源システム
JP2021158854A (ja) 電力変換装置および制御方法
JP5316781B2 (ja) 無停電電源装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019552926

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217001167

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940517

Country of ref document: EP

Kind code of ref document: A1