WO2020105141A1 - 電力供給システム - Google Patents
電力供給システムInfo
- Publication number
- WO2020105141A1 WO2020105141A1 PCT/JP2018/042992 JP2018042992W WO2020105141A1 WO 2020105141 A1 WO2020105141 A1 WO 2020105141A1 JP 2018042992 W JP2018042992 W JP 2018042992W WO 2020105141 A1 WO2020105141 A1 WO 2020105141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- load
- converter
- power supply
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/068—Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
- H02J3/472—For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
Definitions
- the present invention relates to a power supply system in which a plurality of AC output converters for converting power from DC to AC are connected in parallel to supply power to a load.
- a power supply system in which a plurality of AC output converters that convert power from DC to AC are connected in parallel to supply power to a load.
- Japanese Patent Laid-Open No. 2017-50933 discloses a power supply system in which a plurality of AC output converters such as inverters are connected in parallel and operate in parallel with a common load.
- the power supply system in the above publication is capable of high-efficiency power supply by supplying the load from each AC output converter, for example, when a power failure occurs, it becomes a method to switch to the bypass circuit. ing.
- the power supply capacity from the storage battery to the load may differ for each AC output converter.
- the power supply of other AC output converters may not be operating normally until the power supply to some AC output converters is terminated, and it may be difficult to switch the bypass circuit. There is.
- the power supply system may not be restored normally when the power is restored.
- the purpose of the present invention is to solve the above problems, and to realize a power supply system that can be safely switched to a bypass circuit when a power failure occurs.
- a power supply system includes a plurality of AC output converters connected in parallel to supply power to an AC load.
- Each AC output converter is connected in parallel with an AC / DC converter that converts an external AC voltage into a DC voltage, a DC / AC converter that converts a DC voltage into an AC voltage and supplies the AC load, and a DC / AC converter.
- a secondary battery that stores a DC voltage, a first switching circuit provided between the AC load and the DC / AC converter, and an external AC voltage instead of the AC voltage supplied from the DC / AC converter
- a switching control circuit and a control power supply circuit for receiving a supply of an external AC voltage and an AC voltage to generate a control voltage of the control circuit are included.
- the switching control circuit turns off the first switching circuit when detecting a decrease in the voltage supply from the secondary battery to the AC load during a power failure of the external AC voltage, and switches the plurality of AC output converters during a power failure of the external AC voltage.
- the second switching circuit is turned on when it is detected that the supply of the voltage from the AC load to the AC load is completely stopped.
- the switching control circuit normally turns on the first switching circuit and turns off the second switching circuit.
- the switching control circuit of each AC output converter is connected to the switching control circuit of another AC output converter and receives a voltage stop signal input to the AC load from another AC output converter.
- the power supply system of the present invention can be safely switched to the bypass circuit when a power failure occurs.
- UPS Uninterruptible Power Supply
- an uninterruptible power supply system will be described using a parallel configuration of a plurality of AC output converters.
- FIG. 1 is a diagram illustrating a configuration of an uninterruptible power supply system 1 based on the embodiment.
- uninterruptible power supply system 1 includes a plurality (n) of AC output converters 10-1 to 10-n.
- AC output converters 10-1 to 10-n (also collectively referred to as AC output converter 10) are connected to external AC power supply 3 and operate in parallel with common load 20.
- the number n can be set to an arbitrary value depending on the load to be supplied, especially if the number is two or more.
- the AC output converter 10 is connected to the external AC power supply 3, and is a converter 5 that converts the AC voltage from the external AC power supply 3 into a DC voltage; and the inverter 7 that is connected to the converter 5 and that converts the DC voltage into an AC voltage. , And storage battery 6 connected to converter 5 in parallel with inverter 7.
- the AC output converter 10 includes a switching circuit 9 provided between the inverter 7 and a load, a bypass path for supplying an AC voltage provided separately from the supply paths of the converter 5 and the inverter 7, the bypass path and the load. And a controller 4 (switching control circuit) that controls the switching circuits 8 and 9, and a control power supply circuit 2 that generates a drive voltage for the controller 4.
- the control power supply circuit 2 is connected to the input side of the converter 5 and the output side of the inverter 7, detects the AC voltage of each, and receives the supply of the AC voltage to generate the drive voltage of the controller 4. That is, the control power supply circuit 2 can generate the drive voltage based on the AC voltage supplied from the inverter 7 even when the external AC power supply 3 fails. Further, the control power supply circuit 2 outputs a detection signal of a power failure or a decrease in the supply voltage from the inverter 7 to the controller 4 according to the AC voltage detected at the input side of the converter 5 and the output side of the inverter 7.
- the storage battery 6 supplies the power to the load.
- FIG. 2 is a diagram illustrating voltage supply of the uninterruptible power supply system 1 in a normal time based on the embodiment.
- the switching circuit 9 is on and the load 20 and the inverter 7 are connected.
- the converter 5 converts the AC voltage from the external AC power supply 3 into a DC voltage.
- the inverter 7 is connected to the converter 5 and converts a DC voltage into an AC voltage. Further, the storage battery 6 stores the DC voltage converted by the converter 5.
- Electric power is supplied from the inverter 7 to the load 20 via the switching circuit 9. Due to the parallel configuration of the plurality of AC output converters 10, necessary power is supplied from each AC output converter 10 to the load 20.
- FIG. 3 is a diagram illustrating voltage supply of the conventional uninterruptible power supply system 1 during a power failure. As shown in FIG. 3A, a configuration including two AC output converters 10-1 and 10-2 will be described as an example.
- the switching circuit 9 is on and the load 20 and the inverter 7 are connected.
- the converter 5 converts the AC voltage from the external AC power supply 3 into a DC voltage.
- the inverter 7 is connected to the converter 5 and converts a DC voltage into an AC voltage. Further, the storage battery 6 stores the DC voltage converted by the converter 5.
- Electric power is supplied from the inverter 7 to the load 20 via the switching circuit 9. Due to the parallel configuration of the plurality of AC output converters 10, necessary power is supplied from each AC output converter 10 to the load 20.
- the AC output converter 10-2 needs to wait for a switching command from the switching circuit 9 to the switching circuit 8 until the supply from the AC output converter 10-1 to the load 20 is completed.
- the control power supply circuit 2 needs to continue to secure the drive voltage of the controller 4. However, when the standby period is long, it may be difficult for the control power supply circuit 2 to continue to secure the drive voltage of the controller 4. If the drive voltage of the controller 4 cannot be secured, the control power supply circuit 2 cannot output a switching command from the switching circuit 9 to the switching circuit 8, and the switching circuit 8 maintains the off state. Will be done.
- the conventional uninterruptible power supply system may not be able to execute normal power recovery processing.
- FIG. 4 is a diagram illustrating voltage supply of the uninterruptible power supply system 1 at the time of power failure according to the embodiment.
- the controller 4 when the controller 4 according to the embodiment detects that the supply voltage from the storage battery 6 of the AC output converter 10-2 to the load 20 has decreased, the controller 4 turns off the switching circuit 9 of the AC output converter 10-2. .. Further, the controller 4 notifies the controller 4 of the AC output converter 10-1 that the supply voltage has dropped and the switching circuit 9 has been turned off.
- the inverter 7 receives the DC voltage from the storage battery 6 and continues to supply the drive voltage for the controller 4.
- the controller 4 of the AC output converters 10-1 and 10-2 turns on the switching circuit 8 and turns off the switching circuit 9. Set to.
- the controller 4 of the AC output converter 10-1 notifies the controller 4 of the AC output converter 10-2 that the supply voltage has dropped and the switching circuit 9 has been turned off.
- the controller 4 of the AC output converter 10-2 receives a notification from the controller 4 of the AC output converter 10-1 that the switching circuit 9 is turned off, and all the AC output converters 10 are informed of the voltage to the load 20. Upon detecting that the supply has been stopped, the switching circuit 8 is turned on.
- the controller 4 of the AC output converter 10-1 detects the decrease in the supply voltage from the storage battery 6 of the AC output converter 10-1 to the load 20. Upon receiving the notification that the switching circuit 9 has been turned off, it is detected that all the AC output converters 10 have stopped supplying voltage to the load 20, and the switching circuit 8 is turned on.
- FIG. 4 (B) there is shown a case where power recovery occurs while the switching circuit 8 of the AC output converters 10-1 and 10-2 is on.
- the load 20 is supplied with electric power from the AC output converters 10-1 and 10-2, and it is possible to suppress the overload state and normally execute the restoration process. is there. That is, the uninterruptible power supply system 1 according to the embodiment can execute normal power recovery processing.
- FIG. 5 is a flowchart illustrating the operation of the controller 4 of the AC output converter 10 according to the embodiment during a power failure.
- the controller 4 determines whether or not a power failure is detected (step S2). Since the control power supply circuit 2 is connected to the input side of the converter 5, it detects a power failure of the external AC power supply 3. The control power supply circuit 2 notifies the controller 4 of a power failure. The control power supply circuit 2 also generates and outputs a drive voltage for the controller 4 based on the AC voltage output from the inverter 7.
- step S2 If the power failure is detected in step S2 (YES in step S2), the controller 4 starts discharging the storage battery (step S4).
- the controller 4 receives the notification of the power failure from the control power supply circuit 2, the controller 4 stops the operation of the converter 5. Then, the supply from the storage battery 6 to the load 20 is started.
- step S6 the controller 4 determines whether the discharge voltage from the storage battery has begun to decrease. Since the control power supply circuit 2 is connected to the output side of the inverter 7, the control power supply circuit 2 detects a decrease in the supply voltage from the inverter 7 and notifies the controller 4 of it. The controller 4 determines a decrease in the discharge voltage from the storage battery according to the notification.
- step S6 when the discharge voltage from the storage battery starts to decrease (YES in step S6), the controller 4 turns off the switching circuit 9 on the inverter side (step S8). The controller 4 turns off the switching circuit 9 according to the notification from the control power supply circuit 2.
- step S9 the controller 4 notifies that the switching circuit 9 has been turned off.
- the controller 4 notifies the controller 4 of the other AC output converter 10 that the switching circuit 9 has been turned off.
- the controller 4 determines whether or not all the devices have stopped (step S10).
- the controller 4 determines whether or not a signal notifying that the switching circuit 9 of the other AC output converter 10 has been turned off has been received from all the devices.
- step S10 when the controller 4 determines that all the devices have stopped (YES in step S10), the switching circuit 8 on the bypass side is turned on (step S12).
- step S10 when the controller 4 determines that all the devices do not stop (NO in step S10), the controller 4 maintains the state of step S10.
- the control power supply circuit 2 is connected to the input side of the converter 5 and the output side of the inverter 7, detects the AC voltage of each, and causes the controller 4 to have a power failure or supply voltage from the inverter 7.
- the method of notifying a drop has been described.
- another sensor may be used to detect the voltage and notify the controller 4 of the voltage.
- the controller 4 may be directly connected to the input side of the converter 5 and the output side of the inverter 7 to detect the AC voltage of each and detect a power failure or a drop in the supply voltage from the inverter 7.
- 1 uninterruptible power supply system 2 control power supply circuit, 3 external AC power supply, 4 controller, 5 converter, 6 storage battery, 7 inverter, 8, 9 switching circuit, 10 AC output converter, 20 load.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Inverter Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
図1を参照して、無停電電源システム1は、複数(n個)の交流出力変換器10-1~10-nを含む。交流出力変換器10-1~10-n(総称して交流出力変換器10とも称する)は、外部交流電源3と接続されるとともに、共通の負荷20に対して並列運転する。なお、n個は、特に2個以上であれば供給する負荷に応じて任意の値に設定することが可能である。
交流出力変換器10は、外部交流電源3と接続され、外部交流電源3からの交流電圧を直流電圧に変換するコンバータ5と、コンバータ5と接続され、直流電圧を交流電圧に変換するインバータ7と、インバータ7と並列にコンバータ5と接続される蓄電池6とを含む。
複数の交流出力変換器10の並列構成であるため、それぞれの交流出力変換器10から負荷20に対して必要な電力が供給される。
図3(A)に示されるように、一例として、2台の交流出力変換器10-1,10-2を含む構成について説明する。
複数の交流出力変換器10の並列構成であるため、それぞれの交流出力変換器10から負荷20に対して必要な電力が供給される。
この場合には、コンバータ5からの電圧供給が低下するため蓄電池6からインバータ7および切替回路9を介して負荷20に対する電力供給を継続する。この状態の場合には、切替回路8はオフしている。
なお、上記の構成においては、制御電源回路2は、コンバータ5の入力側およびインバータ7の出力側と接続され、それぞれの交流電圧を検知して、コントローラ4に停電あるいはインバータ7からの供給電圧の低下を通知する方式について説明した。一方で、制御電源回路2の代わりに別のセンサを用いて電圧を検知してコントローラ4に通知する方式を採用するようにしても良い。あるいは、コントローラ4が直接、コンバータ5の入力側およびインバータ7の出力側と接続され、それぞれの交流電圧を検知して、停電あるいはインバータ7からの供給電圧の低下を検知するようにしても良い。
Claims (3)
- 交流負荷に電力を供給する並列接続した複数の交流出力変換器を備え、
各前記交流出力変換器は、
外部交流電圧を直流電圧に変換する交流直流変換器と、
前記直流電圧を交流電圧に変換して前記交流負荷に供給する直流交流変換器と、
前記直流交流変換器と並列に接続され、前記直流電圧を蓄電する2次電池と、
前記交流負荷と前記直流交流変換器との間に設けられた第1の切替回路と、
前記直流交流変換器から供給する前記交流電圧の代わりに、前記外部交流電圧を直接的に前記交流負荷に供給するためのバイパス経路と、
前記交流負荷と前記バイパス経路との間に設けられた第2の切替回路と、
停電時および復電時に前記第1および第2の切替回路を制御する切替制御回路と、
前記外部交流電圧および前記交流電圧の供給を受けて前記制御回路の制御電圧を生成するための制御電源回路とを含み、
前記切替制御回路は、
前記外部交流電圧の停電時に前記2次電池から前記交流負荷への電圧供給の低下を検知した場合に、前記第1の切替回路をオフし、
前記外部交流電圧の停電時に前記複数の交流出力変換器から前記交流負荷への電圧の供給がすべて停止したことを検知した場合に、前記第2の切替回路をオンする、電力供給システム。 - 前記切替制御回路は、通常時は前記第1の切替回路をオンし、前記第2の切替回路をオフしている、請求項1記載の電力供給システム。
- 各前記交流出力変換器の切替制御回路は、他の前記交流出力変換器の切替制御回路と接続され、前記他の前記交流出力変換器から前記交流負荷への電圧の停止信号の入力を受ける、請求項1記載の電力供給システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019552926A JP6886040B2 (ja) | 2018-11-21 | 2018-11-21 | 電力供給システム |
US17/056,920 US20210210978A1 (en) | 2018-11-21 | 2018-11-21 | Power supply system |
PCT/JP2018/042992 WO2020105141A1 (ja) | 2018-11-21 | 2018-11-21 | 電力供給システム |
KR1020217001167A KR102566563B1 (ko) | 2018-11-21 | 2018-11-21 | 전력 공급 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/042992 WO2020105141A1 (ja) | 2018-11-21 | 2018-11-21 | 電力供給システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105141A1 true WO2020105141A1 (ja) | 2020-05-28 |
Family
ID=70773363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042992 WO2020105141A1 (ja) | 2018-11-21 | 2018-11-21 | 電力供給システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210210978A1 (ja) |
JP (1) | JP6886040B2 (ja) |
KR (1) | KR102566563B1 (ja) |
WO (1) | WO2020105141A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7455737B2 (ja) | 2020-12-03 | 2024-03-26 | 東芝三菱電機産業システム株式会社 | 電力供給システムおよび電力供給システムの制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02280640A (ja) * | 1989-04-20 | 1990-11-16 | Toshiba Corp | 無停電電源装置の制御電源回路 |
JPH0511751U (ja) * | 1991-07-23 | 1993-02-12 | 東洋電機製造株式会社 | 無停電電源装置の制御電源回路 |
JP2002010527A (ja) * | 2000-06-27 | 2002-01-11 | Mitsubishi Electric Corp | 無停電電源装置の並列運転システム |
JP2008283788A (ja) * | 2007-05-10 | 2008-11-20 | Toshiba Mitsubishi-Electric Industrial System Corp | 無停電電源装置の制御電源回路 |
JP2015180136A (ja) * | 2014-03-19 | 2015-10-08 | 東芝三菱電機産業システム株式会社 | 無停電電源システム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100698231B1 (ko) * | 1998-10-12 | 2007-03-21 | 산요 덴키 가부시키가이샤 | 무정전 전원장치 |
JP2007020263A (ja) * | 2005-07-06 | 2007-01-25 | Toshiba Mitsubishi-Electric Industrial System Corp | 無停電電源装置およびその運転方法 |
JP4519077B2 (ja) * | 2006-01-24 | 2010-08-04 | 日本電信電話株式会社 | 電源システムならびに電源システム制御のためのプログラムおよびそれを記録した記録媒体 |
US7638899B2 (en) * | 2006-03-10 | 2009-12-29 | Eaton Corporation | Nested redundant uninterruptible power supply apparatus and methods |
JP4406655B2 (ja) * | 2007-06-28 | 2010-02-03 | 日本電信電話株式会社 | 電源システム |
JP2009044923A (ja) * | 2007-08-10 | 2009-02-26 | Origin Electric Co Ltd | 電源システム |
JP2009100502A (ja) * | 2007-10-15 | 2009-05-07 | Nippon Telegr & Teleph Corp <Ntt> | 電源切替装置およびこれを用いた電源システム |
CA2774063C (en) * | 2009-09-16 | 2016-01-05 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion system and uninterruptible power supply system |
SG11201705208UA (en) * | 2015-03-11 | 2017-09-28 | Mitsubishi Electric Corp | Power supply device |
JP6418109B2 (ja) | 2015-08-31 | 2018-11-07 | 東芝三菱電機産業システム株式会社 | 無停電電源システム |
WO2018154948A1 (ja) * | 2017-02-21 | 2018-08-30 | 富士電機株式会社 | 無停電電源システムおよび無停電電源装置 |
-
2018
- 2018-11-21 JP JP2019552926A patent/JP6886040B2/ja active Active
- 2018-11-21 US US17/056,920 patent/US20210210978A1/en not_active Abandoned
- 2018-11-21 WO PCT/JP2018/042992 patent/WO2020105141A1/ja active Application Filing
- 2018-11-21 KR KR1020217001167A patent/KR102566563B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02280640A (ja) * | 1989-04-20 | 1990-11-16 | Toshiba Corp | 無停電電源装置の制御電源回路 |
JPH0511751U (ja) * | 1991-07-23 | 1993-02-12 | 東洋電機製造株式会社 | 無停電電源装置の制御電源回路 |
JP2002010527A (ja) * | 2000-06-27 | 2002-01-11 | Mitsubishi Electric Corp | 無停電電源装置の並列運転システム |
JP2008283788A (ja) * | 2007-05-10 | 2008-11-20 | Toshiba Mitsubishi-Electric Industrial System Corp | 無停電電源装置の制御電源回路 |
JP2015180136A (ja) * | 2014-03-19 | 2015-10-08 | 東芝三菱電機産業システム株式会社 | 無停電電源システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7455737B2 (ja) | 2020-12-03 | 2024-03-26 | 東芝三菱電機産業システム株式会社 | 電力供給システムおよび電力供給システムの制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210210978A1 (en) | 2021-07-08 |
JP6886040B2 (ja) | 2021-06-16 |
KR20210020121A (ko) | 2021-02-23 |
KR102566563B1 (ko) | 2023-08-11 |
JPWO2020105141A1 (ja) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018087876A1 (ja) | 無停電電源装置 | |
WO2020105135A1 (ja) | 電源装置 | |
JP2010016996A (ja) | 無停電電源装置 | |
US20110010568A1 (en) | Power supply apparatus and power supply control method | |
JP4530919B2 (ja) | 無停電電源装置 | |
JP5477813B2 (ja) | 無停電電源システム | |
JP5079363B2 (ja) | 半導体電力変換システム | |
JP5882884B2 (ja) | 無停電電源装置 | |
JP5717173B2 (ja) | 電源システム、電源制御方法、電源制御装置、及び、プログラム | |
JP6886040B2 (ja) | 電力供給システム | |
JP2001069689A (ja) | 無停電電源装置のバイパス回路 | |
JP7278800B2 (ja) | 電力供給システム | |
JP4868575B2 (ja) | 電力変換装置 | |
JP2017011910A (ja) | 無停電電源装置 | |
JP7455737B2 (ja) | 電力供給システムおよび電力供給システムの制御方法 | |
JP6585833B2 (ja) | 無停電電源装置 | |
WO2022219805A1 (ja) | 無停電電源装置 | |
JP2010220339A (ja) | 無停電電源システム | |
JP2002218674A (ja) | 無停電電源システムおよびその運転方法 | |
JP6996942B2 (ja) | 無停電電源システム | |
JP6668274B2 (ja) | 無停電電源システム | |
JP4497760B2 (ja) | 無停電電源システム | |
JP5792698B2 (ja) | 無停電電源システム | |
JP2021158854A (ja) | 電力変換装置および制御方法 | |
JP5316781B2 (ja) | 無停電電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019552926 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940517 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217001167 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940517 Country of ref document: EP Kind code of ref document: A1 |