WO2020103658A1 - 一种抗菌聚碳酸酯复合材料及其制备方法 - Google Patents

一种抗菌聚碳酸酯复合材料及其制备方法

Info

Publication number
WO2020103658A1
WO2020103658A1 PCT/CN2019/114374 CN2019114374W WO2020103658A1 WO 2020103658 A1 WO2020103658 A1 WO 2020103658A1 CN 2019114374 W CN2019114374 W CN 2019114374W WO 2020103658 A1 WO2020103658 A1 WO 2020103658A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
antibacterial
oxide
polycarbonate composite
silicon
Prior art date
Application number
PCT/CN2019/114374
Other languages
English (en)
French (fr)
Inventor
丁超
李明昆
岑茵
彭民乐
艾军伟
吴俊�
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to KR1020207035354A priority Critical patent/KR102443879B1/ko
Priority to US17/050,833 priority patent/US20210054194A1/en
Priority to JP2020568791A priority patent/JP7057450B2/ja
Priority to EP19887200.4A priority patent/EP3770218A4/en
Publication of WO2020103658A1 publication Critical patent/WO2020103658A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/015Biocides

Definitions

  • the invention relates to the technical field of polymer composite materials, in particular to an antibacterial polycarbonate composite material and a preparation method thereof.
  • PC polycarbonate
  • the viscosity of the polycarbonate melted during processing is high, and the polycarbonate material is a temperature-sensitive material rather than a shear-sensitive material, so the filler-type metal ion antibacterial agent is easy to gather, how to ensure that the amount of addition is small It can also ensure that the antibacterial agent forms an obvious gradient concentration difference in the matrix and is dispersed on the surface of the entire material to play a sterilizing effect, making it an urgent technical problem to be solved.
  • the prior art can only concentrate silver ion antibacterial agent on the surface of the material or evenly disperse it in the material. There are very few silver ion antibacterial agents distributed on the surface, so the antibacterial effect is not good.
  • the solution is generally to increase the amount of silver ion antibacterial agents and increase the cost.
  • the silver ion antibacterial agent on the surface of the material is worn, the silver ion antibacterial agent present inside the material cannot migrate to the surface, so the durability of the material is poor.
  • the purpose of the present invention is to provide an antibacterial polycarbonate composite material, which has good appearance, good color stability, good antibacterial performance, silver ion concentration in the material from the inside to the outside, and with the wear of the surface of the material inside the material Silver ions will slowly migrate out to maintain a good sustained antibacterial effect and other advantages.
  • Another object of the present invention is to provide a method for preparing antibacterial polycarbonate composite materials.
  • An antibacterial polycarbonate composite material based on parts by weight, including the following components:
  • the content of silver ions is 100-1200 ppm.
  • Silicon-containing polymer 0.1-2.5 copies
  • the content of silver ions is 100-1200 ppm.
  • the polycarbonate resin of the present invention may be a branched thermoplastic polymer or copolymer obtained by the reaction of a dihydroxy compound or a small amount thereof with phosgene or a carbonic acid diester.
  • the production method of the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by the phosgene method (interfacial polymerization method) or melting method (ester exchange method) known hitherto can be used.
  • the polycarbonate resin is preferably an aromatic polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane,
  • the polycarbonate resin may also be a copolymer in which the main composition is an aromatic polycarbonate resin, for example, a copolymer with a polymer or oligomer containing a siloxane structure.
  • a mixture of two or more of the above polycarbonate resins may be used.
  • Monovalent aromatic hydroxy compounds can be used to adjust the molecular weight of polycarbonate resins, for example, m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol and p- (long-chain alkyl ) -Substituted phenol.
  • the production method of the polycarbonate resin is not particularly limited, and the polycarbonate resin produced by the phosgene method (interfacial polymerization method) or the melting method (ester exchange method) can be used.
  • the polycarbonate resin is also provided by the polycarbonate resin produced by the melting method undergoing post-treatment for adjusting the amount of terminal hydroxyl groups.
  • the silver ions are derived from silver ion antibacterial agents.
  • the nano metal oxide is selected from at least one of zinc oxide, magnesium oxide, calcium oxide, copper oxide, titanium dioxide, silicon dioxide, aluminum oxide, zirconium oxide, cerium oxide, iron oxide, and the nano metal oxide
  • the silicon-containing polymer is at least one selected from siloxane polymers.
  • the molecular weight of the siloxane polymer is 150,000-350,000; preferably, the molecular weight of the siloxane polymer is 200,000-300,000.
  • antioxidants In terms of parts by weight, it also includes 0-5 parts by weight of at least one of antioxidants, lubricants, weathering agents, and mold release agents.
  • the function of the antioxidant is to prevent the material from oxidizing at high temperature during extrusion granulation.
  • white toners include titanium oxide.
  • the production method, crystal form, average particle diameter, etc. of titanium oxide are not particularly limited.
  • the preparation method of the above antibacterial polycarbonate composite material includes the following steps: mixing polycarbonate, nano metal oxide, silicon-containing polymer, and silver ion antibacterial agent in a high mixer according to the proportion, and then adding to In a twin-screw extruder, melt mixing is performed at a temperature of 240 ° C-260 ° C, and then granulated, cooled, and dried to obtain an antibacterial polycarbonate composite material.
  • the conventional externally added flame retardant will affect the physical properties of the resin matrix, and will also negatively affect the activity of the antibacterial agent. Because the flame retardant will cause the silver ions to fail during the process of high temperature and shear, it brings unexpected effects to the composition.
  • the antibacterial polycarbonate composite material of the present invention incorporates a silicon-containing macromolecular polymer, which can achieve good compatibility with the polycarbonate matrix resin. At the same time, because of the presence of polydimethylsiloxane, silicon-based materials are The effective components in the combustion system, due to their surface energy characteristics, can not only ensure a sufficiently stable flame retardancy, but also improve dispersion and surface properties.
  • the invention provides an antibacterial polycarbonate composite material.
  • silver ion antibacterial agents and nano oxides By adding silver ion antibacterial agents and nano oxides, and then synergizing the dispersion and migration of silicon-containing polymers, the amount of silver ions is greatly reduced, and silver ions can be realized
  • the distribution of the antimicrobial agent from the inside of the material to the surface concentration gradient is increasing.
  • the silver ion antibacterial agent on the surface of the material is worn, the silver ions inside the material will migrate to the surface at a uniform rate with the silicon-containing polymer, achieving a durable Antibacterial effect can reduce the amount of silver ions added.
  • the silicon-containing polymer has a color masking effect, and even if the silver ions are reduced to the silver element, they will not appear gray, so a beautiful white color can be obtained with a small amount of white toner.
  • the antibacterial polycarbonate composite material of the present invention has the advantages of good antibacterial effect, long-lasting, good appearance and stable color.
  • the sources of raw materials used in the present invention are as follows, but are not limited by the following raw materials.
  • Source of silver ions silver ion antibacterial agent, IKM50G, Japan Zeomic;
  • Siloxane polymer A molecular weight 200,000
  • Siloxane polymer B molecular weight 300,000;
  • Siloxane polymer C molecular weight 150,000
  • Siloxane polymer D molecular weight 350,000
  • Siloxane polymer E molecular weight of 100,000
  • Siloxane polymer F molecular weight of 500,000
  • Lubricant POLYTS 30A Korea Pacific Chemical
  • Antioxidant 2112, Aidike;
  • Toner Titanium dioxide 2233, Connors, Germany;
  • polycarbonate, nano metal oxide, silicon-containing polymer, silver ion antibacterial agent, toner, and additives are mixed in a high mixer according to the ratio, and then added to In a twin-screw extruder, melt mixing is performed at a temperature of 240 ° C-260 ° C, and then granulated, cooled, and dried to obtain an antibacterial polycarbonate composite material.
  • Level 1 represents a clear gradient distribution, indicating excellent mobility to ensure continuous Antibacterial ability.
  • Level 2 represents a good gradient distribution. At this time, the gradient is not continuous, indicating good migration, but the migration speed may not be consistent;
  • Level 3 represents a general gradient distribution. At this time, the gradient has a fault, indicating There is a certain degree of mobility but there will be obvious instability.
  • Level 4 means that there is only concentration on the surface, or there is concentration in the center of the cross section, which does not have mobility and the antibacterial effect cannot be sustained.
  • Level 1+ means slightly better than Level 1.
  • ICP standard curve extrapolation method the Ag content in the composition is measured by optical emission spectroscopy with inductively coupled plasma (ICP-OES), in order to determine the total Ag content, weigh 2g The composition was measured, treated with 5 ml of nitric acid and stirred for trial dissolution, and the solution was replenished to 100 ml, and the total Ag content was calculated by ICP standard curve extrapolation.
  • ICP-OES inductively coupled plasma
  • Table 1 Distribution ratio (parts by weight) and performance test results of each group of examples
  • the amount of nano-zinc oxide is in the range of 0.05-2.5 parts, and each performance is better.
  • the molecular weight of the siloxane polymer is in the range of 200,000 to 300,000, and the performance of the product is higher than that of the siloxane polymer in the range of 150,000 and 350,000. it is good.
  • Example 2 It can be seen from Example 2 and Example 14 that the dispersion of nano-zinc oxide is better.
  • Example 1 and Comparative Example 1 only 0.01 parts of nano-zinc oxide can be added to significantly improve the distribution of silver ions, color stability, and thermal stability.
  • Example 2 It can be seen from Example 2 and Comparative Example 2 that without addition of a siloxane-based polymer with a molecular weight of 200,000 to 300,000, all properties are poor.
  • Example 2 and Comparative Example 3 that the particle size of zinc oxide is larger than the nanometer level (200-800nm), there is no synergistic dispersion effect, and the performance of the PC itself is also reduced due to its weak alkalinity. All performance is poor.

Abstract

本发明公开了一种抗菌聚碳酸酯复合材料,按重量份计,包括以下组分:聚碳酸酯100份;纳米金属氧化物0.01-5份;含硅高分子聚合物0.01-5份;基于抗菌聚碳酸酯复合材料的总重量,银离子的含量为100-1200ppm。本发明通过纳米氧化物与含硅高分子聚合物协同起到的分散、迁移作用,使银离子在材料中从内往表面浓度梯度上升,并且随着材料表面的磨损材料内部的银离子会随着含硅聚合物以均匀的速率迁移到表面使材料保持良好的持续抗菌效果,可以减少银离子的加入量,并且其具有外观良好、颜色稳定性好、抗菌性能好等优点。

Description

一种抗菌聚碳酸酯复合材料及其制备方法 技术领域
本发明涉及高分子复合材料技术领域,特别是涉及一种抗菌聚碳酸酯复合材料及其制备方法。
背景技术
目前,聚碳酸酯(PC)被广泛用于生产各种工业、民用制件(如各种透明制件、灯罩、仪表盘等)。随着,生活水平的提高,人们对健康的关注度越来越高,为了避免塑料材质的制件繁殖细菌,提高产品的安全性,对塑料抑制细菌繁殖的要求日益严苛。
目前在改性塑料中使用较多的抗菌剂是金属离子类抗菌剂,这些金属离子由于其不稳定性,在加工过程中甚至在使用过程中很容易氧化,不仅丧失杀菌功能并且会使材料颜色变深。尤其在工程塑料,如聚碳酸酯树脂中的加工温度经常会高于300℃,因此如何使抗菌剂在较高加工工艺中的稳定和保持效果是具有较大的难度,现有技术可以通过增加色粉的用量进行外观修饰,但是增加色粉的用量会大幅度提高材料的成本并且会直接影响到聚碳酸酯材料的耐热性能。中国专利201610555237.5公开了一种耐黄纳米银抗菌聚碳酸酯材料,该专利使用金属离子钝化剂防止材料在加工过程中不会高温变黄,但是其没有考虑银离子在材料中的分散问题。
同时在加工过程中熔融的聚碳酸酯粘度高,且聚碳酸酯材料是温度敏感型材料而非剪切敏感性材料,因此填料类型的金属离子抗菌剂容易聚集,如何保证添加量少的情况下还能保证抗菌剂在基体中形成明显的梯度浓度差分散在整个材料的表面起到杀菌效果使一个亟待解决的技术问题。并且,现有技术只能做到将银离子抗菌剂富集在材料表面或者均匀分散在材料中,前者容易因材料表面的磨损和丧失抗菌性能,后者因为银离子抗菌剂均匀分布在材料中,分布在表面的银离子抗菌剂很少,因此抗菌效果不佳,解决方法一般是增加银离子抗菌剂的用量,增加成本。另一方面,材料表面的银离子抗菌剂被磨损后,存在于材料内部的银离子抗菌剂无法迁移到表面来,因此材料的耐用性差。
发明内容
本发明的目的在于提供一种抗菌聚碳酸酯复合材料,其具有外观好、颜色稳 定性好、抗菌性能好、银离子在材料中从内往外浓度递增、并且随着材料表面的磨损材料内部的银离子会慢慢迁出保持良好的持续抗菌效果等优点。
本发明的另一目的在于提供抗菌聚碳酸酯复合材料的制备方法。
本发明是通过以下技术方案实现的:
一种抗菌聚碳酸酯复合材料,按重量份计,包括以下组分:
聚碳酸酯              100份;
纳米金属氧化物        0.01-5份;
含硅高分子聚合物      0.01-5份;
基于抗菌聚碳酸酯复合材料的总重量,银离子的含量为100-1200ppm。
优选的,按重量份计,包括以下组分:
聚碳酸酯              100份;
纳米金属氧化物        0.05-2.5份;
含硅高分子聚合物      0.1-2.5份;
基于抗菌聚碳酸酯复合材料的总重量,银离子的含量为100-1200ppm。
聚碳酸酯树脂:本发明的聚碳酸酯树脂可为由二羟基化合物或其和少量的多羟基化合物与光气(phosgene)或碳酸二酯的反应获得的支化热塑性聚合物或共聚物。不特别限制聚碳酸酯树脂的生产方法,并且可使用由迄今为止已知的光气法(界面聚合法)或熔融法(酯交换法)生产的聚碳酸酯树脂。优选芳族二羟基化合物为原料二羟基化合物,且可示例为2,2-双(4-羟苯基)丙烷(=双酚A)、四甲基双酚A、双(4-羟苯基)-对-二异丙基苯、对苯二酚、间苯二酚、4,4-二羟基二苯等,其中优选双酚A。还可使用其中至少一个四烷基磺酸膦(tetraalkylphosphonium sulfonate)结合至前述芳族二羟基化合物的化合物。
前述中,聚碳酸酯树脂优选源于2,2-双(4-羟苯基)丙烷的芳族聚碳酸酯树脂,
或源于2,2-双(4-羟苯基)丙烷和其它芳族二羟基化合物的芳族聚碳酸酯共聚物。聚碳酸酯树脂还可为其中主要组成为芳族聚碳酸酯树脂的共聚物,例如,与含硅氧烷结构的聚合物或低聚物的共聚物。此外,可使用两种或更多种的上述聚碳酸酯树脂的混合物。一元芳族羟基化合物可用于调整聚碳酸酯树脂的分子量,例如,间甲基苯酚、对甲基苯酚、间丙基苯酚、对丙基苯酚、对叔丁基苯酚和对-(长链烷基)-取代酚。
本发明对聚碳酸酯树脂的生产方法没有特别限制,且可使用由光气法(界面聚合法)或熔融法(酯交换法)生产的聚碳酸酯树脂。聚碳酸酯树脂还通过由熔融法生产的聚碳酸酯树脂进行调节末端羟基的量的后处理来提供。
所述的银离子来源于银离子抗菌剂。
所述的纳米金属氧化物选自氧化锌、氧化镁、氧化钙、氧化铜、二氧化钛、二氧化硅、氧化铝、氧化锆、氧化铈、氧化铁中的至少一种,所述的纳米金属氧化物的粒径为D50=200nm-800nm;优选的,所述的纳米金属氧化物选自氧化锌、氧化镁、氧化钙、氧化铜中的至少一种,粒径为D50=200nm-800nm;更优选的,所述的纳米金属氧化物选自氧化锌,粒径为D50=200nm-800nm。
所述的含硅高分子聚合物选自硅氧烷类聚合物中的至少一种。
所述的硅氧烷类聚合物的分子量为15-35万;优选的,所述的硅氧烷类聚合物的分子量为20-30万。
按重量份计,还包括0-2份的色粉。
按重量份计,还包括0-5重量份的抗氧剂、润滑剂、耐候剂、脱模剂中的至少一种。抗氧剂的作用是使材料避免在挤出造粒时高温氧化。
常用的白色色粉包括氧化钛。
本发明对氧化钛的生产方法、结晶形态、平均粒径等没有特别限制。
上述抗菌聚碳酸酯复合材料的制备方法,包括以下步骤:按照配比将聚碳酸酯、纳米金属氧化物、含硅高分子聚合物、银离子抗菌剂在高混机中混合均匀,再加入到双螺杆挤出机中,在240℃-260℃的温度下进行熔融混合,然后造粒、冷却、干燥得到抗菌聚碳酸酯复合材料。
在一般的银离子抗菌聚碳酸酯中,常规的外添加阻燃剂会影响树脂基体的物理性能,还会对抗菌剂的活性造成负面影响。因为阻燃剂在高温和剪切的过程中会促使银离子失效,给组合物带来预计不到的效果。本发明的抗菌聚碳酸酯复合材料加入了含硅高分子聚合物,与聚碳酸酯基体树脂可以达到很好的相容性,同时因为聚二甲基硅氧烷的存在,硅类物质是阻燃体系中有效的成分,其表面能特性的缘故不仅能保证足够稳定的阻燃性,还能提高分散和表面性能。
本发明具有如下有益效果:
本发明提供了一种抗菌聚碳酸酯复合材料,通过添加银离子类抗菌剂和纳米 氧化物,再协同含硅聚合物的分散、迁移作用,使银离子的用量大幅降低,并且能够实现银离子类抗菌剂从材料内部往表面浓度梯度递增的分布,当材料表面的银离子类抗菌剂被磨损后,材料内部的银离子会随着含硅聚合物以均匀的速率迁移到表面,实现持久的抗菌效果,可以减少银离子的加入量。并且,含硅聚合物具有颜色遮蔽作用,即使银离子被还原成银单质后也不会显现出灰色,因此可以在少量白色色粉的情况下得到靓丽的白色。综上,本发明的抗菌聚碳酸酯复合材料具有抗菌效果好并且持久、外观好并且颜色稳定等优点。
具体实施方式
本发明通过以下实施例来进一步说明本发明,但是本发明不受以下实施例限制。
本发明所用原料来源如下,但是不受以下原料限制。
银离子来源:银离子类抗菌剂,IKM50G,日本洁而美;
氧化锌A:日本三菱,D50=400nm;
氧化锌B:D50=5微米;
氧化钙:德国默克,D50=400nm;
硅氧烷类聚合物A:分子量20万;
硅氧烷类聚合物B:分子量30万;
硅氧烷类聚合物C:分子量15万;
硅氧烷类聚合物D:分子量35万;
硅氧烷类聚合物E:分子量10万;
硅氧烷类聚合物F:分子量50万;
润滑剂:POLY TS 30A韩国太平洋化学;
抗氧剂:2112,艾迪科;
色粉:钛白粉2233,德国康诺思;
实施例和对比例的制备方法:按照配比将聚碳酸酯、纳米金属氧化物、含硅高分子聚合物、银离子抗菌剂、色粉、助剂在高混机中混合均匀,再加入到双螺杆挤出机中,在240℃-260℃的温度下进行熔融混合,然后造粒、冷却、干燥得到抗菌聚碳酸酯复合材料。
各性能测试方法:
(1)抗菌效果:GB 21551.2-2010(贴膜法),实验菌种为ATCC6538P和AS1.90。
(2)抗菌持久性:ICP表面Ag粒子含量测试。
(3)颜色稳定性:组合物在300-330℃的进行注塑2.0mm的标准色板,与不添加银离子抗菌剂的颜色标样进行色板的L值,a值和b值进行对比,观察色相;L表示黑白,也有说亮暗,+表示偏白,-表示偏暗,a表示红绿,+表示偏红,-表示偏绿,b表示黄蓝,+表示偏黄,-表示偏蓝,单纯的L、a、b是绝对值,用这三个数值可以在一个三维立体图中,精确的表示出一个颜色的点,用相对值就可以得出和基准点的差异来进行修正,总色差可以通过式子△E=[(△L) 2+(△a) 2+(△b) 2] 1/2来进行计算,ΔΕ越大表示颜色变化越大,颜色稳定性不好。
(4)银离子分布:制备2.0mm厚的板材,经过液氮淬断后,通过EDX测量横截面的银元素分布,其中,1级代表为明显的梯度分布,表示有优异的迁移性保证持续的抗菌能力,2级别代表有良好的梯度分布,此时梯度并不连续,表示有良好的迁移性,但可能迁移速度不能保证一致;3级代表具有一般的梯度分布,此时梯度出现断层,表示有一定的迁移性但会出现明显的不稳定,4级代表只有表面存在浓度,或者在断面中心存在浓度,不具备迁移性,抗菌效果不能持续;1+级表示比1级略好。
(5)热稳定性:在注塑温度设置为300℃的注塑机,按照内标规定的注塑压力和注塑温度下进行热滞留10分钟后,注塑成ISO标准的拉伸强度样条,测试后计算热滞留后的强度保持率,强度保持率越高热稳定性越好,强度保持率越低,热稳定性越差。
(6)银离子含量:ICP标准曲线外推法,将组合物中Ag含量的测定通过具有感应耦合等离子体(ICP-OES)的光学发射光谱进行,为了测定总的Ag含量,称量2g待测组合物,用5ml硝酸处理并搅拌试制溶解,并将该溶液补充至100ml,进行ICP标准曲线外推法计算出总Ag含量。
表1:实施例各组分配比(重量份)及各性能测试结果
Figure PCTCN2019114374-appb-000001
Figure PCTCN2019114374-appb-000002
续表1:
Figure PCTCN2019114374-appb-000003
Figure PCTCN2019114374-appb-000004
从实施例1-4可以看出,纳米氧化锌的用量在0.05-2.5份的区间内,各性能都较好。
从实施例2/5-8可以看出,当分子量为20-30万的硅氧烷类聚合物的用量在 0.1-2.5份的区间内,各性能都较好。
从实施例2、11-13可以看出,硅氧烷类聚合物的分子量在20-30万的范围内,产品的各项性能比硅氧烷类聚合物的分子量在15万、35万的好。
从实施例2和实施例14可以看出,纳米氧化锌的分散作用较好。
表2:对比例各组分配比(重量份)及各性能测试结果
Figure PCTCN2019114374-appb-000005
Figure PCTCN2019114374-appb-000006
从实施例1和对比例1可以看出,只需要加入0.01份的纳米氧化锌就可以明显改善银离子的分布、颜色稳定性、热稳定性。
从实施例2和对比例2可看出,不加入分子量为20-30万的硅氧烷类聚合物,各项性能都较差。
从实施例2和对比例3可以看出,氧化锌的粒径大于纳米级别(200-800nm),是没有协同分散作用的,而且还会因为其的弱碱性降低PC本身的性能导致产品的各项性能都差。
从对比例4/5可以看出,当硅氧烷类聚合物的分子量为10万时,各项性能较差,当硅氧烷类聚合物的分子量为50万时,虽然颜色稳定性良好,产品也较白,但是其热稳定性差,特别是银离子分布差,不能满足本发明的长期持续抗菌效果的要求。

Claims (9)

  1. 一种抗菌聚碳酸酯复合材料,其特征在于,按重量份计,包括以下组分:
    聚碳酸酯              100份;
    纳米金属氧化物        0.01-5份;
    含硅高分子聚合物      0.01-5份;
    基于抗菌聚碳酸酯复合材料的总重量,银离子的含量为100-1200ppm。
  2. 根据权利要求1所述的抗菌聚碳酸酯复合材料,其特征在于,按重量份计,包括以下组分:
    聚碳酸酯              100份;
    纳米金属氧化物        0.05-2.5份;
    含硅高分子聚合物      0.1-2.5份;
    基于抗菌聚碳酸酯复合材料的总重量,银离子的含量为100-1200ppm。
  3. 根据权利要求1或2所述的抗菌聚碳酸酯复合材料,其特征在于,所述的银离子来源于银离子抗菌剂。
  4. 根据权利要求1或2所述的抗菌聚碳酸酯复合材料,其特征在于,所述的纳米金属氧化物选自氧化锌、氧化镁、氧化钙、氧化铜、二氧化钛、二氧化硅、氧化铝、氧化锆、氧化铈、氧化铁中的至少一种,所述的纳米金属氧化物的粒径为D50=200nm-800nm;优选的,所述的纳米金属氧化物选自氧化锌、氧化镁、氧化钙、氧化铜中的至少一种,粒径为D50=200nm-800nm;更优选的,所述的纳米金属氧化物选自氧化锌,粒径为D50=200nm-800nm。
  5. 根据权利要求1或2所述的抗菌聚碳酸酯复合材料,其特征在于,所述的含硅高分子聚合物选自硅氧烷类聚合物中的至少一种。
  6. 根据权利要求5所述的抗菌聚碳酸酯复合材料,其特征在于,所述的硅氧烷类聚合物的分子量为15-35万;优选的,所述的硅氧烷类聚合物的分子量为20-30万。
  7. 根据权利要求1或2所述的抗菌聚碳酸酯复合材料,其特征在于,按重量份计,还包括0-2份的色粉。
  8. 根据权利要求1或2所述的抗菌聚碳酸酯复合材料,其特征在于,按重量份计,还包括0-5重量份的抗氧剂、润滑剂、耐候剂、脱模剂中的至少一种。
  9. 权利要求3所述的抗菌聚碳酸酯复合材料的制备方法,其特征在于,包括以 下步骤:
    按照配比将聚碳酸酯、纳米金属氧化物、含硅高分子聚合物、银离子抗菌剂在高混机中混合均匀,再加入到双螺杆挤出机中,在240℃-260℃的温度下进行熔融混合,然后造粒、冷却、干燥得到抗菌聚碳酸酯复合材料。
PCT/CN2019/114374 2018-11-21 2019-10-30 一种抗菌聚碳酸酯复合材料及其制备方法 WO2020103658A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207035354A KR102443879B1 (ko) 2018-11-21 2019-10-30 항균 폴리카보네이트 복합 소재 및 그 제조 방법
US17/050,833 US20210054194A1 (en) 2018-11-21 2019-10-30 Antibacterial polycarbonate composite and preparation method thereof
JP2020568791A JP7057450B2 (ja) 2018-11-21 2019-10-30 抗菌性ポリカーボネート複合材料、及びその調製方法
EP19887200.4A EP3770218A4 (en) 2018-11-21 2019-10-30 POLYCARBONATE ANTIBACTERIAL COMPOSITE MATERIAL AND ITS PREPARATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811393226.7A CN109553949B (zh) 2018-11-21 2018-11-21 一种抗菌聚碳酸酯复合材料及其制备方法
CN201811393226.7 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020103658A1 true WO2020103658A1 (zh) 2020-05-28

Family

ID=65866987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114374 WO2020103658A1 (zh) 2018-11-21 2019-10-30 一种抗菌聚碳酸酯复合材料及其制备方法

Country Status (6)

Country Link
US (1) US20210054194A1 (zh)
EP (1) EP3770218A4 (zh)
JP (1) JP7057450B2 (zh)
KR (1) KR102443879B1 (zh)
CN (1) CN109553949B (zh)
WO (1) WO2020103658A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553949B (zh) * 2018-11-21 2021-03-02 金发科技股份有限公司 一种抗菌聚碳酸酯复合材料及其制备方法
CN110051837B (zh) * 2019-04-08 2021-05-11 南京师范大学 一种CuO/ZnO/Au纳米粒子及其制备方法和应用
US11565615B2 (en) * 2020-04-28 2023-01-31 Global Ip Holdings, Llc Anti-microbial, partition divider assembly for a cart such as a golf cart
CN111961325A (zh) * 2020-08-27 2020-11-20 广州市文逸通讯设备有限公司 抗菌复合材料及其制备方法与应用
CN112706492A (zh) * 2020-12-24 2021-04-27 嘉兴领科材料技术有限公司 一种耐化性优良的抗菌板材及其制备方法
CN113817305A (zh) * 2021-10-21 2021-12-21 福建华塑新材料有限公司 一种耐低温抗冲击pc复合材料制备方法
CN114015237B (zh) * 2021-10-29 2022-12-16 厦门赋源高科技有限公司 一种抗菌复合材料及其制备方法
CN114213713B (zh) * 2021-11-12 2023-10-31 金发科技股份有限公司 硅烷偶联剂改性的埃洛石纳米管负载抗菌剂复合物、聚碳酸酯组合物及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007908A1 (en) * 2006-07-14 2008-01-17 Daegu Gyeongbuk Institute Of Science And Technology Functional polymer materials and method of manufacturing the same
CN101405132A (zh) * 2005-08-19 2009-04-08 杂混复合塑料公司 掺混入聚合物中的金属化纳米结构化合物
CN105524444A (zh) * 2014-09-28 2016-04-27 广州大正新材料科技有限公司 一种高硬度聚碳酸酯抗菌复合材料
WO2017109114A1 (en) * 2015-12-23 2017-06-29 Diania Technologies Limited Thermoformed polymeric articles containing an additive
CN106987082A (zh) * 2017-03-28 2017-07-28 广西睿桂涵农业有限公司 一种适用于键盘的抗菌塑料
CN107353615A (zh) * 2017-06-21 2017-11-17 芜湖蓝天工程塑胶有限公司 纳米银抗菌聚碳酸酯保鲜盒及其制备方法
CN109486153A (zh) * 2018-11-21 2019-03-19 金发科技股份有限公司 一种抗菌阻燃聚碳酸酯复合材料及其制备方法
CN109553949A (zh) * 2018-11-21 2019-04-02 金发科技股份有限公司 一种抗菌聚碳酸酯复合材料及其制备方法
CN109749391A (zh) * 2018-12-27 2019-05-14 金发科技股份有限公司 一种抗菌聚碳酸酯复合材料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274017A (en) * 1989-11-24 1993-12-28 General Electric Company Flame retardant carbonate polymer containing selected metal oxides
JPH10231429A (ja) * 1997-02-20 1998-09-02 Asahi Chem Ind Co Ltd 抗菌性に優れた樹脂組成物
KR100599532B1 (ko) * 2004-10-15 2006-07-13 나노폴리(주) 항균, 살균 및 냄새제거 기능을 갖는 금속의 나노입자를 이용한 고농도 플라스틱 마스터뱃치 칩의 제조 및 그 성형품 제조방법
KR100704316B1 (ko) * 2006-05-29 2007-04-09 주식회사 동부한농 은나노 항균 수지 및 그 제조 방법
KR101170533B1 (ko) * 2009-12-17 2012-08-01 제일모직주식회사 폴리카보네이트 난연 필름용 수지 조성물, 이를 이용한 폴리카보네이트 난연 필름 제조 방법 및 그 방법에 의해 제조된 폴리카보네이트 난연 필름
EP2578636B2 (en) * 2010-05-27 2022-06-22 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded polycarbonate resin
CN102336957A (zh) * 2010-07-29 2012-02-01 上海亿金纳米科技有限公司 一种用于制造抗菌纤维和塑料的功能切片的制备方法
US9363993B2 (en) * 2011-02-15 2016-06-14 Toyo Seikan Group Holdings, Ltd. Antibacterial resin composition
CN103554881A (zh) * 2013-10-26 2014-02-05 安徽省富光实业股份有限公司 一种水杯壳体用抗菌聚碳酸酯材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405132A (zh) * 2005-08-19 2009-04-08 杂混复合塑料公司 掺混入聚合物中的金属化纳米结构化合物
WO2008007908A1 (en) * 2006-07-14 2008-01-17 Daegu Gyeongbuk Institute Of Science And Technology Functional polymer materials and method of manufacturing the same
CN105524444A (zh) * 2014-09-28 2016-04-27 广州大正新材料科技有限公司 一种高硬度聚碳酸酯抗菌复合材料
WO2017109114A1 (en) * 2015-12-23 2017-06-29 Diania Technologies Limited Thermoformed polymeric articles containing an additive
CN106987082A (zh) * 2017-03-28 2017-07-28 广西睿桂涵农业有限公司 一种适用于键盘的抗菌塑料
CN107353615A (zh) * 2017-06-21 2017-11-17 芜湖蓝天工程塑胶有限公司 纳米银抗菌聚碳酸酯保鲜盒及其制备方法
CN109486153A (zh) * 2018-11-21 2019-03-19 金发科技股份有限公司 一种抗菌阻燃聚碳酸酯复合材料及其制备方法
CN109553949A (zh) * 2018-11-21 2019-04-02 金发科技股份有限公司 一种抗菌聚碳酸酯复合材料及其制备方法
CN109749391A (zh) * 2018-12-27 2019-05-14 金发科技股份有限公司 一种抗菌聚碳酸酯复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770218A4

Also Published As

Publication number Publication date
JP7057450B2 (ja) 2022-04-19
EP3770218A1 (en) 2021-01-27
CN109553949A (zh) 2019-04-02
JP2021526182A (ja) 2021-09-30
US20210054194A1 (en) 2021-02-25
KR102443879B1 (ko) 2022-09-15
EP3770218A4 (en) 2021-06-02
CN109553949B (zh) 2021-03-02
KR20210008402A (ko) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020103658A1 (zh) 一种抗菌聚碳酸酯复合材料及其制备方法
CN109749391B (zh) 一种抗菌聚碳酸酯复合材料及其制备方法和应用
CN107383823B (zh) 聚碳酸酯树脂组合物及光学用成形品
WO2020151553A1 (zh) 一种聚碳酸酯合金及其制备方法
CN109486153B (zh) 一种抗菌阻燃聚碳酸酯复合材料及其制备方法
CA2721374A1 (en) Optical polymeric composition and method of making same
CN112778741B (zh) 一种阻燃聚碳酸酯组合物及其制备方法
CN109082093B (zh) 耐磨透明阻燃聚碳酸酯材料及其制备方法
CN116096818A (zh) 耐水解聚碳酸酯组合物
CN113527858A (zh) 高强高韧抗菌防霉阻燃pc/abs合金材料及其制备方法
CN108164962A (zh) 一种高反射,高阻燃,高韧性聚碳酸酯材料及其制备方法
WO2021248834A1 (zh) 聚碳酸酯组合物及其制备方法
US4772655A (en) Pigmented, flame resistant polycarbonate compositions
KR101450677B1 (ko) 중화제를 포함하는 첨가제 조성물
CN112812550A (zh) 高光泽度玻璃纤维增强聚酰胺复合材料及其制备方法
EP3502182B1 (de) Stabilisierte, gefüllte polycarbonat-zusammensetzungen
CN109721998A (zh) 一种透红外的高刚性聚碳酸酯组合物及其制备方法
EP0088947B1 (en) Polycarbonate-calcite compositions and their use to prepare films
JP5170762B2 (ja) 抗菌性熱可塑性樹脂組成物からなる把手部品
CN112322018B (zh) 一种透明防雾pc树脂及其制备方法
JP2003041109A (ja) ポリカーボネート樹脂組成物
JP2010052221A (ja) 抗菌性ポリカーボネート樹脂組成物からなる筆記具用軸筒
WO2022243221A1 (de) Reduzierung des gehalts spezieller salze von sulfonsäure-, sulfonamiden- oder sulfonimidderivaten im abwasser
CA1315035C (en) Pigmented, flame resistant polycarbonate compositions
WO2022112406A1 (de) Polycarbonat-zusammensetzungen enthaltend titandioxid und eine titandioxid-beschichtung umfassende glas-plättchen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019887200

Country of ref document: EP

Effective date: 20201019

ENP Entry into the national phase

Ref document number: 20207035354

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020568791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE