WO2020103594A1 - 一种像素单元、传感器以及传感阵列 - Google Patents

一种像素单元、传感器以及传感阵列

Info

Publication number
WO2020103594A1
WO2020103594A1 PCT/CN2019/110215 CN2019110215W WO2020103594A1 WO 2020103594 A1 WO2020103594 A1 WO 2020103594A1 CN 2019110215 W CN2019110215 W CN 2019110215W WO 2020103594 A1 WO2020103594 A1 WO 2020103594A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel unit
potential adjustment
potential
charge collection
sub
Prior art date
Application number
PCT/CN2019/110215
Other languages
English (en)
French (fr)
Inventor
雷述宇
Original Assignee
宁波飞芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波飞芯电子科技有限公司 filed Critical 宁波飞芯电子科技有限公司
Priority to US17/295,964 priority Critical patent/US20220005852A1/en
Publication of WO2020103594A1 publication Critical patent/WO2020103594A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the embodiments of the present application relate to the technical field of microelectronics. More specifically, the embodiments of the present application relate to a pixel unit, a sensor, and a sensing array.
  • CMOS complementary metal oxide semiconductor
  • CMOS sensors include CMOS sensors based on photodiode structures.
  • the CMOS sensor In the long-distance and high-precision ranging scene, due to the fast propagation speed of light, in order to ensure that the CMOS sensor can receive the reflected radiation in time, it will require the CMOS sensor to have a higher response speed and accuracy, such as the response of the CMOS sensor The time is tens of nanoseconds.
  • the charge transfer mainly depends on the diffusion movement, the transfer speed is slow, and the transfer efficiency is low, which may cause image smearing.
  • the charge transport channel may also have problems such as potential barriers and potential wells, which may also cause image smearing.
  • the charge transfer efficiency will directly affect the response speed and measurement accuracy of the photoelectric sensor.
  • a non-uniform doping method is usually used to generate a modulated electric field to accelerate the lateral transfer of charge, but the non-uniform doping process is complicated and the production control of the photodiode structure The process is difficult.
  • the embodiments of the present application desire to provide a pixel unit, a sensor, and a sensing array.
  • a pixel unit including: a charge collection region configured to receive radiation to generate photo-generated charges; a floating diffusion node configured to store and output the generated by the charge collection region Photogenerated charge; the transfer gate, connected between the charge collection area and the floating diffusion node, is configured to transfer the photogenerated charge from the charge collection area to the floating diffusion node; the potential adjustment area, which is located outside the charge collection area, is configured to direct the photogenerated charge toward The side of the charge collection region connected to the transfer gate is concentrated.
  • the potential adjustment region is composed of a polycrystalline resistor, and the shape of the polycrystalline resistor is a strip or a block.
  • the potential adjustment area is composed of a plurality of bulk polycrystalline resistors
  • the plurality of bulk polycrystalline resistors are connected by a metal conductor, or there is no connection between the plurality of bulk polycrystalline resistors Thing.
  • the power supply is connected to the potential adjustment area;
  • the potential adjustment area includes at least two sub-adjustment areas, wherein a connection of at least two sub-adjustment areas is grounded.
  • at least two sub-adjusting areas are arranged symmetrically.
  • the potential adjustment region is composed of a plurality of bulk polycrystalline resistors and metal conductors
  • the number of power sources is one, and the power sources are respectively connected to the ends of at least two sub-regulation regions close to the transmission gate.
  • the potential adjustment region is composed of a plurality of bulk polycrystalline resistors, and there is no connection between the plurality of bulk polycrystalline resistors, the number of power supplies is a plurality, and the plurality of bulk The power supply voltages connected to different bulk polycrystalline resistors in the crystal resistors are different, and the power supply voltage connected to the bulk polycrystalline resistors closer to the transmission gate is greater.
  • the potential adjustment area is composed of a strip-shaped polycrystalline resistor, and the number of power supplies connected to the potential adjustment area is one, the potential adjustment area includes at least two sub-adjustment areas, and the power supply is at least two One end of the sub-adjustment area close to the transmission gate is connected; and the connection of at least two sub-adjustment areas is grounded.
  • at least two sub-adjusting areas are arranged symmetrically.
  • the area of the potential adjustment region and the transmission gate that are closer to each other has a lower potential.
  • a sensor including one or more pixel units according to any one of the first aspect.
  • a sensor array including a plurality of sensors, and the plurality of sensors may be the same as a plurality of pixel units as in any one of the second aspect.
  • the technical solution provided by the present application forms a modulated electric field by a potential adjustment area provided outside the charge collection area, so that photo-generated charges are directionally transferred under the influence of the modulated electric field, improving transfer speed and transfer efficiency, avoiding image smearing, and improving the photoelectric sensor Response speed and measurement accuracy.
  • FIG. 1A schematically shows a schematic structural diagram of an equivalent circuit of a pixel unit according to an embodiment of the present application
  • FIG. 1B schematically shows a schematic diagram of a potential change trend in a charge collection area according to an embodiment of the present application
  • FIG. 2A schematically shows a schematic structural diagram of an equivalent circuit of another pixel unit according to an embodiment of the present application
  • FIG. 2B schematically shows a schematic diagram of another potential change trend in the charge collection area according to the embodiment of the present application
  • FIG. 3A schematically shows a schematic structural diagram of an equivalent circuit of still another pixel unit according to an embodiment of the present application
  • FIG. 3B schematically illustrates another potential change trend in the charge collection area according to an embodiment of the present application
  • FIG. 4 schematically shows a schematic structural diagram of a sensor according to an embodiment of the present application
  • FIG. 5 schematically shows a schematic structural diagram of a sensor array according to an embodiment of the present application.
  • the charge transfer mainly relies on diffusion movement, the transfer speed is slower, and the transfer efficiency is lower, which can cause image smearing, which in turn affects the response speed of the photoelectric sensor and measurement accuracy.
  • a non-uniform doping method is usually used to generate a modulated electric field to accelerate the lateral transfer of charge, but the non-uniform doping process is complicated and the production control of the photodiode structure is complicated. The process is difficult.
  • the pixel unit includes: a charge collection area configured to receive radiation to generate photogenerated charges; a floating diffusion node configured to store and output the photogenerated charge generated by the charge collection area; a transfer gate connected to the charge collection area and the floating diffusion node In between, it is configured to transfer the photogenerated charge from the charge collection area to the floating diffusion node; the potential adjustment area is provided at the periphery of the charge collection area and is configured to concentrate the photogenerated charge toward the side of the charge collection area connected to the transfer gate.
  • a modulated electric field is formed by a potential adjustment area provided outside the charge collection area, so that photo-generated charges are directionally transferred under the influence of the modulated electric field, improving transfer speed and transfer efficiency, avoiding image smearing, and improving the response speed and measurement of the photoelectric sensor Precision.
  • the technical solution provided by the embodiments of the present application is applicable to a charge transfer scenario in any device, or a charge collection scenario in any device.
  • the technical solutions provided in the embodiments of the present application can be applied to a photo-generated charge transfer scenario in a distance measuring device, a photo-generated charge transfer scenario in a structured light device, and a charge transfer scenario in other devices.
  • the embodiments of the present application are not limited.
  • the photodiode structure in the pixel unit involved in the embodiment of the present application may be a front-illuminated type, a back-illuminated type, or a stack type or other forms.
  • the embodiment of the present application is not limited.
  • a pixel unit provided by an embodiment of the present application includes at least a charge collection region, a transfer gate, a floating diffusion node, and a potential adjustment region.
  • the charge collection region is configured to receive radiation to generate photogenerated charges
  • the suspension diffusion node is configured to store and output the photogenerated charges generated by the charge collection region
  • the transfer gate is connected between the charge collection region and the suspension diffusion node, and the transfer gate configuration
  • the photo-generated charge is transferred from the charge collection region to the floating diffusion node
  • the potential adjustment region is provided at the periphery of the charge collection region, and the potential adjustment region is configured to concentrate the photo-generated charge toward the side of the charge collection region connected to the transfer gate.
  • 1A forms a modulated electric field through a potential adjustment area provided outside the charge collection area, so that photo-generated charges are directionally transferred under the influence of the modulated electric field, improving transfer speed and transfer efficiency, avoiding image smearing, and improving the photoelectric sensor Response speed and measurement accuracy.
  • the distance between the sub-region with the lowest potential and the transmission gate is the shortest.
  • the potential of the sub-region in the potential adjustment region that is closer to the transmission gate is lower. In this way, the photo-generated charge can be concentrated to the sub-region with the lowest potential, and then the sub-region with the lowest potential is transferred to the transfer gate, thereby transferring speed and transferring efficiency.
  • the potential adjustment area further includes a ground point.
  • the arrangement of a plurality of sub-regions with different potentials in a direction close to the transfer gate may be implemented as the sub-regions with different potentials are arranged in a direction from the ground point to the transfer gate.
  • the pixel unit further includes a power supply, and the power supply is connected to the potential adjustment area.
  • the power supply and the potential adjustment area are connected by wires, or the power supply, the transmission gate and the potential adjustment area are connected by wires. If there is only one power supply, the power supply is connected to one or more sub-regions in the potential adjustment area. If there are multiple power supplies and the sub-regions in the potential adjustment area are divided into multiple groups, the voltages of the power supplies connected to different groups of sub-areas in the potential adjustment area are different. If there are multiple power supplies, and the sub-regions in the potential adjustment area are divided into multiple groups, the voltages of the power supplies connected to the same group of sub-areas in the potential adjustment area are the same. Preferably, the sub-regions of the same group are symmetrically arranged at the periphery of the charge collection region.
  • the power supply is connected to the electric potential adjustment area, and the electric potential adjustment area includes at least two sub-adjustment areas, wherein the connection of at least two sub-adjustment areas is grounded.
  • the embodiment of the present application does not limit that at least two sub-adjusting regions of the potential adjusting region are arranged symmetrically or asymmetrically.
  • the potential adjustment region is composed of a polycrystalline resistor, and the shape of the polycrystalline resistor includes a strip shape or a block shape.
  • Polycrystalline resistance that is, polysilicon resistance
  • the shape of the polycrystalline resistor includes a strip shape or a block shape.
  • Polycrystalline resistance is a resistance formed by the poly layer of the gate of the MOS tube, so it can also be called a poly resistance; alternatively, a small dose of impurities can be implanted by ion implantation to achieve polycrystalline resistance A thin film (mask) to achieve polycrystalline resistance. Due to the simple process of the potential adjustment region formed by the polycrystalline resistor, this implementation method can effectively improve the complicated process process caused by the non-uniform doping method in the prior art and the difficulty in the control process of the production of the photodiode structure.
  • the potential adjustment area is composed of resistors other than the polycrystalline resistor, or the potential adjustment area is composed of the potential adjustment area as other elements than the resistance.
  • the potential adjustment area is formed by a strip-shaped polycrystalline resistor. Specifically, if the potential adjustment area is composed of a strip-shaped polycrystalline resistor, and the number of power supplies connected to the potential adjustment area is one, then the potential adjustment area includes at least two sub-adjustment areas, and the power supplies are respectively One end of the at least two sub-adjustment regions close to the transmission gate is connected. Furthermore, the connection of the at least two sub-adjustment regions is grounded.
  • the embodiment of the present application does not limit that at least two sub-adjusting regions of the potential adjusting region are arranged symmetrically or asymmetrically. Since the resistance value of the strip-shaped polycrystalline resistor changes linearly, the potential in the charge collection region surrounded by the strip-shaped polycrystalline resistor in this implementation manner decreases linearly in the direction of charge transfer.
  • FIG. 1A shows a schematic structural diagram of an equivalent circuit of a pixel unit according to an embodiment of the present application.
  • the pixel unit shown in FIG. 1A includes a charge collection region 101, a transfer gate 102, a floating diffusion node 103, a potential adjustment region 2, a power supply V DD, and a ground point.
  • the potential adjustment area 2 is a polycrystalline resistance; the potential adjustment area 2 is divided into two sub-areas, the two sub-adjustment areas in the potential adjustment area 2 are symmetrically arranged from the ground point to the connection point with the transmission gate 102; the pixel The power supply V DD in the unit is respectively connected to one end of the two sub-adjustment areas in the potential adjustment area 2.
  • the potential change in the charge transfer region 101 in the charge collection region 101 shown in FIG. 1A shows a linear downward trend, as shown in FIG. 1B.
  • Implementation method 2 The potential adjustment area is formed by a block polycrystalline resistor.
  • the main implementation of the potential adjustment area formed by the bulk polycrystalline resistor is divided into the following two types:
  • the potential adjustment region is composed of a plurality of bulk polycrystalline resistors
  • the plurality of bulk polycrystalline resistors are connected by a metal conductor.
  • the metal conductor is connected between adjacent sub-regions in the potential adjustment region.
  • the potential adjustment area is composed of a plurality of bulk polycrystalline resistors and metal conductors
  • the number of the power supply is one, and the power supplies are respectively connected to ends of at least two sub-adjustment areas close to the transmission gate .
  • the resistance value of the metal conductor is small, resulting in a smoother change in the potential of the charge collection region between the metal conductors, which slows down the trend of the potential change in the charge collection region, making the charge collection region The change of electric potential showed a gradual downward trend.
  • the metal conductor can be used to adjust the potential change between adjacent sub-regions in the potential adjustment region, and to control the transfer of photogenerated charges.
  • FIG. 2A shows a schematic structural diagram of an equivalent circuit of another pixel unit according to an embodiment of the present application.
  • the pixel unit shown in FIG. 2A includes a charge collection region 101, a transfer gate 102, a floating diffusion node 103, a potential adjustment region, a metal conductor 5, a power supply V DD, and a ground point.
  • the potential adjustment area is a polycrystalline resistance; the potential adjustment area is divided into 6 sub-regions 4, the adjacent sub-regions 4 in the 6 sub-regions 4 are connected by a metal conductor 5, and the 6 sub-regions 4 are divided into two groups of symmetrical rows It is distributed on both sides of the potential adjustment region; the power supply V DD is connected to the ends of the two sub-regions 4 closest to the transmission gate 102 among the six sub-regions 4.
  • the potential change in the charge transfer area 101 in the charge collection region 101 shown in FIG. 2A shows a stepwise downward trend, as shown in FIG. 2B. It should be understood that, relative to the resistance value of the polycrystalline resistor, the resistance value of the metal conductor 5 is small, resulting in a smoother change in the potential of the charge collection region 101 between the metal conductors 5 and slowing down the potential in the charge collection region 101 The change trend makes the change of the electric potential in the charge collection region 101 show a stepwise downward trend.
  • Second implementation manner If the potential adjustment area is composed of a plurality of bulk polycrystalline resistors, no connection is provided between the plurality of bulk polycrystalline resistors. Further, if the potential adjustment area is composed of a plurality of bulk polycrystalline resistors, and there is no connection between the plurality of bulk polycrystalline resistors, the number of power supplies is multiple, and among the plurality of bulk polycrystalline resistors, different bulk The power supply voltages connected to the polycrystalline resistors are different, and the power supply voltage connected to the bulk polycrystalline resistors closer to the transmission gate is larger.
  • the electric potential in the charge collection region between the polycrystalline resistors shows a downward trend, but the electric potential in the charge collection region not between the polycrystalline resistors does not change; meanwhile, Affected by different power supply voltages, the electric potential in the charge collection area between different polycrystalline resistors is different, so that the electric potential change in the charge collection area also shows a stepwise downward trend.
  • FIG. 3A shows a schematic structural diagram of an equivalent circuit of still another pixel unit according to an embodiment of the present application.
  • the pixel unit shown in FIG. 3A includes a charge collection region 101, a transfer gate 102, a floating diffusion node 103, a potential adjustment region, a power supply V DD , a power supply V DD1 and a power supply V DD2 .
  • the potential adjustment area is a polycrystalline resistor; the potential adjustment is divided into 6 sub-regions 4, which are independent of each other, and these sub-regions 4 are divided into three groups symmetrically arranged on both sides of the potential adjustment region; these three groups of sub-regions Area 4 is connected to power supply V DD , power supply V DD1 and power supply V DD2 respectively; the voltage value of the power supply connected to different groups of sub-areas 4 in the charge collection area 101 along the charge transfer direction gradually increases, that is, V DD > V DD1 > V DD2 .
  • the potential change in the charge transfer region 101 in the charge collection region 101 shown in FIG. 3A shows a stepwise downward trend, as shown in FIG. 3B. It should be understood that the potentials between the sub-regions 4 in different groups are different, so that the potential change in the charge transfer area 101 in the direction of charge transfer shows a stepwise downward trend.
  • the pixel unit provided by the present application forms a modulated electric field through a potential adjustment area provided outside the charge collection area, so that photo-generated charges are directionally transferred under the influence of the modulated electric field, improving transfer speed and transfer efficiency, avoiding image smearing, and improving the photoelectric sensor ’s Response speed and measurement accuracy.
  • the present application also provides an exemplary implementation of a sensor including a plurality of pixel units shown in FIG. 1A, or the sensor includes a plurality of pixel units shown in FIG. 2A, or the sensor includes a plurality of The pixel unit shown in FIG. 3A.
  • the present application also provides an exemplary implementation of a sensor array including a plurality of sensors shown in FIG. 4, or the sensor array includes a plurality of pixel units shown in FIG. 1A, or The sensor array includes a plurality of pixel units shown in FIG. 2A, or the sensor array includes a plurality of pixel units shown in FIG. 3A.
  • the sensing array may be an array of M rows and N columns, where M and N are both positive integers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一种像素单元、传感器以及传感阵列。该像素单元包括:电荷收集区(101),配置成接收辐射生成光生电荷;传输栅(102),连接于电荷收集区(101)与悬浮扩散节点(103)之间,配置成将光生电荷从电荷收集区(101)转移至悬浮扩散节点(103);电势调整区(2),设置于电荷收集区(101)外围,配置成将光生电荷向电荷收集区(101)中与传输栅(102)连接的一侧集中。

Description

一种像素单元、传感器以及传感阵列
相关申请的交叉引用
本申请要求于2018年11月22日提交中国专利局的申请号为CN201811399529.X、名称为“一种像素单元、传感器以及传感阵列”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施方式涉及微电子技术领域,更具体地,本申请的实施方式涉及一种像素单元、传感器以及传感阵列。
背景技术
本部分旨在为权利要求书中陈述的本申请的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
目前,互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器因其成本低并且较适于批量生产而备受关注。例如常见的CMOS传感器有基于光电二极管结构的CMOS传感器等。在远距离和高精度的测距场景中,由于光的传播速度很快,为了保证CMOS传感器能够及时接收反射辐射,就会要求CMOS传感器拥有较高的响应速度和精度,例如要求CMOS传感器的响应时间为几十纳秒。
而传统的光电二极管结构中由于光电二极管内部电势平坦,电荷转移主要依靠扩散运动,转移速度较慢,转移效率较低,从而会导致图像拖尾。传统的光电二极管结构中电荷传输沟道还可能会存在势垒和势阱等问题,同样也会导致图像拖尾。对于传统的光电二极管结构,电荷转移效率会直接影响光电传感器的响应速度和测量精度。
为了解决传统的光电二极管结构存在的问题,现有技术中通常会采用非均匀掺杂的方式产生调制电场来加速电荷的横向转移,但非均匀掺杂的工艺过程复杂,光电二极管结构生产的控制过程难度大。
发明内容
由于现有技术中采用非均匀掺杂的方式产生调制电场来加速电荷的横向转移,但非均匀掺杂的工艺过程复杂,光电二极管结构生产的控制过程难度大,因此亟待设计一种技术方案以解决上述技术问题。在本上下文中,本申请的实施方式期望提供一种像素单元、传感器以及传感阵列。
在本申请实施方式的第一方面中,提供了一种像素单元,包括:电荷收集区,配置成接收辐射生成光生电荷;悬浮扩散节点,配置成存储并输出所述电荷收集区生成的所述光生电荷;传输栅,连接于电荷收集区与悬浮扩散节点之间,配置成将光生电荷从电荷收集 区转移至悬浮扩散节点;电势调整区,设置于电荷收集区外围,配置成将光生电荷向电荷收集区中与传输栅连接的一侧集中。
在本申请的一个实施例中,电势调整区由多晶电阻构成,多晶电阻的形状为条状或块状。
在本申请的一个实施例中,若电势调整区由多个块状多晶电阻构成,则多个块状多晶电阻之间通过金属导体连接,或者多个块状多晶电阻之间无连接物。
在本申请的一个实施例中,电源与电势调整区相连;电势调整区包括至少两个子调整区,其中,至少两个子调整区的连接处接地。可选地,至少两个子调整区呈对称排布。
在本申请的一个实施例中,若电势调整区由多个块状多晶电阻与金属导体构成,则电源的数量为一个,电源分别与至少两个子调整区中靠近传输栅的一端相连。
在本申请的一个实施例中,若电势调整区由多个块状多晶电阻构成,并且多个块状多晶电阻之间无连接物,则电源的数量为多个,多个块状多晶电阻中不同块状多晶电阻所连接的电源电压不同,且距离传输栅越近的块状多晶电阻所连接的电源电压越大。
在本申请的一个实施例中,若电势调整区由条状多晶电阻构成,并且与电势调整区相连的电源的数量为一个,则电势调整区包括至少两个子调整区,电源分别与至少两个子调整区中靠近传输栅的一端相连;且至少两个子调整区的连接处接地。可选地,至少两个子调整区呈对称排布。
在本申请的一个实施例中,电势调整区与传输栅距离越近的区域的电势越低。
在本申请实施方式的第二方面中,提供了一种传感器,该传感器包括一个或多个第一方面中任一项的像素单元。
在本申请实施方式的第三方面中,提供了一种传感阵列,该传感阵列包括多个传感器,这多个传感器可以与多个如第二方面中任一项的像素单元相同。
本申请提供的技术方案,通过设置于电荷收集区外围的电势调整区形成调制电场,从而使光生电荷在调制电场的影响下定向转移,提高转移速度和转移效率,避免图像拖尾,提升光电传感器的响应速度和测量精度。
附图说明
通过参考附图阅读下文的详细描述,本申请示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本申请的若干实施方式,其中:
图1A示意性地示出了根据本申请实施例涉及的一种像素单元的等效电路的结构示意图;
图1B示意性地示出了根据本申请实施例涉及的一种电荷收集区内的电势变化趋势的 示意图;
图2A示意性地示出了根据本申请实施例涉及的另一种像素单元的等效电路的结构示意图;
图2B示意性地示出了根据本申请实施例涉及的另一种电荷收集区内的电势变化趋势的示意图;
图3A示意性地示出了根据本申请实施例涉及的又一种像素单元的等效电路的结构示意图;
图3B示意性地示出了根据本申请实施例涉及的又一种电荷收集区内的电势变化趋势的示意图;
图4示意性地示出了根据本申请实施例涉及的一种传感器的结构示意图;
图5示意性地示出了根据本申请实施例涉及的一种传感阵列的结构示意图。
在附图中,相同或对应的标号表示相同或对应的部分。
具体实施方式
下面将参考若干示例性实施方式来描述本申请的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本申请,而并非以任何方式限制本申请的范围。相反,提供这些实施方式是为了使本申请更加透彻和完整,并且能够将本申请的范围完整地传达给本领域的技术人员。
本申请人发现,传统的光电二极管结构中由于光电二极管内部电势平坦,电荷转移主要依靠扩散运动,转移速度较慢,转移效率较低,从而会导致图像拖尾,进而影响光电传感器的响应速度和测量精度。为了解决传统的光电二极管结构存在的问题,现有技术中通常会采用非均匀掺杂的方式产生调制电场来加速电荷的横向转移,但非均匀掺杂的工艺过程复杂,光电二极管结构生产的控制过程难度大。
为了克服现有技术存在的问题,本申请中提出了一种像素单元、基于该像素单元的传感器以及传感阵列。该像素单元包括:电荷收集区,配置成接收辐射生成光生电荷;悬浮扩散节点,配置成存储并输出所述电荷收集区生成的所述光生电荷;传输栅,连接于电荷收集区与悬浮扩散节点之间,配置成将光生电荷从电荷收集区转移至悬浮扩散节点;电势调整区,设置于电荷收集区外围,配置成将光生电荷向电荷收集区中与传输栅连接的一侧集中。本申请通过设置于电荷收集区外围的电势调整区形成调制电场,从而使光生电荷在调制电场的影响下定向转移,提高转移速度和转移效率,避免图像拖尾,提升光电传感器的响应速度和测量精度。
本申请实施例所提供的技术方案适用于任意装置中的电荷转移场景,或者任意装置中的电荷收集场景。例如,本申请实施例所提供的技术方案可以适用于测距设备中的光生电 荷转移场景,也可以适用于结构光设备中的光生电荷转移场景,还可以应用于其他设备中的电荷转移场景,本申请实施例中并不限定。本申请实施例涉及的像素单元中的光电二极管结构可以是前照式,也可以是背照式,还可以是堆栈式等其他形式,本申请实施例并不限定。
在介绍了本申请的基本原理和应用场景之后,下面具体介绍本申请的各种非限制性实施方式。
下面结合上文所示的应用场景来描述根据本申请示例性实施方式的一种像素单元。需要注意的是,上述应用场景仅是为了便于理解本申请的精神和原理而示出,本申请的实施方式在此方面不受任何限制。相反,本申请的实施方式可以应用于适用的任何场景。
本申请实施例提供的一种像素单元,该像素单元至少包括电荷收集区、传输栅、悬浮扩散节点以及电势调整区。其中,电荷收集区配置成接收辐射生成光生电荷;悬浮扩散节点配置成存储并输出所述电荷收集区生成的所述光生电荷;传输栅连接于电荷收集区与悬浮扩散节点之间,传输栅配置成将光生电荷从电荷收集区转移至悬浮扩散节点;电势调整区设置于电荷收集区外围,电势调整区配置成将光生电荷向电荷收集区中与传输栅连接的一侧集中。图1A所示的像素单元通过设置于电荷收集区外围的电势调整区形成调制电场,从而使光生电荷在调制电场的影响下定向转移,提高转移速度和转移效率,避免图像拖尾,提升光电传感器的响应速度和测量精度。
本申请实施例中,电势最低的子区域与传输栅之间的距离最近。本申请实施例中,电势调整区中与传输栅之间的距离越近的子区域的电势越低。这样,可以将光生电荷向电势最低的子区域集中,再该电势最低的子区域转移至传输栅,从而转移速度和转移效率。
本申请实施例中,电势调整区还包括接地点。具体地,多个不同电势的子区域沿靠近传输栅的方向排布可以实现为,不同电势的子区域沿从接地点向传输栅的方向排布。
本申请实施例中,像素单元还包括电源,该电源与电势调整区相连。可选地,电源与电势调整区之间通过导线连接,或者电源、传输栅以及电势调整区之间通过导线连接。若电源为一个,则电源与电势调整区中的一个或多个子区域相连。若电源为多个,并且电势调整区中的子区域划分为多组,则电势调整区中不同组子区域所连接的电源的电压不同。若电源为多个,并且电势调整区中子区域划分为多组,则电势调整区中同组子区域所连接的电源的电压相同。优选地,同组子区域对称设置于电荷收集区外围。
本申请实施例中,电源与电势调整区相连,电势调整区包括至少两个子调整区,其中至少两个子调整区的连接处接地。本申请实施例并不限定电势调整区至少两个子调整区呈对称排布或非对称排布。
本申请实施例中,电势调整区由多晶电阻构成,多晶电阻的形状包括条状或块状。多 晶电阻(也即多晶硅电阻)是由MOS管栅极的Poly层形成的电阻,因此也可以称为Poly电阻;可选地,可以采用离子注入小剂量杂质来实现多晶电阻,也可以多加一层薄膜(mask)来实现多晶电阻。由于采用多晶电阻形成的电势调整区的工艺过程简单,因此这种实现方式可以有效改善现有技术中采用非均匀掺杂方式产生调制电场造成的工艺过程复杂、光电二极管结构生产的控制过程难度大等问题,降低像素单元的制造难度。需要说明的是,本申请实施例中并不限定电势调整区由除多晶电阻之外的其他电阻构成,或电势调整区由电势调整区为除电阻之外其他元件构成。
下面将结合附图分别说明电势调整区的几种实现方式:
实现方式一:由条状多晶电阻构成电势调整区。具体地,若所述电势调整区由条状多晶电阻构成,并且与所述电势调整区相连的电源的数量为一个,则所述电势调整区包括至少两个子调整区,所述电源分别与所述至少两个子调整区中靠近所述传输栅的一端相连。并且,所述至少两个子调整区的连接处接地。本申请实施例并不限定电势调整区至少两个子调整区呈对称排布或非对称排布。由于条状多晶电阻的电阻值变化呈线性变化趋势,因此这种实现方式中处于条状多晶电阻包围的电荷收集区内的电势沿电荷转移方向上呈线性下降趋势。
举例说明一
图1A示出了根据本申请实施例涉及的一种像素单元的等效电路的结构示意图。图1A所示的像素单元包括电荷收集区101、传输栅102、悬浮扩散节点103、电势调整区2、电源V DD以及接地点。其中,电势调整区2为多晶电阻;电势调整区2分为2个子区域,电势调整区2中从接地点至与传输栅102的连接点之间对称排布的两个子调整区;该像素单元中的电源V DD分别与电势调整区2中的两个子调整区的一端相连。图1A所示的电荷收集区101内沿电荷转移方向上的电势变化呈线性下降趋势,如图1B所示。
实现方式二:由块状多晶电阻构成电势调整区。其中由块状多晶电阻构成电势调整区的主要实现方式分为以下两种:
第一种实现方式:若所述电势调整区由多个块状多晶电阻构成,则所述多个块状多晶电阻之间通过金属导体连接。可选地,金属导体连接于电势调整区中相邻的子区域之间。具体地,若所述电势调整区由多个块状多晶电阻与金属导体构成,则所述电源的数量为一个,所述电源分别与至少两个子调整区中靠近所述传输栅的一端相连。相对于多晶电阻的电阻值,金属导体的电阻值较小,导致处于金属导体之间的电荷收集区的电势变化较为平缓,减缓了电荷收集区内的电势变化趋势,使得电荷收集区内的电势变化呈阶梯下降趋势。本申请实施例通过金属导体可以调节电势调整区中相邻的子区域之间的电势变化情况,控制光生电荷的转移。
举例说明二
图2A示出了根据本申请实施例涉及的另一种像素单元的等效电路的结构示意图。图2A所示的像素单元包括电荷收集区101、传输栅102、悬浮扩散节点103、电势调整区、金属导体5、电源V DD以及接地点。其中,电势调整区为多晶电阻;电势调整区分为6个子区域4,这6个子区域4中相邻的子区域4之间通过金属导体5相连,这6个子区域4分为两组对称排布于电势调整区两侧;电源V DD分别与这6个子区域4中与传输栅102之间距离最近的2个子区域4的一端相连。
图2A所示的电荷收集区101内沿电荷转移方向上的电势变化呈阶梯下降趋势,如图2B所示。需要理解的是,相对于多晶电阻的电阻值,金属导体5的电阻值较小,导致处于金属导体5之间的电荷收集区101的电势变化较为平缓,减缓了电荷收集区101内的电势变化趋势,使得电荷收集区101内的电势变化呈阶梯下降趋势。
第二种实现方式:若所述电势调整区由多个块状多晶电阻构成,所述多个块状多晶电阻之间不设置连接物。进一步地,若电势调整区由多个块状多晶电阻构成,并且多个块状多晶电阻之间无连接物,则电源的数量为多个,多个块状多晶电阻中不同块状多晶电阻所连接的电源电压不同,且距离传输栅越近的块状多晶电阻所连接的电源电压越大。由于多个块状多晶电阻之间无连接物,造成处于多晶电阻之间的电荷收集区的电势呈下降趋势,而未处于多晶电阻之间的电荷收集区的电势不变化;同时,受到不同电源电压的影响,不同块多晶电阻之间的电荷收集区的电势不同,使得电荷收集区内的电势变化也呈阶梯下降趋势。
举例说明三
图3A示出了根据本申请实施例涉及的又一种像素单元的等效电路的结构示意图。图3A所示的像素单元包括电荷收集区101、传输栅102、悬浮扩散节点103、电势调整区、电源V DD、电源V DD1以及电源V DD2。其中,电势调整区为多晶电阻;电势调整区分为6个子区域4,这些子区域4之间相互独立,这些子区域4分为三组对称排布于电势调整区两侧;这三组子区域4分别与电源V DD、电源V DD1以及电源V DD2相连;电荷收集区101内沿电荷转移方向上不同组的子区域4所连接电源的电压值逐渐增大,即V DD>V DD1>V DD2
图3A所示的电荷收集区101内沿电荷转移方向上的电势变化呈阶梯下降趋势,如图3B所示。需要理解的是,处于不同组的子区域4之间的电势不同,使得电荷收集区101内沿电荷转移方向上的电势变化呈阶梯下降趋势。
需要注意的是,两种实现方式中由多个块状多晶电阻构成的电荷收集区的电势均会呈阶梯下降趋势,但两种阶梯下降趋势的成因不同。
本申请提供的像素单元通过设置于电荷收集区外围的电势调整区形成调制电场,从而 使光生电荷在调制电场的影响下定向转移,提高转移速度和转移效率,避免图像拖尾,提升光电传感器的响应速度和测量精度。
参见图4,本申请还提供了示例性实施的一种传感器,该传感器包括多个图1A所示的像素单元,或者该传感器包括多个图2A所示的像素单元,或者该传感器包括多个图3A所示的像素单元。
参见图5,本申请还提供了示例性实施的一种传感阵列,该传感阵列包括多个图4所示的传感器,或者该传感阵列包括多个图1A所示的像素单元,或者该传感阵列包括多个图2A所示的像素单元,或者该传感阵列包括多个图3A所示的像素单元。可选地,该传感阵列可以是M行N列的阵列,其中M、N均为正整数。
应当注意,尽管在上文详细描述中提及了装置的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
此外,尽管在附图中以特定顺序描述了本申请方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
虽然已经参考若干具体实施方式描述了本申请的精神和原理,但是应该理解,本申请并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合以进行受益,这种划分仅是为了表述的方便。本申请旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。

Claims (10)

  1. 一种像素单元,其特征在于,包括:
    电荷收集区,配置成接收辐射生成光生电荷;
    悬浮扩散节点,配置成存储并输出所述电荷收集区生成的所述光生电荷;
    传输栅,连接于所述电荷收集区与所述悬浮扩散节点之间,配置成将所述光生电荷从所述电荷收集区转移至所述悬浮扩散节点;
    电势调整区,设置于所述电荷收集区的外围,配置成将所述光生电荷向所述电荷收集区中与所述传输栅连接的一侧集中。
  2. 如权利要求1所述的像素单元,其特征在于,所述电势调整区由多晶电阻构成,所述多晶电阻的形状为条状或块状。
  3. 如权利要求2所述的像素单元,其特征在于,若所述电势调整区由多个块状多晶电阻构成,则所述多个块状多晶电阻之间通过金属导体连接,或者所述多个块状多晶电阻之间无连接物。
  4. 如权利要求1-3中任一项所述的像素单元,其特征在于,电源与所述电势调整区相连;所述电势调整区包括至少两个子调整区,所述至少两个子调整区的连接处接地。
  5. 如权利要求4所述的像素单元,其特征在于,若所述电势调整区由多个块状多晶电阻与金属导体构成,则所述电源的数量为一个,所述电源分别与所述至少两个子调整区中靠近所述传输栅的一端相连。
  6. 如权利要求4所述的像素单元,其特征在于,若所述电势调整区由多个块状多晶电阻构成,并且所述多个块状多晶电阻之间无连接物,则所述电源的数量为多个,所述多个块状多晶电阻中不同块状多晶电阻所连接的电源电压不同,且距离所述传输栅越近的块状多晶电阻所连接的电源电压越大。
  7. 如权利要求2所述的像素单元,其特征在于,若所述电势调整区由条状多晶电阻构成,并且与所述电势调整区相连的电源的数量为一个,则所述电势调整区包括至少两个子调整区,所述电源分别与所述至少两个子调整区中靠近所述传输栅的一端相连;且
    所述至少两个子调整区的连接处接地。
  8. 如权利要求5或6或7所述的像素单元,其特征在于,所述电势调整区与所述传输栅距离越近的区域的电势越低。
  9. 一种传感器,其特征在于,所述传感器包括如权利要求1至8中任一项所述的 像素单元。
  10. 一种传感阵列,其特征在于,所述传感阵列包括多个如权利要求1至8任一所述的像素单元,或者所述传感阵列包括多个如权利要求9所述的传感器。
PCT/CN2019/110215 2018-11-22 2019-10-09 一种像素单元、传感器以及传感阵列 WO2020103594A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/295,964 US20220005852A1 (en) 2018-11-22 2019-10-09 Pixel unit, sensor and sensing array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811399529.X 2018-11-22
CN201811399529.XA CN111211138B (zh) 2018-11-22 2018-11-22 一种像素单元、传感器以及传感阵列

Publications (1)

Publication Number Publication Date
WO2020103594A1 true WO2020103594A1 (zh) 2020-05-28

Family

ID=70773657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110215 WO2020103594A1 (zh) 2018-11-22 2019-10-09 一种像素单元、传感器以及传感阵列

Country Status (3)

Country Link
US (1) US20220005852A1 (zh)
CN (1) CN111211138B (zh)
WO (1) WO2020103594A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211954A (zh) * 2006-12-29 2008-07-02 东部高科股份有限公司 Cmos图像传感器以及其制造方法
KR100868632B1 (ko) * 2007-05-16 2008-11-12 주식회사 동부하이텍 이미지센서 및 그 제조방법
CN104282707A (zh) * 2014-10-17 2015-01-14 北京思比科微电子技术股份有限公司 全局曝光方式的图像传感器像素结构及其控制方法
CN104835825A (zh) * 2015-04-30 2015-08-12 湘潭大学 一种高速cmos图像传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949061A (en) * 1997-02-27 1999-09-07 Eastman Kodak Company Active pixel sensor with switched supply row select
US6511883B1 (en) * 1999-07-07 2003-01-28 United Microelectronics Corp. Method of fabricating MOS sensor
JP2006261638A (ja) * 2005-02-21 2006-09-28 Sony Corp 固体撮像装置および固体撮像装置の駆動方法
US20100133638A1 (en) * 2008-12-01 2010-06-03 Samsung Electronics Co., Ltd. Image sensors and methods of manufacturing the same
JP2015106621A (ja) * 2013-11-29 2015-06-08 ソニー株式会社 固体撮像素子および製造方法、並びに電子機器
KR102589016B1 (ko) * 2016-08-25 2023-10-16 삼성전자주식회사 반도체 소자
CN108183115A (zh) * 2017-12-28 2018-06-19 德淮半导体有限公司 图像传感器及其形成方法
CN117080233A (zh) * 2019-03-29 2023-11-17 索尼半导体解决方案公司 固态摄像装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211954A (zh) * 2006-12-29 2008-07-02 东部高科股份有限公司 Cmos图像传感器以及其制造方法
KR100868632B1 (ko) * 2007-05-16 2008-11-12 주식회사 동부하이텍 이미지센서 및 그 제조방법
CN104282707A (zh) * 2014-10-17 2015-01-14 北京思比科微电子技术股份有限公司 全局曝光方式的图像传感器像素结构及其控制方法
CN104835825A (zh) * 2015-04-30 2015-08-12 湘潭大学 一种高速cmos图像传感器

Also Published As

Publication number Publication date
US20220005852A1 (en) 2022-01-06
CN111211138B (zh) 2023-11-24
CN111211138A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN100499148C (zh) 互补金属氧化物半导体图像感测器以及其制造方法
US9419051B2 (en) Solid-state imaging device
JP2017135168A (ja) 光電変換装置及び情報処理装置
WO2020103594A1 (zh) 一种像素单元、传感器以及传感阵列
WO2009020316A2 (en) Unit pixel improving image sensitivity and dynamic range
WO2016035494A1 (ja) 固体撮像装置
CN104465689A (zh) 一种高动态范围图像传感器像素单元及其制备方法
US9299741B2 (en) Solid-state imaging device and line sensor
CN110112153A (zh) 一种电荷快速转移的tof图像传感器解调像素结构
CN110277416B (zh) 全局快门cmos图像传感器
US11107938B2 (en) Photodiode
JP6818075B2 (ja) 固体撮像装置
JP2005268564A (ja) 固体撮像素子及び固体撮像素子の製造方法
JP2572181B2 (ja) Ccd映像素子
KR100259086B1 (ko) 고체촬상소자 및 이의 제조방법
WO2019097971A1 (ja) 固体撮像素子及びその形成方法
CN110943096A (zh) 具有多级转移栅极的cmos图像传感器
US20230171522A1 (en) Light detection device and method for driving light sensor
CN219591402U (zh) 一种像素阵列及图像传感器
JP2019047374A (ja) 固体撮像装置
JP2010073804A (ja) 固体撮像装置
JPH09307091A (ja) 増幅型固体撮像素子
TWI543348B (zh) 影像感測器
CN113921542A (zh) 图像传感器的像素结构及其形成方法
JP2015026678A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887074

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887074

Country of ref document: EP

Kind code of ref document: A1