WO2020100740A1 - 車載カメラ - Google Patents

車載カメラ Download PDF

Info

Publication number
WO2020100740A1
WO2020100740A1 PCT/JP2019/043876 JP2019043876W WO2020100740A1 WO 2020100740 A1 WO2020100740 A1 WO 2020100740A1 JP 2019043876 W JP2019043876 W JP 2019043876W WO 2020100740 A1 WO2020100740 A1 WO 2020100740A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
axis direction
mounted camera
substrate
flexible substrate
Prior art date
Application number
PCT/JP2019/043876
Other languages
English (en)
French (fr)
Inventor
俊裕 時任
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP24176494.3A priority Critical patent/EP4395472A3/en
Priority to EP19884648.7A priority patent/EP3883231B1/en
Priority to JP2020555628A priority patent/JP7460537B2/ja
Priority to CN201980073198.7A priority patent/CN112970241B/zh
Priority to KR1020217013000A priority patent/KR20210091138A/ko
Priority to US17/289,189 priority patent/US11987184B2/en
Publication of WO2020100740A1 publication Critical patent/WO2020100740A1/ja
Priority to US18/636,835 priority patent/US20240270179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/617Noise processing, e.g. detecting, correcting, reducing or removing noise for reducing electromagnetic interference, e.g. clocking noise
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor

Definitions

  • the present technology relates to a vehicle-mounted camera that can image the external environment of a mobile body.
  • Patent Document 1 A technology is known in which a front camera is used for driving control of an automobile (see, for example, Patent Document 1).
  • the image pickup element substrate is arranged behind the lens with the image pickup element facing forward.
  • the light that enters the lens from the external environment in front can enter the image sensor.
  • This front camera has a main board that controls drive control.
  • the main substrate extends horizontally below the lens and the image pickup device substrate.
  • the image pickup device substrate is connected to the main substrate by a flexible substrate extending in the vertical direction. This allows the front camera to send and receive signals between the image pickup element substrate and the main substrate.
  • flexible substrates have flexibility in the thickness direction, but do not have flexibility in the in-plane direction orthogonal to the thickness direction. Therefore, the flexible board of the front camera as described above absorbs the stress applied in the front-rear direction, but cannot absorb the load stress applied in the left-right direction, and the load is applied to the connection part for the image pickup element board and the main board.
  • an object of the present technology is to provide an in-vehicle camera that can favorably absorb stress applied to a flexible board that connects a main board and an imaging element board.
  • an in-vehicle camera includes an image pickup device substrate, a main substrate, and a flexible substrate.
  • the image pickup device substrate has a first terminal.
  • the main board has a second terminal.
  • the flexible board is located between the first connecting portion connected to the first terminal, the second connecting portion connected to the second terminal, and the first connecting portion and the second connecting portion.
  • a first and a second bending portion that bends along first and second bending axes that intersect with each other in the deployed state.
  • the stress applied to the flexible substrate can be absorbed by the first and second bent portions.
  • the first and second bent portions can absorb the stress applied to the flexible substrate in any direction due to the configuration of bending along the first and second bending axes intersecting with each other.
  • a vehicle-mounted camera having such a flexible substrate has high reliability.
  • the flexible substrate may further include a first extending portion provided with the first bent portion and a second extending portion provided with the second bent portion.
  • the first extending portion may extend in a direction orthogonal to the first bending axis
  • the second extending portion may extend in a direction orthogonal to the second bending axis. ..
  • the first bending axis and the second bending axis may be orthogonal to each other.
  • the vehicle-mounted camera may further include an optical unit having an optical axis extending in the thickness direction of the image sensor substrate.
  • the image pickup device substrate may further include a crystal oscillator. The flexible substrate may not pass over the crystal oscillator.
  • FIG. 1 is a perspective view of an automobile equipped with an in-vehicle camera according to an embodiment of the present technology. It is a perspective view of the said vehicle-mounted camera. It is a perspective view of the bracket which can mount the said vehicle-mounted camera. It is a disassembled perspective view of the said vehicle-mounted camera. It is a perspective view of the frame of the said vehicle-mounted camera. It is a perspective view of the main substrate of the said vehicle-mounted camera. It is a perspective view of the imaging part of the said vehicle-mounted camera. It is a perspective view showing the state where the main substrate and image pick-up part of the above-mentioned in-vehicle camera were attached to the frame. It is a perspective view of a pressing member of the vehicle-mounted camera.
  • FIG. 3 is a plan view of the main board and the imaging unit.
  • FIG. 6 is a sectional view of the frame taken along the line AA ′ of FIG. 5. It is a disassembled perspective view of the 1st cap member of the said vehicle-mounted camera. It is sectional drawing which shows the state which attached the 1st cap member to the frame shown in FIG.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the first cap member. It is a disassembled perspective view of the 2nd and 3rd cap member of the said vehicle-mounted camera.
  • FIG. 1 is a perspective view of an automobile M equipped with an in-vehicle camera 1 according to an embodiment of the present technology.
  • the automobile M has a windshield (front window) M01 arranged in the front, a rear window M02 arranged in the rear, and side windows M03 arranged on both sides as transparent glass windows.
  • the in-vehicle camera 1 is a front sensing camera installed on the inner surface of the windshield M01.
  • the vehicle-mounted camera 1 is arranged above the widthwise central region of the windshield M01. Accordingly, the vehicle-mounted camera 1 can satisfactorily capture the scenery in front of the vehicle M without blocking the driver's view.
  • the vehicle M in which the vehicle-mounted camera 1 is mounted includes a driving force generation mechanism M11 including an engine and a motor, a braking mechanism M12, a steering mechanism M13, and the like in order to realize a traveling function.
  • the automobile M may include a surrounding information detection unit for detecting surrounding information, a positioning unit for generating position information, and the like.
  • FIG. 2 is a perspective view of the vehicle-mounted camera 1 before being attached to the windshield M01.
  • the vehicle-mounted camera 1 has a front case 11 and a bottom case 12.
  • the front case 11 is configured as a cover member that covers an upper side of the bottom case 12 in the Z axis direction.
  • the vehicle-mounted camera 1 has an imaging unit 14 including an optical unit 141 that holds the lens R.
  • the front case 11 has a flat portion 111 that extends along the XY plane, and a box-shaped housing portion 112 that is arranged rearward in the X-axis direction and projects upward from the flat portion 111 in the Z-axis direction.
  • the accommodating portion 112 mainly accommodates each component of the vehicle-mounted camera 1 such as the image capturing portion 14 in a space formed inside thereof.
  • a lens hole 113 that penetrates in the X-axis direction is formed in the accommodation unit 112 at the center in the Y-axis direction on the front facing the front in the X-axis direction.
  • the optical unit 141 of the imaging unit 14 is inserted into the lens hole 113 from the inside of the housing unit 112. Thereby, in the vehicle-mounted camera 1, the lens R of the optical unit 141 is exposed to the external space toward the front in the X-axis direction.
  • the accommodating portion 112 is provided with projecting portions 114 that project outward in the Y-axis direction on both side surfaces facing the Y-axis direction.
  • an extension piece 115 that extends forward in the X-axis direction is provided at the Y-axis direction central portion of the X-axis direction front edge portion of the flat portion 111. The protrusion 114 and the extension piece 115 are used for installing the vehicle-mounted camera 1.
  • FIG. 3 is a perspective view of the bracket 2 for installing the vehicle-mounted camera 1 on the inner surface of the windshield M01 of the automobile M.
  • the bracket 2 is fixed to the inner surface of the windshield M01.
  • the bracket 2 has an engagement hole 2a that can be engaged with the protrusion 114 and a V-shaped engagement hole 2b that can be engaged with the extension piece 115.
  • the vehicle-mounted camera 1 is inserted into the bracket 2 in the direction indicated by the block arrow in FIG. 3 with the front case 11 facing the windshield M01 side.
  • the vehicle-mounted camera 1 is fixed to the bracket 2 by inserting the extension piece 115 into the engagement hole 2b and fitting the protrusion 114 into the engagement hole 2a from the inside.
  • the vehicle-mounted camera 1 is installed along the inner surface of the windshield M01 so as to incline vertically downward toward the front in the horizontal direction.
  • the amount of protrusion of the vehicle-mounted camera 1 from the windshield M01 can be suppressed to a small amount, which is advantageous from the viewpoints of ensuring a wider field of view for the driver and effectively using the space inside the vehicle.
  • FIG. 4 is an exploded perspective view of the vehicle-mounted camera 1.
  • the vehicle-mounted camera 1 further includes a frame 20, a main board 13, a pressing member 15, and a shield plate 16.
  • the frame 20 forms the skeleton of the vehicle-mounted camera 1, and holds the front case 11, the bottom case 12, the main board 13, the imaging unit 14, the pressing member 15, and the shield plate 16.
  • FIG. 5 is a perspective view of the frame 20.
  • the frame 20 is preferably a sheet metal processed product and is formed, for example, by subjecting a thin metal plate material such as stainless steel to plastic working.
  • the frame 20 has a flat portion 21 that extends along the XY plane and a raised portion 22 that rises in the housing portion 112 of the front case 11 from the flat portion 21 upward in the Z-axis direction.
  • the raised portion 22 has a front wall portion 23, a rear wall portion 24, and an upper wall portion 25.
  • the front wall portion 23 and the rear wall portion 24 each have a flat plate shape extending along the YZ plane and face each other in the X-axis direction.
  • the upper wall portion 25 has a flat plate shape extending along the XY plane, and connects the upper end portions of the front wall portion 23 and the rear wall portion 24 in the Z-axis direction to each other.
  • a lens hole 231 penetrating in the X-axis direction is formed at the center of the front wall 23 in the Y-axis direction.
  • the lens hole 231 is arranged adjacent to the lens hole 113 of the front case 11 rearward in the X-axis direction.
  • the optical unit 141 of the imaging unit 14 is inserted into the lens hole 231 of the frame 20 and the lens hole 113 of the front case 11.
  • a through hole portion 232 is formed in the front wall portion 23 at a position adjacent to the lens hole 231 so as to penetrate in the X-axis direction.
  • the front wall portion 23 has a pair of through holes 233 penetrating in the X-axis direction at both ends in the Y-axis direction. The through hole portion 233 is used to fix the imaging unit 14 and the front case 11.
  • An opening 251 that penetrates in the Z-axis direction is formed in the central region of the upper wall 25.
  • the opening 251 has a wide opening so that the space inside the raised portion 22 can be accessed from above the upper wall 25 in the Z-axis direction. Since the pressing member 15 is fitted in the opening 251, the edge of the opening 251 is formed in a shape corresponding to the pressing member 15.
  • the frame 20 is formed with screw hole portions 211, 212, 241, 252 for fixing each portion of the vehicle-mounted camera 1.
  • the screw hole portions 211 and 212 are provided in front and rear regions in the X-axis direction connected to the flat portion 21, and penetrate in the Z-axis direction.
  • the screw hole portion 241 is provided in the rear wall portion 24 and penetrates in the X-axis direction.
  • the screw hole portion 252 is provided in the upper wall portion 25 and penetrates in the Z-axis direction.
  • the screw hole portions 211 are provided at both end portions in the Y-axis direction of the area in front of the flat portion 21 in the X-axis direction, and are used to fix the main board 13 and the bottom case 12.
  • the screw hole portions 212 are provided at both ends in the Y-axis direction of the area behind the flat portion 21 in the X-axis direction, and are used for fixing the main board 13.
  • the screw hole portions 241 are provided at both ends of the rear wall portion 24 in the Y-axis direction, and are used to fix the bottom case 12.
  • the screw hole portions 252 are provided at both ends of the upper wall portion 25 in the Y-axis direction and are used to fix the shield plate 16.
  • Each screw hole portion 211, 212, 241, 252 is formed in a female screw shape according to the screw member S to be used.
  • the screw member S used for fixing each member to each screw hole portion 211, 212, 241, 252 can be arbitrarily determined.
  • the screw member S is configured to be fastened by being screwed into the screw hole portions 211, 212, 241, 252 by rotating a driver engaged with a groove formed in the head. It is a screw.
  • the frame 20 is formed with side plates 26 that are bent downward in the Z-axis direction from both edges in the Y-axis direction of the flat portion 21.
  • the side plate 26 extends along the XZ plane and has a flat plate shape elongated in the X-axis direction.
  • the side plate 26 is used for sandwiching the shield plate 16 with the side plate 123 of the bottom case 12 described later.
  • FIG. 6 is a perspective view of the main board 13.
  • the main substrate 13 has a flat base material 131 extending along the XY plane.
  • As the base material 131 various ceramic substrates or various plastic substrates can be used.
  • terminals 132 connected to an image pickup element substrate 142 of the image pickup section 14 described later are provided.
  • an MCU Micro Controller Unit
  • a power supply unit 136 are provided on the mounting surface of the base material 131.
  • electronic components necessary for realizing various functions of the vehicle-mounted camera 1 are mounted in addition to the above configuration. Examples of such electronic components include various ICs, memories, drivers, and the like.
  • the base material 131 is formed with through-hole portions 134 and 135 penetrating in the Z-axis direction.
  • the through holes 134 are provided at both ends in the Y-axis direction of the front end in the X-axis direction and are fixed to the screw hole portions 211 of the frame 20.
  • the through-hole portions 135 are provided at both ends in the Y-axis direction of the rear end portion in the X-axis direction and fixed to the screw hole portions 212 of the frame 20.
  • FIG. 7 is a perspective view of the image pickup unit 14.
  • the image capturing section 14 includes a holder 30, an optical unit 141, an image capturing element substrate 142, and a flexible substrate 50.
  • the holder 30 holds the optical unit 141 and the image pickup element substrate 142.
  • the flexible substrate 50 is connected to the image sensor substrate 142.
  • the optical unit 141 includes an optical component such as a lens R having a common optical axis, and has a cylindrical shape extending along the optical axis direction.
  • the holder 30 has a holding portion 31 that holds the optical unit 141.
  • the holding portion 31 is located at the central portion in the Y-axis direction and is configured as a substantially circular opening portion that holds the outer peripheral surface of the rear end portion of the optical unit 141 over the entire circumference without any gap.
  • the holder 30 has a pair of columnar portions 32 and a pair of screw hole portions 33.
  • the columnar portions 32 are provided at both ends in the Y-axis direction on the front surface of the holder 30 facing forward in the X-axis direction, and are formed in a columnar shape protruding forward in the X-axis direction.
  • the screw hole portion 33 is formed from the tip end portion of each columnar portion 32 facing forward in the X-axis direction toward the rear.
  • the holder 30 has a pair of regulation surfaces 34.
  • the restriction surface 34 extends around the rear end of each columnar portion 32 in the X-axis direction.
  • Each regulation surface 34 is located on a common plane.
  • the holder 30 further has a screw hole portion 35 formed from the front side toward the rear in the Z-axis direction. The screw hole portion 35 is temporarily fixed to the through hole portion 232 of the frame 20.
  • the columnar portion 32 and the regulation surface 34 of the holder 30 are used for positioning the imaging unit 14 and the front case 11 with respect to the frame 20. Therefore, the holder 30 needs to be formed in an accurate shape in order to accurately position the imaging unit 14 and the front case 11. Therefore, as the holder 30, it is preferable to use a die-cast product made of metal such as aluminum. In this case, it is preferable to use the cutting surface of the metal die casting as the regulation surface 34 of the holder 30. Further, as the holder 30, a highly accurate resin molded product may be used.
  • the image pickup element substrate 142 has a flat plate shape along a plane orthogonal to the optical axis of the optical unit 141, and is arranged on the back surface of the holder 30.
  • the image pickup device substrate 142 has the image pickup device mounted on the mounting surface facing the front in the X-axis direction. Thereby, the light incident on the optical unit 141 from the external environment in front of the vehicle-mounted camera 1 can be incident on the image sensor.
  • the image sensor mounted on the image sensor board 142 is not limited to a particular type.
  • the image pickup device for example, a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) can be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • Various ceramic substrates, various plastic substrates, and the like can be used as the base material of the imaging element substrate 142.
  • the configuration of the vehicle-mounted camera 1 of the present technology is such that the image sensor has a size of 4.32 mm in length and 8.64 mm in width (1 / 1.7 type) and has a number of pixels of several megapixels or more (particularly, 7 megapixels or more). It is particularly suitable when the allowable range of the focal position shift of the optical unit 141 is within several ⁇ m (for example, ⁇ 3 ⁇ m).
  • the configuration of the vehicle-mounted camera 1 of the present technology has a higher pixel density than the configuration in which the image sensor is 1 / 1.7 type and the number of pixels is 7M pixels, and the allowable range of the focus position deviation of the optical unit 141 is several. It is also particularly suitable when it is within ⁇ m (for example, ⁇ 3 ⁇ m).
  • various other components necessary for realizing the function of the image capturing unit 14 can be mounted on the image sensor substrate 142.
  • a processing unit that can execute image processing or the like can be mounted on the image pickup element substrate 142.
  • the flexible substrate 50 connects the image pickup device substrate 142 and the terminal 132 of the main substrate 13.
  • FIG. 8 is a perspective view showing a state in which the main board 13 and the imaging unit 14 are attached to the frame 20.
  • the imaging unit 14 is attached to the front wall 23 of the frame 20 from the rear in the X-axis direction.
  • the optical unit 141 is inserted through the lens hole 231 forward in the X-axis direction, and the columnar portion 32 is inserted through the through hole portion 233 forward in the X-axis direction.
  • the image pickup section 14 is temporarily fixed to the frame 20 by fastening the screw member S inserted into the through hole section 232 of the frame 20 from the front side in the X-axis direction to the screw hole section 35 of the holder 30.
  • the screw member S for temporarily fixing the imaging unit 14 to the frame 20 is not necessary, but it may be left for convenience of the manufacturing process.
  • the main board 13 is fixed to the frame 20 by fastening the screw member S inserted into the through hole 135 from below in the Z-axis direction to the screw hole 212 of the frame 20.
  • the through hole 134 of the main board 13 is not fixed to the frame 20 at this stage because it is screwed to the screw hole 211 of the frame 20 in a later step.
  • the flexible board 50 of the imaging unit 14 is connected to the terminal 132 of the main board 13 in the state shown in FIG.
  • the flexible substrate 50 can be accessed from above in the Z-axis direction through the opening 251 of the frame 20. Further, in the vehicle-mounted camera 1, the pressing member 15 is used to fix the flexible substrate 50 on the main substrate 13.
  • FIG. 9 is a perspective view of the pressing member 15.
  • the pressing member 15 is made of, for example, a resin material.
  • the pressing member 15 has a pressing portion 151a facing downward in the Z-axis direction and a pressing portion 151b facing forward in the X-axis direction.
  • a cushion material E is attached to the pressing portions 151a and 151b.
  • the pressing member 15 presses one connection terminal portion of the flexible board 50 against the main board 13 by the pressing portion 151a and presses the other connection terminal portion of the flexible board 50 against the image pickup element substrate 142 by the pressing portion 151b.
  • the flexible substrate 50 is fixed to the main substrate 13 and the image pickup device substrate 142.
  • the pressing member 15 has an engaging plate 152 and an engaging piece 153 provided on the upper side in the Z-axis direction.
  • the engagement plate 152 extends along the XY plane and has a flat plate shape elongated in the X-axis direction.
  • the engagement pieces 153 are provided at both ends in the Y-axis direction.
  • Each engagement piece 153 is provided with a space in the Z-axis direction, and is composed of a pair of protrusion pieces that protrude outward in the Y-axis direction.
  • FIG. 10 is a perspective view showing a state in which the pressing member 15 is attached to the frame 20 shown in FIG.
  • the engagement plate 152 engages with the edge of the opening 251 from above in the Z-axis direction, and is bridged over the opening 251 in the X-axis direction.
  • the engagement piece 153 is fitted in the opening 251, that is, the edge of the opening 251 is sandwiched between the pair of protruding pieces from above and below in the Z-axis direction.
  • the pressing member 15 is fixed to the frame 20.
  • the pressing member 15 is configured such that the pressing portions 151a and 152b appropriately press the connection terminal portions of the flexible board 50.
  • the connection between the image pickup element substrate 142 and the main substrate 13 by the flexible substrate 50 can be held more reliably.
  • FIG. 11 is a perspective view of the bottom case 12.
  • the bottom case 12 is formed, for example, by subjecting a thin plate material of metal such as aluminum to plastic working.
  • the bottom case 12 has a bottom plate 121 that constitutes the bottom surface of the vehicle-mounted camera 1, and a back plate 122 and side plates 123 that are bent from the edge of the bottom plate 121.
  • the bottom plate 121 has a flat plate shape extending along the XY plane.
  • the back plate 122 has a flat plate shape extending along the YZ plane, and extends upward from the rear end portion of the bottom plate 121 in the X-axis direction in the Z-axis direction.
  • the side plates 123 have a flat plate shape extending along the XZ plane, and extend upward in the Z axis direction from both ends of the bottom plate 121 in the Y axis direction.
  • the bottom plate 121 is formed with through-holes 124 penetrating in the Z-axis direction at both ends in the Y-axis direction of the front end in the X-axis direction.
  • Through holes 125 are formed at both ends of the back plate 122 in the Y-axis direction so as to penetrate in the X-axis direction. Both of the through holes 124 and 125 are used to fix the bottom case 12 to the frame 20.
  • FIG. 12 is a perspective view showing a state where the bottom case 12 is attached to the frame 20 shown in FIG. In the state shown in FIG. 12, the through hole portion 124 of the bottom case 12, the through hole portion 134 of the main board 13, and the screw hole portion 211 of the frame 20 overlap each other in the Z-axis direction to form a series of through holes. Is forming.
  • the bottom case 12 is fixed to the frame 20 by fastening the screw member S inserted into the through hole 125 from the rear side in the X-axis direction to the screw hole 241 of the frame 20.
  • the bottom case 12 is fixed to the frame 20 by fastening a screw member S inserted into the through holes 124 and 134 from below in the Z-axis direction to the screw hole 211 of the frame 20.
  • the main board 13 sandwiched between the frame 20 and the bottom case 12 is also fixed to the frame 20.
  • the bottom case 12 and the main board 13 are stably fixed to the frame 20 at each of two positions, the front and the rear in the X-axis direction.
  • the side plate 26 of the frame 20 is arranged inside the side plate 123 of the bottom case 12 in the Y-axis direction. Therefore, a gap C in the Y-axis direction is formed between the side plate 26 of the frame 20 and the side plate 123 of the bottom case 12.
  • the shield plate 16 is incorporated in the gap C between the side plates 26 and 123.
  • FIG. 13 is a perspective view of the shield plate 16.
  • the shield plate 16 is formed, for example, by subjecting a thin metal plate material such as stainless steel to plastic working.
  • the shield plate 16 has a top plate 161, side plates 162, and a leaf spring portion 163.
  • the shield plate 16 has a substantially U-shaped cross section along the YZ plane.
  • the top plate 161 extends along the XY plane.
  • the side plates 162 extend along the XZ plane and extend downward in the Z-axis direction from both ends of the top plate 161 in the Y-axis direction.
  • the top plate 161 covers the raised portion 22 of the frame 20 from above in the Z-axis direction and closes the opening 251.
  • the side plate 162 covers the space inside the raised portion 22 of the frame 20 from both sides in the Y-axis direction.
  • the top plate 161 has through-holes 164 penetrating in the Z-axis direction at both ends in the Y-axis direction.
  • the leaf spring portion 163 extends further downward in the Z-axis direction from each side plate 162 and is bent outward in the Y-axis direction in a V-shape. Both the through hole portion 164 and the leaf spring portion 163 are used to fix the shield plate 16 to the frame 20.
  • FIG. 14 is a perspective view showing a state where the shield plate 16 is attached to the frame 20 shown in FIG. In the state shown in FIG. 14, the leaf spring portion 163 is incorporated in the gap C between the side plates 26, 123. As a result, the plate spring portion 163 is sandwiched and fixed between the side plates 26 and 123 in a state of being compressed and deformed in the Y-axis direction.
  • the shield plate 16 is fixed to the frame 20 by fastening the screw member S inserted into the through hole portion 164 from above in the Z-axis direction to the screw hole portion 252 of the frame 20.
  • the electronic components inside the raised portion 22 are electromagnetically shielded from the external environment by the frame 20, the shield plate 16, and the bottom case 12 formed of metal.
  • FIG. 15 is a perspective view of the front case 11.
  • the accommodation portion 112 is provided with a pair of boss portions 116 projecting in the X-axis direction at both ends of the front surface in the Y-axis direction.
  • a pair of through-holes 117 penetrating in the X-axis direction are formed in the pair of bosses 116.
  • the through hole 117 is used to fix the front case 11 to the frame 20.
  • the front case 11 is attached to the frame 20 shown in FIG.
  • the front case 11 is placed on the bottom case 12.
  • the optical unit 141 of the image pickup unit 14 is inserted into the lens hole 113 from the rear side in the X-axis direction, and the columnar portions 32 of the holder 30 of the image pickup unit 14 are inserted into the through-hole portions 117 from the rear side in the X-axis direction.
  • the screw member S inserted in the through hole 117 from the front in the X-axis direction is fastened to the screw hole 33 formed in the columnar portion 32 of the holder 30.
  • the frame 20 is sandwiched between the front case 11 and the restriction surface 34 of the holder 30, so that the imaging unit 14 and the front case 11 are fixed to the frame 20.
  • the positioning is performed by the pair of columnar portions 32 of the holder 30 inserted into the through hole portion 233 of the frame 20 and the through hole portion 117 of the front case 11. Therefore, in the vehicle-mounted camera 1, the optical axis of the optical unit 141 of the imaging unit 14 can be oriented in the correct direction.
  • the screw member S used for fixing the front case 11 and the holder 30 to the frame 20 can be arbitrarily selected from a male screw having a head capable of engaging with the boss portion 116.
  • a male screw having a head capable of engaging with the boss portion 116.
  • a hexagonal bolt having a hexagonal head can be used.
  • the front case 11 is fixed to the frame 20 only through the through holes 117 of the two bosses 116. Therefore, in the vehicle-mounted camera 1, when the front case 11 is attached, stress is less likely to be applied to the frame 20 and the imaging unit 14. Therefore, in the vehicle-mounted camera 1, the optical axis of the optical unit 141 of the imaging unit 14 is unlikely to shift.
  • the front case 11 can be a resin molded product.
  • the vehicle-mounted camera 1 can be reduced in cost and weight.
  • the through hole 117 of the boss portion 116 positioned by the columnar portion 32 of the holder 30 can be formed in an accurate shape.
  • the vehicle-mounted camera 1 has a configuration in which the stress applied to the flexible substrate 50 that connects the main substrate 13 and the image pickup device substrate 142 of the image pickup unit 14 is well absorbed regardless of the direction. This makes it difficult to apply a load to the flexible substrate 50.
  • the detailed configuration of the flexible substrate 50 will be described below.
  • FIG. 16 and 17 show a flexible substrate 50 according to this embodiment.
  • FIG. 16 is a plan view showing a developed state in which the flexible substrate 50 is developed along the XY plane.
  • 17 is a perspective view showing a bent state in which the expanded flexible board 50 shown in FIG. 16 is bent so that the main board 13 and the imaging element board 142 can be connected.
  • the flexible substrate 50 is formed of a resin such as polyimide or polyester, for example. As shown in FIG. 16, the flexible substrate 50 has a strip-shaped first extending portion 51 and a second extending portion 52 that extend in a direction intersecting with each other in the unfolded state. It has a substantially L-shaped planar shape that is bent between the second extending portions 52.
  • the flexible substrate 50 has a first connecting portion 53 which is a connecting terminal portion connected to the main substrate 13 and a second connecting portion 54 which is a connecting terminal portion connected to the image pickup element substrate 142.
  • the connecting portions 53 and 54 are provided at both ends of the flexible substrate 50, respectively.
  • the first connecting portion 53 is located on the first extending portion 51, and the second connecting portion 54 is located on the second extending portion 52.
  • the first connecting portion 53 and the second connecting portion 54 are connected by the wiring provided along the first extending portion 51 and the second extending portion 52. Accordingly, the flexible substrate 50 can electrically connect the main substrate 13 connected to the first connecting portion 53 and the image pickup device substrate 142 connected to the second connecting portion 54.
  • the flexible substrate 50 also has a first bent portion 55a and a second bent portion 55b provided between the connecting portions 53 and 54.
  • the 1st bending part 55a is provided in the 1st extension part 51, and can be bent along the 1st bending axis Pa.
  • the 2nd bending part 55b is provided in the 2nd extension part 52, and can be bent along the 2nd bending axis Pb.
  • the first bending axis Pa of the first bending portion 55a extends in a direction orthogonal to the extending direction of the first extending portion 51.
  • the second bending axis Pb of the second bending portion 55b extends in the direction orthogonal to the extending direction of the second extending portion 52. Therefore, as shown in FIG. 16, in the expanded flexible substrate 50, the first bending axis Pa and the second bending axis Pb intersect.
  • the flexible substrate 50 is bent into an R shape at the bent portions 55a and 55b. More specifically, in the flexible substrate 50, the first bent portion 55a is bent upward in the Z-axis direction and the second bent portion 55b is bent inward in the Y-axis direction from the expanded state shown in FIG. As a result, the flexible substrate 50 is in the bent state shown in FIG.
  • FIG. 18 is a perspective view showing a state in which the image pickup unit 14 is placed on the main board 13.
  • the image pickup element substrate 142 of the image pickup unit 14 has a terminal 142a mounted on a mounting surface facing rearward in the Z-axis direction.
  • the terminal 142 a of the image pickup device substrate 142 is electrically connected to the terminal 132 of the main substrate 13 via the flexible substrate 50.
  • the first connecting portion 53 is connected to the terminal 132 of the main substrate 13, and the second connecting portion 54 is connected to the terminal 142a of the image pickup element substrate 142.
  • the relative position between the first connecting portion 53 and the second connecting portion 54 is substantially the same as the relative position between the terminal 132 of the main substrate 13 and the terminal 142a of the image sensor substrate 142. Is consistent with.
  • the first connecting portion 53 and the second connecting portion 54 can be connected to the terminal 132 of the main substrate 13 and the terminal 142a of the image sensor substrate 142 without difficulty. Therefore, in the vehicle-mounted camera 1, the flexible substrate 50 can easily connect the main substrate 13 and the imaging element substrate 142.
  • bent portions 55a and 55b can be flexibly deformed except in the directions along the bending axes Pa and Pb. Therefore, the bent portions 55a and 55b can absorb the stress applied to the flexible substrate 50 connected to the main substrate 13 and the image pickup device substrate 142 in the directions other than the directions along the bending axes Pa and Pb by deformation. is there.
  • the bending axes Pa and Pb intersect at an angle ⁇ in the unfolded state, so that the bent portions 55a and 55b in the bent state are made different from each other in the directions in which they are difficult to deform.
  • the bending portions 55a and 55b can absorb the stress applied to the flexible substrate 50 in all directions.
  • the bending portions 55a and 55b can absorb the stress applied during the manufacture of the vehicle-mounted camera 1 and the stress applied during the use of the vehicle-mounted camera 1 due to physical impact or thermal expansion. As a result, the vehicle-mounted camera 1 can obtain higher reliability.
  • the angle ⁇ between the bending axes Pa and Pb is determined according to the inclination between the main board 13 and the image pickup element board 142. That is, in the configuration illustrated in FIG. 17, the angle formed between the first connection portion 53 and the second connection portion 54 (the angle ⁇ between the bending axes Pa and Pb) is the main substrate 13 and the image pickup device substrate 142. It is preferable that it is the same as the angle formed between. As a result, the bending portions 55a and 55b of the flexible substrate 50 attached to the main substrate 13 and the image pickup device substrate 142 can be deformed without difficulty, so that the stress applied to the flexible substrate 50 is more effectively absorbed.
  • the angle formed between the main substrate 13 and the image sensor substrate 142 is set based on the angle of the windshield M01 set for each vehicle type of the automobile M. Therefore, when the angle ⁇ between the bending axes Pa and Pb is the same as the angle formed between the main substrate 13 and the image pickup element substrate 142, the angle ⁇ between the bending axes Pa and Pb is also different for each vehicle type of the automobile M. It is based on the set angle of the windshield M01.
  • the bent portions 55a and 55b can change the orientation of the connection path between the connection portions 53 and 54 three-dimensionally twice.
  • the connection path between the connection portions 53 and 54 on the flexible substrate 50 can be freely determined according to the arrangement of other electronic components.
  • connection path between the connection portions 53 and 54 in the flexible substrate 50 can be determined in consideration of the position of the crystal oscillator 142b for controlling the image sensor.
  • the crystal oscillator 142b is mounted in a region on the left side in the Y-axis direction of the mounting surface facing the rear side in the X-axis direction of the image sensor substrate 142.
  • the crystal oscillator 142b has a crystal oscillator.
  • crosstalk may occur with a signal flowing through the flexible substrate 50.
  • the clock generated by the crystal oscillator 142b is not stable, or noise is superimposed on the signal line, which causes an abnormality in the image generated by the image sensor. There are cases.
  • the flexible substrate 50 connects the main substrate 13 and the image pickup device substrate 142 through a connection path that does not pass near the crystal oscillator 142b.
  • the flexible substrate 50 shown in FIG. 17 passes through a region on the left side in the Y-axis direction of the terminal 142a in which the crystal oscillator 142b is arranged in a state of being attached to the main substrate 13 and the image pickup device substrate 142 shown in FIG.
  • the second connection portion 54 connected to the terminal 142a is pulled out to the right in the Y-axis direction so as not to exist.
  • the flexible substrate 50 may have a configuration in which the positions of electronic components other than the crystal oscillator 142b on the imaging element substrate 142 are taken into consideration.
  • the relative positions of the connecting portions 53 and 54 can be arbitrarily changed by changing the dimensions of the extending portions 51 and 52 and the positions of the bent portions 55a and 55b. Therefore, in the vehicle-mounted camera 1, the position of the terminal 132 of the main substrate 13, the position of the terminal 142a of the image sensor substrate 142, and the connection path of the flexible substrate 50 can be arbitrarily determined.
  • the positions of the terminals 132 of the main substrate 13, the positions of the terminals 142a of the image sensor substrate 142, and the connection paths of the flexible substrate 50 are very limited.
  • the flexible substrate 50 can meet such a demand accompanying the miniaturization of the vehicle-mounted camera 1.
  • FIG. 19 and 20 show the configuration on the mounting surface of the main board 13.
  • FIG. 19 is a plan view showing the first mounting surface J1 on the upper side in the Z-axis direction of the main board 13.
  • FIG. 20 is a bottom view showing the second mounting surface J2 on the lower side of the main board 13 in the Z-axis direction.
  • the imaging unit 14 On the first mounting surface J1 of the main board 13 shown in FIG. 19, the imaging unit 14 is arranged in the central area. Further, the power supply unit 136 is arranged at the rear of the first mounting surface J1 in the X-axis direction. Further, the MCU 133 is disposed in front of the imaging unit 14 on the first mounting surface J1 in the X-axis direction, and the first area A1 surrounded by the alternate long and short dash line is disposed.
  • a sensing IC 137 is mounted on the second mounting surface J2 of the main board 13 shown in FIG. Since the sensing IC 137 is connected to many electronic components including the MCU 133, the sensing IC 137 is arranged in the central region. The sensing IC 137 performs various analysis processes of the vehicle-mounted camera 1 (object detection, distance measurement to an object, front collision warning, lane keeping, etc.).
  • the MCU 133 has a function of converting the sensing result sent from the sensing IC 137 by serial communication into CAN (Controller Area Network) data.
  • the MCU 133 also has a function of monitoring the operation of the sensing IC 137 and stopping the energization by the power supply unit 136 to reset the sensing IC 137 when an abnormality occurs.
  • the second area A2 and the third area A3, which are surrounded by the one-dot chain line, are arranged on the second mounting surface J2 of the main board 13 shown in FIG. 20, the second area A2 and the third area A3, which are surrounded by the one-dot chain line, are arranged.
  • the second area A2 is arranged so as to surround the front side in the X-axis direction and the lateral side in the Y-axis direction of the sensing IC 137.
  • the third region A3 is arranged behind the sensing IC 137 in the X-axis direction.
  • FIGS. 19 and 20 the outline of the configuration on the opposite mounting surfaces J1 and J2 is shown by broken lines. That is, in FIG. 19, the sensing IC 137 arranged on the second mounting surface J2 is shown by a broken line.
  • the terminals 132, the imaging unit 14, the MCU 133, and the power supply unit 136 arranged on the first mounting surface J1 are indicated by broken lines.
  • the first area A1 of the first mounting surface J1 of the main board 13 shown in FIG. 19 is located directly behind the sensing IC 137. Therefore, a large number of bypass capacitors necessary for stable operation of the sensing IC 137 are arranged in the first area A1.
  • a bypass capacitor for the power supply unit 136 is also arranged in the first area A1.
  • a plurality of DDR (Double Data Rate) memories are mounted in the second area A2 of the second mounting surface J2 of the main board 13 shown in FIG. Since the plurality of DDR memories need to be connected to the sensing IC 137 by as short equal-length wiring as possible, they need to be arranged in the second area A2 surrounding the sensing IC 137.
  • DDR Double Data Rate
  • other electronic components connected to the sensing IC 137 are arranged.
  • Examples of other electronic components arranged in the second area A2 of the second mounting surface J2 include various memories other than DDR memory such as flash memory, and various power storage components such as capacitors.
  • the third area A3 of the second mounting surface J2 of the main board 13 is located directly behind the power supply unit 136. Since the power supply unit 136 has many tall and large-sized components, it is difficult to secure a region on the first mounting surface J1 in which the driver can be connected to the power supply unit 136 in a short distance. Therefore, the driver of the power supply unit 136 has to be arranged in the third region A3 of the second mounting surface J2.
  • electronic components other than the driver related to the power supply unit 136 are also arranged in the third area A3 of the second mounting surface J2 of the main board 13. Further, in the third region A3 of the second mounting surface J2, in addition to the electronic components related to the power supply unit 136, for example, a CAN driver for processing CAN data generated by the MCU 133 or the like is arranged.
  • the area in which the terminals 132 of the main board 13 can be arranged is more and more limited as the size and functionality of the vehicle-mounted camera 1 are further improved.
  • the flexible substrate according to the present embodiment can be configured to easily connect the main substrate 13 and the image pickup device substrate 142 regardless of the position of the terminal 132 of the main substrate 13.
  • the flexible substrate 50 according to the present embodiment is not limited to the above configuration, and in the expanded state, the first bending portion 55a and the first bending portion 55a that bend along the first bending axis Pa and the second bending axis Pb that intersect each other. Any configuration may be used as long as it has two bent portions 55b. As an example, the flexible substrate 50 may have the configuration shown in FIGS. 21 and 22.
  • FIGS. 21 and 22 show a flexible substrate 50 according to a modified example.
  • FIG. 21 is a plan view of the flexible substrate 50 in the unfolded state.
  • FIG. 21 is a perspective view of the flexible substrate 50 in a bent state.
  • the configuration of the flexible substrate 50 shown in FIGS. 21 and 22 different from the configuration shown in FIGS. 16 and 17 will be described below.
  • the first extending portion 51 is provided with two first bending portions 55a1 and 55a2 that can be bent along mutually parallel first bending axes Pa1 and Pa2. Further, in the flexible substrate 50 according to the modified example, in the unfolded state, the bending axes Pa1 and Pa2 and the second bending axis Pb are orthogonal to each other, and the intersecting angle is 90 °.
  • the first bent portion 55a1 is bent downward in the Z-axis direction, the first bent portion 55a2 is further bent outward in the Y-axis direction from the unfolded state shown in FIG.
  • the second bent portion 55b is bent upward in the Z-axis direction. As a result, the flexible substrate 50 is in the bent state shown in FIG.
  • the angle formed between the first connecting portion 53 and the second connecting portion 54 is determined according to the inclination between the main substrate 13 and the image pickup device substrate 142. That is, the angle formed between the first connection portion 53 and the second connection portion 54 is preferably the same as the angle formed between the main substrate 13 and the image pickup device substrate 142.
  • the angle formed between the main substrate 13 and the image sensor substrate 142 is set based on the angle of the windshield M01 set for each vehicle type of the automobile M. Therefore, when the angle formed between the first connection portion 53 and the second connection portion 54 is the same as the angle formed between the main substrate 13 and the image pickup device substrate 142, the first connection portion 53 and the second connection portion.
  • the angle formed with 54 is also based on the angle of the windshield M01 set for each vehicle type of the automobile M.
  • the vehicle-mounted camera 1 can obtain higher reliability.
  • the flexible substrate 50 may have a plurality of second bent portions 55b, and further has another bent portion that can be bent along a bending axis extending in a direction different from the bending axes Pa and Pb. May be.
  • the vehicle-mounted camera 1 has a structure for preventing foreign matter such as cutting chips from entering the space inside the raised portion 22 when the screw member S is fastened to the frame 20. As a result, in the vehicle-mounted camera 1, it is possible to prevent problems such as a malfunction of the electric circuit due to the entry of foreign matter into the space inside the raised portion 22.
  • FIG. 23 is a cross-sectional view of the frame 20 taken along the line AA 'in FIG. That is, FIG. 23 shows the raised portion 22 along the YZ plane, and shows the rear portion of the raised portion 22 in the X-axis direction from the front. For convenience of description, FIG. 23 shows a screw member S for fixing the main substrate 13, the bottom case 12, and the shield plate 16 to the frame 20.
  • a screw member S penetrates the screw hole portion 212 for fixing the main board 13 from the lower side to the upper side in the Z-axis direction.
  • the screw member S penetrates the screw hole portion 241 for fixing the bottom case 12 from the rear side to the front side in the X-axis direction.
  • the screw member S penetrates the screw hole portion 252 for fixing the shield plate 16 from the upper side to the lower side in the Z-axis direction.
  • each of the screw members S fastened to the screw hole portions 212, 241, 252 is exposed in the space inside the raised portion 22 of the frame 20. Therefore, when the screw member S is screwed into the screw hole portions 212, 241, 252, foreign matter such as cutting chips is easily mixed into the space inside the raised portion 22.
  • the screw hole portion 212, the screw hole portion 241, and the screw hole portion 252 are provided as a structure for preventing foreign matter from entering the space inside the raised portion 22 of the frame 20. It is preferable to provide a first cap member 41, a second cap member 42, and a third cap member 43 that cover the raised portion 22 from the inside.
  • FIG. 24 is an exploded perspective view of the first cap member 41 that covers the screw hole portion 212 of the frame 20.
  • the cap member 41 has a laminated structure including a main body layer 411, a sealing layer 412, an adhesive layer 413, and an adhesive layer 414.
  • the adhesive layers 413 and 414 are provided on both surfaces of the main body layer 411 that face each other in the thickness direction.
  • the main body layer 411 and the adhesive layers 413 and 414 are formed with openings 415 penetrating in the thickness direction.
  • the sealing layer 412 is adhered on the adhesive layer 413 and seals the opening 415.
  • the cap member 41 has a cap shape in which the opening 415 is opened only on the side of the adhesive layer 414 opposite to the adhesive layer 413.
  • FIG. 25 is a cross-sectional view showing a state where the cap member 41 is attached to the frame 20 shown in FIG.
  • the cap member 41 is bonded to the frame 20 by the adhesive layer 414 having the opening 415 opened.
  • the cap member 41 is arranged in each of the screw hole portions 212 such that the screw hole portions 212 enter the inside of the opening 415.
  • the cap member 41 closes the region where the tip of the screw member S fastened to the screw hole portion 212 projects from below in the Z-axis direction. Therefore, the foreign matter generated when the screw member S is screwed into the screw hole portion 212 remains in the opening 415 of the cap member 41 and is not discharged to the outside of the opening 415 of the cap member 41.
  • the function of closing the screw hole portion 212 is ensured even if a very thin sealing layer 412 of, for example, about 0.1 mm is used. Therefore, in the vehicle-mounted camera 1, it is possible to save the space in the raised portion 22 of the frame 20 by suppressing the amount of protrusion of the cap member 41 inward of the raised portion 22 of the frame 20.
  • FIG. 26 is a cross-sectional view showing the manufacturing process of the cap member 41.
  • the laminated sheet 41a is prepared.
  • the laminated sheet 41a is a large-sized sheet having a main body sheet 411a corresponding to the main body layer 411, a sealing sheet 412a corresponding to the sealing layer 412, and adhesive sheets 413a and 414a corresponding to the adhesive layers 413 and 414. is there.
  • the laminated sheet 41a is placed on the holding plate H with the adhesive sheet 414a facing upward. Then, the punching dies B1 and B2 are arranged above the laminated sheet 41a with the cutting edges facing downward. The cutting edge of the cutting die B2 is located higher than the cutting edge of the cutting die B1 by the thickness of the sealing sheet 412a.
  • the blade of the cutting die B1 is formed in a shape corresponding to the outer shape of the cap member 41.
  • the blade of the punching die B2 is formed in a shape corresponding to the opening 415 of the cap member 41.
  • the punching dies B1 and B2 are fixed to each other at the top, and are movable in the vertical direction as a unit while maintaining their relative positions.
  • the laminated sheets 41a are punched out by lowering the punching dies B1 and B2 as shown in FIG. 26 (B).
  • the die B1 reaches the holding plate H and cuts all the sheets 411a, 412a, 413a, 414a of the laminated sheet 41a. Thereby, the outer shape of the cap member 41 is formed.
  • the cutting die B2 stays in front of the holding plate H and does not penetrate the lowermost sealing sheet 412a. Therefore, the cutting die B2 cuts the sheets 411a, 413a, 414a, but does not cut only the lowermost sealing sheet 412a. As a result, the opening 415 of the cap member 41 is formed.
  • the cutting dies B1 and B2 are raised from the state shown in FIG. 26 (B). Then, in the laminated sheet 41a, a portion outside the cutting die B1 and a portion inside the cutting die B2 are removed, and only a portion between the cutting dies B1 and B2 is left. As a result, the cap member 41 is obtained as shown in FIG.
  • the cap member 41 can be easily manufactured by only one punching operation. Further, a large number of cap members 41 can be manufactured at one time by punching the laminated sheet 41a at the same time using a plurality of punching dies B1 and B2. Thereby, the cap member 41 can be manufactured at low cost. Of course, if necessary, the punching operation for the laminated sheet 41a may be performed for each of the punching dies B1 and B2.
  • the material forming the main body layer 411 of the cap member 41 is not limited to a particular type, but is preferably a resin material having excellent punchability.
  • the resin material excellent in punching property include urethane cushion, sponge, and elastomer.
  • the material forming the sealing layer 412 of the cap member 41 is not limited to a specific type, and for example, polycarbonate (PC) or polyethylene terephthalate (PET) can be used. ..
  • As the adhesive layers 413 and 414 of the cap member 41 for example, an inexpensive double-sided adhesive tape or the like can be used.
  • FIG. 27A is an exploded perspective view of the second cap member 42 that covers the screw hole portion 241 of the frame 20.
  • FIG. 27B is a perspective view of the third cap member 43 that covers the screw hole portion 252 of the frame 20.
  • the cap members 42, 43 can be manufactured by using the same material as the first cap member 41 and by the same manufacturing method.
  • the cap member 42 has a laminated structure including a main body layer 421, a sealing layer 422, an adhesive layer 423, and an adhesive layer 424.
  • the cap member 43 has a laminated structure including a main body layer 431, a sealing layer 432, an adhesive layer 433, and an adhesive layer 434.
  • the cap members 42 and 43 are configured to collectively close the two screw hole portions 241 and 252.
  • each of the cap members 42 and 43 has an elongated shape so that the two screw hole portions 241 and 252 arranged at both ends of the frame 20 in the Y-axis direction can be simultaneously closed.
  • the cap members 42 and 43 are provided with two openings 425 and 435 corresponding to the two screw hole portions 241 and 252 at both ends in the longitudinal direction, respectively.
  • FIG. 28 is a cross-sectional view showing a state where the cap members 42 and 43 are attached to the frame 20 shown in FIG. As shown in FIG. 28, in the frame 20, the screw hole portion 241 is closed by the cap member 42 from the front in the X-axis direction, and the screw hole portion 252 is closed by the cap member 43 from the lower side in the Z-axis direction.
  • the cap member according to the present embodiment can also be configured with three or more openings when there are three or more screw hole portions to be closed on the same plane.
  • the cap members 42 and 43 can suppress the amount of protrusion of the frame 20 to the inside of the raised portion 22 to be small. Therefore, as shown in FIG. 28, the cap members 42 and 43 can reasonably close the screw hole portions 241 and 252 provided at positions close to each other on mutually orthogonal surfaces.
  • the vehicle-mounted camera 1 may include a plurality of image capturing units 14.
  • the plurality of imaging element substrates 142 are connected to the common main substrate 13 by the plurality of flexible substrates 50 provided for each imaging unit 14.
  • the vehicle-mounted camera 1 can be installed not only in the windshield M01 but also in the rear window M02 as a rear sensing camera. Furthermore, the application of the vehicle-mounted camera 1 may be, for example, viewing instead of sensing. In this case as well, the vehicle-mounted camera 1 has an advantage that both miniaturization and high functionality can be compatible.
  • the method of installing the vehicle-mounted camera 1 on the inner surface of the windshield M01 is not limited to the configuration using the bracket 2 as shown in FIG.
  • the vehicle-mounted camera 1 may be fixed to the windshield M01 via a member other than the bracket 2, or may be directly bonded to the inner surface of the windshield M01.
  • vehicle-mounted camera 1 is not limited to the automobile M and can be applied to various moving bodies.
  • moving bodies to which the vehicle-mounted camera 1 can be applied include automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), and the like. Be done.
  • the drive control system S100 (Outline)
  • the drive control system S100 is a system for controlling the drive of the automobile M using the vehicle-mounted camera 1 described above. Specifically, the drive control system S100 controls the driving force generation mechanism M11, the braking mechanism M12, the steering mechanism M13, etc. of the automobile M using the image captured by the vehicle-mounted camera 1.
  • the image captured by the vehicle-mounted camera 1 is sent to the drive control system S100 in the state of high-quality image data (raw image data) that has not been compression-encoded.
  • the drive control system S100 can be configured according to the function required of the automobile M. Specifically, examples of the functions that can be realized by the drive control system S100 include a driving assistance function and an automatic driving function. Hereinafter, the configuration of the drive control system S100 capable of realizing the driving assistance function and the automatic driving function will be described.
  • the driving assistance function is typically an ADAS (Advanced Driver Assistance System) function that includes collision avoidance, impact mitigation, follow-up traveling (maintaining the following distance), vehicle speed maintenance traveling, collision warning, lane departure warning, and the like. ..
  • ADAS Advanced Driver Assistance System
  • the drive control system S100 can be configured to realize these driving assist functions.
  • FIG. 29 is a block diagram showing a configuration of a drive control system S100 capable of realizing a driving assistance function.
  • the drive control system S100 includes the vehicle-mounted camera 1, a processing unit S110, an information generation unit S120, and a drive control unit S130.
  • the processing unit S110 includes an image processing unit S111, a recognition processing unit S112, and a calculation processing unit S113.
  • Each component of the drive control system S100 is connected by a communication network.
  • This communication network may be an in-vehicle communication network conforming to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark).
  • FIG. 30 is a flowchart showing a drive control method by the drive control system S100 shown in FIG.
  • the drive control method shown in FIG. 30 includes an imaging step ST11, an image processing step ST12, a recognition processing step ST13, an object information calculation step ST14, a drive control information generation step ST15, and a drive control signal output step ST16.
  • the vehicle-mounted camera 1 images the landscape in front of the automobile M through the windshield M01 to generate a raw image.
  • the vehicle-mounted camera 1 transmits the raw image to the processing unit S110 by the in-vehicle communication unit mounted on the main board 13, for example.
  • the processing unit S110 typically includes an ECU (Electronic Control Unit), and processes the raw image generated by the vehicle-mounted camera 1. More specifically, in the processing unit S110, the image processing unit S111 performs the image processing step ST12, the recognition processing unit S112 performs the recognition processing step ST13, and the calculation processing unit S113 performs the object information calculation step ST14.
  • ECU Electronic Control Unit
  • the image processing unit S111 performs image processing on the raw image to generate a processed image.
  • the image processing by the image processing unit S111 is typically processing for making it easier to recognize an object in a raw image, and is, for example, automatic exposure control, automatic white balance adjustment, high dynamic range synthesis, or the like.
  • the image processing step ST12 at least a part of the image processing may be performed by the image processing unit mounted on the main board 13 of the vehicle-mounted camera 1.
  • the image processing unit S111 may not be included in the processing unit S110.
  • the recognition processing unit S112 performs recognition processing on the processed image to recognize an object in the processed image.
  • the objects recognized by the recognition processing unit S112 are not limited to three-dimensional objects, and include, for example, vehicles, pedestrians, obstacles, traffic lights, traffic signs, road lanes, sidewalk curbs, and the like. Be done.
  • the calculation processing unit S113 calculates the object information regarding the object in the processed image.
  • Examples of the object information calculated by the calculation processing unit S113 include the shape of the object, the distance to the object, the moving direction and moving speed of the object, and the like.
  • the calculation processing unit S113 uses a plurality of temporally continuous processed images to calculate the dynamic object information.
  • FIG. 31 shows an example of the processed image G generated by the image processing unit S111.
  • the processed image G shown in FIG. 31 shows the preceding vehicle MF and two lanes L1 and L2 that define the traveling lane.
  • the vanishing point U may be obtained from another object regardless of the lanes L1 and L2.
  • the calculation processing unit S113 can also obtain the vanishing point U by using a curb of a sidewalk, a moving path of a fixed object such as a traffic sign in a plurality of processed images, or the like.
  • the inter-vehicle distance from the preceding vehicle MF can be obtained using the distances D0 and D1.
  • the inter-vehicle distance from the preceding vehicle MF can be calculated by using the ratio of the distance D0 and the distance D1.
  • the distance to the object can be accurately calculated by the configuration in which the allowable range of the focus position shift of the optical unit 141 is small.
  • the processing unit S110 transmits the data including the processed image and the object information obtained in steps ST12 to ST14 to the information generation unit S120.
  • the processing unit S110 is not limited to the above configuration, and may include, for example, a configuration other than the image processing unit S111, the recognition processing unit S112, and the calculation processing unit S113.
  • the information generation unit S120 In the drive control information generation step ST15, the information generation unit S120 generates drive control information including drive content required for the automobile M. More specifically, the information generation unit S120 determines the drive content to be executed by the automobile M based on the data transmitted from the processing unit S110, and generates drive control information including this drive content.
  • the driving contents of the automobile M include, for example, speed changes (acceleration and deceleration) and traveling direction changes.
  • the information generating unit S120 determines that deceleration is necessary when the distance between the vehicle M and the preceding vehicle MF is small, and when the vehicle M is likely to depart from the lane, the traveling direction toward the center of the lane. It is judged that the change of is necessary.
  • the information generation unit S120 transmits drive control information to the drive control unit S130.
  • the information generation unit S120 may generate information other than the drive control information.
  • the information generation unit S120 may detect the brightness of the surrounding environment from the processed image and generate the illumination control information for turning on the headlight of the automobile M when the surrounding environment is dark.
  • the drive control unit S130 outputs a drive control signal based on the drive control information.
  • the drive control unit S130 can accelerate the vehicle M by the driving force generation mechanism M11, decelerate the vehicle M by the braking mechanism M12, and change the traveling direction of the vehicle M by the steering mechanism M13.
  • the automatic driving function is a function of causing the automobile M to travel autonomously without being operated by the driver.
  • a higher level of drive control than the driving assistance function is required.
  • the drive control system S100 can more accurately execute advanced drive control capable of realizing an automatic driving function.
  • FIG. 32 is a block diagram showing the configuration of a drive control system S100 capable of realizing an automatic driving function.
  • the drive control system S100 further includes a mapping processing unit S114 and a path planning unit S115 included in the processing unit S110, in addition to the components shown in FIG.
  • mapping processing unit S114 and a path planning unit S115 included in the processing unit S110, in addition to the components shown in FIG.
  • path planning unit S115 included in the processing unit S110
  • FIG. 33 is a flowchart showing a drive control method by the drive control system S100 shown in FIG.
  • the drive control method shown in FIG. 33 includes a mapping processing step ST21 by the mapping processing unit S114 and a path planning step ST22 by the path planning unit S115 in addition to the steps shown in FIG.
  • mapping processing step ST21 and the path planning step ST22 are executed between the object information calculation step ST14 and the drive control information generation step ST15.
  • the path planning step ST22 is executed after the mapping processing step ST21.
  • the mapping processing unit S114 creates a digital map by performing spatial mapping using the processed image and object information.
  • the digital map created by the mapping processing unit S114 is a three-dimensional map configured by combining static information and dynamic information necessary for automatic driving.
  • mapping processing unit S114 can create a digital map having a larger amount of information by acquiring information other than the raw image from the vehicle-mounted camera 1.
  • the mapping processing unit S114 can acquire information from the surrounding information detection unit and the positioning unit provided in the automobile M.
  • the mapping processing unit S114 can acquire various information by communicating with various devices existing in the external environment via the communication unit outside the vehicle that enables communication with the outside of the vehicle.
  • the ambient information detection unit is configured as, for example, an ultrasonic sensor, a radar device, a LIDAR (Light Detection and Ranging, Laser Imaging and Detection Ranging) device, or the like.
  • the mapping processing unit S114 can also acquire information about the rear or side of the vehicle M, which is difficult to obtain from the vehicle-mounted camera 1, from the surrounding information detection unit.
  • the positioning unit is configured to receive a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) and perform positioning.
  • GNSS Global Navigation Satellite System
  • the mapping processing unit S114 can acquire information regarding the position of the automobile M from the positioning unit.
  • the communication unit outside the vehicle is, for example, GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution), LTE-A (LTE-Advanced), wireless LAN (Wi -(Also referred to as Fi (registered trademark)), Bluetooth (registered trademark), or the like.
  • GSM Global System of Mobile communications
  • WiMAX registered trademark
  • LTE registered trademark
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • Wi -(Also referred to as Fi registered trademark
  • Bluetooth registered trademark
  • the path planning unit S115 executes path planning for determining the traveling route of the automobile M using the digital map.
  • Path planning includes various processes such as detection of an empty space on a road and prediction of movement of an object such as a vehicle or a person.
  • the processing unit S110 adds the data including the processed image and the object information obtained in steps ST12 to ST14 to the data including the digital map and the path planning result obtained in steps ST21 and ST22.
  • the information is collectively transmitted to the information generating unit S120.
  • the information generation unit S120 In the drive control information generation step ST15, the information generation unit S120 generates drive control information including drive content for causing the automobile M to travel on the traveling route according to the path planning determined in the path planning step ST22. The information generation unit S120 transmits the generated drive control information to the drive control unit S130.
  • the drive control unit S130 outputs a drive control signal based on the drive control information. That is, the drive control unit S130 performs drive control of the drive force generation mechanism M11, the braking mechanism M12, the steering mechanism M13, and the like so that the vehicle M can safely travel on the traveling route as in path planning.
  • the detection position of the object may shift in an out-of-focus image, resulting in poor accuracy.
  • such a process can be accurately performed by the configuration in which the allowable range of the focus position shift of the optical unit 141 is small.
  • the configuration of the drive control system S100 is described as being different from the in-vehicle camera 1 in other configurations (blocks).
  • any block in the drive control system S100 may be included in the vehicle-mounted camera 1.
  • a circuit having the function of each block is arranged on the main board 13 (or another circuit board electrically connected to the main board 13) in the vehicle-mounted camera 1.
  • the image processing unit S111 may be included in the vehicle-mounted camera 1.
  • a circuit having the function of the image processing unit S111 is arranged on the main board 13 in the vehicle-mounted camera 1 (or another circuit board electrically connected to the main board 13).
  • the processing unit S110 including a plurality of blocks may be included in the vehicle-mounted camera 1.
  • a circuit having the function of each block included in the processing unit S110 is arranged on the main board 13 (or another circuit board electrically connected to the main board 13) in the vehicle-mounted camera 1.
  • the drive control system S100 may be one device.
  • a circuit having the function of each block included in the drive control system S100 is arranged on the main board 13 in the vehicle-mounted camera 1 (or another circuit board electrically connected to the main board 13).
  • An image pickup device substrate having a first terminal; A main substrate having a second terminal, A first connecting portion connected to the first terminal, a second connecting portion connected to the second terminal, and a first connecting portion and a second connecting portion, which are located between the first connecting portion and the second connecting portion and are in a mutually expanded state.
  • a flexible substrate having first and second bent portions that are bent along first and second bending axes that intersect with each other, In-vehicle camera equipped with.
  • the flexible substrate further includes a first extending portion provided with the first bent portion and a second extending portion provided with the second bent portion, An in-vehicle camera in which the first extending portion extends in a direction orthogonal to the first bending axis and the second extending portion extends in a direction orthogonal to the second bending axis in the expanded state of the flexible substrate.
  • An in-vehicle camera in which the first bending axis and the second bending axis are orthogonal to each other in the expanded state of the flexible substrate.
  • the vehicle-mounted camera according to any one of (1) to (3) above The vehicle-mounted camera further comprising an optical unit having an optical axis extending in the thickness direction of the image pickup element substrate.
  • the image pickup device substrate further has a crystal oscillator, An in-vehicle camera in which the flexible substrate does not pass over the crystal oscillator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

【課題】メイン基板と撮像素子基板とを接続するフレキシブル基板に加わる応力を良好に吸収可能な車載カメラを提供する。 【解決手段】車載カメラは、撮像素子基板と、メイン基板と、フレキシブル基板と、を具備する。上記撮像素子基板は、第1端子を有する。上記メイン基板は、第2端子を有する。上記フレキシブル基板は、上記第1端子に接続される第1接続部と、上記第2端子に接続される第2接続部と、上記第1接続部と上記第2接続部との間に位置し、展開状態において相互に交差する第1及び第2屈曲軸に沿って屈曲する第1及び第2屈曲部と、を有する。この車載カメラでは、フレキシブル基板に加わる任意の方向の応力を吸収可能である。

Description

車載カメラ
 本技術は、移動体の外部環境を撮像可能な車載カメラに関する。
 自動車の駆動制御のためにフロントカメラを利用する技術が知られている(例えば、特許文献1参照)。特許文献1に記載されたフロントカメラでは、撮像素子基板が撮像素子を前方に向けた状態でレンズの後方に配置される。これにより、このフロントカメラでは、前方の外部環境からレンズに入射する光を撮像素子に入射させることができる。
 このフロントカメラは、駆動制御を統括するメイン基板を有する。メイン基板は、レンズ及び撮像素子基板の下方に、水平方向に延びている。撮像素子基板は、上下方向に延びるフレキシブル基板によってメイン基板に接続されている。これにより、このフロントカメラでは、撮像素子基板とメイン基板との間での信号の送受が可能となる。
特開2018-45482号公報
 一般的に、フレキシブル基板は、厚さ方向に柔軟性を持つものの、厚さ方向と直交する面内方向には柔軟性を持たない。このため、上記のようなフロントカメラのフレキシブル基板では、前後方向に加わる応力は吸収するものの、左右方向に加わる負荷応力は吸収できずに、撮像素子基板及びメイン基板に対する接続部に負荷が加わる。
 以上のような事情に鑑み、本技術の目的は、メイン基板と撮像素子基板とを接続するフレキシブル基板に加わる応力を良好に吸収可能な車載カメラを提供することにある。
 上記目的を達成するため、本技術の一形態に係る車載カメラは、撮像素子基板と、メイン基板と、フレキシブル基板と、を具備する。
 上記撮像素子基板は、第1端子を有する。
 上記メイン基板は、第2端子を有する。
 上記フレキシブル基板は、上記第1端子に接続される第1接続部と、上記第2端子に接続される第2接続部と、上記第1接続部と上記第2接続部との間に位置し、展開状態において相互に交差する第1及び第2屈曲軸に沿って屈曲する第1及び第2屈曲部と、を有する。
 この構成では、フレキシブル基板に加わる応力を第1及び第2屈曲部によって吸収することができる。特に、第1及び第2屈曲部は、相互に交差する第1及び第2屈曲軸に沿って屈曲する構成により、フレキシブル基板に加わる任意の方向の応力を吸収可能である。このようなフレキシブル基板を有する車載カメラでは、高い信頼性が得られる。
 上記フレキシブル基板は、上記第1屈曲部が設けられた第1延在部と、上記第2屈曲部が設けられた第2延在部と、を更に有してもよい。上記フレキシブル基板の上記展開状態において、上記第1延在部が上記第1屈曲軸と直交する方向に延び、上記第2延在部が上記第2屈曲軸と直交する方向に延びていてもよい。
 上記フレキシブル基板の上記展開状態において、上記第1屈曲軸と上記第2屈曲軸とが相互に直交してもよい。
 上記車載カメラは、上記撮像素子基板の厚さ方向に延びる光軸を有する光学ユニットを更に具備してもよい。
 上記撮像素子基板は、水晶発振器を更に有してもよい。上記フレキシブル基板は、上記水晶発振器上を通らなくてもよい。
本技術の一実施形態に係る車載カメラが搭載された自動車の斜視図である。 上記車載カメラの斜視図である。 上記車載カメラを装着可能なブラケットの斜視図である。 上記車載カメラの分解斜視図である。 上記車載カメラのフレームの斜視図である。 上記車載カメラのメイン基板の斜視図である。 上記車載カメラの撮像部の斜視図である。 上記車載カメラのメイン基板及び撮像部をフレームに取り付けた状態を示す斜視図である。 上記車載カメラの押圧部材の斜視図である。 図8に示すフレームに押圧部材を取り付けた状態を示す斜視図である。 上記車載カメラのボトムケースの斜視図である。 図10に示すフレームにボトムケースを取り付けた状態を示す斜視図である。 上記車載カメラのシールドプレートの斜視図である。 図12に示すフレームにシールドプレートを取り付けた状態を示す斜視図である。 上記車載カメラのフロントケースの斜視図である。 上記撮像部のフレキシブル基板の展開図である。 上記フレキシブル基板の斜視図である。 上記メイン基板及び上記撮像部の斜視図である。 上記メイン基板及び上記撮像部の平面図である。 上記メイン基板及び上記撮像部の底面図である。 上記実施形態の変形例に係るフレキシブル基板の展開図である。 上記変形例に係るフレキシブル基板の斜視図である。 上記フレームの図5のA-A'線に沿った断面図である。 上記車載カメラの第1キャップ部材の分解斜視図である。 図23に示すフレームに第1キャップ部材を取り付けた状態を示す断面図である。 上記第1キャップ部材の製造過程を示す断面図である。 上記車載カメラの第2及び第3キャップ部材の分解斜視図である。 図25に示すフレームに第2及び第3キャップ部材を取り付けた状態を示す断面図である。 本技術の一実施形態に係る駆動制御システムにおける運転補助機能を実現可能な構成を示すブロック図である。 上記駆動制御システムによる駆動制御方法を示すフローチャートである。 上記駆動制御システムの算出処理部による先行車両との車間距離の算出方法の一例を説明するための図である。 上記駆動制御システムにおける自動運転機能を実現可能な構成を示すブロック図である。 上記駆動制御システムによる駆動制御方法を示すフローチャートである。
 以下、本技術の一実施形態について図面を参照しながら説明する。各図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。
[車載カメラ1の全体構成]
 図1は、本技術の一実施形態に係る車載カメラ1を搭載した自動車Mの斜視図である。自動車Mは、透明なガラス窓として、前方に配置されたウインドシールド(フロントウインドウ)M01と、後方に配置されたリアウインドウM02と、両側方に配置されたサイドウインドウM03と、を有する。
 車載カメラ1は、ウインドシールドM01の内面に設置されたフロントセンシングカメラである。車載カメラ1は、ウインドシールドM01の幅方向中央領域の上側に配置されている。これにより、車載カメラ1は、運転者の視界を遮ることなく、自動車Mの前方の風景を良好に撮像することができる。
 車載カメラ1が搭載される自動車Mは、走行機能を実現するために、その内部に、エンジンやモータなどを含む駆動力発生機構M11、制動機構M12、ステアリング機構M13などを備える。また、自動車Mは、周囲の情報を検出するための周囲情報検出部や、位置情報を生成するための測位部などを備えていてもよい。
 図2は、ウインドシールドM01に取り付ける前の車載カメラ1の斜視図である。車載カメラ1は、フロントケース11及びボトムケース12を有する。フロントケース11は、ボトムケース12のZ軸方向上側を覆うカバー部材として構成される。また、車載カメラ1は、レンズRを保持する光学ユニット141を含む撮像部14を有する。
 フロントケース11は、X-Y平面に沿って延びる平坦部111と、X軸方向後方に配置され、平坦部111からZ軸方向上方に突出する箱状の収容部112と、を有する。収容部112は、主にその内部に形成された空間に、撮像部14などの車載カメラ1の各構成を収容している。
 収容部112には、X軸方向前方を向いた正面のY軸方向中央部に、X軸方向に貫通するレンズ孔113が形成されている。レンズ孔113には、撮像部14の光学ユニット141が収容部112の内側から挿通されている。これにより、車載カメラ1では、光学ユニット141のレンズRがX軸方向前方に向けて外部空間に露出される。
 また、収容部112には、Y軸方向を向いた両側面にそれぞれ、Y軸方向外向きに突出する突出部114が設けられている。また、平坦部111のX軸方向前縁部のY軸方向中央部には、X軸方向前方に延出する延出片115が設けられている。突出部114及び延出片115は、車載カメラ1の設置のために用いられる。
 図3は、車載カメラ1を自動車MのウインドシールドM01の内面に設置するためのブラケット2の斜視図である。ブラケット2は、ウインドシールドM01の内面に固定されている。ブラケット2は、突出部114と係合可能な係合孔2aと、延出片115と係合可能なV字型の係合孔2bと、を有する。
 車載カメラ1は、フロントケース11をウインドシールドM01側に向けた状態で、図3にブロック矢印で示す方向にブラケット2に挿入される。そして、車載カメラ1は、延出片115が係合孔2bに挿入され、突出部114が係合孔2aに内側から嵌め込まれることにより、ブラケット2に固定される。
 このように、車載カメラ1は、ウインドシールドM01の内面に沿って、水平方向前方に向けて鉛直方向下方に傾くように設置される。これにより、車載カメラ1のウインドシールドM01からの突出量を小さく抑えることができるため、運転者のより広い視野の確保、及び車内の空間の有効利用などの観点から有利となる。
[車載カメラ1の各部の構成]
 図4は、車載カメラ1の分解斜視図である。車載カメラ1は、フレーム20と、メイン基板13と、押圧部材15と、シールドプレート16と、を更に有する。フレーム20は、車載カメラ1の骨格を成し、フロントケース11、ボトムケース12、メイン基板13、撮像部14、押圧部材15、及びシールドプレート16を保持する。
 図5は、フレーム20の斜視図である。フレーム20は、板金加工品であることが好ましく、例えば、ステンレスなどの金属の薄板材に塑性加工を加えることによって形成される。フレーム20は、X-Y平面に沿って延びる平坦部21と、フロントケース11の収容部112内で平坦部21からZ軸方向上方に隆起する隆起部22と、を有する。
 隆起部22は、前壁部23と、後壁部24と、上壁部25と、を有する。前壁部23及び後壁部24は、それぞれY-Z平面に沿って延びる平板状であり、相互にX軸方向に対向する。上壁部25は、X-Y平面に沿って延びる平板状であり、前壁部23及び後壁部24のZ軸方向上端部を相互に接続する。
 前壁部23には、Y軸方向中央部に、X軸方向に貫通するレンズ孔231が形成されている。レンズ孔231は、フロントケース11のレンズ孔113のX軸方向後方に隣接して配置される。フレーム20のレンズ孔231及びフロントケース11のレンズ孔113には、撮像部14の光学ユニット141が挿通される。
 また、前壁部23には、レンズ孔231に隣接する位置に、X軸方向に貫通する貫通孔部232が形成されている。更に、前壁部23には、Y軸方向両端部にそれぞれ、X軸方向に貫通する一対の貫通孔部233が形成されている。貫通孔部233は、撮像部14及びフロントケース11を固定するために用いられる。
 上壁部25には、中央領域に、Z軸方向に貫通する開口部251が形成されている。開口部251は、上壁部25のZ軸方向上方から隆起部22内の空間にアクセス可能なように広く開口している。開口部251には押圧部材15が嵌め込まれるため、開口部251の縁部は押圧部材15に対応した形状に形成される。
 また、フレーム20には、車載カメラ1の各部を固定するためのネジ孔部211,212,241,252が形成されている。ネジ孔部211,212は、平坦部21とつながっているX軸方向前方及び後方の領域に設けられ、Z軸方向に貫通している。ネジ孔部241は、後壁部24に設けられ、X軸方向に貫通している。ネジ孔部252は、上壁部25に設けられ、Z軸方向に貫通している。
 より詳細に、ネジ孔部211は、平坦部21のX軸方向前方の領域のY軸方向両端部にそれぞれ設けられ、メイン基板13及びボトムケース12を固定するために用いられる。ネジ孔部212は、平坦部21のX軸方向後方の領域のY軸方向両端部にそれぞれ設けられ、メイン基板13を固定するために用いられる。
 ネジ孔部241は、後壁部24のY軸方向両端部にそれぞれ設けられ、ボトムケース12を固定するために用いられる。ネジ孔部252は、上壁部25のY軸方向両端部にそれぞれ設けられ、シールドプレート16を固定するために用いられる。各ネジ孔部211,212,241,252は、使用するネジ部材Sに応じた雌ネジ形状に形成される。
 各ネジ孔部211,212,241,252への各部材の固定のために使用するネジ部材Sは、それぞれ任意に決定可能である。典型的には、ネジ部材Sは、頭部に形成された溝に係合させたドライバを回転させることによって各ネジ孔部211,212,241,252にねじ込むことで締結可能に構成された雄ネジである。
 また、フレーム20には、平坦部21のY軸方向両縁部からZ軸方向下方に屈曲する側板26が形成されている。側板26は、X-Z平面に沿って延び、X軸方向に細長い平板状である。側板26は、後述のボトムケース12の側板123との間にシールドプレート16を挟持するために用いられる。
 図6は、メイン基板13の斜視図である。メイン基板13は、X-Y平面に沿って延びる平板状の基材131を有する。基材131としては、各種セラミック基板や各種プラスチック基板などを利用可能である。基材131のZ軸方向上方を向いた実装面には、後述の撮像部14の撮像素子基板142に接続される端子132が設けられている。
 また、基材131の実装面には、MCU(Micro Controller Unit)133と、電源部136と、が設けられている。更に、基材131の実装面(Z軸方向両面)には、上記の構成以外にも、車載カメラ1の各種機能の実現に必要な電子部品が実装される。このような電子部品としては、例えば、各種のICやメモリやドライバなどが挙げられる。
 基材131には、Z軸方向に貫通する貫通孔部134,135が形成されている。貫通孔部134は、X軸方向前端部のY軸方向両端部にそれぞれ設けられ、フレーム20のネジ孔部211に固定される。貫通孔部135は、X軸方向後端部のY軸方向両端部にそれぞれ設けられ、フレーム20のネジ孔部212に固定される。
 図7は、撮像部14の斜視図である。撮像部14は、ホルダ30と、光学ユニット141と、撮像素子基板142と、フレキシブル基板50と、を有する。ホルダ30は、光学ユニット141と、撮像素子基板142と、を保持する。フレキシブル基板50は、撮像素子基板142に接続されている。
 光学ユニット141は、光軸を共通とするレンズRなどの光学部品を含み、光軸方向に沿って延びる円柱状である。ホルダ30は、光学ユニット141を保持する保持部31を有する。保持部31は、Y軸方向中央部に位置し、光学ユニット141の後端部の外周面を全周にわたって隙間なく保持する略円形の開口部として構成される。
 また、ホルダ30は、一対の柱状部32と、一対のネジ孔部33と、を有する。柱状部32は、ホルダ30のX軸方向前方を向いた正面のY軸方向両端部にそれぞれ設けられ、X軸方向前方に突出する円柱状に形成される。ネジ孔部33は、各柱状部32のX軸方向前方を向いた先端部から後方に向けて形成されている。
 更に、ホルダ30は、一対の規制面34を有する。規制面34は、各柱状部32のX軸方向後端部の周囲にそれぞれ延びる。各規制面34は、共通の平面上に位置する。加えて、ホルダ30は、正面側からZ軸方向後方に向けて形成されたネジ孔部35を更に有する。ネジ孔部35は、フレーム20の貫通孔部232に仮固定される。
 ホルダ30の柱状部32及び規制面34は、フレーム20に対する撮像部14及びフロントケース11の位置決めに用いられる。したがって、ホルダ30は、撮像部14及びフロントケース11の正確な位置決めのために、正確な形状に形成される必要がある。このため、ホルダ30としては、アルミニウムなどの金属のダイカスト品を用いることが好ましい。この場合、ホルダ30の規制面34としては、金属ダイカストの切削面を利用することが好ましい。また、ホルダ30としては、精度の高い樹脂成型品を使用することもできる。
 撮像素子基板142は、光学ユニット141の光軸と直交する平面に沿った平板状であり、ホルダ30の背面に配置されている。撮像素子基板142には、X軸方向前方を向いた実装面に撮像素子が実装されている。これにより、車載カメラ1の前方の外部環境から光学ユニット141に入射する光を撮像素子に入射させることができる。
 撮像素子基板142に実装される撮像素子は、特定の種類に限定されない。撮像素子としては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などを用いることができる。撮像素子基板142の基材としては、各種セラミック基板や各種プラスチック基板などを利用可能である。
 なお、本技術の車載カメラ1の構成は、撮像素子が縦4.32mm、横8.64mmのサイズ(1/1.7型)で数Mピクセル以上(特に、7Mピクセル以上)の画素数を有し、かつ光学ユニット141の焦点位置ずれの許容範囲が数μm(例えば、±3μm)以内である場合に特に好適である。また、本技術の車載カメラ1の構成は、撮像素子が1/1.7型で画素数が7Mピクセルの構成よりも画素の密度が高く、かつ光学ユニット141の焦点位置ずれの許容範囲が数μm(例えば、±3μm)以内である場合にも特に好適である。
 また、撮像素子基板142には、撮像素子以外にも、撮像部14の機能の実現に必要な他の各種部品を実装することができる。例えば、撮像素子基板142には、画像処理などを実行可能な処理部などを実装することができる。フレキシブル基板50は、撮像素子基板142とメイン基板13の端子132とを接続する。
 図8は、フレーム20にメイン基板13及び撮像部14を取り付けた状態を示す斜視図である。撮像部14は、フレーム20の前壁部23に、X軸方向後方から取り付けられる。その際、光学ユニット141がレンズ孔231にX軸方向前方に挿通され、柱状部32が貫通孔部233にX軸方向前方に挿通される。
 撮像部14は、フレーム20の貫通孔部232にX軸方向前方から挿入されたネジ部材Sをホルダ30のネジ孔部35に締結することにより、フレーム20に仮固定される。なお、完成品の車載カメラ1では、撮像部14のフレーム20への仮固定用のネジ部材Sは必要なくなるが、製造プロセスの便宜上、残しておいて差し支えない。
 メイン基板13は、貫通孔部135にZ軸方向下方から挿入されたネジ部材Sをフレーム20のネジ孔部212に締結することにより、フレーム20に固定される。なお、メイン基板13の貫通孔部134は、後の工程でフレーム20のネジ孔部211にネジ留めされるため、この段階ではフレーム20に固定されない。
 撮像部14のフレキシブル基板50は、図8に示す状態において、メイン基板13の端子132に接続される。フレキシブル基板50には、Z軸方向上方からフレーム20の開口部251を介してアクセス可能である。更に、車載カメラ1では、フレキシブル基板50をメイン基板13上に固定するために押圧部材15を用いる。
 図9は、押圧部材15の斜視図である。押圧部材15は、例えば、樹脂材料などによって形成される。押圧部材15は、Z軸方向下方を向いた押圧部151aと、X軸方向前方を向いた押圧部151bと、を有する。押圧部151a,151bには、クッション材Eが取り付けられている。押圧部材15は、押圧部151aによってフレキシブル基板50の一方の接続端子部をメイン基板13に押し付け、押圧部151bによってフレキシブル基板50の他方の接続端子部を撮像素子基板142に押し付ける。これにより、フレキシブル基板50がメイン基板13及び撮像素子基板142に固定される。
 押圧部材15は、Z軸方向上部に設けられた係合板152及び係合片153を有する。係合板152は、X-Y平面に沿って延び、X軸方向に細長い平板状である。係合片153は、Y軸方向両端部にそれぞれ設けられている。各係合片153は、Z軸方向に間隔をあけて設けられ、Y軸方向外側に向けて突出する一対の突出片で構成される。
 図10は、図8に示すフレーム20に押圧部材15が取り付けられた状態を示す斜視図である。係合板152は、Z軸方向上側から開口部251の縁部に係合し、開口部251上をX軸方向に架け渡されている。係合片153は、開口部251に嵌め込まれ、つまり開口部251の縁部を一対の突出片でZ軸方向上下から挟み込んでいる。
 これにより、押圧部材15は、フレーム20に固定される。押圧部材15は、この状態において、押圧部151a,152bがフレキシブル基板50の各接続端子部を適切に押圧するように構成されている。これにより、車載カメラ1では、フレキシブル基板50による撮像素子基板142とメイン基板13との接続をより確実に保持することができる。
 図11は、ボトムケース12の斜視図である。ボトムケース12は、例えば、アルミニウムなどの金属の薄板材に塑性加工を加えることによって形成される。ボトムケース12は、車載カメラ1の底面を構成する底板121と、底板121の縁部から屈曲する背板122及び側板123と、を有する。
 底板121は、X-Y平面に沿って延びる平板状である。背板122は、Y-Z平面に沿って延びる平板状であり、底板121のX軸方向後端部からZ軸方向上方に延びる。側板123は、X-Z平面に沿って延びる平板状であり、底板121のY軸方向両端部からそれぞれZ軸方向上方に延びる。
 底板121には、X軸方向前端部のY軸方向両端部にそれぞれ、Z軸方向に貫通する貫通孔部124が形成されている。背板122には、Y軸方向両端部にそれぞれ、X軸方向に貫通する貫通孔部125が形成されている。貫通孔部124,125はいずれも、ボトムケース12をフレーム20に固定するために用いられる。
 図12は、図10に示すフレーム20にボトムケース12を取り付けた状態を示す斜視図である。図12に示す状態では、ボトムケース12の貫通孔部124と、メイン基板13の貫通孔部134と、フレーム20のネジ孔部211とが、Z軸方向に重なることによって、一連の貫通孔を形成している。
 ボトムケース12は、貫通孔部125にX軸方向後方から挿入されたネジ部材Sをフレーム20のネジ孔部241に締結することにより、フレーム20に固定される。また、ボトムケース12は、貫通孔部124,134にZ軸方向下方から挿入されたネジ部材Sをフレーム20のネジ孔部211に締結することにより、フレーム20に固定される。
 フレーム20のネジ孔部211へのネジ部材Sの締結によって、フレーム20とボトムケース12との間に挟まれたメイン基板13も、フレーム20に固定される。これにより、ボトムケース12及びメイン基板13は、それぞれX軸方向前方及び後方の2ヶ所ずつにおいてフレーム20に安定して固定される。
 フレーム20の側板26は、ボトムケース12の側板123のY軸方向内側に配置されている。このため、フレーム20の側板26とボトムケース12の側板123との間には、Y軸方向の隙間Cが形成されている。側板26,123間の隙間Cには、シールドプレート16が組み込まれる。
 図13は、シールドプレート16の斜視図である。シールドプレート16は、例えば、ステンレスなどの金属の薄板材に塑性加工を加えることによって形成される。シールドプレート16は、天板161と、側板162と、板バネ部163と、を有する。シールドプレート16は、Y-Z平面に沿った略U字状の断面を有する。
 天板161は、X-Y平面に沿って延びる。側板162は、X-Z平面に沿って延び、天板161のY軸方向両端部からそれぞれZ軸方向下方に延びる。天板161は、フレーム20の隆起部22をZ軸方向上方から覆い、開口部251を閉塞する。側板162は、フレーム20の隆起部22内の空間をY軸方向両側方から覆う。
 天板161には、Y軸方向両端部にそれぞれ、Z軸方向に貫通する貫通孔部164が形成されている。板バネ部163は、各側板162から更にZ軸方向下方に延び、Y軸方向外向きにV字状に屈曲している。貫通孔部164及び板バネ部163はいずれも、シールドプレート16をフレーム20に固定するために用いられる。
 図14は、図12に示すフレーム20にシールドプレート16が取り付けられた状態を示す斜視図である。図14に示す状態では、板バネ部163が側板26,123間の隙間C内に組み込まれている。これにより、板バネ部163は、Y軸方向に圧縮変形した状態で側板26,123間に挟まれて固定される。
 また、シールドプレート16は、貫通孔部164にZ軸方向上方から挿入されたネジ部材Sをフレーム20のネジ孔部252に締結することにより、フレーム20に固定される。これにより、隆起部22内の電子部品が、金属で形成されたフレーム20、シールドプレート16、及びボトムケース12によって外部環境から電磁遮蔽される。
 図15は、フロントケース11の斜視図である。収容部112には、正面のY軸方向両端部にそれぞれ、X軸方向に突出する一対のボス部116が設けられている。一対のボス部116には、X軸方向に貫通する一対の貫通孔部117が形成されている。貫通孔部117は、フロントケース11をフレーム20に固定するために用いられる。
 フロントケース11は、図14に示すフレーム20に取り付けられる。フロントケース11は、ボトムケース12上に載置される。その際に、撮像部14の光学ユニット141がレンズ孔113にX軸方向後方から挿通され、撮像部14のホルダ30の柱状部32がそれぞれ貫通孔部117にX軸方向後方から挿通される。
 そして、X軸方向前方から貫通孔部117に挿入されたネジ部材Sをホルダ30の柱状部32に形成されたネジ孔部33に締結する。これにより、フロントケース11とホルダ30の規制面34との間にフレーム20が挟み込まれることにより、撮像部14及びフロントケース11がフレーム20に固定される。
 以上により、図2に示す車載カメラ1が完成する。図2に示す状態では、フレーム20の貫通孔部233及びフロントケース11の貫通孔部117に挿入されるホルダ30の一対の柱状部32によって位置決めされている。このため、車載カメラ1では、撮像部14の光学ユニット141の光軸を正確な方向に向けることができる。
 フロントケース11及びホルダ30をフレーム20に固定するために用いるネジ部材Sは、ボス部116に係合可能な頭部を有する雄ネジから任意に選択可能である。ネジ部材Sとしては、頭部に溝が形成されたプラスネジやマイナスネジ以外にも、例えば、頭部が六角形に形成された六角ボルトなどを利用可能である。
 上記のとおり、フロントケース11は、2ヶ所のボス部116の貫通孔部117のみにおいてフレーム20に固定される。このため、車載カメラ1では、フロントケース11を取り付ける際に、フレーム20や撮像部14に応力が加わりにくい。したがって、車載カメラ1では、撮像部14の光学ユニット141の光軸がずれにくい。
 また、フロントケース11にはネジ孔部を設ける必要がない。このため、車載カメラ1では、フロントケース11を樹脂成型品とすることができる。これにより、車載カメラ1では、低コスト化及び軽量化を図ることをできる。また、ホルダ30の柱状部32によって位置決めされるボス部116の貫通孔部117を正確な形状に形成可能である。
 本実施形態に係る車載カメラ1は、メイン基板13と撮像部14の撮像素子基板142とを接続するフレキシブル基板50に加わる応力が、その方向に関わらずに良好に吸収される構成を有する。これにより、フレキシブル基板50に負荷が加わりにくくなる。以下、フレキシブル基板50の詳細構成について説明する。
[フレキシブル基板50の詳細構成]
 図16及び図17は、本実施形態に係るフレキシブル基板50を示している。図16は、フレキシブル基板50をX-Y平面に沿って展開した展開状態を示す平面図である。図17は、図16に示す展開状態のフレキシブル基板50をメイン基板13と撮像素子基板142とを接続可能なように屈曲させた屈曲状態を示す斜視図である。
 フレキシブル基板50は、例えば、ポリイミドやポリエステルなどの樹脂によって形成される。図16に示すように、フレキシブル基板50は、展開状態において、相互に交差する方向に延びる短冊状の第1延在部51及び第2延在部52を有し、第1延在部51及び第2延在部52の間で屈曲した略L字状の平面形状を有する。
 フレキシブル基板50は、メイン基板13に接続される接続端子部である第1接続部53と、撮像素子基板142に接続される接続端子部である第2接続部54と、を有する。接続部53,54はそれぞれ、フレキシブル基板50の両端部に設けられている。第1接続部53は第1延在部51に位置し、第2接続部54は第2延在部52に位置する。
 フレキシブル基板50では、第1延在部51及び第2延在部52に沿って設けられた配線によって、第1接続部53と第2接続部54とが接続されている。これにより、フレキシブル基板50は、第1接続部53に接続されるメイン基板13と、第2接続部54に接続される撮像素子基板142と、を電気的に接続することができる。
 また、フレキシブル基板50は、接続部53,54間に設けられた第1屈曲部55a及び第2屈曲部55bを有する。第1屈曲部55aは、第1延在部51に設けられ、第1屈曲軸Paに沿って屈曲可能である。第2屈曲部55bは、第2延在部52に設けられ、第2屈曲軸Pbに沿って屈曲可能である。
 典型的には、第1屈曲部55aの第1屈曲軸Paは、第1延在部51の延在方向と直交する方向に延びる。また、第2屈曲部55bの第2屈曲軸Pbは、第2延在部52の延在方向と直交する方向に延びる。したがって、図16に示すように、展開状態のフレキシブル基板50では、第1屈曲軸Paと第2屈曲軸Pbとが交差する。
 フレキシブル基板50は、屈曲部55a,55bにおいてR形状に屈曲させられる。より詳細に、フレキシブル基板50は、図16に示す展開状態から、第1屈曲部55aがZ軸方向上方に屈曲させられ、更に第2屈曲部55bがY軸方向内側に屈曲させられる。これにより、フレキシブル基板50は、図17に示す屈曲状態になる。
 図18は、撮像部14がメイン基板13上に載置された状態を示す斜視図である。撮像部14の撮像素子基板142は、Z軸方向後方を向いた実装面に実装された端子142aを有する。撮像素子基板142の端子142aは、フレキシブル基板50を介してメイン基板13の端子132に電気的に接続される。
 つまり、第1接続部53がメイン基板13の端子132に接続され、第2接続部54が撮像素子基板142の端子142aに接続される。図17に示す屈曲状態のフレキシブル基板50では、第1接続部53と第2接続部54との相対位置が、メイン基板13の端子132と撮像素子基板142の端子142aとの相対位置と実質的に一致している。
 このため、フレキシブル基板50では、第1接続部53及び第2接続部54を、無理なくメイン基板13の端子132及び撮像素子基板142の端子142aに接続することができる。したがって、車載カメラ1では、フレキシブル基板50によるメイン基板13と撮像素子基板142との接続を容易に実行可能である。
 また、屈曲部55a,55bは、屈曲軸Pa,Pbに沿った方向を除き、柔軟に変形可能である。このため、屈曲部55a,55bはそれぞれ、メイン基板13及び撮像素子基板142に接続されたフレキシブル基板50に対して屈曲軸Pa,Pbに沿った方向以外の方向に加わる応力を変形によって吸収可能である。
 フレキシブル基板50では、展開状態において屈曲軸Pa,Pbが角度θで交差する構成とすることにより、屈曲状態において屈曲部55a,55bにおける変形しにくい方向を相互に異ならせている。これにより、車載カメラ1では、フレキシブル基板50に加わる全方向の応力を屈曲部55a,55bによって吸収することができる。
 このため、車載カメラ1では、メイン基板13の端子132及び撮像素子基板142の端子142aの位置がどの方向にずれている場合であっても、フレキシブル基板50に負荷が加わりにくい。これにより、車載カメラ1では、メイン基板13と撮像素子基板142との接続が良好に確保されるため、高い信頼性が得られる。
 また、フレキシブル基板50では、車載カメラ1の製造時に加わる応力や、車載カメラ1の使用時に物理的な衝撃や熱膨張などによって加わる応力も、屈曲部55a,55bによって吸収することができる。これにより、車載カメラ1では、更に高い信頼性が得られる。
 車載カメラ1では、屈曲軸Pa,Pbの間の角度θを、メイン基板13と撮像素子基板142との間の傾きに応じて決定することが好ましい。つまり、図17に例示する構成では、第1接続部53と第2接続部54との間に成す角度(屈曲軸Pa,Pbの間の角度θ)が、メイン基板13と撮像素子基板142との間に成す角度と同じであることが好ましい。これにより、メイン基板13及び撮像素子基板142に取り付けられたフレキシブル基板50の屈曲部55a,55bが無理なく変形可能となるため、フレキシブル基板50に加わる応力がより効果的に吸収される。
 このメイン基板13と撮像素子基板142との間に成す角度は、自動車Mの車種ごとに設定されたウインドシールドM01の角度に基づいて設定されている。そのため、屈曲軸Pa,Pbの間の角度θをメイン基板13と撮像素子基板142との間に成す角度と同じとした場合、屈曲軸Pa,Pbの間の角度θも自動車Mの車種ごとに設定されたウインドシールドM01の角度に基づくものとなる。
 また、フレキシブル基板50では、屈曲部55a,55bによって、接続部53,54間の接続経路の向きを2回にわたって三次元的に変更することができる。これにより、車載カメラ1では、フレキシブル基板50における接続部53,54間の接続経路を、他の電子部品の配置などに応じて自由に決定可能となる。
 一例として、車載カメラ1では、フレキシブル基板50における接続部53,54間の接続経路を、撮像素子を制御するための水晶発振器142bの位置を考慮して決定することができる。図18に示すように、水晶発振器142bは、撮像素子基板142のX軸方向後方を向いた実装面のY軸方向左側の領域に実装されている。
 水晶発振器142bは、水晶振動子を有する。水晶発振器142bの水晶振動子には、フレキシブル基板50を流れる信号との間でクロストークが発生する場合がある。車載カメラ1では、このようなクロストークが発生した場合、水晶発振器142bの生成するクロックが安定しない、若しくは信号ラインにノイズが重畳されることにより、撮像素子によって生成される画像に異常が発生する場合がある。
 このため、車載カメラ1では、正常な画像を得るために、水晶発振器142bの近くにフレキシブル基板50を配置しないことが好ましい。したがって、車載カメラ1では、フレキシブル基板50が、水晶発振器142bの近くを通らない接続経路でメイン基板13と撮像素子基板142とを接続する。
 より詳細に、図17に示すフレキシブル基板50は、図18に示すメイン基板13及び撮像素子基板142に取り付けられた状態において、水晶発振器142bが配置された端子142aのY軸方向左側の領域を通らないように、端子142aに接続された第2接続部54からY軸方向右側に引き出される。
 これにより、車載カメラ1では、水晶発振器142bの水晶振動子とフレキシブル基板50を流れる信号との間でクロストークが発生し難くなるため、撮像素子によって生成される画像における異常の発生を防止することができる。なお、フレキシブル基板50の構成は、撮像素子基板142における水晶発振器142b以外の電子部品の位置を考慮した構成とすることもできる。
 また、フレキシブル基板50では、延在部51,52の寸法や屈曲部55a,55bの位置などの変更により、接続部53,54の相対位置を任意に変更することができる。このため、車載カメラ1では、メイン基板13の端子132の位置、撮像素子基板142の端子142aの位置、及びフレキシブル基板50の接続経路を任意に決定可能である。
 特に、車載カメラ1では、小型化のために内部スペースの有効活用が必須となるため、メイン基板13の端子132の位置、撮像素子基板142の端子142aの位置、及びフレキシブル基板50の接続経路の自由度が非常に制限される。フレキシブル基板50は、車載カメラ1の小型化に伴うこのような要求に対応可能である。
 一例として、車載カメラ1におけるメイン基板13の端子132の位置について説明する。図19及び図20は、メイン基板13の実装面上の構成を示している。図19は、メイン基板13のZ軸方向上側の第1実装面J1を示す平面図である。図20は、メイン基板13のZ軸方向下側の第2実装面J2を示す底面図である。
 図19に示すメイン基板13の第1実装面J1には、中央領域に撮像部14が配置されている。また、第1実装面J1のX軸方向後部には、電源部136が配置されている。更に、第1実装面J1の撮像部14のX軸方向前方には、MCU133が配置され、一点鎖線で囲んで示された第1領域A1が配置されている。
 図20に示すメイン基板13の第2実装面J2には、センシングIC137が実装されている。センシングIC137は、MCU133を始めとする多くの電子部品に接続されるため、中央領域に配置されている。センシングIC137は、車載カメラ1の様々な解析処理(物体検知、物体までの距離測定、前方衝突警報、レーンキープ等)を行う。
 MCU133は、センシングIC137からシリアル通信で送られたセンシング結果をCAN(Controller Area Network)データに変換する機能を有する。また、MCU133は、センシングIC137の動作を監視し、異常の際には電源部136による通電を停止してセンシングIC137にリセットを掛ける機能も有する。
 また、図20に示すメイン基板13の第2実装面J2には、一点鎖線で囲んで示された第2領域A2及び第3領域A3が配置されている。第2領域A2は、センシングIC137のX軸方向前方及びY軸方向側方を取り囲むように配置されている。第3領域A3は、センシングIC137のX軸方向後方に配置されている。
 なお、図19及び図20には、反対側の実装面J1,J2上の構成の概形が破線で示されている。つまり、図19には、第2実装面J2に配置されたセンシングIC137が破線で示されている。図20には、第1実装面J1に配置された端子132、撮像部14、MCU133、及び電源部136が破線で示されている。
 図19に示すメイン基板13の第1実装面J1の第1領域A1は、センシングIC137の真裏に位置する。このため、第1領域A1には、センシングIC137の安定動作のために必要な多数のバイパスコンデンサが配置される。また、第1領域A1には、電源部136用のバイパスコンデンサも配置される。
 図20に示すメイン基板13の第2実装面J2の第2領域A2には、複数のDDR(Double Data Rate)メモリが実装されている。複数のDDRメモリは、センシングIC137になるべく短い等長配線で接続される必要があるため、センシングIC137を取り囲む第2領域A2に配置する必要がある。
 また、メイン基板13の第2実装面J2の第2領域A2には、この他にもセンシングIC137に接続される電子部品が配置される。第2実装面J2の第2領域A2に配置される他の電子部品としては、フラッシュメモリなどのDDRメモリ以外の各種メモリや、コンデンサなどの各種蓄電部品などが挙げられる。
 メイン基板13の第2実装面J2の第3領域A3は、電源部136の真裏に位置する。電源部136は背が高く大型の部品が多いため、第1実装面J1には電源部136にドライバを短距離で接続可能な領域を確保することが困難である。このため、電源部136のドライバは、第2実装面J2の第3領域A3に配置せざるを得ない。
 また、メイン基板13の第2実装面J2の第3領域A3には、電源部136に関するドライバ以外の電子部品も配置される。更に、第2実装面J2の第3領域A3には、電源部136に関する電子部品以外にも、例えば、MCU133などによって生成されるCANデータを処理するためのCANドライバなどが配置される。
 このように、メイン基板13の第1実装面J1及び第2実装面J2には各種電子部品が密集して配置される。このため、メイン基板13には、フレキシブル基板50の第1接続部53に接続される端子132を配置可能な場所は、図19に示す第1実装面J1における撮像素子基板142のX軸方向後側の領域しか残されていない。
 また、車載カメラ1では、更なる小型化及び高機能化を図ろうとすると、メイン基板13の端子132の配置可能な領域がますます限定される。この点、本実施形態に係るフレキシブル基板は、メイン基板13の端子132の位置に関わらず、メイン基板13と撮像素子基板142とを容易に接続可能な構成とすることができる。
 なお、本実施形態に係るフレキシブル基板50は、上記の構成に限定されず、展開状態において相互に交差する第1屈曲軸Pa及び第2屈曲軸Pbに沿って屈曲する第1屈曲部55a及び第2屈曲部55bを有する構成であればよい。一例として、フレキシブル基板50は、図21及び図22に示す構成とすることもできる。
 図21及び図22は、変形例に係るフレキシブル基板50を示している。図21は、展開状態のフレキシブル基板50の平面図である。図21は、屈曲状態のフレキシブル基板50の斜視図である。以下、図21及び図22に示すフレキシブル基板50における図16,17に示す構成とは異なる構成について説明する。
 変形例に係るフレキシブル基板50では、第1延在部51に、相互に平行な第1屈曲軸Pa1,Pa2に沿って屈曲可能な2つの第1屈曲部55a1,55a2が設けられている。また、変形例に係るフレキシブル基板50では、展開状態において、屈曲軸Pa1,Pa2と第2屈曲軸Pbとが直交しており、交差角度が90°となっている。
 変形例に係るフレキシブル基板50は、図21に示す展開状態から、第1屈曲部55a1がZ軸方向下方に屈曲させられ、更に第1屈曲部55a2がY軸方向外側に屈曲させられ、また更に第2屈曲部55bがZ軸方向上方に屈曲させられる。これにより、フレキシブル基板50は、図22に示す屈曲状態になる。
 図22に示す構成においても、第1接続部53と第2接続部54との間に成す角度はメイン基板13と撮像素子基板142との間の傾きに応じて決定することが好ましい。つまり、第1接続部53と第2接続部54との間に成す角度はメイン基板13と撮像素子基板142との間に成す角度と同じであることが好ましい。
 このメイン基板13と撮像素子基板142との間に成す角度は、自動車Mの車種ごとに設定されたウインドシールドM01の角度に基づいて設定されている。そのため、第1接続部53と第2接続部54との間に成す角度をメイン基板13と撮像素子基板142との間に成す角度と同じとした場合、第1接続部53と第2接続部54との間に成す角度も自動車Mの車種ごとに設定されたウインドシールドM01の角度に基づくものとなる。
 変形例に係るフレキシブル基板50では、展開状態において第1屈曲軸Pa1,Pa2と第2屈曲軸Pbとが直交しているため、屈曲状態においてフレキシブル基板50に加わる様々な方向からの応力を最も安定して吸収可能となる。これにより、車載カメラ1では、更に高い信頼性が得られる。
 また、フレキシブル基板50は、上記の変形例のように、複数の第1屈曲部55aを有していても、フレキシブル基板50に加わる応力を良好に吸収可能である。また、フレキシブル基板50は、複数の第2屈曲部55bを有していてもよく、更に屈曲軸Pa,Pbとは異なる方向に延びる屈曲軸に沿って屈曲可能な他の屈曲部を有していてもよい。
[異物混入防止構造]
 車載カメラ1は、フレーム20へのネジ部材Sの締結に伴う隆起部22内の空間への切粉などの異物の混入の防止するための構造を有する。これにより、車載カメラ1では、電気回路の動作不良などの隆起部22内の空間への異物の混入による不具合を未然に防止することができる。
 図23は、フレーム20の図5のA-A'線に沿った断面図である。つまり、図23は、隆起部22をY-Z平面に沿って破断し、隆起部22のX軸方向後部を前方から示している。図23には、説明の便宜上、メイン基板13、ボトムケース12、及びシールドプレート16をフレーム20に固定するネジ部材Sが示されている。
 メイン基板13を固定するネジ孔部212には、ネジ部材SがZ軸方向下方から上方に貫通している。ボトムケース12を固定するネジ孔部241には、ネジ部材SがX軸方向後方から前方に貫通している。シールドプレート16を固定するネジ孔部252には、ネジ部材SがZ軸方向上方から下方に貫通している。
 つまり、ネジ孔部212,241,252に締結されたネジ部材Sはいずれも、その先端部がフレーム20の隆起部22内の空間に露出する。このため、ネジ孔部212,241,252にネジ部材Sがねじ込まれる際に、切粉などの異物が隆起部22内の空間に混入しやすくなっている。
 そこで、本実施形態に係る車載カメラ1では、フレーム20の隆起部22内の空間への異物の混入を防止するための構造として、ネジ孔部212、ネジ孔部241、及びネジ孔部252を隆起部22の内側から覆う第1キャップ部材41、第2キャップ部材42、及び第3キャップ部材43を設けることが好ましい。
 図24は、フレーム20のネジ孔部212を覆う第1キャップ部材41の分解斜視図である。キャップ部材41は、本体層411と、封止層412と、粘着層413と、粘着層414と、を含む積層構造を有する。粘着層413,414は、本体層411の厚さ方向に対向する両面に設けられる。
 本体層411及び粘着層413,414には、厚さ方向に貫通する開口部415が形成されている。封止層412は、粘着層413上に接着され、開口部415を封止している。これにより、キャップ部材41は、開口部415が粘着層413とは反対側の粘着層414側のみが開放されたキャップ状となっている。
 図25は、図23に示すフレーム20にキャップ部材41が取り付けられた状態を示す断面図である。キャップ部材41は、開口部415が開放された粘着層414によってフレーム20に接着される。キャップ部材41は、各ネジ孔部212にそれぞれ、各ネジ孔部212が開口部415の内側に入るように配置される。
 これにより、フレーム20では、Z軸方向下方からネジ孔部212に締結されるネジ部材Sの先端部が突出する領域がキャップ部材41によって閉塞される。このため、ネジ部材Sがネジ孔部212にねじ込まれる際に発生する異物は、キャップ部材41の開口部415内に留まり、キャップ部材41の開口部415外には排出されない。
 したがって、車載カメラ1では、ネジ孔部212にネジ部材Sがねじ込まれる際に、フレーム20の隆起部22内の空間に異物が混入することを防止することができる。これにより、車載カメラ1では、電気回路の動作不良などの隆起部22内の空間への異物の混入による不具合を未然に防止することができる。
 また、キャップ部材41では、例えば0.1mm程度の非常に薄い封止層412を用いても、ネジ孔部212を閉塞する機能が担保される。このため、車載カメラ1では、キャップ部材41のフレーム20の隆起部22の内側への突出量を小さく抑えることにより、フレーム20の隆起部22内の空間を節約することができる。
 図26は、キャップ部材41の製造過程を示す断面図である。キャップ部材41の製造には、まず積層シート41aが用意される。積層シート41aは、本体層411に対応する本体シート411aと、封止層412に対応する封止シート412aと、粘着層413,414に対応する粘着シート413a,414aと、を有する大判のシートである。
 まず、図26(A)に示すように、粘着シート414aを上方に向けて積層シート41aを保持板H上に配置する。そして、積層シート41aの上方に抜き型B1,B2を、刃先を下方に向けて配置する。抜き型B2の刃先は、抜き型B1の刃先よりも封止シート412aの厚さの分だけ高い位置にある。
 抜き型B1の刃は、キャップ部材41の外形に対応する形状に形成されている。抜き型B2の刃は、キャップ部材41の開口部415に対応する形状に形成されている。抜き型B1,B2は、上部において相互に固定されており、その相対位置を保ったまま一体として上下方向に移動可能である。
 図26(A)に示す状態から、図26(B)に示すように抜き型B1,B2を下降させることにより、積層シート41aを打ち抜く。抜き型B1は、保持板Hまで到達し、積層シート41aの全てのシート411a,412a,413a,414aを切断する。これにより、キャップ部材41の外形が形成される。
 この一方で、抜き型B2は、保持板Hの手前に留まり、最下層の封止シート412aを貫通しない。このため、抜き型B2は、シート411a,413a,414aを切断するものの、最下層の封止シート412aのみ切断しない。これにより、キャップ部材41の開口部415が形成される。
 その後、図26(B)に示す状態から、抜き型B1,B2を上昇させる。そして、積層シート41aにおける、抜き型B1より外側の部分及び抜き型B2よりも内側の部分を除去し、抜き型B1,B2間の部分のみを残す。これにより、図26(C)に示すようにキャップ部材41が得られる。
 このように、積層シート41aを用いることにより、1回の打ち抜き操作のみによってキャップ部材41を容易に製造することができる。更に、複数の抜き型B1,B2を用いて同時に積層シート41aを打ち抜くことにより、一度に多量のキャップ部材41を製造可能である。これにより、キャップ部材41を低コストで製造可能である。なお、勿論、必要に応じて、積層シート41aに対する打ち抜き操作を各抜き型B1,B2ごとに行ってもよい。
 キャップ部材41の本体層411(積層シート41aの本体シート411a)を形成する材料は、特定の種類に限定されないが、打ち抜き性に優れた樹脂材料であるが好ましい。打ち抜き性に優れた樹脂材料としては、例えば、ウレタンクッション、スポンジ、エラストマなどが挙げられる。
 キャップ部材41の封止層412(積層シート41aの封止シート412a)を形成する材料も、特定の種類に限定されず、例えば、ポリカーボネート(PC)やポリエチレンテレフタレート(PET)などを利用可能である。キャップ部材41の粘着層413,414としては、例えば、安価な両面接着テープなどを用いることができる。
 図27(A)は、フレーム20のネジ孔部241を覆う第2キャップ部材42の分解斜視図である。図27(B)は、フレーム20のネジ孔部252を覆う第3キャップ部材43の斜視図である。キャップ部材42,43は、第1キャップ部材41と同様の材料を用いて同様の製造方法で製造可能である。
 キャップ部材42は、本体層421と、封止層422と、粘着層423と、粘着層424と、を含む積層構造を有する。キャップ部材43は、本体層431と、封止層432と、粘着層433と、粘着層434と、を含む積層構造を有する。キャップ部材42,43は、2つのネジ孔部241,252を一括して閉塞可能ように構成されている。
 より詳細に、キャップ部材42,43はそれぞれ、フレーム20のY軸方向両端部に配置された2つのネジ孔部241,252を同時に閉塞可能なように細長い形状を有する。キャップ部材42,43には、長手方向の両端部にそれぞれ、2つのネジ孔部241,252に対応する2つの開口部425,435が形成されている。
 図28は、図25に示すフレーム20にキャップ部材42,43が取り付けられた状態を示す断面図である。図28に示すように、フレーム20では、ネジ孔部241がX軸方向前方からキャップ部材42に閉塞され、ネジ孔部252がZ軸方向下方からキャップ部材43に閉塞される。
 したがって、車載カメラ1では、ネジ孔部241,252にネジ部材Sがねじ込まれる際に、フレーム20の隆起部22内の空間に異物が混入することを防止することができる。これにより、車載カメラ1では、電気回路の動作不良などの隆起部22内の空間への異物の混入による不具合を未然に防止することができる。
 車載カメラ1では、単一の各キャップ部材42,43によって2つの各ネジ孔部241,252を一括して閉塞可能であるため、部品点数の減少による低コスト化を図ることができる。なお、本実施形態に係るキャップ部材は、閉塞すべきネジ孔部が同一平面上に3個以上ある場合には、開口部を3個以上として構成することも可能である。
 キャップ部材42,43は、第1キャップ部材41と同様に、フレーム20の隆起部22の内側への突出量を小さく抑えることができる。このため、キャップ部材42,43は、図28に示すように、相互に直交する面における相互に近接する位置に設けられたネジ孔部241,252を無理なく閉塞することができる。
[車載カメラ1の他の構成例]
 車載カメラ1の構成は、上記に限定されず、様々に変更可能である。例えば、車載カメラ1は、複数の撮像部14を有していてもよい。この場合、複数の撮像素子基板142がそれぞれ、各撮像部14ごとに設けられた複数のフレキシブル基板50によって、共通のメイン基板13に接続される。
 また、車載カメラ1は、ウインドシールドM01のみならず、リアセンシングカメラとしてリアウインドウM02に設置することもできる。更に、車載カメラ1の用途は、センシングではなく、例えば、ビューイングであってもよい。この場合にも、車載カメラ1では、小型化と高機能化とを両立可能なメリットが得られる。
 更に、車載カメラ1のウインドシールドM01の内面への設置手法は、図3に示すようなブラケット2を用いた構成に限定されない。例えば、車載カメラ1は、ブラケット2以外の部材を介してウインドシールドM01に固定されてもよく、ウインドシールドM01の内面に直接接着されてもよい。
 なお、車載カメラ1は、自動車Mに限らず、様々な移動体に適用可能である。車載カメラ1を適用可能な移動体としては、例えば、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などが挙げられる。
[駆動制御システムS100]
 (概略説明)
 本技術の一実施形態に係る駆動制御システムS100は、上記の車載カメラ1を用いて自動車Mの駆動を制御するためのシステムである。具体的に、駆動制御システムS100は、車載カメラ1によって撮像した画像を用いて、自動車Mの駆動力発生機構M11、制動機構M12、ステアリング機構M13などを制御する。車載カメラ1によって撮像された画像は、圧縮符号化処理をされていない高画質な画像データ(raw image data)の状態で、駆動制御システムS100に送られる。
 駆動制御システムS100は、自動車Mに求められる機能に応じた構成とすることができる。具体的に、駆動制御システムS100によって実現可能な機能としては、例えば、運転補助機能や自動運転機能などが挙げられる。以下、運転補助機能及び自動運転機能を実現可能な駆動制御システムS100の構成について説明する。
 (運転補助機能)
 運転補助機能とは、典型的には、衝突回避、衝撃緩和、追従走行(車間距離の維持)、車速維持走行、衝突警告、レーン逸脱警告などを含むADAS(Advanced Driver Assistance System)の機能である。駆動制御システムS100は、これらの運転補助機能を実現可能なように構成することができる。
 図29は、運転補助機能を実現可能な駆動制御システムS100の構成を示すブロック図である。駆動制御システムS100は、車載カメラ1と、処理部S110と、情報生成部S120と、駆動制御部S130と、を有する。処理部S110は、画像処理部S111と、認識処理部S112と、算出処理部S113と、を有する。
 駆動制御システムS100の各構成は通信ネットワークにより接続されている。この通信ネットワークは、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)などの任意の規格に準拠した車載通信ネットワークであってよい。
 図30は、図29に示す駆動制御システムS100による駆動制御方法を示すフローチャートである。図30に示す駆動制御方法は、撮像ステップST11、画像処理ステップST12、認識処理ステップST13、物体情報算出ステップST14、駆動制御情報生成ステップST15、及び駆動制御信号出力ステップST16を含む。
 撮像ステップST11では、車載カメラ1が自動車Mの前方の風景をウインドシールドM01越しに撮像して生画像を生成する。車載カメラ1は、例えば、メイン基板13に実装された車内通信部によって生画像を処理部S110に送信する。
 処理部S110は、典型的にはECU(Electronic Control Unit)で構成され、車載カメラ1が生成した生画像を処理する。より詳細に、処理部S110では、画像処理部S111が画像処理ステップST12を行い、認識処理部S112が認識処理ステップST13を行い、算出処理部S113が物体情報算出ステップST14を行う。
 画像処理ステップST12では、画像処理部S111が生画像に画像処理を加えて処理画像を生成する。画像処理部S111による画像処理は、典型的には、生画像中の物体を認識しやすくするための処理であり、例えば、自動露出制御、自動ホワイトバランス調整、ハイダイナミックレンジ合成などである。
 なお、画像処理ステップST12では、画像処理の少なくとも一部を車載カメラ1のメイン基板13に実装された画像処理部によって行ってもよい。なお、画像処理ステップST12におけるすべての画像処理を車載カメラ1の画像処理部で行う場合には、処理部S110には画像処理部S111が含まれていなくてもよい。
 認識処理ステップST13では、認識処理部S112が処理画像に対して認識処理を行うことで処理画像中の物体を認識する。なお、認識処理部S112が認識する物体としては、3次元のものに限定されず、例えば、車両、歩行者、障害物、信号機、交通標識、道路の車線(レーン)、歩道の縁石などが含まれる。
 物体情報算出ステップST14では、算出処理部S113が処理画像中の物体に関する物体情報を算出する。算出処理部S113が算出する物体情報としては、例えば、物体の形状、物体までの距離、物体の移動方向及び移動速度などが挙げられる。算出処理部S113は、動的な物体情報の算出には、時間的に連続する複数の処理画像を用いる。
 算出処理部S113による物体情報の算出方法の一例として、先行車両MFとの車間距離の算出方法について説明する。図31は、画像処理部S111が生成する処理画像Gの一例を示している。図31に示す処理画像Gには、先行車両MFと、走行レーンを規定する2本の車線L1,L2と、が示されている。
 まず、処理画像G中で2本の車線L1,L2が交わる消失点Uを求める。なお、消失点Uは、車線L1,L2によらずに、他の物体から求めてもよい。例えば、算出処理部S113は、歩道の縁石や、複数の処理画像における交通標識などの固定物の移動軌跡などを用いて消失点Uを求めることもできる。
 次に、処理画像の下縁部G1から先行車両MFまでの距離D0(画像における上下方向の寸法)と、処理画像の下縁部G1から先行車両MFまでの距離D1(画像における上下方向の寸法)と、を求める。先行車両MFとの車間距離は、距離D0,D1を用いて求めることができる。例えば、距離D0と距離D1との比率を用いることにより、先行車両MFとの車間距離を算出することができる。
 このように、画像中の先行車両MF等の対象物の画素位置に基づいて距離を算出する場合、焦点が合っていない画像では物体の検出位置がずれてしまうため精度が悪くなることがある。この点、本技術に係る車載カメラ1では、光学ユニット141の焦点位置ずれの許容範囲が小さい構成により、対象物との距離を正確に算出可能となる。
 処理部S110は、ステップST12~ST14で得られた処理画像及び物体情報を含むデータを情報生成部S120に送信する。なお、処理部S110は、上記の構成に限定されず、例えば、画像処理部S111、認識処理部S112、及び算出処理部S113以外の構成を含んでいてもよい。
 駆動制御情報生成ステップST15では、情報生成部S120が自動車Mに必要な駆動内容を含む駆動制御情報を生成する。より詳細に、情報生成部S120は、処理部S110から送信されるデータに基づいて自動車Mに実行させるべき駆動内容を判断し、この駆動内容を含む駆動制御情報を生成する。
 自動車Mの駆動内容としては、例えば、速度の変更(加速、減速)、進行方向の変更などが挙げられる。具体例として、情報生成部S120は、自動車Mと先行車両MFとの車間距離が小さい場合には減速が必要と判断し、自動車Mがレーンを逸脱しそうな場合にはレーン中央寄りへの進行方向の変更が必要と判断する。
 情報生成部S120は、駆動制御情報を駆動制御部S130に送信する。なお、情報生成部S120は、駆動制御情報以外の情報を生成してもよい。例えば、情報生成部S120は、処理画像から周囲環境の明るさを検出し、周囲環境が暗い場合に自動車Mの前照灯を点灯させるための照明制御情報を生成してもよい。
 駆動制御信号出力ステップST16では、駆動制御部S130が駆動制御情報に基づいた駆動制御信号の出力を行う。例えば、駆動制御部S130は、駆動力発生機構M11によって自動車Mを加速させ、制動機構M12によって自動車Mを減速させ、ステアリング機構M13によって自動車Mの進行方向を変更させることができる。
 (自動運転機能)
 自動運転機能とは、運転者の操作によらずに、自動車Mを自律的に走行させる機能である。自動運転機能の実現のためには、運転補助機能よりも高度な駆動制御が必要となる。駆動制御システムS100は、高画質の生画像を生成可能な車載カメラ1を用いることにより、自動運転機能を実現可能な高度な駆動制御をより正確に実行可能となる。
 図32は、自動運転機能を実現可能な駆動制御システムS100の構成を示すブロック図である。この駆動制御システムS100は、図29に示す各構成に加え、処理部S110に含まれるマッピング処理部S114及びパスプランニング部S115を更に有する。以下、図29に示す構成と同様の構成については適宜説明を省略する。
 図33は、図32に示す駆動制御システムS100による駆動制御方法を示すフローチャートである。図33に示す駆動制御方法は、図30に示す各ステップに加え、マッピング処理部S114によるマッピング処理ステップST21と、パスプランニング部S115によるパスプランニングステップST22と、を含む。
 図33に示すとおり、マッピング処理ステップST21及びパスプランニングステップST22は、物体情報算出ステップST14と駆動制御情報生成ステップST15との間に実行する。パスプランニングステップST22は、マッピング処理ステップST21の後に実行する。
 マッピング処理ステップST21では、マッピング処理部S114が処理画像及び物体情報を用いて空間マッピングを行うことによりデジタル地図を作成する。マッピング処理部S114が作成するデジタル地図は、自動運転に必要な静的情報及び動的情報が組み合わされて構成された3次元地図である。
 駆動制御システムS100では、車載カメラ1によって高画質の生画像が得られるため、マッピング処理部S114によって高精細なデジタル地図を作成可能である。なお、マッピング処理部S114は、車載カメラ1による生画像以外の情報を取得することにより、更に情報量の多いデジタル地図を作成可能となる。
 例えば、マッピング処理部S114は、自動車Mに備えられた周囲情報検出部や測位部などからの情報を取得することができる。また、マッピング処理部S114は、車外との通信を可能にする車外通信部を介して外部環境に存在する様々な機器との間で通信を行うことにより、様々な情報を取得することができる。
 周囲情報検出部は、例えば、超音波センサ、レーダ装置、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置などとして構成される。マッピング処理部S114は、車載カメラ1からは得られにくい自動車Mの後方や側方などの情報も周囲情報検出部から取得可能である。
 測位部は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行可能に構成される。マッピング処理部S114は、測位部から自動車Mの位置に関する情報を取得可能である。
 車外通信部は、例えば、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)、LTE-A(LTE-Advanced)、無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などを用いた構成とすることができる。
 パスプランニングステップST22では、パスプランニング部S115がデジタル地図を用いて自動車Mの進行経路を決定するパスプランニングを実行する。パスプランニングには、例えば、道路上の空きスペースの検出や、車両や人間などの物体の移動予測などの様々な処理が含まれる。
 処理部S110は、パスプランニングステップST22の後に、ステップST12~ST14で得られた処理画像及び物体情報を含むデータに加え、ステップST21,ST22で得られたデジタル地図やパスプランニングの結果を含むデータを情報生成部S120に一括して送信する。
 駆動制御情報生成ステップST15では、情報生成部S120がパスプランニングステップST22で決定されたパスプランニングのとおりの進行経路で自動車Mを走行させるための駆動内容を含む駆動制御情報を生成する。情報生成部S120は、生成した駆動制御情報を駆動制御部S130に送信する。
 駆動制御信号出力ステップST16では、駆動制御部S130が駆動制御情報に基づいた駆動制御信号の出力を行う。つまり、駆動制御部S130は、自動車Mがパスプランニングのとおりの進行経路で安全に走行可能なように、駆動力発生機構M11、制動機構M12、及びステアリング機構M13などの駆動制御を行う。
 このように、物体位置検出、測距、デジタル地図作成、パスプランニング等の処理を行う場合、焦点が合っていない画像では物体の検出位置がずれてしまうため精度が悪くなることがある。この点、本技術に係る車載カメラ1では、光学ユニット141の焦点位置ずれの許容範囲が小さい構成により、このような処理を正確に行うことが可能となる。
 なお、図29、図32では、駆動制御システムS100の構成として、車載カメラ1と他の構成(ブロック)が異なるものとして説明した。しかし、駆動制御システムS100内の任意のブロックは車載カメラ1内に含まれるようにしてもよい。この場合は、車載カメラ1内のメイン基板13(又はメイン基板13と電気的に接続された他の回路基板)上に各ブロックの機能をもつ回路が配置される。
 例えば、画像処理部S111が車載カメラ1内に含まれるようにしても良い。この場合は、車載カメラ1内のメイン基板13(又はメイン基板13と電気的に接続された他の回路基板)上に画像処理部S111の機能をもつ回路が配置される。
 また、複数のブロックを含む処理部S110が車載カメラ1内に含まれるようにしても良い。この場合は、車載カメラ1内のメイン基板13(又はメイン基板13と電気的に接続された他の回路基板)上に処理部S110に含まれる各ブロックの機能をもつ回路が配置される。
 更に、駆動制御システムS100を一つの装置としてもよい。この場合は、車載カメラ1内のメイン基板13(又はメイン基板13と電気的に接続された他の回路基板)上に駆動制御システムS100に含まれる各ブロックの機能をもつ回路が配置される。
[その他の実施形態]
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 なお、本技術は以下のような構成も採ることができる。
 (1)
 第1端子を有する撮像素子基板と、
 第2端子を有するメイン基板と、
 前記第1端子に接続される第1接続部と、前記第2端子に接続される第2接続部と、前記第1接続部と前記第2接続部との間に位置し、展開状態において相互に交差する第1及び第2屈曲軸に沿って屈曲する第1及び第2屈曲部と、を有するフレキシブル基板と、
 を具備する車載カメラ。
 (2)
 上記(1)に記載の車載カメラであって、
 前記フレキシブル基板は、前記第1屈曲部が設けられた第1延在部と、前記第2屈曲部が設けられた第2延在部と、を更に有し、
 前記フレキシブル基板の前記展開状態において、前記第1延在部が前記第1屈曲軸と直交する方向に延び、前記第2延在部が前記第2屈曲軸と直交する方向に延びる
 車載カメラ。
 (3)
 上記(1)又は(2)に記載の車載カメラであって、
 前記フレキシブル基板の前記展開状態において、前記第1屈曲軸と前記第2屈曲軸とが相互に直交する
 車載カメラ。
 (4)
 上記(1)から(3)のいずれか1つに記載の車載カメラであって、
 前記撮像素子基板の厚さ方向に延びる光軸を有する光学ユニットを更に具備する
 車載カメラ。
 (5)
 上記(1)から(4)のいずれか1つに記載の車載カメラであって、
 前記撮像素子基板は、水晶発振器を更に有し、
 前記フレキシブル基板は、前記水晶発振器上を通らない
 車載カメラ。
1…車載カメラ
2…ブラケット
11…フロントケース
12…ボトムケース
13…メイン基板
132…端子
14…撮像部
141…光学ユニット
142…撮像素子基板
142a…端子
142b…水晶発振器
15…押圧部材
16…シールドプレート
20…フレーム
30…ホルダ
50…フレキシブル基板
51,52…延在部
53,54…接続部
55a,55b…屈曲部
Pa,Pb…屈曲軸
M…自動車
M1…ウインドシールド

Claims (5)

  1.  第1端子を有する撮像素子基板と、
     第2端子を有するメイン基板と、
     前記第1端子に接続される第1接続部と、前記第2端子に接続される第2接続部と、前記第1接続部と前記第2接続部との間に位置し、展開状態において相互に交差する第1及び第2屈曲軸に沿って屈曲する第1及び第2屈曲部と、を有するフレキシブル基板と、
     を具備する車載カメラ。
  2.  請求項1に記載の車載カメラであって、
     前記フレキシブル基板は、前記第1屈曲部が設けられた第1延在部と、前記第2屈曲部が設けられた第2延在部と、を更に有し、
     前記フレキシブル基板の前記展開状態において、前記第1延在部が前記第1屈曲軸と直交する方向に延び、前記第2延在部が前記第2屈曲軸と直交する方向に延びる
     車載カメラ。
  3.  請求項1に記載の車載カメラであって、
     前記フレキシブル基板の前記展開状態において、前記第1屈曲軸と前記第2屈曲軸とが相互に直交する
     車載カメラ。
  4.  請求項1に記載の車載カメラであって、
     前記撮像素子基板の厚さ方向に延びる光軸を有する光学ユニットを更に具備する
     車載カメラ。
  5.  請求項1に記載の車載カメラであって、
     前記撮像素子基板は、水晶発振器を更に有し、
     前記フレキシブル基板は、前記水晶発振器上を通らない
     車載カメラ。
PCT/JP2019/043876 2018-11-15 2019-11-08 車載カメラ WO2020100740A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP24176494.3A EP4395472A3 (en) 2018-11-15 2019-11-08 Vehicle-mounted camera
EP19884648.7A EP3883231B1 (en) 2018-11-15 2019-11-08 Vehicle onboard camera
JP2020555628A JP7460537B2 (ja) 2018-11-15 2019-11-08 車載カメラ
CN201980073198.7A CN112970241B (zh) 2018-11-15 2019-11-08 车载相机
KR1020217013000A KR20210091138A (ko) 2018-11-15 2019-11-08 차량 탑재 카메라
US17/289,189 US11987184B2 (en) 2018-11-15 2019-11-08 Vehicle-mounted camera
US18/636,835 US20240270179A1 (en) 2018-11-15 2024-04-16 Vehicle-mounted camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214503 2018-11-15
JP2018214503 2018-11-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/289,189 A-371-Of-International US11987184B2 (en) 2018-11-15 2019-11-08 Vehicle-mounted camera
US18/636,835 Continuation US20240270179A1 (en) 2018-11-15 2024-04-16 Vehicle-mounted camera

Publications (1)

Publication Number Publication Date
WO2020100740A1 true WO2020100740A1 (ja) 2020-05-22

Family

ID=70731470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043876 WO2020100740A1 (ja) 2018-11-15 2019-11-08 車載カメラ

Country Status (6)

Country Link
US (2) US11987184B2 (ja)
EP (2) EP3883231B1 (ja)
JP (1) JP7460537B2 (ja)
KR (1) KR20210091138A (ja)
CN (1) CN112970241B (ja)
WO (1) WO2020100740A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081506B2 (ja) * 2019-01-11 2022-06-07 株式会社オートネットワーク技術研究所 電気接続箱
US20230219500A1 (en) * 2022-01-13 2023-07-13 Magna Electronics Inc. Vehicular camera assembly process with enhanced attachment of imager assembly at camera housing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118445A (ja) * 2015-12-25 2017-06-29 日本電産エレシス株式会社 車載カメラ
JP2017159694A (ja) * 2016-03-07 2017-09-14 株式会社東海理化電機製作所 撮像装置
JP2018045482A (ja) 2016-09-15 2018-03-22 ソニー株式会社 撮像装置、信号処理装置、及び、車両制御システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103136A (ja) * 1997-09-29 1999-04-13 Canon Inc フレキシブルプリント基板の実装構造
JP4707687B2 (ja) 2007-01-05 2011-06-22 株式会社リコー 撮像装置および電子機器
JP4917060B2 (ja) * 2007-02-26 2012-04-18 Hoya株式会社 撮像ユニット及び携帯用電子機器
JP2009128521A (ja) * 2007-11-21 2009-06-11 Fujifilm Corp フレキシブル配線板及び撮像装置
JP2011176443A (ja) * 2010-02-23 2011-09-08 Fujifilm Corp 撮影装置
US9565342B2 (en) * 2012-03-06 2017-02-07 Magna Electronics Inc. Vehicle camera with tolerance compensating connector
CN202587160U (zh) * 2012-05-21 2012-12-05 珠海庆鸿药业有限公司 一种微型摄像模组
KR20240149986A (ko) 2013-08-30 2024-10-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP6349670B2 (ja) * 2013-10-09 2018-07-04 株式会社ニコン レンズ鏡筒及び撮像装置
WO2017125971A1 (ja) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 カメラモジュール
JP6990194B2 (ja) * 2016-04-14 2022-01-12 エルジー イノテック カンパニー リミテッド カメラモジュール用回路基板固定装置及びカメラモジュール
KR102458892B1 (ko) 2016-04-27 2022-10-26 삼성디스플레이 주식회사 플렉서블 표시장치 및 그의 제조방법
KR102615113B1 (ko) 2016-05-10 2023-12-19 삼성디스플레이 주식회사 플렉서블 디스플레이 장치
JP6815141B2 (ja) * 2016-09-13 2021-01-20 イリソ電子工業株式会社 撮像装置及びハーネス側コネクタ
KR102612541B1 (ko) * 2016-10-18 2023-12-12 엘지이노텍 주식회사 카메라 모듈
CN109391750B (zh) * 2017-08-05 2023-05-12 宁波舜宇光电信息有限公司 一定焦摄像模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118445A (ja) * 2015-12-25 2017-06-29 日本電産エレシス株式会社 車載カメラ
JP2017159694A (ja) * 2016-03-07 2017-09-14 株式会社東海理化電機製作所 撮像装置
JP2018045482A (ja) 2016-09-15 2018-03-22 ソニー株式会社 撮像装置、信号処理装置、及び、車両制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3883231A4

Also Published As

Publication number Publication date
EP4395472A3 (en) 2024-10-16
JP7460537B2 (ja) 2024-04-02
CN112970241B (zh) 2024-03-01
US11987184B2 (en) 2024-05-21
EP3883231A1 (en) 2021-09-22
CN112970241A (zh) 2021-06-15
EP4395472A2 (en) 2024-07-03
EP3883231B1 (en) 2024-05-22
US20220009425A1 (en) 2022-01-13
JPWO2020100740A1 (ja) 2021-10-21
EP3883231A4 (en) 2021-12-08
KR20210091138A (ko) 2021-07-21
US20240270179A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
US10077008B2 (en) Windshield-mounted camera apparatus and adjuster
US20240270179A1 (en) Vehicle-mounted camera
JP6834964B2 (ja) 画像処理装置、画像処理方法、およびプログラム
US10266124B2 (en) Camera apparatus
CN103370224A (zh) 具有用于监控车辆周边环境的装置的车辆
JP6946316B2 (ja) 電子基板、および電子装置
US11670625B2 (en) Imaging unit having a stacked structure and electronic apparatus including the imaging unit
CN112514361B (zh) 车载相机和使用车载相机的驱动控制系统
US20230048226A1 (en) Imaging device
US20220345603A1 (en) Imaging apparatus
JP2018013623A (ja) 車載撮像装置
US20240063244A1 (en) Semiconductor package, electronic device, and method of manufacturing semiconductor package
WO2021010173A1 (ja) 配線モジュール及び撮像装置
WO2022196188A1 (ja) 撮像装置、撮像装置の製造方法、および電子機器
CN114175614A (zh) 车载相机及其制造方法
CN114731380A (zh) 成像装置和电子设备
CN114008764A (zh) 半导体封装和电子装置
WO2021053957A1 (ja) 容量構造体、トランジスタアレイ基板およびトランジスタアレイ基板の製造方法、並びに、液晶表示装置および電子機器
JP2022123419A (ja) 情報記録装置、情報記録方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE