WO2020100554A1 - 半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム - Google Patents

半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム Download PDF

Info

Publication number
WO2020100554A1
WO2020100554A1 PCT/JP2019/041870 JP2019041870W WO2020100554A1 WO 2020100554 A1 WO2020100554 A1 WO 2020100554A1 JP 2019041870 W JP2019041870 W JP 2019041870W WO 2020100554 A1 WO2020100554 A1 WO 2020100554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
semiconductor manufacturing
furnace
temperature
gas
Prior art date
Application number
PCT/JP2019/041870
Other languages
English (en)
French (fr)
Inventor
山口 晃
忠信 有村
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to EP19884724.6A priority Critical patent/EP3854492B1/en
Priority to CN201980074607.5A priority patent/CN113015583B/zh
Priority to US17/293,256 priority patent/US20220002864A1/en
Publication of WO2020100554A1 publication Critical patent/WO2020100554A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a semiconductor manufacturing equipment part cleaning device, a semiconductor manufacturing equipment part cleaning method, and a semiconductor manufacturing equipment part cleaning system.
  • a semiconductor manufacturing apparatus using a vapor phase growth method such as MOCVD (metal organic chemical vapor deposition) and PECVD (plasma-enhanced chemical vapor deposition) is known.
  • MOCVD metal organic chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • parts of the semiconductor manufacturing apparatus parts of the semiconductor manufacturing apparatus.
  • Cleaning of parts is required.
  • a method of cleaning semiconductor manufacturing equipment parts a method of heating semiconductor manufacturing equipment parts housed in a cleaning treatment furnace, introducing an etching gas into them, and cleaning them by a gas phase reaction is generally used.
  • a nitride-based compound semiconductor such as gallium nitride (GaN), aluminum nitride (AlN), or indium nitride (InN) adheres
  • a chlorine-based gas as an etching gas
  • chlorides such as gallium chloride (GaCl 3 ), aluminum chloride (AlCl 3 ), indium chloride (InCl 3 ), etc. are generated.
  • gallium chloride has a boiling point of 201 ° C and is a solid at room temperature. Therefore, even in a furnace where the treatment temperature at the time of cleaning is close to 1000 ° C., precipitation occurs at a temperature lower than 200 ° C. at atmospheric pressure. Further, gallium chloride has a deliquescent property and reacts with water to generate hydrogen chloride. Further, the generated hydrogen chloride changes to hydrochloric acid and corrodes the metal. In other words, gallium chloride adheres to places where the temperature is low, such as the metal flanges that make up the cleaning treatment furnace of the cleaning device, the cleaning treatment furnace is opened for the purpose of transporting the object to be cleaned, and the deposited gallium chloride is released into the atmosphere. Exposure to metal corrodes internal metal parts.
  • a method of selecting an etching gas that generates a reaction product having a low boiling point can be considered. Thereby, even if a low temperature part exists in the cleaning treatment furnace, the reaction product does not precipitate and adhere, and is discharged from the reaction treatment furnace as a gas and can be captured by cooling in the intended trap.
  • an etching gas having such a characteristic and an appropriate etching rate has not been found at present.
  • Patent Document 1 and Patent Document 2 are known as methods for solving the above-mentioned problems with chlorides.
  • Patent Document 1 discloses a method in which a chlorine-based gas, which is a cleaning gas, is turned into plasma and then supplied into the furnace of a film forming apparatus. As a result, a reaction product having a high vapor pressure can be obtained, so that it is possible to prevent the reaction product from adhering due to precipitation.
  • expensive equipment is additionally required to generate the remote plasma.
  • a cooling plate is previously installed as a means for capturing reaction products in the vicinity of an outlet in a cleaning treatment furnace, and the temperature of the cooling plate is raised after the reaction products are temporarily captured by the cooling plate.
  • the configurations of a cleaning device and a cleaning method for evaporating a reaction product and supplementing it with a trap in a subsequent stage are disclosed.
  • the temperature difference between the cooling plate and the other members in the cleaning treatment furnace is small, there is a problem that not all the deposited reaction products adhere to the cooling plate but also to other places. Further, there is a problem that a burden of adding these additional mechanisms to the cleaning device is generated, and the cleaning method also complicates the process and lowers productivity.
  • the present invention has been made in view of the above circumstances, and a semiconductor manufacturing apparatus component cleaning apparatus and a semiconductor manufacturing apparatus capable of preventing the reaction product from adhering to the cleaning processing furnace with a simple structure.
  • An object of the present invention is to provide a part cleaning method and a semiconductor manufacturing apparatus part cleaning system.
  • the present invention provides a semiconductor manufacturing equipment part cleaning apparatus, a semiconductor manufacturing equipment part cleaning method, and a semiconductor manufacturing equipment part cleaning system described below.
  • a cleaning device for semiconductor manufacturing equipment parts to which a semiconductor adheres A cleaning treatment furnace that accommodates the semiconductor manufacturing equipment parts; A heating device for heating the semiconductor manufacturing device component in the cleaning treatment furnace; A decompression device for evacuating the inside of the cleaning treatment furnace, In the cleaning treatment furnace, a gas introduction pipe for introducing a cleaning gas that reacts with the semiconductor, A gas discharge pipe for discharging a reaction product of the semiconductor and the cleaning gas from the cleaning treatment furnace; A first temperature control device for maintaining the temperature of the surface in the cleaning treatment furnace within a required range, A second temperature control device for maintaining the temperature in the gas discharge pipe within a required range, and a cleaning device for semiconductor manufacturing equipment parts.
  • At least one of the temperature control mechanisms is provided on either or both of the side of the flange opposite to the surface facing the inside of the cleaning furnace and the inside of the flange, or [4]. Cleaning equipment for semiconductor manufacturing equipment parts.
  • the temperature control mechanism is One or more heat exchanging portions formed of the liquid flow path provided on one or both of the side opposite to the surface of the flange facing the cleaning treatment furnace and the inside of the flange; One or more supply paths for supplying the liquid to the exchange section, One or more discharge paths for discharging the liquid from the heat exchange section; One or more return paths that branch from at least one or more of the discharge paths, join at least one or more of the supply paths, and return a part of the liquid in the discharge paths to the supply paths; One or more first on-off valves which are provided in the supply path and which adjust the supply amount of the liquid to the heat exchange section stepwise or continuously; One or more temperature measuring devices provided in the discharge path;
  • the semiconductor manufacturing apparatus component cleaning apparatus according to [6] further comprising one or more pressure feeding apparatuses provided in the return path.
  • the purge gas supply mechanism for supplying a temperature-controlled purge gas from the outside of the cleaning process furnace toward a gap of the cleaning process furnace, further comprising: [1] to [7].
  • the semiconductor has the general formula Al x In y Ga 1-x ⁇ y N (where x and y are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1). It is a nitride-based compound semiconductor described, The cleaning device for a semiconductor manufacturing apparatus component according to any one of [1] to [8], wherein the cleaning gas is a chlorine-based gas.
  • the semiconductor manufacturing apparatus component cleaning apparatus according to any one of [1] to [9], The semiconductor manufacturing equipment parts to which the semiconductor adheres are stored in the cleaning treatment furnace, While heating the semiconductor manufacturing equipment parts, the inside of the cleaning processing furnace is repeatedly evacuated to purge the inside of the cleaning processing furnace, After introducing a cleaning gas into the cleaning treatment furnace to clean the semiconductor manufacturing equipment parts, A method of cleaning a semiconductor manufacturing apparatus component, which comprises repeatedly performing vacuum evacuation in the cleaning processing furnace to discharge a reaction product of the semiconductor and the cleaning gas from the cleaning processing furnace to a gas discharge pipe, A cleaning gas is introduced into the cleaning processing furnace to clean the semiconductor manufacturing equipment parts, and vacuum evacuation in the cleaning processing furnace is repeatedly performed to cause a reaction between the semiconductor and the cleaning gas from the cleaning processing furnace.
  • a method for cleaning a semiconductor manufacturing apparatus component wherein the temperature in the gas discharge pipe is maintained within a required range while the reaction product of the semiconductor and the cleaning gas is discharged from the cleaning treatment furnace to the gas discharge pipe.
  • a semiconductor manufacturing device component comprising: the semiconductor manufacturing device component cleaning device according to any one of [1] to [9], which cleans the semiconductor manufacturing device component to which the semiconductor adheres in a cleaning treatment furnace. Cleaning system.
  • a transfer device for transferring the semiconductor manufacturing equipment parts between the semiconductor manufacturing equipment and the semiconductor manufacturing equipment parts cleaning device [13] The cleaning system for a semiconductor manufacturing apparatus component according to [12], wherein the transfer processing space in the transfer apparatus communicates with the inside of the film forming furnace and the inside of the cleaning processing furnace, respectively.
  • the transfer device has one or more gate valves capable of dividing the transfer processing space into two or more.
  • the reaction product of the reaction product in the cleaning processing furnace can be formed by a simple structure and simple control. Adhesion can be prevented. Therefore, even if the reaction product is chloride and moisture adheres to the inside of the furnace, it is possible to prevent corrosion inside the furnace.
  • FIG. 1 is a cross-sectional view schematically showing an example of the configuration of a semiconductor manufacturing apparatus component cleaning apparatus according to an embodiment of the present invention.
  • the semiconductor manufacturing apparatus component cleaning apparatus of the present embodiment (hereinafter, simply referred to as “cleaning apparatus”) is a component (in a film forming furnace of a semiconductor manufacturing apparatus described later) in which a compound semiconductor is deposited (attached) by film formation ( Hereinafter, it is an apparatus for cleaning semiconductor manufacturing equipment parts). As shown in FIG.
  • the cleaning apparatus 1 of the present embodiment includes a cleaning processing furnace 2, a heating device 3, a gas introduction pipe 4, a gas discharge pipe 5, a pressure reducing device 6, a first temperature control device 7, and a second temperature control.
  • the apparatus 8 and the purge gas supply mechanism 9 are included in the schematic configuration.
  • the semiconductor device component 10 to be cleaned is not particularly limited as long as it has a compound semiconductor (semiconductor) attached thereto.
  • the semiconductor device component include a susceptor installed in a furnace of a MOCVD film forming apparatus or a PECVD thin film forming apparatus.
  • the material of the semiconductor device component is not particularly limited, but quartz, SiC, SiC coated, or the like can be applied.
  • the compound semiconductor to be removed is not particularly limited.
  • the compound semiconductor has the general formula Al x In y Ga 1-xy N (where x and y are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1.
  • x and y are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1.
  • gallium nitride (GaN), aluminum nitride (AlN), and indium nitride (InN) have a particularly remarkable effect.
  • the cleaning processing furnace 2 has a closed space for housing the semiconductor manufacturing apparatus component 10 and performing cleaning processing.
  • the configuration of the cleaning treatment furnace 2 is not particularly limited.
  • the cleaning furnace 2 has a vertical axial direction and has a vertical axial direction, and a quartz reaction tube 11 having an open upper end (one end) and a lower end (other end), and a metallic upper flange (first It is a vertical furnace having a flange 12 and a metal lower flange (second flange) 13 that closes the lower end opening.
  • One or more heat-resistant O-rings are respectively provided at the connecting portions between the reaction tube 11 and the upper flange 12 and the lower flange 13. In other words, the reaction tube 11 and the upper flange 12 and the lower flange 13 are connected to each other via one or more heat-resistant O-rings (not shown).
  • a cradle (stage) 14 for mounting the semiconductor device component 10 is provided in the cleaning processing furnace 2.
  • the gantry 14 is pivotally supported by the rotating shaft 15.
  • the rotary shaft 15 is provided so as to penetrate the lower flange 13.
  • the gantry 14 is rotatable in the cleaning treatment furnace 2 together with the rotating shaft 15.
  • the cleaning furnace 2 is configured such that at least one of the upper flange 12 and the lower flange 13 can be partially or entirely opened.
  • the lower flange 13 is formed by stacking four flanges 13a to 13d in order from the reaction tube 11 side via heat resistant O-rings and the like.
  • the lowermost flange 13d of the lower flanges 13 is an elevating flange, and the inside of the cleaning processing furnace 2 can be opened between the flange 13c on the reaction tube 11 side and the elevating flange 13d.
  • the four flanges 13a to 13d may be welded between the flanges 13a to 13c.
  • the heating device 3 is a heat source for heating the semiconductor manufacturing device component 10 in the cleaning processing furnace 2.
  • the heating device 3 is provided outside the cleaning processing furnace 2.
  • the heating device 3 is not particularly limited as long as it can heat the semiconductor manufacturing apparatus component 10 in the cleaning processing furnace 2 to a required temperature.
  • Examples of the heating device 3 include a heating coil, a heating lamp, and a heater of a high frequency induction heating device.
  • the heating device 3 it is preferable to use a heating coil capable of heating the semiconductor device component 10 up to about 1000 ° C.
  • a heating coil is used as the heating device 3, it is preferably provided so as to wind around the reaction tube 11.
  • the gas introduction pipe 4 is a gas introduction path for introducing an inert gas for purging, a cleaning gas that reacts with the compound semiconductor, and a carrier gas used together with the cleaning gas into the cleaning treatment furnace 2.
  • the gas introduction pipe 4 is provided so as to penetrate the upper flange 12.
  • the cleaning gas used in the cleaning apparatus 1 of the present embodiment is not particularly limited, and can be appropriately selected according to the type of compound semiconductor (semiconductor) attached to the semiconductor device component 10.
  • the compound semiconductor is the above-mentioned nitride compound semiconductor
  • Cl 2 , HCl, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl, BCl 3 , CHCl 3 , CH 2 Cl are used as the cleaning gas.
  • a chlorine-based gas containing chlorine in the molecule such as 2 , CH 3 Cl or the like can be used.
  • chlorine (Cl 2 ) gas is particularly preferable.
  • the cleaning gas one kind or a mixture of two or more kinds of the above-mentioned chlorine-based gases may be used, or one whose concentration is adjusted by a carrier gas such as nitrogen may be used.
  • the gas discharge pipe 5 is a gas discharge path for discharging the purge gas introduced into the cleaning processing furnace and the reaction product of the compound semiconductor adhering to the semiconductor manufacturing apparatus component 10 and the cleaning gas from the cleaning processing furnace 2. ..
  • the gas exhaust pipe 5 is provided so as to penetrate the lower flange 13 (specifically, the flange 13b).
  • the gas discharge pipe 5 may have a main path 5A and a bypass path 5B that branches from the main path 5A and then joins again. In that case, it is preferable that an opening / closing valve (not shown) for switching is provided in each of the main path 5A and the bypass path 5B.
  • a trap (not shown) is provided on the downstream side of the gas discharge pipe 5 for cooling and aggregating the reaction products discharged from the cleaning treatment furnace 2 to capture them. Further, a chlorine-based gas removing device (not shown) is provided on the downstream side of the gas discharge pipe 5.
  • the decompression device 6 is provided in the main path 5A of the gas discharge pipe 5 to evacuate the inside of the cleaning treatment furnace 2.
  • the decompression device 6 is not particularly limited as long as it can reach the required degree of vacuum in the cleaning treatment furnace 2.
  • a rotary pump, a dry pump or the like can be used. Among these, it is preferable to use a dry pump as the decompression device 6.
  • the first temperature control device 7 is provided in order to maintain the temperature of the inner surface 2A of the cleaning treatment furnace 2 which is the gas contact part within a required range.
  • the first temperature control device 7 includes a temperature control mechanism 16 that controls the temperature of the furnace inner surface 12A of the upper flange 12, and a temperature control mechanism 17 that controls the temperature of the furnace inner surface 13A of the lower flange 13. It is configured. That is, the first temperature control device 7 can independently control the temperature of the upper flange 12 and the lower flange 13.
  • the first temperature control device 7 is preferably provided so as to maintain the temperature of the connecting portion between the reaction tube 11 and the upper flange 12 and the lower flange 13 within a required range. As a result, the O-ring provided at the connecting portion between the reaction tube 11 and the upper flange 12 and the lower flange 13 can be maintained at a heat resistant temperature or lower.
  • FIG. 2 is a diagram showing an example of the configuration of the temperature control mechanism 16 provided on the upper flange 12.
  • the temperature control mechanism 16 is not particularly limited as long as it can control the temperature of the furnace inner surface 12A of the upper flange 12 within a required temperature range.
  • the temperature control mechanism 16 branches from the heat exchange section 18, a supply path L1 for supplying a liquid to the heat exchange section 18, a discharge path L2 for discharging the liquid from the heat exchange section 18, and a discharge path L2. Then, it has a return path L3 that joins the supply path L1, a first opening / closing valve 19, a second opening / closing valve 20, a thermometer (temperature measuring device) 21, and a pump (pressure feeding device) 22. Has been done.
  • the heat exchange section 18 is a liquid flow path provided inside the upper flange 12. By supplying a liquid having a required temperature to this flow path, heat exchange is performed with the upper flange 12. That is, when it is desired to cool the upper flange 12, the heat exchange section 18 may be supplied with a liquid having a temperature lower than that of the upper flange 12. Further, when it is desired to heat the upper flange 12, it is sufficient to supply the heat exchange section 18 with a liquid having a temperature higher than that of the upper flange 12. Further, when it is desired to maintain the upper flange 12 at a required temperature, it is sufficient to supply the heat exchange section 18 with the liquid controlled to the required temperature.
  • the configuration in which the heat exchange portion 18 is provided inside the upper flange 12 has been described as an example, but the configuration is not limited to this.
  • a liquid flow path may be provided so as to come into contact with the surface of the upper flange 12 opposite to the furnace inner surface 12A.
  • the heat exchange unit 18 may have at least one heat exchange unit 18, and may have two or more heat exchange units.
  • the supply path L1 is composed of a pipe or the like provided to supply the liquid to the heat exchange section 18 from a supply source (not shown).
  • the supply path L1 branches into a main path L1A and a sub path L1B, and is joined again and then connected to the heat exchange unit 18.
  • a first opening / closing valve 19 is provided in the supply path L1 in order to adjust the amount of liquid supplied to the heat exchange section 18 stepwise or continuously.
  • first opening / closing valves 19A and 19B are provided in the main path L1A and the sub path L1B that form the supply path L1, respectively.
  • the first opening / closing valve 19A is controlled to have a constant opening so that the liquid in the supply path L1 always flows when the cleaning device 1 is operated.
  • the upper flange 12 can be controlled to have a heat resistant temperature or lower.
  • the first opening / closing valve 19B is electrically connected to a thermometer 21 described later, and receives a control signal transmitted from the thermometer 21 to be controlled to a required opening degree.
  • the configuration having one supply path L1 for supplying the liquid to one heat exchange unit 18 has been described as an example, but the present invention is not limited to this. You may have two or more supply paths L1 with respect to one heat exchange part 18. For two or more heat exchanging parts 18, the number of supply paths L1 corresponding to the heat exchanging parts 18 may be provided. Furthermore, one supply path L1 may be branched and supplied to two or more heat exchange sections 18.
  • the configuration in which the first opening / closing valves 19A and 19B are provided on the respective paths L1A and L1B branched from the single supply path L1 has been described as an example, but the present invention is not limited to this.
  • the first opening / closing valve 19 may be provided in each of the two or more supply paths L1, or when one supply path L1 branches into two or more, the mode may be provided before branching, or before and after branching. It is possible to provide all of them.
  • the discharge path L2 is composed of a pipe or the like provided for discharging the liquid after heat exchange from the heat exchange section 18.
  • the discharge path L2 is provided with a thermometer 21 and a second opening / closing valve 20.
  • the thermometer 21 measures the temperature of the liquid discharged from the heat exchange section 18.
  • the thermometer 21 is electrically connected to the second opening / closing valve 19B, and sends a control signal to the second opening / closing valve 19B according to the temperature of the liquid discharged from the heat exchange unit 18.
  • the second opening / closing valve 20 adjusts the amount of the liquid discharged from the heat exchange unit 18 to the outside of the system stepwise or continuously. Specifically, when the cleaning device 1 is operated, the opening degree of the second opening / closing valve 20 is controlled according to the opening degree of the first opening / closing valve 19A. Further, when the first opening / closing valves 19A and 19B are used together, the opening of the second opening / closing valve 20 is controlled according to the total opening thereof. When the pump 22 is provided in the return path L3 to circulate the liquid in the circulation path as described later, the second opening / closing valve 20 can be omitted.
  • the configuration having one discharge path L2 for discharging the liquid from one heat exchange unit 18 has been described as an example, but the present invention is not limited to this.
  • You may have two or more discharge paths L2 with respect to one heat exchange part 18.
  • the number of discharge paths L2 corresponding to the heat exchange parts 18 may be provided. Further, it may be a mode in which the heat is discharged from two or more heat exchange sections 18 to the same number of discharge paths and then merges into one discharge path L2.
  • one second opening / closing valve 20 is provided in one discharge path L2
  • the second opening / closing valve 20 may be provided in each of the two or more discharge paths L2. When two or more discharge paths L2 are merged into one, they may be provided before the merge, or may be provided before and after the merge.
  • the return path L3 is a pipe or the like provided for branching from the discharge path L2, joining the supply path L1, and returning a part of the liquid after heat exchange in the discharge path L2 to the supply path L1. It is configured. Specifically, a branch point is formed between the thermometer 21 of the discharge path L2 and the second opening / closing valve 20, and a branch point is formed between the secondary side of the main path L1A and the sub path L1B of the supply path L1. It is provided over the confluence. That is, in the temperature control mechanism 16 of the present embodiment, the supply path L1 from the confluence point to the heat exchange section 18, the heat exchange section 18, the discharge path L2 from the heat exchange section 18 to the branch point, and the return path A liquid circulation path including the path L3 is provided.
  • the return path L3 is provided with a pump 22 that pumps the liquid at a required pressure and flow rate.
  • a pump 22 that pumps the liquid at a required pressure and flow rate.
  • the configuration having one return route L3 for returning the liquid from one discharge route L2 to one supply route L1 has been described as an example, but the present invention is not limited to this. Similar to the supply path L1 and the discharge path L2 described above, various modifications may be provided. Further, in the present embodiment, the configuration having one pump 22 in one return path L3 has been described as an example, but the present invention is not limited to this, and various modifications may be provided.
  • the temperature control mechanism 16 controls the first opening / closing valve 19A to have a constant opening degree so that the liquid in the supply path L1 always flows. Specifically, the liquid is supplied from the supply source to the supply path L1. The liquid supplied from the supply path L1 to the heat exchange section 18 is heat-exchanged with the upper flange 12, and then discharged from the heat exchange section 18 to the discharge path L2. Part of the liquid discharged to the discharge path L2 is returned to the supply path L1 from the return path L3, and the rest is discharged to the outside of the system via the second opening / closing valve 20 provided in the discharge path L2. Here, the liquid returned to the supply path L1 is mixed with the liquid in the supply path L1 and then supplied to the heat exchange section 18 again.
  • the temperature of the upper flange 12 rises due to the radiant heat of the semiconductor manufacturing equipment part 10 heated in the cleaning treatment furnace 2, the temperature of the liquid that has exchanged heat with the upper flange 12 in the heat exchange section 18 also rises. Furthermore, since it is mixed with the liquid returned by the return path L3, the temperature of the liquid supplied from the supply path L1 to the heat exchange section 18 (that is, the liquid in the circulation path) also rises.
  • the liquid in the circulation path measured by the thermometer 21 provided in the discharge path L2 exceeds the upper limit of the required temperature range, the liquid in the circulation path is cooled. Specifically, the first opening / closing valve 19B provided in the sub path L1B is opened to increase the supply amount of the liquid from the supply source. At the same time, the output of the pump 22 is controlled to reduce the flow rate of the liquid returned from the return path L3, and the opening degree of the second opening / closing valve 20 provided in the discharge path L2 is increased to discharge the liquid to the outside of the system. Increase the amount. As described above, by controlling the temperature of the liquid in the circulation path to a constant temperature within the required temperature range, it is possible to suppress the temperature rise of the upper flange 12.
  • the temperature of the upper flange 12 drops.
  • the temperature of the liquid in the circulation path measured by the thermometer 21 provided in the discharge path L2 does not reach the lower limit value of the required temperature range
  • the liquid in the circulation path is maintained.
  • the first opening / closing valve 19B provided in the sub route L1B is closed.
  • the output of the pump 22 is controlled to increase the flow rate of the liquid returned from the return path L3, and the opening degree of the second opening / closing valve 20 provided in the discharge path L2 is reduced to discharge the liquid to the outside of the system. Reduce the amount. In this way, by controlling the temperature of the liquid in the circulation path to a constant temperature within the required temperature range, it is possible to suppress the temperature decrease of the upper flange 12.
  • the furnace inner surface 12A of the upper flange 12 is controlled.
  • the temperature can be gently controlled within the required temperature range.
  • the temperature and the flow rate of the liquid in the circulation path may be set by using a table which is previously confirmed by the heating temperature of the semiconductor manufacturing apparatus component 10 in the cleaning processing furnace 2.
  • the temperature control mechanism 16 measures the temperature of the liquid in the circulation path and exchanges heat between the liquid in the circulation path controlled in the required temperature range and the upper flange 12 to thereby exchange the upper flange 12 with the upper flange 12.
  • a liquid passage for cooling and a liquid passage for heating are provided inside or on the surface of the upper flange 12, respectively, and the liquid for cooling or heating is appropriately selected according to the temperature of the furnace inner surface 12A of the upper flange 12. It may be configured to supply.
  • the temperature control mechanism 17 controls the temperature of the furnace inner surface 13A of the lower flange 13, as shown in FIG.
  • the temperature control mechanism 17 is not particularly limited as long as it can control the temperature of the furnace inner surface 13A of the lower flange 13 within a required temperature range.
  • Such a temperature control mechanism 17 is preferably configured to supply or circulate a temperature-controlled liquid, and like the temperature control mechanism 16, each of the flanges 13a, 13c, and 13d configuring the lower mold flange 13 is formed.
  • the first temperature control device 7 has the plurality of temperature control mechanisms 16 and 17, the upper flange 12 and the lower flange 13 can be temperature-controlled independently.
  • temperature control mechanisms 16 and 17 described above is configured to supply or circulate a temperature-controlled liquid, temperature control is easy and installation cost can be reduced.
  • the temperature-controlled liquid used as the cooling medium and the heating medium is not particularly limited, and one capable of maintaining the inside of the cleaning treatment furnace 2 within a required temperature range can be appropriately selected.
  • one capable of maintaining the inside of the cleaning treatment furnace 2 within a required temperature range can be appropriately selected.
  • the first temperature control device 7 is described as an example in which the temperature control mechanism of the quartz reaction tube 11 having a high heat resistant temperature and a large heat capacity is not provided, but the present invention is not limited to this.
  • the first temperature control device may include a temperature control mechanism for the reaction tube 11, a temperature control mechanism 16 for the upper flange 12, and a temperature control mechanism 17 for the lower flange 13. With such a configuration, the temperature of the surface 2A in the cleaning treatment furnace 2 can be controlled more accurately.
  • the second temperature control device 8 maintains the temperature in the gas exhaust pipe 5 within a required range so that the reaction product does not adhere to the gas exhaust pipe 5.
  • the second temperature control device 8 is preferably provided in the gas exhaust pipe 5 from the outside of the cleaning treatment furnace 2 to a trap (not shown).
  • the second temperature control device 8 is preferably provided on both paths when the gas exhaust pipe 5 branches into the main path 5A and the bypass path 5B.
  • the second temperature control device 8 is not particularly limited as long as it can maintain the temperature in the gas exhaust pipe 5 within a required range.
  • a pipe heater, a block heater, or the like can be used as the second temperature control device 8. It is preferable to use these appropriately according to the shape of the gas exhaust pipe 5.
  • the purge gas supply mechanism 9 supplies the temperature-controlled purge gas from the outside of the cleaning treatment furnace 2 toward the gap of the cleaning treatment furnace 2.
  • the purge gas supply mechanism 9 includes an inert gas supply source (not shown) that is a purge gas, a purge gas supply path (not shown) connected to the inert gas supply source, and a purge gas ejection port provided at the tip of the purge gas supply path. 9A and.
  • the clearance of the cleaning treatment furnace 2 means a connecting portion between the reaction tube 11 and the upper flange 12 and the lower flange 13 which configure the cleaning treatment furnace 2, the gas introduction pipe 4, the gas discharge pipe 5, and the rotary shaft 15.
  • a portion such as a portion penetrating the upper and lower flanges 12 and 13 is difficult to control temperature and difficult to control to a required surface temperature.
  • FIG. 3 is a schematic view showing an example of the configuration of a cleaning system for semiconductor manufacturing equipment components according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the delivery of the semiconductor manufacturing apparatus component 10 in the cleaning system of the present embodiment.
  • a semiconductor manufacturing device component cleaning system (hereinafter, simply referred to as “cleaning system”) 50 of the present embodiment includes a semiconductor manufacturing device 101, a cleaning device 1, and a transfer device 24. It is configured.
  • the semiconductor manufacturing apparatus 101 is not particularly limited as long as it forms a semiconductor layer or film on a base material.
  • an apparatus using a chemical vapor deposition method such as MOCVD or PECVD or an apparatus using a physical vapor deposition method such as vacuum vapor deposition or molecular beam vapor deposition (MBE) can be used.
  • a case where the semiconductor device 101 is a CVD film forming device will be described as an example.
  • the semiconductor device 101 includes a film forming furnace (reaction furnace) 102 in which the semiconductor manufacturing apparatus component 10 is arranged, and a heating device 103 for heating a base material in the film forming furnace 102 to a required temperature.
  • the film forming furnace 102 includes a reaction tube 111, an upper flange 112, and a lower flange 113.
  • a gantry 114 on which the semiconductor manufacturing apparatus component 10 is placed and a rotating shaft 115 that supports the gantry 114 are provided in the film forming furnace 102.
  • the lower flange 113 is composed of flanges 113a to 113d, and the flange 113d serves as a lifting flange.
  • the flange 13d is rotatably supported at the time of rotation 115, and the pedestal 114 also moves up and down as the flange 13d moves up and down.
  • the transport device 24 is not particularly limited as long as it can transfer the semiconductor manufacturing device component 10 to be cleaned between the semiconductor manufacturing device 101 and the cleaning device 1.
  • the transfer device 24 has a transfer processing space that is sealed inside. Further, the transfer device 24 has openable gate valves 28 and 29 that partition the transfer processing space.
  • the transfer processing space is divided into three spaces, that is, a first standby chamber 25, a blow chamber 26, and a second standby chamber 27 by the gate valves 28 and 29.
  • the first standby chamber 25 is arranged below the cleaning processing furnace 2.
  • the first standby chamber 25 which is a transfer processing space, and the inside of the cleaning treatment furnace 2 communicate with each other. To do.
  • the semiconductor device component 10 can be carried out from the lower side of the cleaning processing furnace 2 to the first standby chamber 25.
  • the semiconductor manufacturing device component 10 can be carried into the cleaning processing furnace 2 from the first standby chamber 25 by raising the pedestal 14 on which the semiconductor manufacturing device component 10 is placed in the first standby chamber 25 together with the lifting flange 13d. ..
  • the blow chamber 26 is arranged between the first standby chamber 25 and the second standby chamber 27 so as to be adjacent to each other.
  • the residue generated from the oxide layer existing at the top of the film which may remain after cleaning the semiconductor manufacturing apparatus component 10 is removed by blowing.
  • a glove box 31 a blow nozzle 32, a blower 33, a suction port 34 that is airtightly connected to the blow nozzle 32 via a pump, and a residue (fine particles) immediately before the suction side of the blower 33.
  • a filter 35 for capturing.
  • the second standby chamber 27 is arranged below the film forming furnace 102.
  • the second standby chamber 27 which is a transfer processing space, communicates with the inside of the film forming furnace 102. To do.
  • the semiconductor device component 10 can be carried out from the lower side of the film forming furnace 102 to the second standby chamber 27.
  • the semiconductor manufacturing apparatus component 10 can be carried into the film forming furnace 102 from the second standby chamber 27. .
  • the transfer device 24 has a fork mechanism 30.
  • the fork mechanism 30 can hold the semiconductor manufacturing apparatus component 10 in the transfer processing space. Further, the fork mechanism 30 can move horizontally in the transfer processing space of the transfer device 24. That is, by opening the gate valves 28 and 29, the fork mechanism 30 holds the semiconductor manufacturing apparatus component 10 and is horizontally moved so as to cross the first standby chamber 25, the blow chamber 26, and the second standby chamber 27. Can be conveyed in any direction.
  • the cleaning method of the semiconductor manufacturing apparatus component of the present embodiment (hereinafter, simply referred to as a cleaning method) is performed using the cleaning system 50 including the cleaning device 1.
  • the compound semiconductor semiconductor
  • semiconductor gallium nitride
  • Cl 2 chlorine gas
  • the semiconductor manufacturing apparatus component 10 to which the compound semiconductor (semiconductor) adheres is taken out from the film forming furnace 102 of the semiconductor manufacturing apparatus 101 and housed in the cleaning processing furnace 2 of the cleaning apparatus 1. Specifically, first, as shown in FIGS. 3 and 4, of the lower flange 113 of the film forming furnace 102, the elevating flange 113 d is opened to communicate the inside of the film forming furnace 102 with the second standby chamber 27. Let Next, the pedestal 114 on which the semiconductor manufacturing device component 10 used for film formation of gallium nitride (GaN) is placed is lowered together with the elevating flange 113d, and the semiconductor manufacturing device component 10 is carried into the second standby chamber 27. Next, the gate valves 28 and 29 are opened, the fork mechanism 30 is moved into the second standby chamber 27, and then the semiconductor manufacturing abandoned component 10 is held and moved to the first standby chamber 25.
  • gallium nitride GaN
  • the semiconductor manufacturing equipment component 10 is placed on the gantry 14 that is waiting in the first waiting chamber 25, and the fork mechanism 30 is retracted.
  • the pedestal 14 on which the semiconductor manufacturing equipment component 10 is mounted is raised together with the elevating flange 13d to move the semiconductor device component 10 into the cleaning treatment furnace 2 of the cleaning device 1. Bring in.
  • the cleaning processing furnace 2 is repeatedly evacuated to perform purging. Specifically, while heating the semiconductor manufacturing apparatus component 10 to about 1000 ° C. by the heating device 3, dry nitrogen gas as a purge gas is supplied into the cleaning treatment furnace 2 from the gas introduction pipe 4. Then, the decompression device 6 evacuates the cleaning furnace 2. By repeating this several times, the water remaining in the semiconductor manufacturing equipment component 10 and the cleaning treatment furnace 2 is removed.
  • a cleaning gas is introduced into the cleaning treatment furnace 2 to clean the semiconductor manufacturing apparatus component 10.
  • a mixed gas of chlorine gas and nitrogen gas as a cleaning gas is supplied from the gas introduction pipe 4 into the cleaning treatment furnace 2.
  • gallium nitride adhering to the semiconductor manufacturing equipment component 10 and chlorine gas undergo a gas phase reaction to generate gallium chloride (GaCl 3 ) as a reaction product.
  • GaCl 3 gallium chloride
  • the vacuum evacuation of the cleaning treatment furnace 2 is repeated to discharge the reaction product of the compound semiconductor and the cleaning gas from the cleaning treatment furnace 2 to the gas discharge pipe 5. Specifically, heating of the semiconductor manufacturing equipment component 10 is stopped, and the decompression device 6 is operated to discharge the gas containing gallium chloride (GaCl 3 ) from the cleaning treatment furnace 2 to the gas discharge pipe 5.
  • GaCl 3 gallium chloride
  • the temperature of the surface in the cleaning processing furnace 2 is maintained within the required range during the above-described third step and fourth step.
  • the first temperature control device 7 independently controls the temperature of the upper flange 12 and the lower flange 13.
  • the temperature of the surface in the cleaning treatment furnace 2 can be 50 ° C. or higher and 200 ° C. or lower, preferably 60 ° C. or higher and 100 ° C. or lower, and more preferably 70 ° C. or higher and 80 ° C. or lower. If the surface temperature in the cleaning treatment furnace 2 is 50 ° C. or higher, gallium chloride can be efficiently evaporated. If the surface temperature in the cleaning treatment furnace 2 is set to 200 ° C. or lower, an inexpensive O-ring having a low heat resistant temperature can be used. If the surface temperature in the cleaning treatment furnace 2 is set to 100 ° C. or lower, water can be used as a liquid serving as a cooling medium, and the mechanism is inexpensive and easy to maintain.
  • the first temperature control device 7 has the temperature control mechanisms 16 and 17 and independently controls the temperature of the upper flange 12 and the lower flange 13, it is easy to supply or circulate the temperature-controlled liquid.
  • the temperature can be controlled.
  • safe operation can be achieved by controlling the temperature at 70 ° C or higher and 80 ° C or lower.
  • FIG. 5 is a graph showing a vapor pressure curve of gallium trichloride.
  • the saturated vapor pressure at each temperature is, for example, 6 kPa at 100 ° C., 2 kPa at 70 ° C., and almost 0 at 20 ° C.
  • the pressure in the cleaning treatment furnace 2 becomes lower than the saturated vapor pressure or reaches the same level at a certain temperature, gallium chloride will evaporate quickly.
  • gallium chloride or the like since gallium chloride or the like has a vapor pressure of about 200 ° C. at atmospheric pressure, it can be vaporized and exhausted at the temperature (about 1000 ° C.) during cleaning of the semiconductor manufacturing apparatus component 10. However, if some residue remains in the cleaning treatment furnace 2 and is cooled to 200 ° C. or lower, and further to room temperature (about 20 ° C.), the reaction product may remain unexhausted, causing a problem. is there.
  • the inventor of the present application has confirmed that, as a measure against such a problem, the reaction product can be easily evaporated by reducing the pressure in the cleaning treatment furnace 2 to increase the partial pressure of gallium chloride. At that time, it was confirmed that the efficiency was improved by purging the cleaning treatment furnace 2. Furthermore, it was confirmed that by warming the surface 2A, which is the gas contacting portion in the cleaning treatment furnace 2, an environment in which the surface can be removed more easily.
  • a cooling mechanism that circulates a cooling liquid (for example, water at about 20 ° C.) has been generally provided.
  • the temperature of the furnace wall (furnace inner surface) of the cleaning treatment furnace is the ambient temperature (for example, room temperature of about 20 ° C.) or the temperature of the cooling water of the cooling mechanism. It will go down. Then, as described above, the reaction product is not exhausted and remains as a residue on the inner surface of the furnace.
  • the inventors of the present application have changed the temperature of the cooling liquid used for temperature control of the cleaning treatment furnace from general 20 ° C. to 50 ° C. or more and 200 ° C. or less, so that in the cleaning treatment furnace. It was found that the reaction product remaining in the furnace does not remain as a residue on the inner surface of the furnace because the inner surface of the furnace is appropriately warmed even when the heating is not performed.
  • cooling water such as city water as the cooling liquid
  • the temperature of the cooling water can be maintained at 70 to 80 ° C. only by changing the flow rate.
  • a route for circulating the liquid is provided to suppress the rapid temperature change of the liquid temperature due to the heat capacity of the liquid, and as a result, the rapid temperature change of the inner surface of the furnace can be suppressed.
  • the temperature control mechanism 16 normally uses the cooling water (liquid) that has been supplied to the supply path L1 using city water (about 20 ° C.) as the supply source to the heat exchange unit. It circulates in a circulation path including 18.
  • the upper flange 12 constituting the furnace wall is also heated and circulated by the radiant heat when the semiconductor manufacturing apparatus component 10 is heated (for example, 1000 ° C.) in the cleaning treatment furnace 2.
  • the cooling water being heated is also heated.
  • a preset first threshold value for example, 80 degrees
  • the first opening / closing valve 19 and the second opening / closing valve 20 are closed to circulate the cooling water in the circulation path.
  • a preset second threshold value for example, 70 ° C.
  • the discharge path L2 also has the same configuration.
  • the fourth step when the fourth step is started, the heating of the semiconductor manufacturing apparatus component 10 in the cleaning treatment furnace 2 is finished, but the cooling water in the circulation path is warmed by the residual heat for a while, so that the above-described operation is performed.
  • the cooling water temperature control is repeated between the first threshold value and the second threshold value.
  • the cooling water in the circulation path has its own heat quantity. It does not cool rapidly. Therefore, the temperature of the upper flange 12 can be kept at about 70 ° C. for a while, that is, until the fourth step is completed, and the effect of warming the surface 2A in the cleaning treatment furnace 2 continues. According to such a method, the warming-up effect is reduced (time is shortened) as compared with the case where the temperature is constantly controlled, but the economical effect is high because an expensive equipment such as a chiller is not required.
  • the second threshold value for example, 70 ° C.
  • the configuration and operating method of the temperature control mechanism 16 of the present embodiment is an example, and the present invention is not limited to this.
  • the temperature control area of the upper flange 12 is divided into a plurality of heat exchange sections, and a supply path, an exhaust path, and a return path each having an opening / closing valve are provided for these heat exchange sections, which are to be temperature controlled. Finer temperature control is possible by providing a plurality of memory cells in parallel and setting the first and second threshold values for each. The first and second thresholds may be independent or common to the plurality of divided temperature-controlled units.
  • the cleaning method of the present embodiment during the above-described third step and fourth step, at least while the cleaning gas stays in the furnace, a part of the cleaning treatment furnace 2 where temperature control is difficult (that is, It is preferable to eject the temperature-controlled purge gas from the purge gas supply mechanism 9 to the cleaning treatment furnace 2 at a position where the temperature may be lower than the required temperature.
  • the temperature range of the purge gas is not particularly limited.
  • the upper limit of the temperature range of the purge gas may be 200 ° C. or less, and may be a temperature that does not exceed the heat resistant temperature of the members around the cleaning treatment furnace 2.
  • the lower limit of the temperature range of the purge gas is preferably 70 ° C. or higher. In this way, by injecting the temperature-controlled purge gas to a portion of the cleaning treatment furnace 2 where temperature control is difficult, it is possible to more reliably deposit the reaction product gallium nitride on the surface of the cleaning treatment furnace 2. Can be prevented.
  • the temperature inside the gas exhaust pipe 5 is maintained within the required range during the above-mentioned fourth step.
  • the second temperature control device 8 controls the temperature from a portion of the gas discharge pipe 5 outside the cleaning treatment furnace 2 to a trap (not shown). This prevents gallium nitride from depositing in the gas exhaust pipe 5, and gallium nitride can be reliably captured in the trap (not shown).
  • the surface temperature in the gas discharge pipe 5 can be set to 200 ° C. or higher and 400 ° C. or lower, and more preferably 200 ° C. or higher and 250 ° C. or lower.
  • the surface temperature in the cleaning treatment furnace 2 can be set to 200 ° C. or higher, it is possible to prevent the precipitation of gallium nitride, which is a reaction product, in the gas discharge pipe 5.
  • the semiconductor manufacturing equipment component 10 is unloaded from the cleaning treatment furnace 2 and housed in the film forming furnace 102 of the semiconductor manufacturing equipment 101.
  • the elevating flange 13d is opened to communicate the inside of the cleaning treatment furnace 2 with the first standby chamber 25.
  • the pedestal 14 on which the semiconductor manufacturing device component 10 for which the cleaning process has been completed is placed is lowered together with the elevating flange 13d, and the semiconductor manufacturing device component 10 is carried into the first standby chamber 25.
  • the gate valve 28 is opened and moved to the blow chamber 26 while the semiconductor manufacturing leaving component 10 is held.
  • blow chamber 26 particles (for example, a residue such as aluminum oxide) scattered on the semiconductor manufacturing apparatus component 10 after the cleaning process are blown and removed.
  • the blow nozzle 32 and the suction port 34 are operated from inside the glove box 31 to blow and remove the particles scattered on the surface of the semiconductor manufacturing apparatus component 10.
  • the method of removing particles in the blow chamber 26 is an example, and the present invention is not limited to this.
  • blow may be combined with blasting or dry ice blasting, or removal may be performed by suction.
  • a bathtub may be installed in the blow chamber 26 to combine wet cleaning and blow.
  • the fork mechanism 30 opens the gate valve 29 while holding the semiconductor manufacturing apparatus component 10 in the blow chamber 26, and moves the gate valve 29 to the second standby chamber 27.
  • the semiconductor manufacturing apparatus component 10 is placed on the gantry 114 waiting in the second waiting chamber 27, the fork mechanism 30 is retracted, and then the gate valve 29 is closed.
  • the pedestal 114 on which the semiconductor manufacturing apparatus component 10 is mounted is raised together with the elevating flange 113d, so that the semiconductor device component 10 is formed into the film forming furnace 102 of the semiconductor manufacturing apparatus component 101. Bring it in.
  • the transfer device 24 by using the transfer device 24, the inside of the film forming furnace 102 of the semiconductor manufacturing apparatus component 101 and the cleaning processing furnace 2 of the cleaning device 1 are exposed to the outside air.
  • the semiconductor manufacturing device component 10 can be transported without the need.
  • the reaction tube 11, the upper flange 12, and the lower flange that configure the cleaning processing furnace 2 have a simple structure. It is possible to prevent the deposit of the reaction product from remaining on the surface of 13. Therefore, in the case where the reaction product is a highly corrosive chloride such as gallium nitride, and the upper flange 12 and the lower flange 13 made of metal are exposed to the atmosphere as the cleaning treatment furnace 2 is opened to the atmosphere. If so, these parts are not corroded.
  • the surface temperature in the cleaning processing furnace 2 is kept at 70 to 80 ° C. at least while the cleaning gas stays in the cleaning processing furnace 2.
  • all the reaction products deposited by the subsequent vacuum replacement (attainment pressure of about 300 Pa) are evaporated.
  • the pressure reducing device 6 a commercially available inexpensive rotary pump, dry pump (the ultimate vacuum degree is about several hundred Pa) or the like can be used.
  • the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the reaction tube 11 made of quartz whose upper and lower ends are opened, the upper flange 12 made of metal closing the upper opening, and the lower flange made of metal closing the lower opening.
  • the configuration of the cleaning treatment furnace 2 including 13 is described as an example, the configuration is not limited to this.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of a cleaning device for semiconductor manufacturing equipment parts according to another embodiment.
  • a cleaning apparatus 41 of another embodiment includes a cleaning treatment furnace 42 having a quartz reaction tube 51 having an open lower end and a metal lower flange 13 closing the lower end opening. It may be configured.
  • the upper end of the reaction tube 51 has a structure such as a bell jar shape that can withstand vacuuming.
  • the temperature control mechanism 16 of the upper flange 12 which constitutes the cleaning apparatus 1 of the above-described embodiment can be omitted.
  • the configuration using the heating coil as the heating apparatus 3 has been described as an example, but the present invention is not limited to this.
  • the heating device 43 in the cleaning device 41 according to another embodiment, a heater that covers the side surface and the upper end of the reaction tube 51 may be used.
  • the configuration in which the gas introduction pipe 4 penetrates the upper flange 12 has been described as an example, but the configuration is not limited to this.
  • the cleaning device 41 according to another embodiment may have a configuration in which the lower flange 13 and the rotary shaft 15 are penetrated as the gas introduction pipe 44.
  • the configuration in which the gantry (stage) 14 has the rotating mechanism has been described as an example, but the configuration is not limited to this.
  • the gantry 14 may not have a rotation mechanism. Specifically, by replacing the rotating shaft 15 with a pillar and fixing the pillar to the elevating flange 13d, the inside of the cleaning processing furnace 2 can be made airtight. Therefore, the purge gas supply mechanism 9 can be omitted.
  • the configuration in which the cleaning processing furnace 2 is a vertical furnace has been described as an example, but the invention is not limited to this.
  • a horizontal furnace in which the axial direction of the reaction tube is horizontal may be used.
  • the cleaning apparatus 1 of the above-described embodiment is airtightly connected to the semiconductor manufacturing apparatus (not shown) via the transfer processing space 25, the second step may be omitted in the above-described cleaning method. Further, in the above-described cleaning method, the semiconductor manufacturing apparatus component 10 may be transported at a high temperature for the purpose of shortening the time.
  • a GaN-based nitride HEMT structure including an AlN layer was grown to a thickness of 5 ⁇ m on the base material. Then, the components in the MOCVD furnace arranged around the base material were cleaned using the cleaning device 1 shown in FIG. 1 according to the following conditions and procedures.
  • Heating temperature during cleaning 900 °C ⁇ Pressure in cleaning process furnace: atmospheric pressure ⁇ Cleaning gas: mixed gas of chlorine (1 L / min) and nitrogen (9 L / min) ⁇ Cleaning time: 60 minutes (per batch)
  • the residue at the place where the deposit was was collected with a carbon tape and observed with a scanning electron microscope. Furthermore, the residue was analyzed using an energy dispersive X-ray analyzer. As a result of these observations and analyses, gallium nitride, which is the main component of the deposit, and gallium, aluminum, and nitrogen, which are the constituent elements of aluminum nitride, were not detected from the surface of the cleaned component. However, although white foil-like powder was observed, it was blown off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cleaning In General (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

簡単な構造によって、洗浄処理炉内への反応生成物の付着を防ぐことが可能な、半導体製造装置部品の洗浄装置を提供することを目的とし、半導体製造装置部品(10)を収容する洗浄処理炉(2)、加熱装置(3)、ガス導入管(4)、ガス排出管(5)、減圧装置(6)、第1温度制御装置(7)、第2温度制御装置(8)、及びパージガス供給機構(9)を備える半導体製造装置部品の洗浄装置(1)を提供する。

Description

半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム
 本発明は、半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システムに関する。
 基材上に薄膜を形成する薄膜形成装置として、MOCVD(metal organic chemical vapor deposition)、PECVD(plasma-enhanced chemical vapor deposition)等の気相成長法を利用した半導体製造装置が知られている。これらの半導体製造装置では、基材上に化合物半導体の薄膜を形成すると、成膜炉内の部品(以下、半導体製造装置部品という)にも化合物半導体が付着するため、定期的にこれらの半導体装置部品の洗浄が必要となる。半導体製造装置部品の洗浄方法としては、洗浄処理炉内に収容した半導体製造装置部品を加熱し、そこにエッチングガスを導入して、気相反応により洗浄する方法が一般的である。
 ところで、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)等の窒化物系化合物半導体が付着した半導体製造装置部品を、エッチングガスとして塩素系ガスを用いて洗浄した場合、反応生成物として塩化ガリウム(GaCl)、塩化アルミニウム(AlCl)、塩化インジウム(InCl)等の塩化物が生成する。
 例えば、塩化ガリウムは、沸点が201℃であり、常温では固体である。そのため、洗浄時の処理温度が1000℃近い炉内であっても、大気圧で温度が200℃より低い箇所に析出する。また、塩化ガリウムは、潮解性を有しており、水分と反応して塩化水素を発生させる。さらに、発生した塩化水素は塩酸に変化して、金属を腐食する。つまり、洗浄装置の洗浄処理炉を構成する金属製のフランジ等、温度が低い場所に塩化ガリウムが付着し、被洗浄物の搬送などの目的で洗浄処理炉が開放され、付着した塩化ガリウムが大気に暴露すると、金属製の炉内部品が腐食される。
 半導体製造装置部品を洗浄する際に生成する塩化物の課題を解決する方法として、沸点が低い反応生成物を生成するエッチングガスを選択する方法が考えられる。これにより、洗浄処理炉内に低温部が存在しても反応生成物が析出して付着せず、気体として反応処理炉内から排出され、意図したトラップ内で冷却することで捕捉できる。しかしながら、そうした特性をもちながら、適度なエッチングレートを持つエッチングガスは現状で見つかっていない。
 上述した塩化物の課題を解決する方法として、特許文献1及び特許文献2が知られている。ここで、特許文献1には、クリーニングガスである塩素系ガスをプラズマ化した後、成膜装置の炉内に供給する方法が開示されている。これにより、蒸気圧の高い反応生成物が得られるため、炉内での反応生成物の析出による付着を防ぐことができる。しかしながら、リモートプラズマを発生させるための高価な設備が別途必要である。
 また、特許文献2には、洗浄処理炉内の排出口付近に、反応生成物の捕捉手段として冷却プレートをあらかじめ設置し、冷却プレートに反応生成物を一旦捕捉した後、冷却プレートの温度を上げ、反応生成物を蒸発させて後段のトラップで補足する洗浄装置及び洗浄方法の構成が開示されている。しかしながら、冷却プレートと、洗浄処理炉内の他の部材との温度差が小さいと、析出した反応生成物の全てが冷却プレートに付着せず、他の場所にも付着してしまう課題がある。また、洗浄装置にこれらの追加の機構を追加する負担が生じるとともに、洗浄方法においても工程が複雑になり、生産性が低下するという課題がある。
特開2013-062342号公報 特開2015-073132号公報
 本発明は、上記事情に鑑みてなされたものであって、簡単な構造によって、洗浄処理炉内への反応生成物の付着を防ぐことが可能な、半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システムを提供することを課題とする。
 上記課題を解決するため、本発明は以下の半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システムを提供する。
[1] 半導体が付着した半導体製造装置部品の洗浄装置であって、
 前記半導体製造装置部品を収容する洗浄処理炉と、
 前記洗浄処理炉内の前記半導体製造装置部品を加熱する加熱装置と、
 前記洗浄処理炉内を真空排気する減圧装置と、
 前記洗浄処理炉内に、前記半導体と反応するクリーニングガスを導入するガス導入管と、
 前記洗浄処理炉内から、前記半導体と前記クリーニングガスとの反応生成物を排出するガス排出管と、
 前記洗浄処理炉内の表面の温度を所要の範囲に維持する第1温度制御装置と、
 前記ガス排出管内の温度を所要の範囲に維持する第2温度制御装置と、を備える、半導体製造装置部品の洗浄装置。
[2] 前記洗浄処理炉が、少なくとも一端が開口する石英製の反応管と、前記開口を閉塞する金属製の第1フランジと、を有する、[1]に記載の半導体製造装置部品の洗浄装置。
[3] 前記洗浄処理炉が、両端が開口する石英製の反応管と、前記開口の一端側を閉塞する金属製の第1フランジと、前記開口の他端側を閉塞する金属製の第2フランジと、を有する[1]に記載の半導体製造装置部品の洗浄装置。
[4] 前記第1温度制御装置が、前記反応管及び前記フランジのうち、前記洗浄処理炉内の表面を構成する1以上の部分をそれぞれ独立して温度制御する、1以上の温度制御機構を有する、[2]又は[3]に記載の半導体製造装置部品の洗浄装置。
[5] 前記フランジの前記洗浄処理炉内と対向する面と反対側、及び前記フランジの内側のうち、いずれか一方又は両方に、前記温度制御機構の少なくとも1つが設けられる、[4]に記載の半導体製造装置部品の洗浄装置。
[6] 前記温度制御機構が、液体の供給及び液体の循環のうち、いずれか一方又は両方によるものである、[4]又は[5]に記載の半導体製造装置部品の洗浄装置。
[7] 前記温度制御機構が、
 前記フランジの前記洗浄処理炉内と対向する面と反対側、及び前記フランジの内側のうち、いずれか一方又は両方に設けられた前記液体の流路からなる1以上の熱交換部と、 前記熱交換部に前記液体を供給する1以上の供給経路と、
 前記熱交換部から前記液体を排出する1以上の排出経路と、
 少なくとも1以上の前記排出経路から分岐し、少なくとも1以上の前記供給経路へ合流して、前記排出経路内の液体の一部を前記供給経路へ返送する1以上の返送経路と、
 前記供給経路に設けられ、前記熱交換部への前記液体の供給量を段階的又は連続的に調節する1以上の第1開閉バルブと、
 前記排出経路に設けられた1以上の温度測定装置と、
 前記返送経路に設けられた1以上の圧送装置と、を有する、[6]に記載の半導体製造装置部品の洗浄装置。
[8] 前記洗浄処理炉の外側から前記洗浄処理炉の隙間に向けて、温度制御されたパージガスを供給するパージガス供給機構をさらに備える、[1]乃至[7]のいずれか一項に記載の半導体製造装置部品の洗浄装置。
[9] 前記半導体が、一般式AlInGa1-x-yN(但し、x、yは、0≦x<1、0≦y<1、0≦x+y<1である。)で表記される窒化物系化合物半導体であり、
 前記クリーニングガスが、塩素系ガスである、[1]乃至[8]のいずれか一項に記載の半導体製造装置部品の洗浄装置。
[10] [1]乃至[9]のいずれか一項に記載の半導体製造装置部品の洗浄装置を用い、
 半導体が付着した半導体製造装置部品を洗浄処理炉内に収容し、
 前記半導体製造装置部品を加熱しながら、前記洗浄処理炉内の真空排気を繰り返し行って前記洗浄処理炉内をパージし、
 前記洗浄処理炉内にクリーニングガスを導入して、前記半導体製造装置部品を洗浄した後に、
 前記洗浄処理炉内の真空排気を繰り返し行って、前記洗浄処理炉内から前記半導体と前記クリーニングガスとの反応生成物をガス排出管へ排出する、半導体製造装置部品の洗浄方法であって、
 前記洗浄処理炉内にクリーニングガスを導入して、前記半導体製造装置部品を洗浄し、前記洗浄処理炉内の真空排気を繰り返し行って、前記洗浄処理炉内から前記半導体と前記クリーニングガスとの反応生成物をガス排出管へ排出する間、前記洗浄処理炉内の表面の温度を所要の範囲に維持し、
 前記洗浄処理炉内から前記半導体と前記クリーニングガスとの反応生成物をガス排出管へ排出する間、前記ガス排出管内の温度を所要の範囲に維持する、半導体製造装置部品の洗浄方法。
[11] 半導体製造装置部品が配置された成膜炉内で、基材上に半導体の層又は被膜を形成する半導体製造装置と、
 洗浄処理炉内で、前記半導体が付着した前記半導体製造装置部品を洗浄する、[1]乃至[9]のいずれか一項に記載の半導体製造装置部品の洗浄装置と、を備える半導体製造装置部品の洗浄システム。
[12] 前記半導体製造装置と、前記半導体製造装置部品の洗浄装置との間で、前記半導体製造装置部品を受け渡す搬送装置をさらに備える、[11]に記載の半導体製造装置部品の洗浄システム。
[13] 前記搬送装置内の搬送処理空間が、前記成膜炉内及び前記洗浄処理炉内とそれぞれ連通する、[12]に記載の半導体製造装置部品の洗浄システム。
[14] 前記搬送装置が、前記搬送処理空間を2以上に分割可能な、1以上のゲート弁を有する、[13]に記載の半導体製造装置部品の洗浄システム。
 本発明の半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システムによれば、簡単な構造及び簡単な制御によって、洗浄処理炉内への反応生成物の付着を防ぐことができる。したがって、反応生成物が塩化物であり、炉内に水分が付着した場合であっても、炉内の腐食を防ぐことができる。
本発明を適用した一実施形態である半導体製造装置部品の洗浄装置の構成を模式的に示す断面図である。 上側フランジに設けられている温度制御機構の一部の構成を示す図である。 本発明を適用した一実施形態である半導体製造装置部品の洗浄システムの構成の一例を示す模式図である。 本実施形態の洗浄システムにおいて、半導体製造装置部品の受け渡しを説明するための図である。 三塩化ガリウムの蒸気圧曲線を示すグラフである。 他の実施形態である半導体製造装置部品の洗浄装置の構成を模式的に示す断面図である。
 以下、本発明を適用した一実施形態である半導体製造装置部品の洗浄装置について、それを備える洗浄システム及び洗浄方法とともに図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
<半導体製造装置部品の洗浄装置>
 先ず、本発明を適用した一実施形態である半導体製造装置部品の洗浄装置の構成について説明する。図1は、本発明を適用した一実施形態である半導体製造装置部品の洗浄装置の構成の一例を模式的に示す断面図である。
 本実施形態の半導体製造装置部品の洗浄装置(以下、単に「洗浄装置」という)は、後述する半導体製造装置の成膜炉内にあって、成膜によって化合物半導体が堆積(付着)した部品(以下、半導体製造装置部品という)を洗浄するための装置である。
 図1に示すように、本実施形態の洗浄装置1は、洗浄処理炉2、加熱装置3、ガス導入管4、ガス排出管5、減圧装置6、第1温度制御装置7、第2温度制御装置8、及びパージガス供給機構9を備えて、概略構成されている。
 洗浄対象となる半導体装置部品10は、化合物半導体(半導体)が付着したものであれば、特に限定されない。半導体装置部品としては、例えば、MOCVD膜形成装置やPECVD薄膜形成装置の炉内に設置されるサセプタ等が挙げられる。また、半導体装置部品の材質としては、特に限定されないが、石英製、SiC製、SiCコーティングしたもの等を適用できる。
 除去対象となる化合物半導体は、特に限定されない。本実施形態では、化合物半導体が、一般式AlInGa1-x-yN(但し、x、yは、0≦x<1、0≦y<1、0≦x+y<1である。)で表記される窒化物系化合物半導体である場合、より具体的には、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)である場合に、特に顕著な効果が得られる。
 洗浄処理炉2は、半導体製造装置部品10を収容して、洗浄処理するための密閉された空間を有する。洗浄処理炉2の構成は、特に限定されない。洗浄処理炉2は、鉛直方向上下に軸線方向を有し、上端(一端)及び下端(他端)が開口する石英製の反応管11と、上端開口を閉塞する金属製の上側フランジ(第1フランジ)12と、下端開口を閉塞する金属製の下側フランジ(第2フランジ)13とを有する縦型炉である。反応管11と、上側フランジ12及び下側フランジ13との接続部には、1つ又は2以上の耐熱性のOリング(図示略)がそれぞれ設けられている。換言すると、反応管11と、上側フランジ12及び下側フランジ13とは、1つ又は2以上の耐熱性のOリング(図示略)を介して、それぞれ接続されている。
 洗浄処理炉2内には、半導体装置部品10を載置するための架台(ステージ)14が設けられている。架台14は、回転軸15に軸支されている。回転軸15は、下側フランジ13を貫通するように設けられている。架台14は、回転軸15とともに、洗浄処理炉2内で回転可能とされている。
 洗浄処理炉2は、上側フランジ12及び下側フランジ13のうち、少なくともいずれか一方のフランジの一部または全部が開放可能に構成される。本実施形態では、下側フランジ13は、反応管11側から順に、4つのフランジ13a~13dが耐熱性のOリング等を介して積層されて構成されている。下側フランジ13のうち、最下方のフランジ13dが昇降フランジであり、反応管11側のフランジ13cと、昇降フランジ13dとの間で洗浄処理炉2内を開放可能となっている。昇降フランジ13dとともに架台14を上昇・下降させることで、洗浄処理炉2の下方から半導体装置部品10を搬入・搬出できる。なお、4つのフランジ13a~13dのうち、フランジ13a~13cの間は、溶接されていてもよい。
 加熱装置3は、洗浄処理炉2内の半導体製造装置部品10を加熱するための熱源である。本実施形態では、加熱装置3は、洗浄処理炉2の外側に設けられている。加熱装置3は、洗浄処理炉2内の半導体製造装置部品10を所要の温度まで加熱できるものであれば、特に限定されない。加熱装置3としては、高周波誘導加熱装置の加熱コイル、加熱ランプ、加熱ヒータ等が挙げられる。これらの中でも、加熱装置3として、半導体装置部品10を約1000℃程度まで加熱可能な加熱コイルを用いることが好ましい。加熱装置3として加熱コイルを用いる場合、反応管11の周囲を巻回するように設けることが好ましい。
 ガス導入管4は、パージ用の不活性ガス、化合物半導体と反応するクリーニングガス、クリーニングガスと共に用いるキャリアガスを洗浄処理炉2内に導入するためのガス導入経路である。本実施形態では、ガス導入管4は、上側フランジ12を貫通するように設けられている。
 本実施形態の洗浄装置1で用いるクリーニングガスは、特に限定されるものではなく、半導体装置部品10に付着した化合物半導体(半導体)の種類に応じて適宜選択することができる。ここで、化合物半導体が上述した窒化物系化合物半導体である場合、クリーニングガスとして、Cl、HCl、SiCl、SiHCl、SiHCl、SiHCl、BCl、CHCl、CHCl、CHCl等の分子内に塩素を含む塩素系ガスを用いることができる。これらの中でも、塩素(Cl)ガスがとくに好ましい。また、クリーニングガスとして、上述した塩素系ガスのうち1種または2種以上の混合物を用いてもよいし、窒素等のキャリアガスによって濃度調整したものを用いてもよい。
 ガス排出管5は、洗浄処理炉内に導入したパージガスや、半導体製造装置部品10に付着した化合物半導体とクリーニングガスとの反応生成物を洗浄処理炉2内から排出するためのガス排出経路である。本実施形態では、ガス排出管5は、下側フランジ13(具体的には、フランジ13b)を貫通するように設けられている。また、ガス排出管5は、主経路5Aと、主経路5Aから分岐した後、再び合流するバイパス経路5Bとを有していてもよい。その場合、主経路5A及びバイパス経路5Bには、それぞれ切り替え用の開閉バルブ(図示略)が設けられることが好ましい。
 また、ガス排出管5の下流側には、洗浄処理炉2内から排出された反応生成物を冷却・凝集させて補足するためのトラップ(図示せず)が設けられている。さらに、ガス排出管5の下流側には、塩素系ガスの除害装置(図示せず)が設けられている。
 減圧装置6は、洗浄処理炉2内を真空排気するために、ガス排出管5の主経路5Aに設けられている。減圧装置6は、洗浄処理炉2内を所要の真空度に到達させるものであれば、特に限定されない。このような減圧装置6としては、ロータリーポンプ、ドライポンプ等を用いることができる。これらの中でも、減圧装置6としてドライポンプを用いることが好ましい。
 第1温度制御装置7は、接ガス部となる洗浄処理炉2の内側の表面2Aの温度を所要の範囲に維持するために設けられている。第1温度制御装置7は、上側フランジ12の炉内側表面12Aの温度を制御する温度制御機構16と、下側フランジ13の炉内側表面13Aの温度を制御する温度制御機構17と、を備えて構成されている。すなわち、第1温度制御装置7は、上側フランジ12及び下側フランジ13をそれぞれ独立して温度制御することができる。なお、第1温度制御装置7は、反応管11と、上側フランジ12及び下側フランジ13との接続部の温度を所要の範囲に維持するように設けることが好ましい。これにより、反応管11と、上側フランジ12及び下側フランジ13との接続部に設けられたOリングを耐熱温度以下に保持できる。
 図2は、上側フランジ12に設けられている温度制御機構16の構成の一例を示す図である。温度制御機構16は、上側フランジ12の炉内側表面12Aの温度を所要の温度範囲に制御できるものであれば、特に限定されない。温度制御機構16としては、温度制御された液体との熱交換によって、上側フランジ12の炉内側表面12Aの温度を制御する機構が好ましい。
 具体的には、温度制御機構16は、熱交換部18と、熱交換部18に液体を供給する供給経路L1と、熱交換部18から液体を排出する排出経路L2と、排出経路L2から分岐し、供給経路L1に合流する返送経路L3と、第1開閉バルブ19と、第2開閉バルブ20と、温度計(温度測定装置)21と、ポンプ(圧送装置)22と、を有して構成されている。
 熱交換部18は、上側フランジ12の内側に設けられた液体の流路である。この流路に所要の温度を有する液体を供給することで、上側フランジ12との間で熱交換が行われる。すなわち、上側フランジ12を冷却したい場合、熱交換部18に上側フランジ12よりも低い温度の液体を供給すればよい。また、上側フランジ12を加熱したい場合、熱交換部18に上側フランジ12よりも高い温度の液体を供給すればよい。さらに、上側フランジ12を所要の温度に維持したい場合、熱交換部18に所要の温度に制御された液体を供給すればよい。
 本実施形態では、熱交換部18を上側フランジ12の内側に設ける構成を一例として説明したが、これに限定されない。上側フランジ12の炉内側表面12Aと反対側の表面と接するように、液体の流路が設けられてもよい。また、熱交換部18は少なくとも1つ有していればよく、2つ以上有する構成であってもよい。
 供給経路L1は、図示略の供給源から液体を熱交換部18に供給するために設けられた、配管等で構成されている。供給経路L1は、主経路L1Aと、副経路L1Bとに分岐し、再び合流した後で熱交換部18と接続されている。
 供給経路L1には、熱交換部18への液体の供給量を段階的又は連続的に調節するために、第1開閉バルブ19が設けられている。具体的には、供給経路L1を構成する主経路L1A及び副経路L1Bには、第1開閉バルブ19A,19Bがそれぞれ設けられている。
 第1開閉バルブ19Aは、洗浄装置1を運転する際、供給経路L1内の液体を常時流動させるために一定の開度に制御される。供給源からの液体を熱交換部18に常時供給することで、上側フランジ12を耐熱温度以下に制御できる。
 第1開閉バルブ19Bは、後述する温度計21と電気的に接続されており、温度計21から送信された制御信号を受信して所要の開度に制御される。第1開閉バルブ19Aと第1開閉バルブ19Bとを併用することで、必要な液体の供給量を即時に供給できるため、温度制御の応答速度が向上する。
 本実施形態では、1つの熱交換部18に液体を供給する1つの供給経路L1を有する構成を一例として説明したが、これに限定されない。1つの熱交換部18に対して2以上の供給経路L1を有していてもよい。2以上の熱交換部18に対して、熱交換部18に対応する数の供給経路L1を有する構成であってもよい。さらに、1本の供給経路L1が分岐して2以上の熱交換部18に供給する態様であってもよい。
 また、本実施形態では、1本の供給経路L1から分岐した各経路L1A,L1Bにそれぞれ第1開閉バルブ19A,19Bを設ける構成を一例として説明したが、これに限定されない。2以上の供給経路L1にそれぞれ第1開閉バルブ19を設ける構成であってもよいし、1本の供給経路L1が2以上に分岐する場合、分岐する前に設ける態様でもよいし、分岐前後に全て設ける態様であってもよい。
 排出経路L2は、熱交換部18から熱交換後の液体を排出するために設けられた、配管等で構成されている。排出経路L2には、温度計21、及び第2開閉バルブ20が設けられている。
 温度計21は、熱交換部18から排出された液体の温度を測定する。温度計21は、第2開閉バルブ19Bと電気的に接続されており、熱交換部18から排出された液体の温度に応じて、第2開閉バルブ19Bへ制御信号を送信する。
 第2開閉バルブ20は、熱交換部18から排出された液体のうち、系外への排出量を段階的又は連続的に調節する。具体的には、洗浄装置1を運転する際、第1開閉バルブ19Aの開度に応じて、第2開閉バルブ20の開度が制御される。また、第1開閉バルブ19A,19Bが併用された場合、それらの合計の開度に応じて、第2開閉バルブ20の開度が制御される。なお、後述するように返送経路L3にポンプ22を設けて、液体を循環経路内で循環させる場合には、第2開閉バルブ20を省略することもできる。
 本実施形態では、1つの熱交換部18から液体を排出する1つの排出経路L2を有する構成を一例として説明したが、これに限定されない。1つの熱交換部18に対して2以上の排出経路L2を有していてもよい。2以上の熱交換部18に対して、熱交換部18に対応する数の排出経路L2を有する構成であってもよい。さらに、2以上の熱交換部18から同数の排出経路に排出された後、1本の排出経路L2に合流する態様であってもよい。
 また、本実施形態では、1本の排出経路L2に1つの第2開閉バルブ20を設ける構成を一例として説明したが、これに限定されない。2以上の排出経路L2にそれぞれ第2開閉バルブ20を設ける構成であってもよい。2以上の排出経路L2が1本に合流する場合、合流する前にそれぞれ設ける態様でもよいし、合流前後に全て設ける態様であってもよい。
 返送経路L3は、排出経路L2から分岐した後、供給経路L1に合流して、排出経路L2内の熱交換後の液体の一部を供給経路L1に返送するために設けられた、配管等で構成されている。具体的には、排出経路L2の温度計21と第2開閉バルブ20との間を分岐点とし、供給経路L1の主経路L1Aと副経路L1Bとの二次側を合流点として、分岐点と合流点との間にわたって設けられている。すなわち、本実施形態の温度制御機構16には、上記合流点から熱交換部18までの供給経路L1と、熱交換部18と、熱交換部18から上記分岐点までの排出経路L2と、返送経路L3とからなる、液体の循環経路が設けられている。
 また、返送経路L3には、所要の圧力・流量で液体を圧送するポンプ22が設けられている。これにより、熱交換部18から排出された熱交換後の液体の一部は、所要の流量で供給経路L1に返送され、供給経路L1内の液体と混合された後、再び熱交換部18に供給される。すなわち、循環経路内に液体が循環される。
 本実施形態では、1本の排出経路L2から1本の供給経路L1に液体を返送する1つの返送経路L3を有する構成を一例として説明したが、これに限定されない。上述した供給経路L1及び排出経路L2と同様に、種々の変更を設けてもよい。また、本実施形態では、1本の返送経路L3に1つのポンプ22を有する構成を一例として説明したが、これに限定されるものではなく、種々の変更を設けてもよい。
 温度制御機構16では、洗浄装置1を運転する際、第1開閉バルブ19Aを一定の開度に制御して、供給経路L1内の液体を常時流動させる。具体的には、供給源から液体を供給経路L1に供給する。供給経路L1から熱交換部18に供給された液体は、上側フランジ12と熱交換された後、熱交換部18から排出経路L2へ排出される。排出経路L2に排出された液体は、一部が返送経路L3から供給経路L1へ返送され、残部が排出経路L2に設けられた第2開閉バルブ20を介して系外へ排出される。ここで、供給経路L1へ返送された液体は、供給経路L1内の液体と混合された後、再び熱交換部18に供給される。
 洗浄処理炉2内で加熱された半導体製造装置部品10の輻射熱等によって上側フランジ12の温度が上昇すると、熱交換部18において上側フランジ12と熱交換された液体の温度も上昇する。さらには、返送経路L3によって返送された液体と混合されるため、供給経路L1から熱交換部18へ供給される液体(すなわち、循環経路内の液体)の温度も上昇する。
 ここで、排出経路L2に設けられた温度計21によって測定した循環経路内の液体の温度が所要の温度範囲の上限値を超える場合、循環経路内の液体を冷却する。具体的には、副経路L1Bに設けられた第1開閉バルブ19Bを開いて供給源からの液体の供給量を増加させる。併せて、ポンプ22の出力を制御して返送経路L3から返送する液体の流量を少なくし、排出経路L2に設けられた第2開閉バルブ20の開度を大きくして系外への液体の排出量を増加させる。このように、循環経路内の液体の温度を所要の温度範囲内で一定の温度に制御することにより、上側フランジ12の温度上昇を抑制することができる。
 一方、洗浄処理炉2内で半導体製造装置部品10の加熱が停止すると、上側フランジ12の温度が下降する。ここで、排出経路L2に設けられた温度計21によって測定した循環経路内の液体の温度が所要の温度範囲の下限値に満たない場合、循環経路内の液体を維持する。具体的には、副経路L1Bに設けられた第1開閉バルブ19Bを閉じる。併せて、ポンプ22の出力を制御して返送経路L3から返送する液体の流量を多くし、排出経路L2に設けられた第2開閉バルブ20の開度を小さくして系外への液体の排出量を減少させる。このように、循環経路内の液体の温度を所要の温度範囲内で一定の温度に制御することにより、上側フランジ12の温度下降を抑制することができる。
 このように、熱交換部18から排出される液体の温度、すなわち、循環経路内の液体の温度を所要の温度範囲内で一定の温度に制御することで、上側フランジ12の炉内側表面12Aの温度を所要の温度範囲に緩やかに制御することができる。また、循環経路内の液体の温度や流量は、洗浄処理炉2内の半導体製造装置部品10の加熱温度で予め確認したテーブルを用いて設定してもよい。
 本実施形態では、温度制御機構16が、循環経路内の液体の温度を測定し、所要の温度範囲に制御された循環経路内の液体と、上側フランジ12とを熱交換することで上側フランジ12の炉内側表面12Aの温度を制御する態様を一例として説明したが、これに限定されない。例えば、上側フランジ12の内部あるいは表面に冷却用の液体流路と加熱用の液体流路とをそれぞれ設け、上側フランジ12の炉内側表面12Aの温度に応じて冷却用あるいは加熱用の液体を適宜供給する構成としてもよい。
 温度制御機構17は、図1に示すように、下側フランジ13の炉内側表面13Aの温度を制御する。温度制御機構17は、下側フランジ13の炉内側表面13Aの温度を所要の温度範囲に制御できるものであれば、特に限定されない。このような温度制御機構17としては、温度制御された液体の供給又は循環による構成とすることが好ましく、温度制御機構16と同様に、下型フランジ13を構成するフランジ13a、13c、13dのそれぞれに、温度制御された液体を供給あるいは循環させることで循環経路内の液体の温度を制御する構成がより好ましい。
 以上説明したように、第1温度制御装置7は、複数の温度制御機構16,17を有するため、上側フランジ12及び下側フランジ13をそれぞれ独立して温度制御することができる。
 また、上述した温度制御機構16,17の少なくとも一方又は両方が、温度制御された液体の供給又は循環による構成とすることで、温度制御が容易であるとともに、設置コストを低減することができる。
 冷却媒体及び加熱媒体として用いる温度制御された液体は、特に限定されるものではなく、洗浄処理炉2内を所要の温度範囲に維持可能なものを適宜選択することができる。これらの中でも、上側フランジ12及び下側フランジ13の炉内側表面の温度を70~80℃に制御する場合、液体として水を用いることが、安全性の面や経済性の面から好ましい。
 なお、本実施形態では、第1温度制御装置7が、耐熱温度が高く、熱容量が大きい石英製の反応管11の温度制御機構を有しない構成を一例として説明したが、これに限定されない。例えば、第1温度制御装置が、反応管11の温度制御機構、上側フランジ12の温度制御機構16及び下側フランジ13の温度制御機構17を有する構成としてもよい。このような構成により、洗浄処理炉2内の表面2Aの温度をより正確に制御することができる。
 図1に示すように、第2温度制御装置8は、反応生成物がガス排出管5内に付着しないように、ガス排出管5内の温度を所要の範囲に維持する。第2温度制御装置8は、ガス排出管5において洗浄処理炉2の外側から図示略のトラップにわたって設けることが好ましい。また、第2温度制御装置8は、ガス排出管5が主経路5Aとバイパス経路5Bとに分岐する場合、両方の経路に設けることが好ましい。
 第2温度制御装置8は、ガス排出管5内の温度を所要の範囲に維持できるものであれば、特に限定されない。第2温度制御装置8としては、配管ヒータ、ブロックヒータ等を用いることができる。これらをガス排出管5の形状に合わせて適宜用いることが好ましい。
 パージガス供給機構9は、洗浄処理炉2の外側から洗浄処理炉2の隙間に向けて、温度制御されたパージガスを供給する。パージガス供給機構9は、パージガスである不活性ガス供給源(図示略)と、不活性ガス供給源に接続されたパージガス供給経路(図示略)と、パージガス供給経路の先端に設けられたパージガス噴出口9Aと、を備える。
 ここで、洗浄処理炉2の隙間とは、洗浄処理炉2を構成する反応管11と上側フランジ12及び下側フランジ13との接続部や、ガス導入管4、ガス排出管5及び回転軸15等が上下フランジ12、13を貫通する部分等、温度制御が困難であって所要の表面温度に制御することが困難な部分をいう。パージガス供給機構9により、洗浄処理炉2の隙間に温度制御されたパージガスを供給することで、洗浄処理炉2内の表面温度が局所的に低下することを防ぐことができる。したがって、洗浄処理炉2内の表面に、反応生成物が付着することを防ぐことができる。
<半導体製造装置部品の洗浄システム>
 次に、上述した洗浄装置1を備える、洗浄システムについて説明する。
 図3は、本発明を適用した一実施形態である半導体製造装置部品の洗浄システムの構成の一例を示す模式図である。また、図4は、本実施形態の洗浄システムにおいて、半導体製造装置部品10の受け渡しを説明するための図である。
 図3に示すように、本実施形態の半導体製造装置部品の洗浄システム(以下、単に「洗浄システム」という)50は、半導体製造装置101と、洗浄装置1と、搬送装置24とを備えて概略構成されている。
(半導体製造装置)
 半導体製造装置101は、基材上に半導体の層や被膜を形成するものであれば、特に限定されない。半導体製造装置101としては、例えば、MOCVD、PECVD等の化学蒸着法を利用した装置や、真空蒸着、分子線蒸着(MBE)等の物理蒸着法を利用した装置を用いることができる。以下、半導体装置101が、CVD成膜装置である場合を一例として説明する。
 半導体装置101は、半導体製造装置部品10が配置される成膜炉(反応炉)102、成膜炉102内の基材を所要の温度まで加熱する加熱装置103を備える。
 成膜炉102は、反応管111、上側フランジ112及び下側フランジ113を有する。
 成膜炉102内には、半導体製造装置部品10を載置する架台114と、架台114を支持する回転軸115とが設けられている。
 下側フランジ113は、フランジ113a~113dから構成されており、フランジ113dが昇降フランジとなっている。フランジ13dは、回転時115を回転可能に軸支しており、フランジ13dの昇降とともに、架台114も昇降する。
(搬送装置)
 搬送装置24は、半導体製造装置101と洗浄装置1との間で、洗浄対象である半導体製造装置部品10の受け渡しが可能なものであれば、特に限定されない。
 搬送装置24は、内側に密閉された搬送処理空間を有する。また、搬送装置24は、搬送処理空間を仕切る、開閉式のゲートバルブ28、29を有する。ゲートバルブ28、29により、搬送処理空間は、第1待機室25、ブロー室26及び第2待機室27の3つの空間に分割される。
 第1待機室25は、洗浄処理炉2の下方に配置される。ここで、図4に示すように、洗浄処理炉2の下側フランジ13を構成する昇降フランジ13dを開放することで、搬送処理空間である第1待機室25と洗浄処理炉2内とが連通する。また、昇降フランジ13dともに架台14を下降させることで、洗浄処理炉2の下側から半導体装置部品10を第1待機室25へ搬出できる。反対に、第1待機室25において半導体製造装置部品10を載置した架台14を昇降フランジ13dともに上昇させることで、第1待機室25から洗浄処理炉2内へ半導体製造装置部品10を搬入できる。
 ブロー室26は、図3に示すように、第1待機室25と第2待機室27との間に、それぞれに隣接して配置される。ブロー室26では、半導体製造装置部品10の洗浄後に残る可能性がある、膜の最上部に存在する酸化層から発生する残渣をブローにより除去する。ブロー室26には、グローブボックス31と、ブローノズル32と、ブロア33と、ポンプ等を介してブローノズル32と気密につながった吸引ポート34と、ブロア33の吸引側の直前で残渣(微粒子)を捕捉するフィルタ35とが設けられている。これにより、大気成分を混入させることなく、半導体製造装置部品10の残渣をブローによって除去できる。
 第2待機室27は、成膜炉102の下方に配置される。ここで、図4に示すように、成膜炉102の下側フランジ113を構成する昇降フランジ113dを開放することで、搬送処理空間である第2待機室27と成膜炉102内とが連通する。また、昇降フランジ113dともに架台114を下降させることで、成膜炉102の下側から半導体装置部品10を第2待機室27へ搬出できる。反対に、第2待機室27において半導体製造装置部品10を載置した架台114を昇降フランジ113dともに上昇させることで、第2待機室27から成膜炉102内へ半導体製造装置部品10を搬入できる。
 搬送装置24は、フォーク機構30を有する。フォーク機構30は、搬送処理空間において半導体製造装置部品10を把持できる。また、フォーク機構30は、搬送装置24の搬送処理空間内を水平方向に移動できる。すなわち、ゲートバルブ28、29を開放することで、フォーク機構30が半導体製造装置部品10を把持した状態で、第1待機室25、ブロー室26及び第2待機室27を横断するように、水平方向に搬送することができる。
<半導体製造装置部品の洗浄方法>
 次に、本実施形態の半導体製造装置部品の洗浄方法について説明する。
 本実施形態の半導体製造装置部品の洗浄方法(以下、単に洗浄方法という)は、洗浄装置1を備える洗浄システム50を用いて行う。
 なお、本実施形態では、化合物半導体(半導体)が窒化物系化合物半導体の窒化ガリウム(GaN)であり、クリーニングガスとして塩素ガス(Cl)を用いる場合を一例として説明する。
(第1ステップ)
 先ず、化合物半導体(半導体)が付着した半導体製造装置部品10を半導体製造装置101の成膜炉102内から取り出して、洗浄装置1の洗浄処理炉2内に収容する。
 具体的には、先ず、図3及び図4に示すように、成膜炉102の下側フランジ113のうち、昇降フランジ113dを開放して成膜炉102内と第2待機室27とを連通させる。次いで、昇降フランジ113dとともに窒化ガリウム(GaN)の成膜に用いた半導体製造装置部品10を載置した架台114を下降させて、半導体製造装置部品10を第2待機室27内へ搬入する。次いで、ゲートバルブ28、29を開放し、フォーク機構30を第2待機室27内へ移動させた後、半導体製造放置部品10を把持した状態で、第1待機室25へ移動させる。
 次に、第1待機室25内で待機している架台14の上に半導体製造装置部品10を載置し、フォーク機構30を退避する。次に、洗浄処理炉2の下側フランジ13のうち、昇降フランジ13dとともに半導体製造装置部品10を載置した架台14を上昇させて、半導体装置部品10を洗浄装置1の洗浄処理炉2内へ搬入する。
(第2ステップ)
 次に、図1に示すように、半導体製造装置部品10を加熱しながら、洗浄処理炉2内の真空排気を繰り返してパージを行なう。
 具体的には、加熱装置3によって半導体製造装置部品10を1000℃程度まで加熱しながら、ガス導入管4からパージガスとして乾燥窒素ガスを洗浄処理炉2内へ供給する。その後、減圧装置6によって洗浄処理炉2内の真空排気を行う。これを数回繰り返すことで、半導体製造装置部品10や洗浄処理炉2内に残留する水分を除去する。
(第3ステップ)
 次に、洗浄処理炉2内にクリーニングガスを導入して、半導体製造装置部品10を洗浄する。
 具体的には、半導体製造装置部品10を1000℃程度まで加熱しながら、ガス導入管4からクリーニングガスとして塩素ガスと窒素ガスとの混合ガスを洗浄処理炉2内へ供給する。洗浄処理炉2内では、半導体製造装置部品10に付着した窒化ガリウムと塩素ガスとが気相反応することで、反応生成物として塩化ガリウム(GaCl)が生成する。このように、半導体製造装置部品10に付着した窒化ガリウムが除去されることで、半導体製造装置部品10が洗浄される。
(第4ステップ)
 次に、洗浄処理炉2内の真空排気を繰り返し行って、洗浄処理炉2内から化合物半導体とクリーニングガスとの反応生成物をガス排出管5へ排出する。
 具体的には、半導体製造装置部品10への加熱を停止し、減圧装置6を稼働して洗浄処理炉2内から塩化ガリウム(GaCl)を含むガスをガス排出管5へ排出する。
 本実施形態の洗浄方法では、上述した第3ステップ及び第4ステップの間、洗浄処理炉2内の表面の温度を所要の範囲に維持する。
 具体的には、第1温度制御装置7によって、上側フランジ12及び下側フランジ13をそれぞれ独立して温度制御する。
 洗浄処理炉2内の表面の温度としては、50℃以上200℃以下とすることができ、60℃以上100℃以下とすることが好ましく、70℃以上80℃以下とすることがより好ましい。洗浄処理炉2内の表面温度を50℃以上とすれば、塩化ガリウムを効率よく蒸発させることができる。洗浄処理炉2内の表面温度を200℃以下とすれば、耐熱温度の低い安価なOリングを用いることができる。洗浄処理炉2内の表面温度を100℃以下とすれば、冷却媒体となる液体として水を用いることができ、機構が安価でメンテしやすい。
 第1温度制御装置7が、温度制御機構16、17を有し、上側フランジ12及び下側フランジ13をそれぞれ独立して温度制御する場合、温度制御された液体の供給又は循環させることで、容易に温度制御できる。また、液体として水を用いる場合、70℃以上80℃以下に温度制御することで、安全に運転することができる。
 図5は、三塩化ガリウムの蒸気圧曲線を示すグラフである。
 図5に示すように、三塩化ガリウムの蒸気圧曲線によると、各温度での飽和蒸気圧は、例えば、100℃で6kPa、70℃で2kPa、20℃でほぼ0である。ここで、ある温度において洗浄処理炉2内の圧力が飽和蒸気圧を下回るか、同レベルに達すれば、塩化ガリウムは素早く蒸発することになる。
 すなわち、塩化ガリウムなどは、大気圧でおよそ200℃の蒸気圧であるため、半導体製造装置部品10の洗浄中の温度(1000℃程度)では気化させて排気できる。しかしながら、いくらかの残渣が洗浄処理炉2内に残り、それが200℃以下、さらには常温(20℃程度)まで冷却されると、反応生成物が排気されないままとなって、不具合が生じる場合がある。
 本願の発明者は、このような不具合の対策として、洗浄処理炉2内を減圧して塩化ガリウムの分圧を上げることで、反応生成物を蒸発しやすくなることを確認した。その際、さらに洗浄処理炉2内をパージすると効率があがることを確認した。さらには、洗浄処理炉2内の接ガス部となる表面2Aを暖めることで、より除去しやすい環境となることを確認した。
 ところで、洗浄対象を高温に加熱する従来の洗浄装置では、高温によって加熱対象ではない洗浄処理炉の耐熱温度が低い部分が劣化することが多く、そのような部分にはその耐熱温度を超えないように、冷却液(例えば、20℃程度の水)を循環させる冷却機構を設けることが一般的であった。
 しかしながら、従来の洗浄装置では、洗浄対象の加熱が停止すると洗浄処理炉の炉壁(炉内表面)の温度が、環境温度(例えば、20℃程度の常温)、あるいは冷却機構の冷却水の温度まで下がってしまう。すると、上述したように、反応生成物が排気されずに炉内表面に残渣として残るという不具合が生じることとなる。
 そこで、本願発明者らは、鋭意検討した結果、洗浄処理炉の温度制御に用いる冷却液の温度を、一般的な20℃から50℃以上200℃以下に変更することで、洗浄処理炉内で加熱を行っていないときでも、炉内表面が適度に暖気されるため、炉内に残留する反応生成物が炉内表面に残渣として残留しないことを見出した。
 さらに、本願発明者らは、冷却液として市水等の水(冷却水)を用い、洗浄処理時の炉内の熱を利用することで、高価なチラー等を使用することなく、冷却水の流量変化のみで冷却水の温度を70~80℃に保てることを見出した。具体的には、液体を循環させる経路を設けて、液体の熱容量によって液温の急激な温度変化を抑えて、結果、炉内表面の急激な温度変化を抑えることができる。
 ここで、本実施形態の洗浄方法において、上述した第3ステップ及び第4ステップの間、第1温度制御装置7を構成する温度制御機構16による、上側フランジ12の温度の制御方法を説明する。
 図1に示すように、温度制御機構16は、第3ステップの開始前では、通常、市水(20℃程度)を供給源として供給経路L1に供給した冷却水(液体)を、熱交換部18を含む循環経路内で循環させる。
 次に、第3ステップが開始されると、洗浄処理炉2内で半導体製造装置部品10を加熱(例えば1000℃)する際の輻射熱で、炉壁を構成する上側フランジ12も加熱され、循環している冷却水も加熱される。排出経路L2の温度計21によって測定された冷却水の液温が、予め設定された第1の閾値(例えば80度)となったら、供給経路L1の第1開閉バルブ19と排出経路L2の第2開閉バルブ20を開き、循環している一部の冷却水を入れ替えて、液温を低下させる。温度計21による液温が、予め設定された第2の閾値(例えば70℃)となったら、第1開閉バルブ19及び第2開閉バルブ20を閉じて、冷却水を循環経路内で循環させる。これを繰り返すことで、第3ステップの間、冷却水の温度を70℃から80℃で保ち、上側フランジ12の温度を耐熱温度以下に保つことができる。
 なお、第3ステップ間の冷却水の温度上昇率によっては、供給経路L1から段階的に未加熱の液体の流量を増加させて、循環経路内での液体の温度を低下させることができる。このような調整は、開度調整可能な1以上の第1開閉バルブ19(19A、19B)を介した1以上の供給経路L1(L1A,L1B)によって達成可能である。併せて、排出経路L2においても同様の構成とすることが好ましい。
 次に、第4ステップが開始されると、洗浄処理炉2内での半導体製造装置部品10の加熱は終了するが、しばらくの間は余熱によって循環経路内の冷却水は温められるため、上述した第3ステップ中と同様に、第1の閾値と第2の閾値との間で冷却水の温度制御が繰り返される。
 次いで、洗浄処理炉2内の温度が下がって、炉壁を構成する上側フランジ12の温度が第2の閾値(例えば70℃)未満になったとしても、循環経路内の冷却水は自身の熱量によって急激には冷めない。よって、しばらくの間、すなわち、第4ステップが終了するまでの間、上側フランジ12の温度を70℃前後に保つことができ、洗浄処理炉2内の表面2Aを暖める効果が持続する。このような方法によれば、常時温度制御する場合と比較して暖気効果は少なくなる(時間が短くなる)が、高価なチラー等の設備を設けなくて済むので、経済効果が高い。
 なお、本実施形態の温度制御機構16の構成及び運転方法は、一例であり、これに限定されない。例えば、上側フランジ12の温度制御エリアを複数に分割してそれぞれに熱交換部を設け、被温度制御部となるこれらの熱交換部に対して開閉バルブを有する供給経路、排出経路及び返送経路を並列で複数設けるとともに、それぞれに第1及び第2の閾値を設定して制御すれば、より細かい温度制御が可能である。また、第1及び第2の閾値は、区分された複数の被温度制御部に対して、それぞれ独立としてもよいし、共通としてもよい。
 また、本実施形態の洗浄方法では、上述した第3ステップ及び第4ステップの間、少なくともクリーニングガスが炉内に滞在している間、洗浄処理炉2のうち温度制御が困難である箇所(すなわち、温度が所要の温度よりも下がる懸念がある箇所)に対して、パージガス供給機構9から温度制御したパージガスを洗浄処理炉2へ噴出することが好ましい。
 パージガスの温度範囲は、特に限定されない。パージガスの温度範囲の上限としては、200℃以下であって、洗浄処理炉2の周囲の部材の耐熱温度を越えない温度とすることができる。パージガスの温度範囲の下限としては、70℃以上とすることが好ましい。このように、温度制御したパージガスを洗浄処理炉2の温度制御が困難である箇所に噴出することで、洗浄処理炉2内の表面に反応生成物である窒化ガリウムが析出することをより確実に防ぐことができる。
 さらに、本実施形態の洗浄方法では、上述した第4ステップの間、ガス排出管5内の温度を所要の範囲に維持する。
 具体的には、第2温度制御装置8によって、ガス排出管5の洗浄処理炉2の外側の部分からトラップ(図示略)にわたって温度制御する。これにより、ガス排出管5内での窒化ガリウムの析出を防ぎ、トラップ(図示略)において窒化ガリウムを確実に補足できる。
 ガス排出管5内の表面の温度としては、200℃以上400℃以下とすることができ、200℃以上250℃以下とすることがより好ましい。洗浄処理炉2内の表面温度を200℃以上とすれば、ガス排出管5内で反応生成物である窒化ガリウムの析出を防ぐことができる。
(第5ステップ)
 最後に、半導体製造装置部品10を洗浄処理炉2内から搬出して、半導体製造装置101の成膜炉102内に収容する。
 具体的には、先ず、図3及び図4に示すように、洗浄処理炉2の下側フランジ13のうち、昇降フランジ13dを開放して洗浄処理炉2内と第1待機室25とを連通させる。次いで、昇降フランジ13dとともに洗浄処理が完了した半導体製造装置部品10を載置した架台14を下降させて、半導体製造装置部品10を第1待機室25内へ搬入する。次いで、フォーク機構30を第1待機室25内へ移動させた後、半導体製造放置部品10を把持した状態で、ゲートバルブ28を開放し、ブロー室26へ移動させる。
 ブロー室26において、洗浄処理後の半導体製造装置部品10上に飛散している、パーティクル(例えば、酸化アルミニウム等の残渣)をブロー除去する。具体的には、グローブボックス31内から、ブローノズル32及び吸引ポート34を操作して、半導体製造装置部品10の表面に飛散しているパーティクルをブロー除去する。なお、ブロー室26におけるパーティクルの除去方法は一例であり、これに限定されない。除去方法としては、ブローと、ブラストまたはドライアイスブラストとを組み合わせても良いし、吸引により除去しても良い。また、ブロー室26内に浴槽を設置して、ウエット洗浄と、ブローとを組み合わせても良い。
 次に、フォーク機構30により、ブロー室26内の半導体製造装置部品10を把持した状態でゲートバルブ29を開放し、第2待機室27へ移動させる。次いで、第2待機室27内で待機している架台114の上に半導体製造装置部品10を載置し、フォーク機構30を退避した後、ゲートバルブ29を閉じる。次に、成膜炉102の下側フランジ113のうち、昇降フランジ113dとともに半導体製造装置部品10を載置した架台114を上昇させて、半導体装置部品10を半導体製造装置部品101の成膜炉102内へ搬入する。
 このように、本実施形態の洗浄方法によれば、搬送装置24を用いることで、半導体製造装置部品101の成膜炉102内と洗浄装置1の洗浄処理炉2内との間で外気にさらすことなく半導体製造装置部品10を搬送できる。
 以上説明したように、本実施形態の洗浄装置1、洗浄システム50及びこれらを用いる洗浄方法によれば、簡単な構造によって、洗浄処理炉2を構成する反応管11、上側フランジ12及び下側フランジ13の表面への反応生成物の付着物の残留を防ぐことができる。したがって、反応生成物が腐食性の高い窒化ガリウム等の塩化物等であり、洗浄処理炉2の大気開放に伴って金属製の上側フランジ12及び下側フランジ13が大気中に暴露された場合であっても、これらの部材は腐食されない。
 また、本実施形態の洗浄装置1、洗浄システム50及び洗浄方法によれば、少なくともクリーニングガスが洗浄処理炉2内に滞在している間、洗浄処理炉2内の表面温度を70~80℃の範囲に制御することで、その後の真空置換(到達圧力300Pa程度)によって析出した反応生成物が全て蒸発させられる。また、本実施形態では、減圧装置6として、市販されている安価なロータリーポンプ、ドライポンプ(到達真空度は数百Pa程度)等を用いることができる。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述した実施形態の洗浄装置1では、上端及び下端が開口する石英製の反応管11と、上端開口を閉塞する金属製の上側フランジ12と、下端開口を閉塞する金属製の下側フランジ13とを有する洗浄処理炉2の構成を一例として説明したが、これに限定されない。
 図6は、他の実施形態に係る半導体製造装置部品の洗浄装置の構成を模式的に示す断面図である。図6に示すように、他の実施形態の洗浄装置41は、下端が開口する石英製の反応管51と、下端開口を閉塞する金属製の下側フランジ13とを有する洗浄処理炉42を有する構成であってもよい。この場合、反応管51の上端はベルジャー形状等、真空引きに耐えられる構造であることが好ましい。これにより、上述した実施形態の洗浄装置1を構成する、上側フランジ12の温度制御機構16を省略することができる。
 また、図1に示すように、上述した実施形態の洗浄装置1では、加熱装置3として加熱コイルを用いる構成を一例として説明したが、これに限定されない。例えば、図6に示すように、他の実施形態に係る洗浄装置41では、加熱装置43として、反応管51の側面と上端を覆う加熱ヒータを用いる構成であってもよい。
 また、上述した実施形態の洗浄装置1では、ガス導入管4が上側フランジ12を貫通する構成を一例として説明したが、これに限定されない。例えば、図6に示すように、他の実施形態に係る洗浄装置41では、ガス導入管44として、下側フランジ13及び回転軸15を貫通する構成であってもよい。
 また、上述した実施形態の洗浄装置1では、架台(ステージ)14が回転機構を有する構成を一例として説明したが、これに限定されない。例えば、架台14が回転機構を有しない構成としてもよい。具体的には、回転軸15にかえて支柱とし、支柱を昇降フランジ13dに固定することで、洗浄処理炉2内を気密にすることができる。したがって、パージガス供給機構9を書略することができる。
 また、上述した実施形態の洗浄装置1では、洗浄処理炉2が縦型炉である構成を一例として説明したが、これに限定されない。例えば、反応管の軸線方向が水平方向である横型炉としてもよい。
 また、上述した実施形態の洗浄装置1が、搬送処理空間25を介して図示略の半導体製造装置と気密に連結されている場合、上述した洗浄方法において第2ステップを省略する構成としてもよい。さらに、上述した洗浄方法において、時間短縮を目的として半導体製造装置部品10が高温のまま搬送する構成としてもよい。
 MOCVD装置を用いて基材上にAlN層を含むGaN系窒化物HEMT構造を5μm成長させた。その後、基材の周辺に配置されたMOCVD炉内の部品を、図1に示す洗浄装置1を用い、以下の条件、手順にしたがって洗浄した。
<条件>
・洗浄時の加熱温度:900℃
・洗浄処理炉内圧力:大気圧
・クリーニングガス:塩素(1L/min)と窒素(9L/min)との混合ガス
・洗浄時間    :60分間(1バッチあたり)
<手順>
(1)部品を洗浄処理炉2内に設置
(2)洗浄処理炉2内を真空引きしながらパージ
(3)部品を加熱して、加熱温度まで昇温
(4)洗浄処理炉2内にクリーニングガスの供給開始
(5)クリーニングガスの供給を停止し、降温開始
(6)洗浄処理炉2内を真空置換
(7)降温開始
(8)洗浄処理炉2内温度が300℃以下に下がったら部品を取出し、炉外でさらに冷却
 クリーニング完了後、洗浄処理炉2内から取り出した洗浄後の部品表面を目視で観察したが、残渣は観察されなかった。
 また、堆積物があった場所の残渣をカーボンテープで採取し、走査型電子顕微鏡で観察した。さらに、エネルギー分散型エックス線分析装置を用いて残渣の分析を行った。これらの観察及び分析の結果、洗浄後の部品表面から、堆積物の主成分である窒化ガリウムや窒化アルミニウムの構成元素であるガリウム、アルミニウム、窒素は検出されなかった。ただし、白色の箔状の粉が観察されたが、ブローで吹き飛んだ。
 常温まで降温後、洗浄処理炉2内を観察したところ、反応生成物の析出は見当たらず、異臭もしなかった。
 洗浄後の部品を再度MOCVD装置に設置し、前回と同様に基材上にGaN系窒化物HEMT構造のエピ成長を行なったところ、基材上の膜厚や結晶性が前回と同等であることを確認した。
 1,41…半導体製造装置部品の洗浄装置(洗浄装置)、2,42…洗浄処理炉、3,43…加熱装置、4,44…ガス導入管、5…ガス排出管、6…減圧装置、7…第1温度制御装置、8…第2温度制御装置、9…パージガス供給機構、10…半導体製造装置部品、11,51…反応管、12…上側フランジ、13,53…下側フランジ、14…架台(ステージ)、15…回転軸、16…第1温度制御機構、17…第2温度制御機構、18…熱交換部、19…第1開閉バルブ、20…第2開閉バルブ、21…温度計(温度測定装置)、22…ポンプ(圧送装置)、24…搬送装置、25…第1待機室、26…ブロー室、27…第2待機室、28,29…ゲートバルブ、30…フォーク機構、31…グローブボックス、32…ブローノズル、33…ブロア、34…吸引ポート、35…フィルタ、50…半導体製造装置部品の洗浄システム(洗浄システム)、101…半導体製造装置、L1~L3…経路

Claims (14)

  1.  半導体が付着した半導体製造装置部品の洗浄装置であって、
     前記半導体製造装置部品を収容する洗浄処理炉と、
     前記洗浄処理炉内の前記半導体製造装置部品を加熱する加熱装置と、
     前記洗浄処理炉内を真空排気する減圧装置と、
     前記洗浄処理炉内に、前記半導体と反応するクリーニングガスを導入するガス導入管と、
     前記洗浄処理炉内から、前記半導体と前記クリーニングガスとの反応生成物を排出するガス排出管と、
     前記洗浄処理炉内の表面の温度を所要の範囲に維持する第1温度制御装置と、
     前記ガス排出管内の温度を所要の範囲に維持する第2温度制御装置と、を備える、半導体製造装置部品の洗浄装置。
  2.  前記洗浄処理炉が、少なくとも一端が開口する石英製の反応管と、前記開口を閉塞する金属製の第1フランジと、を有する、請求項1に記載の半導体製造装置部品の洗浄装置。
  3.  前記洗浄処理炉が、両端が開口する石英製の反応管と、前記開口の一端側を閉塞する金属製の第1フランジと、前記開口の他端側を閉塞する金属製の第2フランジと、を有する請求項1に記載の半導体製造装置部品の洗浄装置。
  4.  前記第1温度制御装置が、前記反応管及び前記フランジのうち、前記洗浄処理炉内の表面を構成する1以上の部分をそれぞれ独立して温度制御する、1以上の温度制御機構を有する、請求項2又は3に記載の半導体製造装置部品の洗浄装置。
  5.  前記フランジの前記洗浄処理炉内と対向する面と反対側、及び前記フランジの内側のうち、いずれか一方又は両方に、前記温度制御機構の少なくとも1つが設けられる、請求項4に記載の半導体製造装置部品の洗浄装置。
  6.  前記温度制御機構が、液体の供給及び液体の循環のうち、いずれか一方又は両方によるものである、請求項4又は5に記載の半導体製造装置部品の洗浄装置。
  7.  前記温度制御機構が、
     前記フランジの前記洗浄処理炉内と対向する面と反対側、及び前記フランジの内側のうち、いずれか一方又は両方に設けられた前記液体の流路からなる1以上の熱交換部と、 前記熱交換部に前記液体を供給する1以上の供給経路と、
     前記熱交換部から前記液体を排出する1以上の排出経路と、
     少なくとも1以上の前記排出経路から分岐し、少なくとも1以上の前記供給経路へ合流して、前記排出経路内の液体の一部を前記供給経路へ返送する1以上の返送経路と、
     前記供給経路に設けられ、前記熱交換部への前記液体の供給量を段階的又は連続的に調節する1以上の第1開閉バルブと、
     前記排出経路に設けられた1以上の温度測定装置と、
     前記返送経路に設けられた1以上の圧送装置と、を有する、請求項6に記載の半導体製造装置部品の洗浄装置。
  8.  前記洗浄処理炉の外側から前記洗浄処理炉の隙間に向けて、温度制御されたパージガスを供給するパージガス供給機構をさらに備える、請求項1乃至7のいずれか一項に記載の半導体製造装置部品の洗浄装置。
  9.  前記半導体が、一般式AlInGa1-x-yN(但し、x、yは、0≦x<1、0≦y<1、0≦x+y<1である。)で表記される窒化物系化合物半導体であり、
     前記クリーニングガスが、塩素系ガスである、請求項1乃至8のいずれか一項に記載の半導体製造装置部品の洗浄装置。
  10.  請求項1乃至9のいずれか一項に記載の半導体製造装置部品の洗浄装置を用い、
     半導体が付着した半導体製造装置部品を洗浄処理炉内に収容し、
     前記半導体製造装置部品を加熱しながら、前記洗浄処理炉内の真空排気を繰り返し行って前記洗浄処理炉内をパージし、
     前記洗浄処理炉内にクリーニングガスを導入して、前記半導体製造装置部品を洗浄した後に、
     前記洗浄処理炉内の真空排気を繰り返し行って、前記洗浄処理炉内から前記半導体と前記クリーニングガスとの反応生成物をガス排出管へ排出する、半導体製造装置部品の洗浄方法であって、
     前記洗浄処理炉内にクリーニングガスを導入して、前記半導体製造装置部品を洗浄し、前記洗浄処理炉内の真空排気を繰り返し行って、前記洗浄処理炉内から前記半導体と前記クリーニングガスとの反応生成物をガス排出管へ排出する間、前記洗浄処理炉内の表面の温度を所要の範囲に維持し、
     前記洗浄処理炉内から前記半導体と前記クリーニングガスとの反応生成物をガス排出管へ排出する間、前記ガス排出管内の温度を所要の範囲に維持する、半導体製造装置部品の洗浄方法。
  11.  半導体製造装置部品が配置された成膜炉内で、基材上に半導体の層又は被膜を形成する半導体製造装置と、
     洗浄処理炉内で、前記半導体が付着した前記半導体製造装置部品を洗浄する、請求項1乃至9のいずれか一項に記載の半導体製造装置部品の洗浄装置と、を備える半導体製造装置部品の洗浄システム。
  12.  前記半導体製造装置と、前記半導体製造装置部品の洗浄装置との間で、前記半導体製造装置部品を受け渡す搬送装置をさらに備える、請求項11に記載の半導体製造装置部品の洗浄システム。
  13.  前記搬送装置内の搬送処理空間が、前記成膜炉内及び前記洗浄処理炉内とそれぞれ連通する、請求項12に記載の半導体製造装置部品の洗浄システム。
  14.  前記搬送装置が、前記搬送処理空間を2以上に分割可能な、1以上のゲート弁を有する、請求項13に記載の半導体製造装置部品の洗浄システム。
PCT/JP2019/041870 2018-11-16 2019-10-25 半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム WO2020100554A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19884724.6A EP3854492B1 (en) 2018-11-16 2019-10-25 Apparatus for cleaning component of semiconductor production apparatus, method for cleaning component of semiconductor production apparatus, and system for cleaning component of semiconductor production apparatus
CN201980074607.5A CN113015583B (zh) 2018-11-16 2019-10-25 半导体制造装置部件的清洗装置、清洗方法及清洗系统
US17/293,256 US20220002864A1 (en) 2018-11-16 2019-10-25 Cleaning apparatus for component for semiconductor production apparatus, cleaning method for component of semiconductor production apparatus, and cleaning system for component of semiconductor production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018215791A JP6852040B2 (ja) 2018-11-16 2018-11-16 半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム
JP2018-215791 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020100554A1 true WO2020100554A1 (ja) 2020-05-22

Family

ID=70732078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041870 WO2020100554A1 (ja) 2018-11-16 2019-10-25 半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム

Country Status (5)

Country Link
US (1) US20220002864A1 (ja)
EP (1) EP3854492B1 (ja)
JP (1) JP6852040B2 (ja)
CN (1) CN113015583B (ja)
WO (1) WO2020100554A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11862482B2 (en) * 2021-03-11 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor substrate bonding tool and methods of operation
KR20220160864A (ko) * 2021-05-28 2022-12-06 세메스 주식회사 기판 처리 장치
CN118086860A (zh) * 2024-04-29 2024-05-28 成都晨发泰达航空科技股份有限公司 一种转子叶片化学气相沉积铝涂层装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187326A (ja) * 1997-09-11 1999-03-30 Ebara Corp 気相成長装置
JP2001515282A (ja) * 1997-08-14 2001-09-18 シーメンス アクチエンゲゼルシヤフト プロセスリアクタのためのガス導管システム並びに半導体基板を処理する方法
JP2010245376A (ja) * 2009-04-08 2010-10-28 Taiyo Nippon Sanso Corp 窒化物半導体製造装置における汚染部品の洗浄装置
JP2011501429A (ja) * 2007-10-18 2011-01-06 グローバル スタンダード テクノロジー カンパニー リミテッド 半導体製造装置の温度調節システム
JP2013062342A (ja) 2011-09-13 2013-04-04 Toshiba Corp 成膜装置のクリーニング方法
JP2015073132A (ja) 2011-05-19 2015-04-16 古河機械金属株式会社 半導体製造装置部品の洗浄方法
JP2015192063A (ja) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 アモルファスシリコン膜形成装置の洗浄方法、アモルファスシリコン膜の形成方法およびアモルファスシリコン膜形成装置
JP2017168607A (ja) * 2016-03-16 2017-09-21 大陽日酸株式会社 気相成長装置における汚染部品のドライ洗浄装置
JP2018041883A (ja) * 2016-09-09 2018-03-15 大陽日酸株式会社 気相成長装置用部品の洗浄方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
JP3350590B2 (ja) * 1994-03-11 2002-11-25 富士通株式会社 半導体製造装置及びそのクリーニング方法
US8075789B1 (en) * 1997-07-11 2011-12-13 Applied Materials, Inc. Remote plasma cleaning source having reduced reactivity with a substrate processing chamber
JP2002129334A (ja) * 2000-10-26 2002-05-09 Applied Materials Inc 気相堆積装置のクリーニング方法及び気相堆積装置
JP4231417B2 (ja) * 2004-01-07 2009-02-25 パナソニック株式会社 基板処理装置及びそのクリーニング方法
JP5498640B2 (ja) * 2005-10-14 2014-05-21 大陽日酸株式会社 窒化物半導体製造装置部品の洗浄方法と洗浄装置
JP4905179B2 (ja) * 2007-02-27 2012-03-28 東京エレクトロン株式会社 プラズマ処理装置及びそのクリーニング方法
JP5151260B2 (ja) * 2007-06-11 2013-02-27 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2010129289A2 (en) * 2009-04-28 2010-11-11 Applied Materials, Inc. Decontamination of mocvd chamber using nh3 purge after in-situ cleaning
WO2011017222A2 (en) * 2009-08-04 2011-02-10 Applied Materials, Inc. Method and apparatus for dry cleaning a cooled showerhead
KR20120090996A (ko) * 2009-08-27 2012-08-17 어플라이드 머티어리얼스, 인코포레이티드 인-시튜 챔버 세정 후 프로세스 챔버의 제염 방법
KR101391883B1 (ko) * 2010-06-22 2014-05-07 가부시키가이샤 뉴플레어 테크놀로지 반도체 제조 장치, 반도체 제조 방법 및 반도체 제조 장치의 클리닝 방법
US20120000490A1 (en) * 2010-07-01 2012-01-05 Applied Materials, Inc. Methods for enhanced processing chamber cleaning
TWI534291B (zh) * 2011-03-18 2016-05-21 應用材料股份有限公司 噴淋頭組件
JP2012204644A (ja) * 2011-03-25 2012-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP6799549B2 (ja) * 2018-01-16 2020-12-16 東京エレクトロン株式会社 プラズマ処理装置の部品をクリーニングする方法
US11532461B2 (en) * 2018-10-23 2022-12-20 Tokyo Electron Limited Substrate processing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515282A (ja) * 1997-08-14 2001-09-18 シーメンス アクチエンゲゼルシヤフト プロセスリアクタのためのガス導管システム並びに半導体基板を処理する方法
JPH1187326A (ja) * 1997-09-11 1999-03-30 Ebara Corp 気相成長装置
JP2011501429A (ja) * 2007-10-18 2011-01-06 グローバル スタンダード テクノロジー カンパニー リミテッド 半導体製造装置の温度調節システム
JP2010245376A (ja) * 2009-04-08 2010-10-28 Taiyo Nippon Sanso Corp 窒化物半導体製造装置における汚染部品の洗浄装置
JP2015073132A (ja) 2011-05-19 2015-04-16 古河機械金属株式会社 半導体製造装置部品の洗浄方法
JP2013062342A (ja) 2011-09-13 2013-04-04 Toshiba Corp 成膜装置のクリーニング方法
JP2015192063A (ja) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 アモルファスシリコン膜形成装置の洗浄方法、アモルファスシリコン膜の形成方法およびアモルファスシリコン膜形成装置
JP2017168607A (ja) * 2016-03-16 2017-09-21 大陽日酸株式会社 気相成長装置における汚染部品のドライ洗浄装置
JP2018041883A (ja) * 2016-09-09 2018-03-15 大陽日酸株式会社 気相成長装置用部品の洗浄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854492A4

Also Published As

Publication number Publication date
EP3854492A4 (en) 2022-01-26
US20220002864A1 (en) 2022-01-06
CN113015583A (zh) 2021-06-22
JP2020088016A (ja) 2020-06-04
JP6852040B2 (ja) 2021-03-31
CN113015583B (zh) 2023-08-11
EP3854492A1 (en) 2021-07-28
EP3854492B1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2020100554A1 (ja) 半導体製造装置部品の洗浄装置、半導体製造装置部品の洗浄方法、及び半導体製造装置部品の洗浄システム
US20120240858A1 (en) Substrate processing apparatus and solid raw material replenishing method
JP5774822B2 (ja) 半導体デバイスの製造方法及び基板処理装置
US8481434B2 (en) Method of manufacturing a semiconductor device and processing apparatus
JP2012525708A (ja) Led製造のためのmocvdシングルチャンバスプリットプロセス
US20060115590A1 (en) Method and system for performing in-situ cleaning of a deposition system
US20190194809A1 (en) Apparatus and methods for atomic layer deposition
JP2010199160A (ja) 基板処理装置
TW201216398A (en) Linear cluster deposition system
JP6285305B2 (ja) 半導体製造装置及び半導体の製造方法
US20060182886A1 (en) Method and system for improved delivery of a precursor vapor to a processing zone
JP5344663B2 (ja) 基板処理装置、半導体装置の製造方法および基板処理方法
US20110104896A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2010251705A (ja) 成膜装置および成膜方法
JP5246843B2 (ja) 基板処理装置、ベーキング方法及び半導体装置の製造方法
KR102264573B1 (ko) 기판 처리 장치, 처리 가스 노즐 내의 파티클 코팅 방법 및 기판 처리 방법
JP2009224588A (ja) 基板処理装置
KR100935289B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP2009272367A (ja) 基板処理装置
JP2012138530A (ja) 基板の製造方法、半導体デイバスの製造方法及び基板処理装置
JP5848788B2 (ja) 基板処理装置、半導体製造方法、基板処理方法
JP2007227471A (ja) 基板処理装置
JP2012195422A (ja) 基板の製造方法、半導体デバイスの製造方法及び基板処理装置
JP2005223144A (ja) 基板処理装置
JP2007227804A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019884724

Country of ref document: EP

Effective date: 20210421