WO2020097876A1 - 一种多级孔ts-1分子筛的制备方法 - Google Patents

一种多级孔ts-1分子筛的制备方法 Download PDF

Info

Publication number
WO2020097876A1
WO2020097876A1 PCT/CN2018/115719 CN2018115719W WO2020097876A1 WO 2020097876 A1 WO2020097876 A1 WO 2020097876A1 CN 2018115719 W CN2018115719 W CN 2018115719W WO 2020097876 A1 WO2020097876 A1 WO 2020097876A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
titanium
titanate
moles
reaction
Prior art date
Application number
PCT/CN2018/115719
Other languages
English (en)
French (fr)
Inventor
袁丹华
邢嘉成
徐云鹏
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2018/115719 priority Critical patent/WO2020097876A1/zh
Priority to EP18939988.4A priority patent/EP3862319A4/en
Priority to US17/294,349 priority patent/US20210403332A1/en
Priority to JP2021524969A priority patent/JP7393425B2/ja
Priority to AU2018449556A priority patent/AU2018449556B2/en
Priority to KR1020217017399A priority patent/KR102580277B1/ko
Publication of WO2020097876A1 publication Critical patent/WO2020097876A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • C01B39/085Group IVB- metallosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the application relates to a method for preparing a multi-stage pore TS-1 molecular sieve, which belongs to the field of molecular sieve preparation.
  • TS-1 molecular sieve is a microporous molecular sieve with MFI topology. Because of its tetrahedral Ti 4+ center in its skeleton structure, it has a good catalytic effect on the selective oxidation of organic compounds with H 2 O 2 participation. , Such as epoxidation of olefins, hydroxylation of phenol, ammoximation of ketones, alkane oxidation and other selective oxidation reactions.
  • the TS-1 molecular sieve catalytic oxidation process has no pollution and mild reaction conditions, which overcomes the shortcomings of serious pollution and long reaction process in the traditional process.
  • TS-1 There are two main factors that affect the activity and stability of TS-1: one is the content of framework titanium and non-framework titanium in the molecular sieve, and the other is the diffusion performance of the molecular sieve.
  • the former it is difficult to enter the MFI framework due to the large radius of titanium atoms, and the titanium source is easily hydrolyzed and polymerized into titanium dioxide precipitates, so it is difficult to avoid the formation of six-coordinated non-framework titanium in the synthesis of TS-1 molecular sieve, rather than the framework titanium
  • the presence of species can promote the ineffective decomposition of H 2 O 2 and is not conducive to the oxidation reaction catalyzed by TS-1; for the latter, the pore size of the TS-1 molecular sieve is too small, only 0.55 nm, which greatly limits the organic macromolecules in the The transmission and diffusion in the catalyst inhibit the reactivity and service life of the catalyst.
  • TS-1 The synthesis of TS-1 was originally reported by Taramasso et al. (US4410501).
  • the synthesis used tetraethyl silicate (TEOS) as the silicon source, tetraethyl titanate (TEOT) as the titanium source, and tetrapropyl ammonium hydroxide ( TPAOH) is a template agent, which is obtained by hydrothermal crystallization at 130-200 ° C for 6-30 days in an autoclave.
  • TEOS tetraethyl silicate
  • TEOT tetraethyl titanate
  • TPAOH tetrapropyl ammonium hydroxide
  • TS-1 molecular sieve For the diffusion problem of TS-1 molecular sieve, it is a common solution to prepare mesopores by introducing mesopores into the zeolite molecular sieve system.
  • template agents to build mesoporous or macroporous structures in molecular sieve materials is currently the most effective way to prepare multi-stage molecular sieve, including soft template method and hard template method.
  • soft template method such as Zhou Xinggui et al.
  • CN103357432A uses polyether type Pluronic F127 as mesoporous template agent, and dry gel method to synthesize mesoporous nano TS-1 molecular sieve;
  • Zhang Shufen (CN102910643A) uses cetyltrimethylammonium bromide Introducing mesoporous pores in titanium silicon molecular sieve as mesoporous template agent; hard template method such as Chen Lihua et al.
  • CN104058423A uses three-dimensional ordered macropore-mesoporous multi-level porous carbon material as the hard template, and the three-dimensional order of the hard template
  • the TS-1 nanocrystals were grown in the restricted area of the pores, and the multi-level porous TS-1 molecular sieve was prepared after removing the hard template;
  • Li Gang et al. (CN101962195A) replaced the porous carbon material with cheap sugar as the macroporous-mesoporous template agent.
  • a method for preparing a multi-stage pore TS-1 molecular sieve is provided.
  • a silicon source and a titanium source are connected to the same polymer to form a silicon-titanium ester polymer, which can make the silicon source and
  • the hydrolysis rate of the titanium source is more matched to prevent the precipitation of TiO 2 and it is more favorable for titanium to enter the molecular sieve framework;
  • the silicon-titanium ester polymer is used as a silicon source and a titanium source, and can also be used as a mesoporous template agent in the synthesis process Therefore, the multi-stage pore TS-1 molecular sieve obtained by this method has a mesoporous structure, a narrow pore size distribution, and contains less non-skeletal titanium.
  • the preparation method of the multi-stage pore TS-1 molecular sieve is characterized in that the silicon-titanium ester polymer is used as the titanium-silicon source.
  • the method includes: crystallizing a mixture containing a silicon titanate polymer, a template agent, and water to obtain the multi-stage pore TS-1 molecular sieve.
  • the crystallization is hydrothermal crystallization.
  • the silicon-titanium ester polymer is obtained by transesterification of a raw material containing silicate, titanate and polyol.
  • the molar ratio of the silicate, titanate and polyol meets:
  • x is the number of moles of hydroxyl groups contained in each mole of the polyol
  • the number of moles of each of the above substances is calculated by the number of moles of the substance itself.
  • the molar ratio of the silicate, titanate and polyol meets:
  • x is the number of moles of hydroxyl groups contained in each mole of the polyol
  • the number of moles of each of the above substances is calculated by the number of moles of the substance itself.
  • the upper limit of the molar ratio of titanate to silicate is selected from 0.002, 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.15, 0.18, or 0.2; the lower limit is selected from 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.15 or 0.18.
  • the upper limit of the molar ratio of (titanate + silicate) to polyol is selected from 0.85x: 4, 0.9x: 4, 0.95x: 4, 1.0x: 4, 1.15x: 4 or 1.2 x: 4; the lower limit is selected from 0.8x: 4, 0.85x: 4, 0.9x: 4, 0.95x: 4, 1.0x: 4 or 1.15x: 4; wherein, x is contained in each mole of the polyol Number of moles of hydroxyl groups.
  • the transesterification is carried out under stirring conditions.
  • reaction conditions for the transesterification are: under an inactive atmosphere, the reaction is performed at 80 to 180 ° C. for 2 to 10 hours.
  • reaction conditions for the transesterification are: nitrogen protection, reaction temperature is 80-180 ° C, and reaction time is 2-10 hours.
  • reaction conditions for the transesterification are: under an inactive atmosphere, the reaction is performed at 100 to 160 ° C for 2 to 10 hours.
  • reaction conditions for the transesterification are: under an inactive atmosphere, the reaction is performed at 100 to 160 ° C for 4 to 8 hours.
  • the reaction conditions for the transesterification are: under nitrogen protection, the reaction temperature is between 100 and 160 ° C, and the reaction time is between 4 and 8 hours.
  • the upper limit of the reaction temperature of the transesterification is selected from 85 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 175 ° C or 180 ° C;
  • the lower limit is selected from 80C, 85C, 90C, 100C, 110C, 120C, 130C, 140C, 150C, 160C, 170C or 175C.
  • the upper limit of the reaction time of the transesterification is selected from 2.5 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 9.5 hours or 10 hours; the lower limit is selected from 2 hours, 2.5 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 9.5 hours.
  • the inactive atmosphere includes at least one of nitrogen and inert gas.
  • the transesterification rate of the transesterification is between 60% and 80%.
  • the transesterification also includes vacuum distillation.
  • the conditions of the reduced-pressure distillation are: under the condition of a vacuum degree of 0.01 to 5 KPa, the reaction is performed at 170 to 230 ° C. for 0.5 to 5 hours.
  • the vacuum degree is 0.05-3Kpa.
  • the conversion rate of the transesterification is greater than 90%.
  • the upper temperature limit of the vacuum distillation is selected from 175 ° C, 180 ° C, 190 ° C, 200 ° C, 210 ° C, 220 ° C, 225 ° C or 230 ° C; the lower limit is selected from 170 ° C, 175 ° C, 180 ° C, 190 °C, 200 °C, 210 °C, 220 °C or 225 °C.
  • the upper limit of the time for vacuum distillation is selected from 0.8 hours, 1 hour, 2 hours, 3 hours, 4 hours, 4.5 hours, or 5 hours; the lower limit is selected from 0.5 hours, 0.8 hours, 1 hour, 2 hours, 3 hours, 4 hours or 4.5 hours.
  • the upper limit of the vacuum degree of the vacuum distillation is selected from 0.02Kpa, 0.03Kpa, 0.05Kpa, 0.08Kpa, 0.1Kpa, 0.5Kpa, 1Kpa, 1.5Kpa, 2Kpa, 2.5Kpa, 3Kpa, 3.5Kpa, 4Kpa, 4.5Kpa or 5Kpa; the lower limit is selected from 0.01KPa, 0.02Kpa, 0.03Kpa, 0.05Kpa, 0.08Kpa, 0.1Kpa, 0.5Kpa, 1Kpa, 1.5Kpa, 2Kpa, 2.5Kpa, 3Kpa, 3.5Kpa, 4Kpa or 4.5Kpa.
  • At least one kind of the silicate is selected from compounds having the chemical formula shown in Formula I:
  • R 1 , R 2 , R 3 and R 4 are independently selected from one of C 1 to C 10 alkyl groups.
  • R 1 , R 2 , R 3 , and R 4 in Formula I are independently selected from one of C 1 to C 4 alkyl groups.
  • the silicate includes at least one of methyl orthosilicate, tetraethyl silicate, tetrapropyl silicate, and tetrabutyl silicate.
  • the silicate is one or more of methyl orthosilicate, tetraethyl silicate, tetrapropyl silicate, tetrabutyl silicate, and the like.
  • the titanate is at least one selected from compounds having the chemical formula shown in Formula II:
  • R 5 , R 6 , R 7 and R 8 are independently selected from one of C 1 to C 10 alkyl groups.
  • R 5 , R 6 , R 7 and R 8 in formula II are independently selected from one of C 1 to C 4 alkyl groups
  • the titanate includes at least one of tetraethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetrahexyl titanate, and tetraisooctyl titanate.
  • the titanate is one or more of tetraethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetrahexyl titanate, tetraisooctyl titanate and the like.
  • the polyol includes ethylene glycol, diethylene glycol, triethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4- Butylene glycol, 1,6-hexanediol, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 600, polyethylene glycol 800, 1,4-cyclohexanediol, 1,4-cyclohexane At least one of hexanedimethanol, terephthalic acid, glycerin, trimethylolpropane, pentaerythritol, xylitol, and sorbitol.
  • the number of hydroxyl groups contained in the polyol ⁇ 2 including ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, tetrapropylene glycol, 1,2-propanediol, 1,3- Propylene glycol, 1,4-butanediol, 1,6-hexanediol, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 600, polyethylene glycol 800, 1,4-cyclohexanediol , 1,4-cyclohexanedimethanol, terephthalic acid, glycerol, trimethylolpropane, pentaerythritol, xylitol, sorbitol, etc., or a mixture of any number of them.
  • the silicon-titanium ester polymer includes at least one of silicon-titanium polyethylene glycol ester polymer, silicon-titanium glycol ester polymer, and silicon-titanium terephthalate polymer.
  • the preparation method of the silicon-titanium ester polymer includes:
  • the silicate, titanate and polyol are mixed, and the transesterification reaction is carried out under stirring conditions, and the inactive atmosphere is protected, the reaction temperature is between 80 and 180 ° C, and the reaction time is between 2 and 10 hours.
  • the method for preparing the silicon-titanium ester polymer further includes: performing reduced-pressure distillation after the reaction, controlling the vacuum degree of the system to 0.01-5 KPa, the reaction temperature being 170-230 ° C., and the reaction time being 0.5-5
  • the silicon titanate-based polymer is obtained within hours.
  • the method for preparing the silicon-titanium ester polymer includes:
  • step 2) Connect the device after step 1) to the water pump or oil pump for vacuum distillation to make the transesterification reaction more complete, control the system vacuum to 0.01-5KPa, the reaction temperature is between 170-230 °C, and the reaction time is between 0.5 to 5 hours, the conversion rate of the transesterification reaction is greater than 90%, that is, the silicon titanium ester polymer.
  • the molar ratio of the silicon-titanium ester polymer, template agent and water satisfies:
  • silicon-titanium ester polymer 5 to 500;
  • the number of moles of the template agent is calculated as the number of moles of N atoms in the template agent
  • the mole number of the silicon-titanium ester polymer is calculated based on the sum of the silicon content and the titanium content in the silicon-titanium ester polymer;
  • the silicon content in the silicon-titanium ester-based polymer is calculated in terms of moles of SiO 2
  • the titanium content in the silicon-titanium ester-based polymer is calculated in terms of moles of TiO 2 ;
  • the number of moles of water is based on the number of moles of H 2 O itself.
  • the upper limit of the molar ratio of the template agent to the silicon titanate polymer is selected from 0.08, 0.10, 0.15, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, or 10.0 ;
  • the lower limit is selected from 0.05, 0.08, 0.10, 0.15, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 or 9.0.
  • the number of moles of the template agent is calculated as the number of moles of N atoms in the template agent;
  • the number of moles of the silicon titanium ester polymer is calculated by the sum of the silicon content and the titanium content in the silicon titanium ester polymer;
  • the silicon content in the silicon-titanium ester-based polymer is calculated in terms of moles of SiO 2
  • the titanium content in the silicon-titanium ester-based polymer is calculated in terms of moles of TiO 2 .
  • the upper limit of the molar ratio of the water to the silicon titanate polymer is selected from 8, 10, 30, 50, 80, 100, 150, 200, 250, 300, 350, 400, 450, 480 or 500;
  • the lower limit is selected from 5, 8, 10, 30, 50, 80, 100, 150, 200, 250, 300, 350, 400, 450 or 480.
  • the mole number of the silicon-titanium ester polymer is calculated based on the sum of the silicon content and the titanium content in the silicon-titanium ester polymer; the silicon content in the silicon-titanium ester polymer is calculated as the moles of SiO 2 The titanium content in the silicon-titanium ester polymer is calculated as the moles of TiO 2; the moles of water are calculated as the moles of H 2 O itself.
  • the molar ratio of the silicon-titanium ester polymer, template agent and water satisfies:
  • the number of moles of the template agent is calculated as the number of moles of N atoms in the template agent
  • the mole number of the silicon-titanium ester polymer is calculated based on the sum of the silicon content and the titanium content in the silicon-titanium ester polymer;
  • the silicon content in the silicon-titanium ester-based polymer is calculated in terms of moles of SiO 2
  • the titanium content in the silicon-titanium ester-based polymer is calculated in terms of moles of TiO 2 ;
  • the number of moles of water is based on the number of moles of H 2 O itself.
  • the template agent is selected from at least one of organic base template agents.
  • the silicon-titanium ester polymer, organic base template agent and water have the following molar ratio:
  • Organic alkali template agent / (SiO 2 + TiO 2 ) 0.05 ⁇ 10;
  • the silicon content in the silicon-titanium ester-based polymer is calculated in terms of moles of SiO 2
  • the titanium content in the silicon-titanium ester-based polymer is calculated in terms of moles of TiO 2
  • the organic base template agent is calculated in terms of the moles of N atoms.
  • the organic base template includes A; the A is selected from tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, triethylpropylammonium hydroxide, tetrapropylhalide At least one of ammonium, tetraethylammonium halide, tetrabutylammonium halide, and triethylpropylammonium halide.
  • the organic base template agent further includes B; the B is at least one selected from fatty amines and alcohol amine compounds.
  • the B includes at least one of ethylamine, diethylamine, triethylamine, n-butylamine, butylenediamine, hexamethylenediamine, octanediamine, monoethanolamine, diethanolamine, triethanolamine.
  • the organic base template agent is tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, triethylpropylammonium hydroxide, tetrapropylammonium halide, tetraethylammonium halide , One or more of tetrabutylammonium halide, triethylpropylammonium halide, etc., or these quaternary ammonium salts or quaternary ammonium A mixture of fatty amines or alcohol amines such as diamine, hexamethylenediamine, octanediamine, monoethanolamine, diethanolamine, triethanolamine, etc.
  • the crystallization conditions are: under closed conditions, the temperature is raised to 100-200 ° C, and the crystallization does not exceed 30 days under autogenous pressure.
  • the crystallization conditions are: under closed conditions, the temperature is raised to 120-180 ° C, and crystallization is performed under autogenous pressure for 1-15 days.
  • the upper limit of the crystallization temperature is selected from 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C, 190 ° C or 200 ° C;
  • the lower limit is selected from 100 ° C, 110 °C, 120 °C, 130 °C, 140 °C, 150 °C, 160 °C, 170 °C, 180 °C or 190 °C.
  • the upper limit of the crystallization time is selected from 1 hour, 5 hours, 10 hours, 15 hours, 20 hours, 1 day, 2 days, 5 days, 10 days, 12 days, 15 days, 20 days, 25 Days, 28 days or 30 days; the lower limit is selected from 0.5 hours, 1 hour, 5 hours, 10 hours, 15 hours, 20 hours, 1 day, 2 days, 5 days, 10 days, 12 days, 15 days, 20 days, 25 days or 28 days.
  • the crystallization is performed under dynamic or static conditions.
  • the mixture is subjected to aging or not to obtain a gel mixture.
  • the mixture undergoes crystallization after aging
  • the aging conditions are: no higher than 120 °C for 0 to 100 hours.
  • the aging temperature is 0 to 120 ° C and the time is 0 to 100 hours.
  • the aging is performed statically or dynamically.
  • the preparation method of the TS-1 molecular sieve includes:
  • step b) After the step a) is reacted, vacuum distillation is carried out, the vacuum degree of the system is controlled at 0.01-5KPa, the reaction temperature is between 170-230 ° C, and the reaction time is between 0.5-5 hours to obtain the silicotitanium ester polymer;
  • step b) Mix the silicotitanium ester polymer obtained in step b) with an organic base template agent and water, and keep it aged at a temperature not higher than 120 ° C for 0 to 100 hours to obtain a gel mixture;
  • step d) The gel mixture obtained in step c) is heated to 100-200 ° C under closed conditions, and crystallized under autogenous pressure for 0-30 days to obtain the TS-1 molecular sieve.
  • the preparation method of the TS-1 molecular sieve includes:
  • step b Connect the device after step a') with water pump or oil pump to perform vacuum distillation to make the transesterification reaction more complete.
  • the reaction temperature is between 170 ⁇ 230 °C
  • the reaction time Between 0.5 to 5 hours, the conversion rate of the transesterification reaction is greater than 90%, that is, the silicon titanium ester polymer;
  • step c ' Mix the silicotitanium ester polymer obtained in step b') with an organic base template agent, water, etc., and keep at a temperature not higher than 120 ° C to stir or statically aging for 0 to 100 hours to obtain a gel mixture ;
  • step c') The gel mixture obtained in step c') is charged into a high-pressure synthesis kettle, sealed, heated to 100-200 ° C, and crystallized under autogenous pressure for 0-30 days;
  • the multi-stage pore TS-1 molecular sieve contains mesopores, and the mesopore pore diameter is 2-10 nm.
  • the multi-stage pore TS-1 molecular sieve contains mesopores, and the mesopore pore diameter is 2-5 nm.
  • the multi-stage pore TS-1 molecular sieve contains mesopores, and the mesopore pore diameter is 2 to 3 nm.
  • the particle size of the multi-stage pore TS-1 molecular sieve is 100-500 nm.
  • the particle size of the multi-stage pore TS-1 molecular sieve is 100-300 nm.
  • the multi-stage TS-1 molecular sieve has a mesoporous structure with a narrow pore size distribution and less non-skeletal titanium.
  • the multi-stage pore TS-1 molecular sieve prepared according to the method described in any one of the above is used for the selective oxidation reaction of organic matter containing H 2 O 2 .
  • the synthesis process of the multi-stage pore TS-1 molecular sieve of the present invention is divided into two steps: the first step is to mix the silicon ester, the titanium ester and the polyhydric alcohol for transesterification reaction, and distill out the generated alcohol to obtain the silicon titanium ester polymer
  • the second step is to hydrothermally crystallize the silicon-titanium ester polymer, organic alkali template agent and water in the reaction kettle to obtain a multi-stage pore TS-1 molecular sieve.
  • the synthesis method is that silicon and titanium are uniformly connected to the same polymer, and the hydrolysis rate is equivalent during hydrolysis, which can prevent the precipitation of TiO 2 and reduce the generation of non-skeletal titanium; and the new silicon titanium ester
  • the polymer-like polymer can be used as a silicon source and a titanium source, and can also be used as a mesoporous template during the synthesis process.
  • the resulting TS-1 molecular sieve has a mesoporous structure and a narrow pore size distribution.
  • C 1 to C 10 , C 1 to C 4 ", etc. all refer to the number of carbon atoms contained in the group.
  • alkyl refers to a group formed by losing any one hydrogen atom in an alkane compound molecule.
  • the silicon-titanium ester polymer is used as the silicon source and the titanium source, and it can also be used as a mesoporous template during the synthesis process.
  • the resulting TS-1 molecular sieve has a mesoporous structure and a pore size The distribution is narrow.
  • FIG. 1 is an XRD chart of the product synthesized according to Example 1 of the present invention.
  • SEM scanning electron microscope
  • FIG. 3 is an ultraviolet-visible (UV-VIS) spectrum of the product synthesized according to Example 1 of the present invention.
  • Example 4 is the result of physical adsorption and pore distribution of the product synthesized according to Example 1 of the present invention.
  • the X-ray powder diffraction phase analysis (XRD) of the product used X'Pert PRO X-ray diffractometer of Panalytical, Cu target, K ⁇ radiation source ( ⁇ 0.15418nm ), Voltage 40KV, current 40mA.
  • XRD X-ray powder diffraction phase analysis
  • Hitachi's SU8020 scanning electron microscope was used for the SEM morphological analysis of the product.
  • the UV-Vis diffuse reflectance spectrum of the product is measured on a Varian Cary500 Scan UV-Vis spectrophotometer equipped with an integrating sphere.
  • the physical adsorption and pore distribution analysis of the product adopts the ASAP2020 automatic physical instrument of Mike.
  • the conversion rate of the transesterification reaction is calculated by the following method:
  • the number of groups participating in the transesterification reaction is determined to be n, and the total number of moles of titanate and silicate in the reaction raw material is m, then transesterification
  • the conversion rate of the reaction is: n / 4m.
  • a method for preparing a multi-stage pore TS-1 molecular sieve is as follows:
  • step b) Connect the equipment after step a) with water pump or oil pump to perform vacuum distillation to make the transesterification reaction more complete, control the system vacuum degree to 0.01 ⁇ 5KPa, the reaction temperature to be 170 ⁇ 230 °C, and the reaction time to be 0.5 to 5 hours, the conversion rate of the transesterification reaction is greater than 90%, that is, the silicon titanium ester polymer.
  • step b) Mix the silicotitanium ester polymer obtained in step b) with an organic base template agent, water, etc., and keep it at a temperature not higher than 120 ° C with stirring or static aging for 0 to 100 hours to obtain a gel mixture:
  • step d) The gel mixture obtained in step c) is charged into a high-pressure synthesis kettle, sealed, heated to 100-200 ° C, and crystallized under autogenous pressure for 0-30 days;
  • the silicate in step a) is one or more of methyl orthosilicate, tetraethyl silicate, tetrapropyl silicate, tetrabutyl silicate, etc .;
  • the titanate in step a) is one or more of tetraethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetrahexyl titanate, tetraisooctyl titanate, etc. ;
  • the general formula of the polyol in step a) is R- (OH) x , where x ⁇ 2; including ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol , 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 600, polyethylene glycol One of alcohol 800, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, terephthalic acid, glycerol, trimethylolpropane, pentaerythritol, xylitol, sorbitol, etc. Or any kind of mixture.
  • the silicate, titanate and polyol in the step a) have the following molar ratio:
  • the reaction in the step a) is carried out under the protection of nitrogen, the reaction temperature is between 80 and 180 ° C, and the reaction time is between 2 and 10 hours.
  • the conversion rate of the transesterification reaction in the step a) is between 65% and 80%.
  • the step b) is carried out under reduced pressure distillation conditions, and the vacuum degree of the system is controlled at 0.05-3KPa.
  • the reaction temperature is between 170 and 230 ° C, and the reaction time is between 0.5 and 5 hours.
  • the conversion rate of the transesterification reaction in step b) is greater than 90%.
  • the silicon titanate polymer, organic base template agent and water in the step c) have the following molar ratio:
  • Organic alkali template agent / (SiO 2 + TiO 2 ) 0.1 ⁇ 5;
  • the silicon content in the silicon-titanium ester polymer is based on the moles of SiO 2
  • the titanium content in the silicon-titanium ester polymer is based on the moles of TiO 2
  • the content of the organic base templating agent is based on the moles of N atoms .
  • the organic base template used in the step c) is tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, triethylpropylammonium hydroxide, tetrapropylammonium halide, tetraethylammonium One or more of ammonium halide, tetrabutylammonium halide, triethylpropylammonium halide, etc., or these quaternary ammonium salts or quaternary ammonium bases with ethylamine, diethylamine, triethylamine, n-butylamine , Diamine, hexamethylenediamine, octanediamine, monoethanolamine, diethanolamine, triethanolamine and other fatty amine or alcohol amine compounds.
  • the aging process in the step c) may be omitted or may be performed, the aging temperature is 20-100 ° C., and the time is 1-50 hours.
  • the aging process in step c) is performed statically or dynamically.
  • the temperature for crystallization in the step d) is 120-180 ° C, and the crystallization time is 1-15 days.
  • the crystallization process in step d) is performed under static or dynamic conditions.
  • the multi-stage TS-1 molecular sieve obtained in step e) has a mesoporous structure with a narrow pore size distribution and less non-framework titanium.
  • the specific batching process is as follows: 5g of ethyl orthosilicate, 0.29g of tetraethyl titanate and 10g of polyethylene glycol 200 are added to the three-necked flask and mixed evenly.
  • the ester exchange reaction is carried out while stirring, and the distillation device is connected and nitrogen is passed Protect, heat up to 175 °C, reaction time 5 hours, conversion rate of transesterification reaction is 75%, connect with water pump to perform vacuum distillation to make the transesterification reaction more complete, control system vacuum at 3KPa, reaction temperature 200 °C, reaction At a time of 1 hour, the conversion rate of the transesterification reaction is 92%, that is, the silicon titanium polyethylene glycol ester polymer is obtained.
  • the obtained silicon-titanium polyethylene glycol ester polymer was mixed with 8 g of tetrapropylammonium hydroxide (25 wt.% Aqueous solution) and 12 g of water, stirred and aged at room temperature for 2 hours, and then transferred to a stainless steel high-pressure synthesis kettle. At this time, the molar ratio of each component of the synthesis system is Ti 0.05 (PEG-200) 2 Si 0.95 : 0.4 TPAOH: 40H 2 O.
  • the high-pressure synthesis kettle was sealed and placed in an oven that had been raised to a constant temperature of 170 ° C, and crystallized under autogenous pressure for 2 days.
  • the solid product was centrifuged, washed with deionized water to neutrality, and dried in air at 110 ° C.
  • the TS-1 molecular sieve with multi-level pores was labeled as C1.
  • the results are shown in Figure 1, which can be seen from the figure, the sample is TS-1 molecular sieve; the scanning electron microscope (SEM) image of this sample is shown in Figure 2, which can be seen from the figure, The sample particle size is around 200nm; the UV-VIS diffuse reflectance spectrum of the sample is shown in Figure 3, which can be seen from the figure, there is almost no non-skeletal titanium in the sample; the physical adsorption and pore distribution curve of the sample is shown in Figure 4, by It can be seen from the figure that the sample has mesopores around 2 nm.
  • the specific batching process is as follows: 5g of ethyl orthosilicate, 0.05g of tetraethyl titanate and 3.13g of ethylene glycol are added to the three-necked flask and mixed evenly.
  • the ester exchange reaction is carried out under stirring, and the distillation device is connected and protected by nitrogen.
  • the temperature is raised to 100 °C, the reaction time is 5 hours, the conversion rate of the transesterification reaction is 70%, connected to a water pump for reduced pressure distillation to make the transesterification reaction more complete, the system vacuum is controlled at 3KPa, the reaction temperature is 170 °C, the reaction time In 1 hour, the conversion rate of the transesterification reaction is 90%, that is, the silicon titanium glycol ester polymer is obtained.
  • the obtained silicon-titanium glycol ester polymer was mixed with 2 g of tetrapropylammonium hydroxide (25% wt. Aqueous solution) and 3 g of water, stirred and aged at room temperature for 2 hours, and then transferred to a stainless steel high-pressure synthesis kettle.
  • the molar ratio of each component of the synthesis system is Ti 0.01 (OCH 2 CH 2 O) 2 Si 0.99 : 0.1 TPAOH: 10H 2 O.
  • the high-pressure synthesis kettle was sealed and placed in an oven that had been raised to a constant temperature of 120 ° C, and crystallized under autogenous pressure for 15 days. After the crystallization is completed, the solid product is centrifugally separated, washed with deionized water to neutrality, and dried in air at 110 ° C.
  • the TS-1 molecular sieve with multi-level pores is labeled as C2.
  • the specific batching process is as follows: 5g of methyl orthosilicate, 2.8g of tetrabutyl titanate and 11.35g of terephthalic acid are added to the three-necked flask and mixed evenly.
  • the ester exchange reaction is carried out under stirring, and the distillation device is connected and nitrogen is passed Protect, raise the temperature to 160 °C, reaction time 5 hours, the conversion rate of transesterification reaction is 80%, connect the water pump to carry out vacuum distillation to make the transesterification reaction more complete, control the system vacuum degree at 3KPa, reaction temperature 230 °C, reaction At a time of 1 hour, the conversion rate of the transesterification reaction is 95%, that is, the silicon-titanium terephthalate polymer is obtained.
  • the obtained silicon-titanium terephthalate polymer was mixed with 330 g of tetrapropylammonium hydroxide (25 wt.% Aqueous solution) and 120 g of water, stirred and aged at room temperature for 2 hours, and then transferred to a stainless steel high-pressure synthesis kettle.
  • the molar ratio of each component of the synthesis system is Ti 0.2 (OC 6 H 4 O) 2 Si 0.8 : 10 TPAOH: 500H 2 O.
  • the high-pressure synthesis kettle was sealed and placed in an oven that had been raised to a constant temperature of 180 ° C, and crystallized under autogenous pressure for 1 day. After crystallization, the solid product was centrifugally separated, washed with deionized water to neutrality, and dried in air at 110 ° C.
  • the TS-1 molecular sieve with multi-level pores was labeled as C3.
  • the crystallization described in Examples 1 to 3 is static crystallization.
  • the TS-1 molecular sieve with multiple pores was prepared using the same method as in Example 1.
  • the crystallization involved in Example 4 is dynamic crystallization.
  • the crystallization conditions are: a rotary oven is used, the crystallization temperature and crystallization time are shown in Table 2, and the rotation speed of the rotary oven is 35 rpm.
  • FIG. 1 is an XRD pattern of sample C1 prepared in Example 1.
  • sample C1 is a TS-1 molecular sieve
  • test results of the other samples are slightly different from the pattern of sample C1 in Example 1 only in the intensity of the diffraction peak, both of which are TS-1 molecular sieve.
  • FIG. 2 is an SEM image of the sample C1 prepared in Example 1. As can be seen from the figure, the particle size of the sample is about 200 nm.
  • test results of the other samples are similar to the test results of the sample C1 in Example 1, and the particle size of the sample is 100-500 nm.
  • FIG. 3 is a UV-VIS diffuse reflection spectrum of the sample C1 prepared in Example 1. As can be seen from the figure, there is almost no non-framework titanium in the sample.
  • test results of the other samples are similar to the test results of Sample 1 in Example 1, and there is almost no non-framework titanium in the samples.
  • FIG. 4 is the results of physical adsorption and pore distribution of sample C1 prepared in Example 1. It can be seen from the figure that the sample has mesopores of about 2 nm.
  • test results of other samples are similar to the test results of sample C1 in Example 1, and the samples all have mesopores of 2-10 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

一种多级孔TS-1分子筛的制备方法,以硅钛酯类聚合物为钛硅源,获得多级孔TS-1分子筛。制备方法中硅和钛均匀连接在同一种聚合物上,水解时水解速率相当,可以防止TiO 2的沉淀,减少非骨架钛的生成;而且新型的硅钛酯类聚合物作为硅源和钛源的同时,在合成过程中也可以作为介孔模板剂使用,得到的TS-1分子筛具有介孔结构,且孔径分布较窄。

Description

一种多级孔TS-1分子筛的制备方法 技术领域
本申请涉及一种多级孔TS-1分子筛的制备方法,属于分子筛制备领域。
背景技术
TS-1分子筛是一种具有MFI拓扑结构的微孔分子筛,由于其骨架结构中存在四面体的Ti 4+中心,因而对有H 2O 2参加的有机物的选择性氧化反应有良好的催化作用,如烯烃的环氧化、苯酚的羟基化、酮类的氨肟化、烷烃氧化等选择性氧化反应。TS-1分子筛催化氧化过程无污染,反应条件温和,克服了传统工艺中污染严重、反应过程冗长的缺点。
影响TS-1活性和稳定性的主要因素有两个:一是分子筛中骨架钛和非骨架钛的含量,二是分子筛的扩散性能。对于前者,由于钛原子半径较大,很难进入MFI骨架,而钛源易水解聚合成二氧化钛沉淀,所以TS-1分子筛合成中很难避免六配位的非骨架钛的生成,而非骨架钛物种的存在能够促进H 2O 2的无效分解,不利于TS-1催化的氧化反应;对于后者,由于TS-1分子筛的微孔尺寸太小,只有0.55nm,大大限制了有机大分子在催化剂中的传输与扩散,从而抑制了催化剂的反应活性和使用寿命。
TS-1的合成最初是由Taramasso等人(US4410501)报道的,合成使用硅酸四乙酯(TEOS)为硅源,钛酸四乙酯(TEOT)为钛源,四丙基氢氧化铵(TPAOH)为模板剂,在高压釜中于130~200℃水热晶化6~30天得到。但该方法操作繁琐,条件不易控制,实验重复性差,而且由于硅源和钛源水解速率的差异,造成大量非骨架钛的形成,影响了TS-1分子筛的催化性能。随后,Thangaraj等人(zeolite,12(1992),943)通过将正硅酸乙酯在TPAOH水溶液中预水解,再在剧烈搅拌下缓慢加入水解速率更慢的钛酸四丁酯的异丙醇溶液,得到了非骨架钛较少的TS-1分子筛。这些改进主要是对硅源和钛源的水解过程进行控制,使硅源和钛源的水解速率更加匹配,抑制非骨架钛的形成,提高TS-1分子筛中的骨架钛含量。
对于TS-1分子筛的扩散问题,通过向沸石分子筛体系中引入介孔, 制备多级孔分子筛,是一个常用的解决办法。而采用模板剂在分子筛材料中构筑介孔或大孔结构是目前制备多级孔分子筛最为有效的途径,包括软模板法和硬模板法。其中软模板法如周兴贵等(CN103357432A)利用聚醚型Pluronic F127为介孔模板剂,干凝胶法合成介孔纳米TS-1分子筛;张淑芬(CN102910643A)利用十六烷基三甲基溴化铵为介孔模板剂在钛硅分子筛中引入介孔孔道;其中硬模板法如陈丽华等(CN104058423A)以三维有序大孔-介孔多级孔碳材料为硬模板,在硬模板的三维有序孔道内限域生长TS-1纳米晶,去除硬模板后制备得到多级孔TS-1分子筛;李钢等(CN101962195A)以廉价的糖代替多孔碳材料作为大孔-介孔模板剂,在含糖的TS-1分子筛合成溶胶经热处理干胶的过程中,糖受热碳化脱水直接形成硬模板,得到多级孔道TS-1分子筛,但TS-1分子筛的活性和稳定性还需提高。
发明内容
根据本申请的一个方面,提供了一种多级孔TS-1分子筛的制备方法,该方法中硅源和钛源连接在同一种聚合物上形成硅钛酯类聚合物,可以使硅源和钛源的水解速率更匹配,防止TiO 2的沉淀,更利于钛进入分子筛骨架;另外,硅钛酯类聚合物作为硅源和钛源的同时,在合成过程中也可以作为介孔模板剂使用,因此此法得到的多级孔TS-1分子筛具有介孔结构、孔径分布较窄,且含有更少的非骨架钛。
所述多级孔TS-1分子筛的制备方法,其特征在于,以硅钛酯类聚合物为钛硅源。
可选地,所述方法包括:将含有硅钛酯类聚合物、模板剂、水的混合物晶化,获得所述多级孔TS-1分子筛。
可选地,所述晶化为水热晶化。
可选地,所述硅钛酯类聚合物由含有硅酸酯、钛酸酯和多元醇的原料进行酯交换反应获得。
可选地,所述硅酸酯、钛酸酯和多元醇的摩尔比满足:
钛酸酯:硅酸酯=0.001~0.2;
(钛酸酯+硅酸酯):多元醇=(0.5~5)x:4
其中,x为每摩尔所述多元醇中含有的羟基摩尔数;
上述各物质的摩尔数均为物质本身的摩尔数计算。
可选地,所述硅酸酯、钛酸酯和多元醇的摩尔比满足:
钛酸酯:硅酸酯=0.005~0.1;
(钛酸酯+硅酸酯):多元醇=(0.8~1.2)x:4
其中,x为每摩尔所述多元醇中含有的羟基摩尔数;
上述各物质的摩尔数均为物质本身的摩尔数计算。
可选地,所述钛酸酯与硅酸酯的摩尔比上限选自0.002、0.005、0.01、0.02、0.05、0.08、0.1、0.15、0.18或0.2;下限选自0.001、0.002、0.005、0.01、0.02、0.05、0.08、0.1、0.15或0.18。
可选地,所述(钛酸酯+硅酸酯)与多元醇的摩尔比上限选自0.85x:4、0.9x:4、0.95x:4、1.0x:4、1.15x:4或1.2x:4;下限选自0.8x:4、0.85x:4、0.9x:4、0.95x:4、1.0x:4或1.15x:4;其中,x为每摩尔所述多元醇中含有的羟基摩尔数。
可选地,所述酯交换在搅拌条件下进行。
可选地,所述酯交换的反应条件为:在非活性气氛下,80~180℃反应2~10小时。
可选地,所述酯交换的反应条件为:通氮气保护,反应温度介于80~180℃,反应时间介于2~10小时。
可选地,所述酯交换的反应条件为:在非活性气氛下,100~160℃反应2~10小时。
可选地,所述酯交换的反应条件为:在非活性气氛下,100~160℃反应4~8小时。
可选地,所述酯交换的反应条件为:氮气保护条件下进行,反应温度介于100~160℃,反应时间介于4~8小时。
可选地,所述酯交换的反应温度上限选自85℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、175℃或180℃;下限选自80℃、85℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃或175℃。
可选地,所述酯交换的反应时间上限选自2.5小时、3小时、4小时、 5小时、6小时、7小时、8小时、9小时、9.5小时或10小时;下限选自2小时、2.5小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时或9.5小时。
可选地,所述非活性气氛包括氮气、惰性气体中的至少一种。
可选地,所述酯交换的传化率介于60%~80%。
可选地,所述酯交换还包括减压蒸馏。
可选地,所述减压蒸馏的条件为:在真空度为0.01~5KPa的条件下,170~230℃反应0.5~5小时。
可选地,所述真空度为0.05~3Kpa。
可选地,所述酯交换的转化率大于90%。
可选地,所述减压蒸馏的温度上限选自175℃、180℃、190℃、200℃、210℃、220℃、225℃或230℃;下限选自170℃、175℃、180℃、190℃、200℃、210℃、220℃或225℃。
可选地,所述减压蒸馏的时间上限选自0.8小时、1小时、2小时、3小时、4小时、4.5小时或5小时;下限选自0.5小时、0.8小时、1小时、2小时、3小时、4小时或4.5小时。
可选地,所述减压蒸馏的真空度上限选自0.02Kpa、0.03Kpa、0.05Kpa、0.08Kpa、0.1Kpa、0.5Kpa、1Kpa、1.5Kpa、2Kpa、2.5Kpa、3Kpa、3.5Kpa、4Kpa、4.5Kpa或5Kpa;下限选自0.01KPa、0.02Kpa、0.03Kpa、0.05Kpa、0.08Kpa、0.1Kpa、0.5Kpa、1Kpa、1.5Kpa、2Kpa、2.5Kpa、3Kpa、3.5Kpa、4Kpa或4.5Kpa。
可选地,所述硅酸酯的选自具有式I所示化学式的化合物中的至少一种:
Figure PCTCN2018115719-appb-000001
其中,R 1,R 2,R 3,R 4独立地选自C 1~C 10的烷基中的一种。
可选地,式I中所述R 1,R 2,R 3,R 4独立地选自C 1~C 4的烷基中的一 种。
可选地,所述硅酸酯包括正硅酸甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯中的至少一种。
可选地,所述硅酸酯为正硅酸甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯等中的一种或几种。
可选地,所述钛酸酯选自具有式II所示化学式的化合物中的至少一种:
Figure PCTCN2018115719-appb-000002
其中,R 5,R 6,R 7,R 8独立地选自C 1~C 10的烷基中的一种。
可选地,式II中所述R 5,R 6,R 7,R 8独立地选自C 1~C 4的烷基中的一种
可选地,所述钛酸酯包括钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四己酯、钛酸四异辛酯中的至少一种。
可选地,所述钛酸酯为钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四己酯、钛酸四异辛酯等中的一种或几种。
可选地,所述多元醇包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4-环己二醇、1,4-环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇中的至少一种。
可选地,多元醇中含有的羟基数≥2;包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4-环己二醇、1,4-环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇等中的一种或任意几种的混合物。
可选地,所述硅钛酯类聚合物包括硅钛聚乙二醇酯聚合物、硅钛乙二 醇酯聚合物、硅钛对苯二甲醇酯聚合物中的至少一种。
可选地,所述硅钛酯类聚合物的制备方法包括:
将硅酸酯、钛酸酯与多元醇混合,搅拌条件下进行酯交换反应,通入非活性气氛保护,反应温度介于80~180℃,反应时间介于2~10小时。
可选地,所述硅钛酯类聚合物的制备方法还包括:反应后进行减压蒸馏,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,即得所述硅钛酯类聚合物。
作为其中一种具体的实施方式,所述硅钛酯类聚合物的制备方法包括:
1)将硅酸酯、钛酸酯与多元醇加入三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,反应温度介于80~180℃,反应时间介于2~10小时,酯交换反应的转化率介于60%~80%;
2)将步骤1)反应后的装置接上水泵或油泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,酯交换反应的转化率大于90%,即得硅钛酯类聚合物。
可选地,所述硅钛酯类聚合物、模板剂和水的摩尔比满足:
模板剂:硅钛酯类聚合物=0.05~10;
水:硅钛酯类聚合物=5~500;
其中,所述模板剂的摩尔数以模板剂中N原子的摩尔数计;
所述硅钛酯类聚合物的摩尔数以硅钛酯类聚合物中的硅含量和钛含量之和计算;
所述硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计;
所述水的摩尔数以H 2O自身的摩尔数计。
可选地,所述模板剂与硅钛酯类聚合物的摩尔比上限选自0.08、0.10、0.15、0.2、0.5、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0或10.0;下限选自0.05、0.08、0.10、0.15、0.2、0.5、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0或9.0。其中,所述模板剂的摩尔数以模板剂中N原子的摩尔数计;所述硅钛酯类聚合物的摩尔数以硅钛酯类聚合物中的硅含量和钛含量之和计算;所述硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类 聚合物中的钛含量按TiO 2的摩尔数计。
可选地,所述水与硅钛酯类聚合物的摩尔比上限选自8、10、30、50、80、100、150、200、250、300、350、400、450、480或500;下限选自5、8、10、30、50、80、100、150、200、250、300、350、400、450或480。其中,所述硅钛酯类聚合物的摩尔数以硅钛酯类聚合物中的硅含量和钛含量之和计算;所述硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计;所述水的摩尔数以H 2O自身的摩尔数计。
可选地,所述硅钛酯类聚合物、模板剂和水的摩尔比满足:
模板剂:硅钛酯类聚合物=0.1~5;
水:硅钛酯类聚合物=30~300;
其中,所述模板剂的摩尔数以模板剂中N原子的摩尔数计;
所述硅钛酯类聚合物的摩尔数以硅钛酯类聚合物中的硅含量和钛含量之和计算;
所述硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计;
所述水的摩尔数以H 2O自身的摩尔数计。
可选地,所述模板剂选自有机碱模板剂中的至少一种。
可选地,所述硅钛酯类聚合物、有机碱模板剂和水具有如下摩尔配比:
有机碱模板剂/(SiO 2+TiO 2)=0.05~10;
H 2O/(SiO 2+TiO 2)=5~500
其中硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计;有机碱模板剂按N原子的摩尔数计。
可选地,所述有机碱模板剂包括A;所述A选自四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、三乙基丙基氢氧化铵、四丙基卤化铵、四乙基卤化铵、四丁基卤化铵、三乙基丙基卤化铵中的至少一种。
可选地,所述有机碱模板剂还包括B;所述B选自脂肪胺、醇胺类化合物中的至少一种。
可选地,所述B包括乙胺、二乙胺、三乙胺、正丁胺、丁二胺、己二胺、辛二胺、单乙醇胺、二乙醇胺、三乙醇胺中的至少一种。
可选地,所述有机碱模板剂为四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、三乙基丙基氢氧化铵、四丙基卤化铵、四乙基卤化铵、四丁基卤化铵、三乙基丙基卤化铵等中的一种或几种,或者为这些季铵盐或季铵碱与乙胺、二乙胺、三乙胺、正丁胺、丁二胺、己二胺、辛二胺、单乙醇胺、二乙醇胺、三乙醇胺等脂肪胺或醇胺类化合物组成的混合物。
可选地,所述晶化的条件为:密闭条件下,升温到100~200℃,在自生压力下晶化不超过30天。
可选地,所述晶化的条件为:密闭条件下,升温到120~180℃,在自生压力下晶化1~15天。
可选地,所述晶化的温度上限选自110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃或200℃;下限选自100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃或190℃。
可选地,所述晶化的时间上限选自1小时、5小时、10小时、15小时、20小时、1天、2天、5天、10天、12天、15天、20天、25天、28天或30天;下限选自0.5小时、1小时、5小时、10小时、15小时、20小时、1天、2天、5天、10天、12天、15天、20天、25天或28天。
可选地,所述晶化在动态或静态下进行。
可选地,所述混合物经过或不经过老化,得到凝胶混合物。
可选地,所述混合物经过老化之后进行晶化;
所述老化的条件为:不高于120℃老化0~100小时。
可选地,老化温度为0~120℃,时间为0~100小时。
可选地,所述老化的条件为:温度为20~100℃,时间为1~50小时。
可选地,所述老化在静态或动态下进行。
可选地,晶化完成后,将固体产物分离,洗涤至中性,干燥,得到TS-1分子筛。
可选地,所述TS-1分子筛的制备方法包括:
a)将硅酸酯、钛酸酯与多元醇混合均匀,搅拌状态下进行酯交换反应,通氮气保护,反应温度介于80~180℃,反应时间介于2~10小时;
b)将步骤a)反应后进行减压蒸馏,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,即得硅钛酯类聚合 物;
c)将步骤b)得到的硅钛酯类聚合物与有机碱模板剂、水混合,并保持在不高于120℃的温度下老化0~100小时,得到凝胶混合物;
d)将步骤c)所得的凝胶混合物在密闭条件下,升温到100~200℃,在自生压力下晶化0~30天,即得所述TS-1分子筛。
作为其中一种具体的实施方式,所述TS-1分子筛的制备方法包括:
a')将硅酸酯、钛酸酯与多元醇加入三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,反应温度介于80~180℃,反应时间介于2~10小时,酯交换反应的转化率介于60%~80%;
b')将步骤a')反应后的装置接上水泵或油泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,酯交换反应的转化率大于90%,即得硅钛酯类聚合物;
c')将步骤b')得到的硅钛酯类聚合物与有机碱模板剂、水等混合,并保持在不高于120℃的温度下搅拌或静止老化0~100小时,得到凝胶混合物;
d')将步骤c')所得的凝胶混合物装入高压合成釜,密闭,升温到100~200℃,在自生压力下晶化0~30天;
e')待晶化完全后,将固体产物分离,用去离子水洗涤至中性,干燥后即得所述多级孔的TS-1分子筛。
可选地,所述多级孔TS-1分子筛含有介孔,介孔孔径为2~10nm。
可选地,所述多级孔TS-1分子筛含有介孔,介孔孔径为2~5nm。
可选地,所述多级孔TS-1分子筛含有介孔,介孔孔径为2~3nm。
可选地,所述多级孔TS-1分子筛的粒径为100~500nm。
可选地,所述多级孔TS-1分子筛的粒径为100~300nm。
可选地,所述多级孔的TS-1分子筛具有孔径分布较窄的介孔结构和较少的非骨架钛。
可选地,根据上述任一项所述的方法制备得到的多级孔TS-1分子筛用于含有H 2O 2的有机物的选择性氧化反应。
本发明的多级孔TS-1分子筛合成过程分为两步:第一步是将硅酯、 钛酯与多元醇混合进行酯交换反应,将生成的醇蒸出,得到硅钛酯类聚合物;第二步将硅钛酯类聚合物、有机碱模板剂和水等在反应釜中水热晶化,得到多级孔TS-1分子筛。该合成方法与现有的合成方法相比,硅和钛均匀连接在同一种聚合物上,水解时水解速率相当,可以防止TiO 2的沉淀,减少非骨架钛的生成;而且新型的硅钛酯类聚合物作为硅源和钛源的同时,在合成过程中也可以作为介孔模板剂使用,得到的TS-1分子筛具有介孔结构,且孔径分布较窄。
本申请中,“C 1~C 10、C 1~C 4”等均指基团中所包含的碳原子数。
本申请中,“烷基”是由烷烃化合物分子上失去任意一个氢原子所形成的基团。
本申请能产生的有益效果包括:
1)本申请所述的方法中将硅和钛均匀连接在同一种聚合物上,水解时水解速率相当,可以防止TiO 2的沉淀,抑制非骨架钛的形成;
2)本申请所述方法中采用硅钛酯类聚合物作为硅源和钛源的同时,在合成过程中也可以作为介孔模板剂使用,得到的TS-1分子筛具有介孔结构,且孔径分布较窄。
附图说明
图1是根据本发明实施例1合成的产物的XRD图。
图2是根据本发明实施例1合成的产物的扫描电镜(SEM)图。
图3是根据本发明实施例1合成的产物的紫外可见(UV-VIS)光谱。
图4是根据本发明实施例1合成的产物的物理吸附及孔分布结果。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
在本申请的实施例中,产物的X射线粉末衍射物相分析(XRD)采用荷兰帕纳科(PANalytical)公司的X’Pert PRO X射线衍射仪,Cu靶,Kα 辐射源(λ=0.15418nm),电压40KV,电流40mA。
在本申请的实施例中,产物的SEM形貌分析采用Hitachi的SU8020扫描电子显微镜。
在本申请的实施例中,产物的紫外-可见漫反射光谱采用装有积分球的Varian Cary500 Scan型UV-Vis分光光度计上测定。
在本申请的实施例中,产物的物理吸附及孔分布分析采用麦克公司的ASAP2020全自动物理仪。
本申请的实施例中,酯交换反应的转化率通过以下方法计算:
根据反应过程中馏出的副产品醇类的摩尔数n,确定参与酯交换反应中参与反应的基团数为n,反应原料中钛酸酯和硅酸酯的摩尔数总和为m,则酯交换反应的转化率为:n/4m。
根据本申请的一种实施方式,用于制备多级孔TS-1分子筛的方法如下:
a)将硅酸酯、钛酸酯与多元醇加入三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,反应温度介于80~180℃,反应时间介于2~10小时,酯交换反应的转化率介于60%~80%。
b)将步骤a)反应后的装置接上水泵或油泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,酯交换反应的转化率大于90%,即得硅钛酯类聚合物。
c)将步骤b)得到的硅钛酯类聚合物与有机碱模板剂、水等混合,并保持在不高于120℃的温度下搅拌或静止老化0~100小时,得到凝胶混合物:
d)将步骤c)所得的凝胶混合物装入高压合成釜,密闭,升温到100~200℃,在自生压力下晶化0~30天;
e)待晶化完全后,将固体产物分离,用去离子水洗涤至中性,干燥后即得所述多级孔的TS-1分子筛;
所述步骤a)中的硅酸酯为正硅酸甲酯、硅酸四乙酯、硅酸四丙酯、 硅酸四丁酯等中的一种或几种;
所述步骤a)中的钛酸酯为钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四己酯、钛酸四异辛酯等中的一种或几种;
所述步骤a)中的多元醇的通式为R-(OH) x,其中x≥2;包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4-环己二醇、1,4-环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇等中的一种或任意几种的混合物。
优选的,所述步骤a)中硅酸酯、钛酸酯与多元醇具有如下摩尔配比:
Ti(OR) 4/Si(OR) 4=0.005~0.1
[Ti(OR) 4+Si(OR) 4]/R-(OH) x=(0.8~1.2)x/4
优选的,所述步骤a)中反应是在氮气保护条件下进行,反应温度介于80~180℃,反应时间介于2~10小时。
优选的,所述步骤a)中酯交换反应的转化率介于65%~80%。
优选的,所述步骤b)是在减压蒸馏条件下进行,控制体系真空度在0.05~3KPa。
优选的,所述步骤b)中反应温度介于170~230℃,反应时间介于0.5~5小时。
优选的,所述步骤b)中酯交换反应的转化率大于90%。
优选的,所述步骤c)中硅钛酯类聚合物、有机碱模板剂和水等具有如下摩尔配比:
有机碱模板剂/(SiO 2+TiO 2)=0.1~5;
H 2O/(SiO 2+TiO 2)=30~300
其中硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计;有机碱模板剂的含量按N原子的摩尔数计。
所述步骤c)中使用的有机碱模板剂为四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、三乙基丙基氢氧化铵、四丙基卤化铵、四乙基卤化铵、四丁基卤化铵、三乙基丙基卤化铵等中的一种或几种,或者为这些 季铵盐或季铵碱与乙胺、二乙胺、三乙胺、正丁胺、丁二胺、己二胺、辛二胺、单乙醇胺、二乙醇胺、三乙醇胺等脂肪胺或醇胺类化合物组成的混合物。
优选的,所述步骤c)中的老化过程可省略,也可进行,老化温度为20~100℃,时间为1~50小时。
优选的,所述步骤c)中的老化过程在静态或动态下进行。
优选的,所述步骤d)中进行晶化的温度为120~180℃,晶化时间为1~15天。
优选的,所述步骤d)中的晶化过程在静态或动态下进行。
优选的,所述步骤e)中得到的多级孔的TS-1分子筛具有孔径分布较窄的介孔结构和较少的非骨架钛。
实施例1
具体的配料过程如下:将5g正硅酸乙酯、0.29g钛酸四乙酯与10g聚乙二醇200加入三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,升温至175℃,反应时间5小时,酯交换反应的转化率75%,接上水泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在3KPa,反应温度200℃,反应时间1小时,酯交换反应的转化率为92%,即得硅钛聚乙二醇酯聚合物。将得到的硅钛聚乙二醇酯聚合物与8g四丙基氢氧化铵(25wt.%水溶液)、12g水混合,在室温搅拌老化2小时,再转移到不锈钢高压合成釜中。这时,合成体系各组分的摩尔配比为Ti 0.05(PEG-200) 2Si 0.95:0.4TPAOH:40H 2O。将高压合成釜密闭并放入已升至恒温170℃的烘箱中,在自生压力下晶化2天。晶化结束后,将固体产物离心分离,用去离子水洗涤至中性,在110℃空气中烘干后,得多级孔的TS-1分子筛,标记为C1。取该原粉的样品(C1)做XRD分析,其结果显示在图1,由图可见,样品为TS-1分子筛;该样品的扫描电镜(SEM)图显示在图2中,由图可见,样品粒径在200nm左右;该样品的UV-VIS漫反射光谱显示在图3中,由图可见,样品中几乎没有非骨架钛;该样品的物理吸附及孔分布曲线显示在图4中,由图可见,样品具有2nm左右的介孔。
实施例2
具体的配料过程如下:将5g正硅酸乙酯、0.05g钛酸四乙酯与3.13g乙二醇加入三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,升温至100℃,反应时间5小时,酯交换反应的转化率70%,接上水泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在3KPa,反应温度170℃,反应时间1小时,酯交换反应的转化率为90%,即得硅钛乙二醇酯聚合物。将得到的硅钛乙二醇酯聚合物与2g四丙基氢氧化铵(25%wt.水溶液)、3g水混合,在室温搅拌老化2小时,再转移到不锈钢高压合成釜中。这时,合成体系各组分的摩尔配比为Ti 0.01(OCH 2CH 2O) 2Si 0.99:0.1TPAOH:10H 2O。将高压合成釜密闭并放入已升至恒温120℃的烘箱中,在自生压力下晶化15天。晶化结束后,将固体产物离心分离,用去离子水洗涤至中性,在110℃空气中烘干后,得多级孔的TS-1分子筛,标记为C2。
实施例3
具体的配料过程如下:将5g正硅酸甲酯、2.8g钛酸四丁酯与11.35g对苯二甲醇加入三口烧瓶中混合均匀,搅拌状态下进行酯交换反应,接上蒸馏装置,通氮气保护,升温至160℃,反应时间5小时,酯交换反应的转化率80%,接上水泵进行减压蒸馏使酯交换反应进行的更完全,控制体系真空度在3KPa,反应温度230℃,反应时间1小时,酯交换反应的转化率为95%,即得硅钛对苯二甲醇酯聚合物。将得到的硅钛对苯二甲醇酯聚合物与330g四丙基氢氧化铵(25wt.%水溶液)、120g水混合,在室温搅拌老化2小时,再转移到不锈钢高压合成釜中。这时,合成体系各组分的摩尔配比为Ti 0.2(OC 6H 4O) 2Si 0.8:10TPAOH:500H 2O。将高压合成釜密闭并放入已升至恒温180℃的烘箱中,在自生压力下晶化1天。晶化结束后,将固体产物离心分离,用去离子水洗涤至中性,在110℃空气中烘干后,得多级孔的TS-1分子筛,标记为C3。
实施例1至实施例3中所述晶化为静态晶化。
实施例4
采用与实施例1相同的方法制备多级孔的TS-1分子筛,具体制备条件与实施例1的区别参见表1和表2。
表1
Figure PCTCN2018115719-appb-000003
表2
Figure PCTCN2018115719-appb-000004
实施例4中涉及的晶化为动态晶化,晶化条件为:采用旋转烘箱,晶化温度和晶化时间如表2所示,旋转烘箱的转速为35rpm。
实施例5 物相结构分析
对实施例1至实施例4中的样品C1~C7进行XRD物相结构分析,典型的如图1所示。图1为实施例1中制备得到的样品C1的XRD图谱,从图中可以看出,样品C1为TS-1分子筛;
其他样品的测试结果与实施例1中样品C1的图谱仅仅是衍射峰的强度略有差异,均为TS-1分子筛。
实施例6 形貌测试
对实施例1至实施例4中的样品C1~C7进行SEM相貌分析,典型的如图2所示。图2为实施例1中制备得到的样品C1的SEM图谱,从图中可以看出,样品的粒径在200nm左右。
其他样品的测试结果与实施例1中样品C1的测试结果类似,样品的粒径在100~500nm。
实施例7 光谱分析
对实施例1至实施例4的样品C1~C7进行UV-VIS漫反射光谱分析,典型的如图3所示。图3为实施例1中制备得到的样品C1的UV-VIS漫反射光谱,由图可见,样品中几乎没有非骨架钛。
其他样品的测试结果与实施例1中样品1的测试结果类似,样品中几乎没有非骨架钛。
实施例8 孔分布分析
对实施例1至实施例4的样品C1~C7进行物理吸附以及孔分布分析,典型的如图4所示。图4为实施例1中制备得到的样品C1的物理吸附及孔分布结果,由图可见,样品具有2nm左右的介孔。
其他样品的测试结果与实施例1中样品C1的测试结果类似,样品中均具有2~10nm的介孔。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (30)

  1. 一种多级孔TS-1分子筛的制备方法,其特征在于,以硅钛酯类聚合物为钛硅源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括:将含有硅钛酯类聚合物、模板剂、水的混合物进行晶化,获得所述多级孔TS-1分子筛;
    所述晶化为水热晶化。
  3. 根据权利要求1或2所述的方法,其特征在于,所述硅钛酯类聚合物由含有硅酸酯、钛酸酯和多元醇的原料进行酯交换反应获得。
  4. 根据权利要求3所述的方法,其特征在于,所述硅酸酯、钛酸酯和多元醇的摩尔比满足:
    钛酸酯:硅酸酯=0.001~0.2;
    (钛酸酯+硅酸酯):多元醇=(0.5~5)x:4
    其中,x为每摩尔所述多元醇中含有的羟基摩尔数;
    上述各物质的摩尔数均为物质本身的摩尔数计算。
  5. 根据权利要求4所述的方法,其特征在于,所述硅酸酯、钛酸酯和多元醇的摩尔比满足:
    钛酸酯:硅酸酯=0.005~0.1;
    (钛酸酯+硅酸酯):多元醇=(0.8~1.2)x:4
    其中,x为每摩尔所述多元醇中含有的羟基摩尔数;
    上述各物质的摩尔数均为物质本身的摩尔数计算。
  6. 根据权利要求3所述的方法,其特征在于,所述酯交换的反应条件为:在非活性气氛下,80~180℃反应2~10小时。
  7. 根据权利要求6所述的方法,其特征在于,所述酯交换的反应条件为:在非活性气氛下,100~160℃反应4~8小时。
  8. 根据权利要求6所述的方法,其特征在于,所述酯交换还包括减压蒸馏。
  9. 根据权利要求8所述的方法,其特征在于,所述减压蒸馏的条件为:在真空度为0.01~5KPa的条件下,170~230℃反应0.5~5小时。
  10. 根据权利要求9所述的方法,其特征在于,所述真空度为0.05~3Kpa。
  11. 根据权利要求3所述的方法,其特征在于,所述硅酸酯选自具有如式I所示化学式的化合物中的至少一种:
    Figure PCTCN2018115719-appb-100001
    其中,R 1,R 2,R 3,R 4独立地选自C 1~C 10的烷基中的一种。
  12. 根据权利要求11所述的方法,其特征在于,所述硅酸酯包括正硅酸甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯中的至少一种。
  13. 根据权利要求3所述的方法,其特征在于,所述钛酸酯选自具有如式II所示化学式的化合物中的至少一种:
    Figure PCTCN2018115719-appb-100002
    其中,R 5,R 6,R 7,R 8独立地选自C 1~C 10的烷基中的一种。
  14. 根据权利要求13所述的方法,其特征在于,所述钛酸酯包括钛 酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四己酯、钛酸四异辛酯中的至少一种。
  15. 根据权利要求3所述的方法,其特征在于,所述多元醇包括乙二醇、一缩二乙二醇、二缩三乙二醇、三缩四乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、聚乙二醇200、聚乙二醇400、聚乙二醇600、聚乙二醇800、1,4-环己二醇、1,4-环己烷二甲醇、对苯二甲醇、丙三醇、三羟甲基丙烷、季戊四醇、木糖醇、山梨醇中的至少一种。
  16. 根据权利要求3所述的方法,其特征在于,所述硅钛酯类聚合物的制备方法包括:
    将硅酸酯、钛酸酯与多元醇混合,搅拌条件下进行酯交换反应,通入非活性气氛保护,反应温度介于80~180℃,反应时间介于2~10小时。
  17. 根据权利要求16所述的方法,其特征在于,所述硅钛酯类聚合物的制备方法还包括:反应后进行减压蒸馏,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,即得所述硅钛酯类聚合物。
  18. 根据权利要求2所述的方法,其特征在于,所述硅钛酯类聚合物、模板剂和水的摩尔比满足:
    模板剂:硅钛酯类聚合物=0.05~10;
    水:硅钛酯类聚合物=5~500;
    其中,所述模板剂的摩尔数以模板剂中N原子的摩尔数计;
    所述硅钛酯类聚合物的摩尔数以硅钛酯类聚合物中的硅含量和钛含量之和计算;
    所述硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计
    所述水的摩尔数以H 2O自身的摩尔数计。
  19. 根据权利要求18所述的方法,其特征在于,所述硅钛酯类聚合物、模板剂和水的摩尔比满足:
    模板剂:硅钛酯类聚合物=0.1~5;
    水:硅钛酯类聚合物=30~300;
    其中,所述模板剂的摩尔数以模板剂中N原子的摩尔数计;
    所述硅钛酯类聚合物的摩尔数以硅钛酯类聚合物中的硅含量和钛含量之和计算;
    所述硅钛酯类聚合物中的硅含量按SiO 2的摩尔数计,硅钛酯类聚合物中的钛含量按TiO 2的摩尔数计;
    所述水的摩尔数以H 2O自身的摩尔数计。
  20. 根据权利要求2所述的方法,其特征在于,所述模板剂选自有机碱模板剂中的至少一种。
  21. 根据权利要求20所述的方法,其特征在于,所述有机碱模板剂包括A;所述A选自四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、三乙基丙基氢氧化铵、四丙基卤化铵、四乙基卤化铵、四丁基卤化铵、三乙基丙基卤化铵中的至少一种。
  22. 根据权利要求20所述的方法,其特征在于,所述有机碱模板剂还包括B;所述B选自脂肪胺、醇胺类化合物中的至少一种。
  23. 根据权利要求21所述的方法,其特征在于,所述B包括乙胺、二乙胺、三乙胺、正丁胺、丁二胺、己二胺、辛二胺、单乙醇胺、二乙醇胺、三乙醇胺中的至少一种。
  24. 根据权利要求2所述的方法,其特征在于,所述晶化的条件为:密闭条件下,升温到100~200℃,在自生压力下晶化不超过30天。
  25. 根据权利要求24所述的方法,其特征在于,所述晶化的条件为:密闭条件下,升温到120~180℃,在自生压力下晶化1~15天。
  26. 根据权利要求2所述的方法,其特征在于,所述混合物经过老化之后进行晶化;
    所述老化的条件为:不高于120℃老化0~100小时。
  27. 根据权利要求1所述的方法,其特征在于,所述TS-1分子筛的制备方法包括:
    a)将硅酸酯、钛酸酯与多元醇混合,搅拌状态下进行酯交换反应,通氮气保护,反应温度介于80~180℃,反应时间介于2~10小时;
    b)将步骤a)反应后进行减压蒸馏,控制体系真空度在0.01~5KPa,反应温度介于170~230℃,反应时间介于0.5~5小时,即得硅钛酯类聚合物;
    c)将步骤b)得到的硅钛酯类聚合物与有机碱模板剂、水混合,并保持在不高于120℃的温度下老化0~100小时,得到凝胶混合物;
    d)将步骤c)所得的凝胶混合物在密闭条件下,升温到100~200℃,在自生压力下晶化不超过30天,即得所述多级孔TS-1分子筛。
  28. 根据权利要求1所述的方法,其特征在于,所述多级孔TS-1分子筛含有介孔,介孔孔径为2~10nm。
  29. 根据权利要求1所述的方法,其特征在于,所述多级孔TS-1分子筛的粒径为100~500nm。
  30. 根据权利要求1至29任一项所述的方法制备得到的多级孔TS-1分子筛用于含有H 2O 2的有机物的选择性氧化反应。
PCT/CN2018/115719 2018-11-15 2018-11-15 一种多级孔ts-1分子筛的制备方法 WO2020097876A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2018/115719 WO2020097876A1 (zh) 2018-11-15 2018-11-15 一种多级孔ts-1分子筛的制备方法
EP18939988.4A EP3862319A4 (en) 2018-11-15 2018-11-15 METHOD OF MANUFACTURING A TS-1 MOLECULAR SIEVE WITH HIERARCHICAL PORES
US17/294,349 US20210403332A1 (en) 2018-11-15 2018-11-15 Method for preparing ts-1 molecular sieve with hierarchical pores
JP2021524969A JP7393425B2 (ja) 2018-11-15 2018-11-15 階層的細孔を有するts-1分子篩の製造方法
AU2018449556A AU2018449556B2 (en) 2018-11-15 2018-11-15 Method for preparing TS-1 molecular sieve with hierarchical pores
KR1020217017399A KR102580277B1 (ko) 2018-11-15 2018-11-15 계층적 다공성 ts-1 분자체의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115719 WO2020097876A1 (zh) 2018-11-15 2018-11-15 一种多级孔ts-1分子筛的制备方法

Publications (1)

Publication Number Publication Date
WO2020097876A1 true WO2020097876A1 (zh) 2020-05-22

Family

ID=70730366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115719 WO2020097876A1 (zh) 2018-11-15 2018-11-15 一种多级孔ts-1分子筛的制备方法

Country Status (6)

Country Link
US (1) US20210403332A1 (zh)
EP (1) EP3862319A4 (zh)
JP (1) JP7393425B2 (zh)
KR (1) KR102580277B1 (zh)
AU (1) AU2018449556B2 (zh)
WO (1) WO2020097876A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537777A (zh) * 2020-11-11 2021-03-23 大连理工大学 一种钝化钛硅沸石六配位钛物种的方法
CN113731484A (zh) * 2021-08-26 2021-12-03 武汉理工大学 一种Pd基等级孔介孔-微孔TS-1分子筛单晶催化剂及其制备方法
CN115869962A (zh) * 2022-11-29 2023-03-31 西南化工研究设计院有限公司 一种高活性抗硫中毒低温脱硝催化剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743605B (zh) 2018-07-23 2021-07-27 中国科学院大连化学物理研究所 一种用于乙醇和苯制备乙苯的催化剂及其制备和应用
CN113210017B (zh) * 2021-04-02 2023-03-21 辽宁师范大学 有机碱、硅烷化连续改性TS-1负载Keggin结构磷钼钒酸催化剂

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410501A (en) 1979-12-21 1983-10-18 Snamprogetti S.P.A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
CN1475441A (zh) * 2002-08-15 2004-02-18 中国石油化工股份有限公司 一种高钛含量中孔分子筛的制备方法
CN1621347A (zh) * 2004-10-11 2005-06-01 华东理工大学 一种钛硅分子筛催化剂的制备技术
WO2010036296A1 (en) * 2008-09-24 2010-04-01 Lyondell Chemical Technology, L.P. Epoxidation catalyst
CN101962195A (zh) 2010-10-09 2011-02-02 大连理工大学 一种多级孔道钛硅沸石ts-1的制备方法
CN102910643A (zh) 2012-10-30 2013-02-06 陕西启源科技发展有限责任公司 介孔-微孔钛硅分子筛的制备方法
CN103357432A (zh) 2013-08-07 2013-10-23 华东理工大学 一种介孔钛硅分子筛及其制备方法和用途
CN104058423A (zh) 2014-06-27 2014-09-24 武汉理工大学 一种硬模板合成有序大孔-介孔-微孔多级孔分子筛的方法
CN104556115A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 钛硅分子筛合成方法
CN104843733A (zh) * 2015-04-08 2015-08-19 齐鲁工业大学 一种钛硅分子筛在碱金属离子共存体系中的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960671B2 (en) * 2002-09-20 2005-11-01 Arco Chemical Technology, L.P. Process for direct oxidation of propylene to propylene oxide and large particle size titanium silicalite catalysts for use therein
CN101327934B (zh) * 2008-07-17 2010-09-15 连云港三吉利化学工业有限公司 具有mfi结构的钛硅分子筛的制备方法
CN104556104B (zh) * 2013-10-29 2017-05-24 中国石油化工股份有限公司 一种使用有机季铵盐模板剂合成钛硅分子筛的方法
CN104609440B (zh) * 2015-02-05 2017-02-22 中国天辰工程有限公司 双端氨基聚合物制备的ts‑1分子筛及制备方法、应用
CN106379912B (zh) * 2016-08-29 2018-06-29 上海交通大学 一种多级孔道钛硅分子筛的制备方法
CN108658087B (zh) * 2017-03-31 2021-03-12 中国石油化工股份有限公司 一种多级孔道ts-1沸石材料及其制备方法
US10609573B2 (en) * 2018-05-08 2020-03-31 Landis+Gyr Innovations, Inc. Switching PANs while maintaining parent/child relationships
KR20210016400A (ko) * 2018-05-24 2021-02-15 지앙수 헨그루이 메디슨 컴퍼니 리미티드 재조합 인간 인슐린 또는 그 유사체의 전구체를 제조하는 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410501A (en) 1979-12-21 1983-10-18 Snamprogetti S.P.A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
CN1475441A (zh) * 2002-08-15 2004-02-18 中国石油化工股份有限公司 一种高钛含量中孔分子筛的制备方法
CN1621347A (zh) * 2004-10-11 2005-06-01 华东理工大学 一种钛硅分子筛催化剂的制备技术
WO2010036296A1 (en) * 2008-09-24 2010-04-01 Lyondell Chemical Technology, L.P. Epoxidation catalyst
CN101962195A (zh) 2010-10-09 2011-02-02 大连理工大学 一种多级孔道钛硅沸石ts-1的制备方法
CN102910643A (zh) 2012-10-30 2013-02-06 陕西启源科技发展有限责任公司 介孔-微孔钛硅分子筛的制备方法
CN103357432A (zh) 2013-08-07 2013-10-23 华东理工大学 一种介孔钛硅分子筛及其制备方法和用途
CN104556115A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 钛硅分子筛合成方法
CN104058423A (zh) 2014-06-27 2014-09-24 武汉理工大学 一种硬模板合成有序大孔-介孔-微孔多级孔分子筛的方法
CN104843733A (zh) * 2015-04-08 2015-08-19 齐鲁工业大学 一种钛硅分子筛在碱金属离子共存体系中的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THANGARAJ ET AL., ZEOLITE, vol. 12, 1992, pages 943

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537777A (zh) * 2020-11-11 2021-03-23 大连理工大学 一种钝化钛硅沸石六配位钛物种的方法
CN113731484A (zh) * 2021-08-26 2021-12-03 武汉理工大学 一种Pd基等级孔介孔-微孔TS-1分子筛单晶催化剂及其制备方法
CN113731484B (zh) * 2021-08-26 2024-04-12 武汉理工大学 一种Pd基等级孔介孔-微孔TS-1分子筛单晶催化剂及其制备方法
CN115869962A (zh) * 2022-11-29 2023-03-31 西南化工研究设计院有限公司 一种高活性抗硫中毒低温脱硝催化剂及其制备方法

Also Published As

Publication number Publication date
EP3862319A1 (en) 2021-08-11
AU2018449556B2 (en) 2022-08-25
EP3862319A4 (en) 2021-10-27
JP7393425B2 (ja) 2023-12-06
JP2022506869A (ja) 2022-01-17
KR102580277B1 (ko) 2023-09-18
US20210403332A1 (en) 2021-12-30
KR20210087526A (ko) 2021-07-12
AU2018449556A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020097876A1 (zh) 一种多级孔ts-1分子筛的制备方法
WO2020097877A1 (zh) 一种制备多级孔钛硅ts-1分子筛的方法
US6475465B2 (en) Titanium-silicalite molecular sieve and the method for its preparation
CN107032366B (zh) 一种制备具有高骨架钛含量的钛硅分子筛ts-1的方法
WO2020097878A1 (zh) 一种制备多级孔ts-1分子筛的方法
CN111186842B (zh) 一种多级孔ts-1分子筛的制备方法
CN112744836B (zh) 钛硅分子筛及其制备方法和大分子酮类氨肟化反应生产酮肟的方法
CN111186845B (zh) 一种制备多级孔ts-1分子筛的方法
CN111186843B (zh) 一种制备多级孔钛硅ts-1分子筛的方法
RU2775672C1 (ru) Способ получения иерархического пористого молекулярного сита ts-1
CN112850740B (zh) 一种片状mfi拓扑结构分子筛的合成方法
RU2773446C1 (ru) Способ получения иерархического пористого молекулярного сита ts-1
CN112707409A (zh) 一种纳米全硅Beta分子筛的绿色制备方法
JPWO2020097876A5 (zh)
CN111905798B (zh) 含钛介孔材料mcm-41的制备方法及其应用
CN110436479B (zh) 一种钛硅分子筛及其制备方法和应用
CN112978748B (zh) 具有大孔-微孔复合孔道结构的ts-1分子筛、其制备方法和应用
US20230338935A1 (en) Metal-organic framework (mof) mil-125 and preparation method and use thereof
CN117566751A (zh) 一种用于液相选择氧化反应的光-热协同催化剂及其一步合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018939988

Country of ref document: EP

Effective date: 20210507

ENP Entry into the national phase

Ref document number: 20217017399

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018449556

Country of ref document: AU

Date of ref document: 20181115

Kind code of ref document: A