WO2020095509A1 - チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール - Google Patents

チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール Download PDF

Info

Publication number
WO2020095509A1
WO2020095509A1 PCT/JP2019/032487 JP2019032487W WO2020095509A1 WO 2020095509 A1 WO2020095509 A1 WO 2020095509A1 JP 2019032487 W JP2019032487 W JP 2019032487W WO 2020095509 A1 WO2020095509 A1 WO 2020095509A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
copper foil
titanium copper
titanium
mass
Prior art date
Application number
PCT/JP2019/032487
Other languages
English (en)
French (fr)
Inventor
健太 辻江
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201980068175.7A priority Critical patent/CN112867805B/zh
Priority to EP19883007.7A priority patent/EP3878989A4/en
Priority to US17/291,706 priority patent/US20220002841A1/en
Priority to KR1020217012808A priority patent/KR102525476B1/ko
Publication of WO2020095509A1 publication Critical patent/WO2020095509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems

Definitions

  • the present invention relates to a titanium copper foil, a copper rolled product, an electronic device component, and an autofocus camera module, and in particular, a titanium copper foil, a copper rolled product, and an electronic device that can be suitably used as a conductive spring material for an autofocus camera module or the like.
  • the present invention relates to parts and an autofocus camera module.
  • An electronic device component called an autofocus camera module is used for the camera lens part of the mobile phone.
  • the autofocus function of the camera of the mobile phone moves the lens in a certain direction by the spring force of the material used for the autofocus camera module, and the electromagnetic force generated by passing an electric current through the coil wound around the lens, The lens is moved in the direction opposite to the direction in which the spring force of the material acts.
  • the camera lens is driven by such a mechanism to exert an autofocus function (for example, Patent Documents 1 and 2).
  • the copper alloy foil used for the spring material of the autofocus camera module must have sufficient spring strength to withstand material deformation due to electromagnetic force. If the spring strength is low, the material cannot withstand displacement due to electromagnetic force, permanent deformation (sag) occurs, and the initial position is not returned after unloading the electromagnetic force. When the settling occurs, the lens cannot move to a desired position when a constant current is applied, and the autofocus function cannot be exhibited.
  • a Cu—Ni—Sn-based copper alloy foil having a foil thickness of 0.1 mm or less and a tensile strength of 1100 MPa or more or a 0.2% proof stress has been used for an autofocus camera module.
  • titanium copper foil which is relatively cheaper in material price than Cu—Ni—Sn based copper alloy foil, has come to be used, and its demand is increasing.
  • the strength of the titanium-copper foil is lower than that of the Cu—Ni—Sn-based copper alloy foil, and there is a problem of settling. Therefore, higher strength is desired.
  • means for increasing the strength of titanium copper include those described in Patent Documents 3 and 4.
  • the manufacturing process of titanium copper is solution treatment, sub-aging treatment, cold rolling, and aging treatment, and the heat treatment after the solution treatment is divided into two stages to obtain a range of Ti concentration by spinodal decomposition ( It describes a method of increasing the density and increasing the balance between strength and bending workability.
  • Patent Document 4 it is effective to similarly increase the fluctuation of the Ti concentration by subjecting the manufacturing process of titanium copper to solution treatment, preliminary aging treatment, aging treatment, finish rolling, and strain relief annealing. Has been done.
  • Patent Documents 5 to 8 Other techniques for further improving the strength of titanium-copper include those described in Patent Documents 5 to 8.
  • Patent Document 5 describes a method in which the average crystal grain size is adjusted by final recrystallization annealing, and then cold rolling and aging treatment are sequentially performed.
  • Patent Document 6 describes a method of sequentially performing cold rolling, aging treatment, and cold rolling after solution treatment.
  • solution treatment is carried out by holding in a temperature range of 750 to 1000 ° C. for 5 seconds to 5 minutes, and then cold rolling at a rolling rate of 0 to 50%.
  • An aging treatment at 300 to 550 ° C.
  • Patent Document 9 after hot rolling and cold rolling, solution treatment, cold rolling with a rolling reduction of 55% or more, it is described that aging treatment at 200 to 450 ° C. and cold rolling at a rolling reduction of 35% or more are sequentially performed to control the surface roughness of the copper alloy foil. Further, in Patent Document 10, after performing hot rolling and cold rolling, solution treatment, cold rolling with a reduction rate of 55% or more, aging treatment at 200 to 450 ° C., cold rolling with a reduction rate of 50% or more. It is described that I (220) / I (311) is controlled by sequentially performing strain relief annealing as needed and controlling the reduction ratio of cold rolling after solution treatment. In the titanium copper foils described in Patent Documents 9 and 10, it is described that a 0.2% proof stress in a direction parallel to the rolling direction can be 1100 MPa or more.
  • Patent Document 11 after hot rolling at 800 to 1000 ° C. to a thickness of 5 to 20 mm, cold rolling at a working rate of 30 to 99% is performed, and an average heating rate of 400 to 500 ° C. is 1 to 50 ° C. / Sec is kept in the temperature range of 500 to 650 ° C for 5 to 80 seconds to perform pre-annealing with a softening degree of 0.25 to 0.75, cold rolling with a rolling reduction of 7 to 50%, and then 700 It is described that the Young's modulus is reduced by performing solution treatment at ⁇ 900 ° C. for 5 to 300 seconds and aging treatment at 350 to 550 ° C. for 2 to 20 hours.
  • Patent Document 12 after hot rolling and cold rolling, solution treatment at 700 to 1000 ° C. for 5 seconds to 30 minutes and cold rolling at a rolling reduction of 95% or more are sequentially performed, and then at 15 ° C. / Described is a method of improving fatigue by performing an aging treatment in which the temperature is raised at a rate of h or less, the temperature is maintained at 200 to 400 ° C. for 1 to 20 hours, and cooling is performed at a rate of 15 ° C./h or less to 150 ° C. Has been done.
  • the titanium copper foil described in Patent Document 12 has a 0.2% proof stress of 1200 MPa or more both in a direction parallel to the rolling direction and in a direction perpendicular to the rolling direction, and a spring in a direction parallel to the rolling direction and a direction perpendicular to the rolling direction. It is described that both of the limit values can be 800 MPa or more.
  • titanium is contained in a range of 0.5 mass% or more and 3.5 mass% or less, and the balance is titanium copper having a composition of Cu and inevitable impurities. It describes a method of forming a lamellar structure after aging treatment by performing finish rolling with a reduction rate of 90% or more and aging treatment during warming or warming to improve the balance between strength and conductivity.
  • Japanese Patent Laid-Open No. 2004-280031 JP 2009-115895, A JP, 2005-098622, A JP, 2005-127438, A JP, 2002-356726, A Japanese Patent Laid-Open No. 2004-091871 JP, 2010-126777, A JP, 2011-208243, A JP, 2014-037613, A JP, 2014-080670, A JP, 2014-074193, A JP, 2016-0503041, A JP, 2014-173145, A
  • the conventional titanium copper foil has room for further improvement in terms of strength in three directions and good etching property (etching uniformity).
  • the present invention has an object to solve such a problem, and in one embodiment, has a required high strength when used as a spring material, is parallel to the rolling surface, and has a rolling direction. It is an object of the present invention to provide a titanium copper foil having excellent strength and etching uniformity in a direction parallel to the above, a direction perpendicular to the rolling direction, and a direction at 45 ° to the rolling direction. In addition, another object of the present invention is to provide a copper alloy product including such a titanium copper foil. Moreover, in another embodiment, this invention aims at providing the electronic device component provided with such a titanium copper foil. Another object of the present invention is to provide an autofocus camera module including such a titanium copper foil.
  • the present inventor found that the addition of Fe for the trace component was cold rolling after solution treatment in the manufacturing process and in a short time.
  • the preliminary aging treatment is effective for improving strength and etching uniformity parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction, and 45 ° to the rolling direction. I found that.
  • the present invention has been completed based on the above findings, and is specified by the following.
  • the present invention contains Ti in an amount of 1.5 to 5.0 mass% and Fe in an amount of 10 to 3000 mass ppm, and the balance of Cu and unavoidable impurities.
  • A ⁇ ⁇ 220 ⁇ / ( ⁇ ⁇ 200 ⁇ + ⁇ ⁇ 311 ⁇ ) ...
  • Equation (1) (However, ⁇ ⁇ 220 ⁇ , ⁇ ⁇ 200 ⁇ , and ⁇ ⁇ 311 ⁇ represent the full width at half maximum of the X-ray diffraction peaks on the ⁇ 220 ⁇ crystal face, the ⁇ 200 ⁇ crystal face, and the ⁇ 311 ⁇ crystal face, respectively. )
  • A is 12 to 38.
  • a direction parallel to the rolling surface that is, a direction parallel to the rolling direction, a direction perpendicular to the rolling direction, and a direction of 45 ° to the rolling direction.
  • Each tensile strength is 1100 MPa or more.
  • a direction parallel to the rolling surface that is, a direction parallel to the rolling direction, a direction perpendicular to the rolling direction, and a direction of 45 ° to the rolling direction.
  • the difference between the maximum value and the minimum value is 400 MPa or less.
  • the plate thickness is 0.1 mm or less.
  • the total amount of one or more elements selected from Ag, B, Co, Mg, Mn, Mo, Ni, P, Si, Cr and Zr is 1.0. It is further contained in an amount of not more than mass%.
  • a wrought copper product including any of the titanium copper foils described above.
  • the present invention is an electronic device component including any one of the titanium copper foils described above.
  • the electronic device component is an autofocus camera module.
  • a lens in another aspect of the present invention, a lens, a spring member that elastically biases the lens to an initial position in the optical axis direction, and an electromagnetic force that opposes the biasing force of the spring member to generate the lens.
  • An autofocus camera module including electromagnetic drive means capable of being driven in the optical axis direction, wherein the spring member is any one of the titanium copper foils described above.
  • Cu-Ti is excellent in strength and etching uniformity parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction, and 45 ° to the rolling direction.
  • a system alloy can be obtained, which can be suitably used as a conductive spring material used in electronic equipment parts such as an autofocus camera module.
  • Titanium copper foil One embodiment of the titanium-copper foil according to the present invention contains Ti in an amount of 1.5 to 5.0 mass% and Fe in an amount of 10 to 3000 mass ppm, the balance being Cu and inevitable impurities, and the rolling surface having X It has a crystal orientation in which A given by the following formula (1) is 10 to 40 when measured by the line diffraction method.
  • A ⁇ ⁇ 220 ⁇ / ( ⁇ ⁇ 200 ⁇ + ⁇ ⁇ 311 ⁇ ) ...
  • Equation (1) (However, ⁇ ⁇ 220 ⁇ , ⁇ ⁇ 200 ⁇ , and ⁇ ⁇ 311 ⁇ represent the full width at half maximum of the X-ray diffraction peaks on the ⁇ 220 ⁇ crystal face, the ⁇ 200 ⁇ crystal face, and the ⁇ 311 ⁇ crystal face, respectively. )
  • ⁇ ⁇ 220 ⁇ , ⁇ ⁇ 200 ⁇ , and ⁇ ⁇ 311 ⁇ represent the full width at half maximum of the X-ray diffraction peaks on the ⁇ 220 ⁇ crystal face, the ⁇ 200 ⁇ crystal face, and the ⁇ 311 ⁇ crystal face, respectively.
  • Titanium concentration In one embodiment of the titanium copper foil according to the present invention, the Ti concentration is 1.5 to 5.0 mass%. Titanium-copper foil increases the strength and conductivity by solid-solutioning Ti in a Cu matrix by solution treatment and dispersing fine precipitates in the alloy by aging treatment.
  • the Ti concentration is 1.5% by mass or more, preferably 1.8% by mass or more, and more preferably 2.0% by mass or more, from the viewpoint that precipitation is sufficiently deposited and desired strength is obtained. Further, the Ti concentration is 5.0% by mass or less, preferably 4.8% by mass or less, and 4.6% by mass or less from the viewpoint that the workability is good and the material is not easily cracked during rolling. More preferable.
  • Fe concentration In one embodiment of the titanium copper foil according to the present invention, it is important that Fe is contained in an amount of 10 to 3000 mass ppm in order to increase the A value described later.
  • the titanium copper foil is a direction parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction, and rolling direction by adding Fe and adjusting each step in the following manufacturing method. Contributes to the strength in the direction of 45 °.
  • the Fe concentration is 10 mass ppm or more, preferably 15 mass ppm or more, and more preferably 50 mass ppm or more, from the viewpoint that it contributes to the strength in all three directions and the etching uniformity is good.
  • the Fe concentration is 3000 mass ppm or less, and preferably 2800 mass ppm or less, in consideration of the raw material cost.
  • one or more of Ag, B, Co, Mg, Mn, Mo, Ni, P, Si, Cr and Zr are contained in a total amount of 1.0 mass% or less.
  • the total content of these elements is 0, that is, these elements may not be included.
  • the reason why the upper limit of the total content of these elements is set to 1.0% by mass is that if it exceeds 1.0% by mass, the workability deteriorates and the material is easily cracked during rolling.
  • the preferable addition amount of Ag is 0.5% by mass or less, and the more preferable addition amount is 0.1% by mass or less.
  • the preferable addition amount of B is 0.5% by mass or less, and the more preferable addition amount is 0.05% by mass or less.
  • the preferable addition amount of Co is 0.5% by mass or less, and the more preferable addition amount is 0.1% by mass or less.
  • the preferable addition amount of Fe is 0.5 mass% or less, and the more preferable addition amount is 0.25 mass% or less.
  • the preferable addition amount of Mg is 0.5 mass% or less, and the more preferable addition amount is 0.1 mass% or less.
  • the preferable addition amount of Mn is 0.1% by mass or less, and the more preferable addition amount is 0.05% by mass or less.
  • the preferable addition amount of Mo is 0.5 mass% or less, and the more preferable addition amount is 0.3 mass% or less.
  • the preferable addition amount of Ni is 0.5% by mass or less, and the more preferable addition amount is 0.1% by mass or less.
  • the preferable addition amount of P is 0.1% by mass or less, and the more preferable addition amount is 0.05% by mass or less.
  • the preferable addition amount of Si is 0.1% by mass or less, and the more preferable addition amount is 0.05% by mass or less.
  • the preferable addition amount of Cr is 0.5 mass% or less, and the more preferable addition amount is 0.4 mass% or less.
  • the preferable addition amount of Zr is 0.5% by mass or less, and the more preferable addition amount is 0.1% by mass or less.
  • the addition amount is not limited to the above.
  • the tensile strength in the direction parallel to the rolling surface that is, the direction parallel to the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction to the rolling direction.
  • a tensile strength of 1200 MPa or more in the direction parallel to the rolling direction is a desirable characteristic for use as a conductive spring material of an autofocus camera module.
  • the tensile strength in the direction parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction, and 45 ° to the rolling direction is 1300 MPa or more.
  • both are 1400 MPa or more.
  • the upper limit of the tensile strength there is no particular limitation in terms of the strength of the present invention, in consideration of labor and cost, it is parallel to the rolling surface, the direction parallel to the rolling direction, rolling.
  • the tensile strength in the direction perpendicular to the direction and in the direction of 45 ° to the rolling direction is generally 2000 MPa or less, and typically 1800 MPa or less.
  • the tensile strength of the titanium copper foil in the direction parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction and 45 ° to the rolling direction is JIS. Z2241: 2011 (Metallic material tensile test method).
  • the titanium copper foil according to the present invention is a direction parallel to the rolling surface, parallel to the rolling direction, and perpendicular to the rolling direction. Also, it is preferable to reduce the difference (MAX-MIN) between the maximum value and the minimum value in the strength in the direction of 45 ° with respect to the rolling direction.
  • the difference between the maximum value and the minimum value (MAX-MIN) is, for example, preferably 400 MPa or less, more preferably 350 MPa or less, and further preferably 300 MPa or less.
  • the lower limit of the difference between the maximum value and the minimum value (MAX-MIN) is not particularly limited, but is typically 50 MPa or more, and more typically 100 MPa or more.
  • the full width at half maximum is expressed as the peak width (2 ⁇ ) at the position where the intensity is I max / 2.
  • the 2 ⁇ corresponding to ⁇ ⁇ 200 ⁇ crystal face, ⁇ ⁇ 220 ⁇ crystal face, and ⁇ ⁇ 311 ⁇ crystal face are 48.3 to 53.3 °, 56.9 to 61.9 °, and 86.5 to 91, respectively. It is 0.5 ° and 108.0 to 113 °.
  • This I max maximum peak intensity (unit: cps)) is the height from the position where cps is 0 to the maximum peak intensity after the background is removed.
  • the A value is 10 or more, preferably 12 or more, and more preferably 14 or more, from the viewpoint of improving the etching uniformity.
  • the upper limit of the A value for obtaining the titanium copper of the present invention is not particularly specified, the contribution to the etching uniformity is small in the region where the A value is high. Therefore, the A value should be 40 or less and 38 or less. Is preferable, 35 or less is more preferable, and 25 or less is further preferable.
  • the full width at half maximum of the X-ray diffraction integrated intensity peak can be measured by obtaining the diffraction intensity curve of the rolled surface by using an X-ray diffractometer under the following measurement conditions.
  • ⁇ Target Co tube ⁇ Tube voltage: 25kV ⁇ Tube current: 20mA ⁇ Scanning speed: 5 ° / min ⁇ Sampling width: 0.02 ° ⁇ Measurement range (2 ⁇ ): 5 ° to 150 °
  • Etching uniformity is performed using a predetermined etching solution so that the longitudinal direction of the linear circuit is parallel to the rolling surface of the titanium copper foil to be tested and parallel to the rolling direction, and the line width is 100 ⁇ m.
  • a linear circuit having a length of 150 mm is formed.
  • the linear circuit is etched so that the longitudinal direction is parallel to the rolling surface of the titanium copper foil to be tested and is perpendicular to the rolling direction, and the line width is 100 ⁇ m and the length is 100 ⁇ m.
  • a 150 mm linear circuit is formed.
  • the linear circuit is etched so that the longitudinal direction is parallel to the rolling surface of the titanium copper foil to be tested and is 45 ° with respect to the rolling direction, and the line width is 100 ⁇ m and the length is long.
  • a linear circuit having a length of 150 mm is formed.
  • the linear circuits after being separately etched are observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the circuit width W at 10 positions arbitrarily selected in each linear circuit is measured, and the process capability index Cpk is measured by the following formula (2).
  • the above Cpk is preferably 1.00 or more, more preferably 1.33 or more, from the viewpoint of ensuring etching uniformity.
  • Cpk (W MAX ⁇ W MIN ) / 6 ⁇ ... Equation (2) (W MAX : maximum circuit width, W MIN : minimum circuit width, ⁇ : standard deviation of circuit width)
  • the titanium copper foil according to the present invention has, for example, a thickness of 0.1 mm or less, a typical embodiment has a thickness of 0.018 mm to 0.08 mm, and a more typical embodiment has a thickness of 0.02 mm to It is 0.06 mm.
  • the conditions of hot rolling and subsequent cold rolling 1 may be the conventional conditions used in the production of titanium copper, and there are no special conditions required here.
  • the solution treatment in the next step may be performed under conventional conditions, for example, 700 to 1000 ° C. for 5 seconds to 30 minutes. Further, the cold rolling 1 performed before the solution treatment may be omitted from the viewpoint of production efficiency.
  • the rolling reduction of the cold rolling 2 (hereinafter, also referred to as “first cold rolling”) is 54% or less from the viewpoint of suppressing anisotropy by rolling and improving etching uniformity. Is preferable, 50% or less is more preferable, 40% or less is still more preferable, 30% or less is still more preferable, and 20% or less is still more preferable.
  • first cold rolling is 54% or less from the viewpoint of suppressing anisotropy by rolling and improving etching uniformity.
  • 50% or less is more preferable
  • 40% or less is still more preferable
  • 30% or less is still more preferable
  • 20% or less is still more preferable.
  • the reduction ratio of the cold rolling 2 is small, optimum precipitation does not occur in the subsequent pre-aging, the A value becomes low, it becomes difficult to obtain the strength in the three directions, and the etching uniformity deteriorates. It's easy to do.
  • the reduction ratio of the cold rolling 2 is preferably 5% or more, more preferably 7% or more, and further preferably 9% or more.
  • the treatment temperature of the aging treatment 1 is 300 to 400 ° C. and the Fe concentration and the heating time satisfy the following formula (4).
  • the Fe concentration and the heating time satisfy the following formula (4).
  • cold rolling 3 (hereinafter, also referred to as “second cold rolling”) is indispensable after the aging treatment 1, and is represented by the following formula (5). It is important to control the total reduction achieved.
  • Total rolling reduction (%) ((thickness before first cold rolling ⁇ thickness after second cold rolling) / thickness before first cold rolling) ⁇ 100 ... Equation (5)
  • the total rolling reduction is preferably 90% or more, and more preferably 95% or more.
  • the upper limit of the rolling reduction is not particularly limited from the viewpoint of the strength intended by the present invention, but it does not exceed 99.8% industrially.
  • the heating temperature for finishing aging treatment 2 (main aging) is preferably 200 to 450 ° C., and the heating time is preferably 2 to 20 hours. By setting such a suitable heating temperature and heating time, a tensile strength of 1100 MPa or more can be obtained.
  • the surface is pickled and polished to remove the oxide film or oxide layer formed on the surface.
  • the surface may be pickled or polished after the heat treatment.
  • the titanium copper foil according to the present invention can be preferably used as a material for electronic device parts such as switches, connectors, jacks, terminals, and relays, or as a copper-rolled product, but is not particularly limited. It can be suitably used as a conductive spring material used for electronic equipment parts such as modules.
  • an autofocus camera module includes a lens, a spring member that elastically biases the lens to an initial position in the optical axis direction, and an electromagnetic force that opposes the biasing force of the spring member to generate an optical force on the lens.
  • An electromagnetic drive means that can be driven in the axial direction is provided.
  • the electromagnetic drive means exemplarily comprises a U-shaped cylindrical yoke, a coil housed inside the inner wall of the yoke, and a magnet that surrounds the coil and is housed inside the outer peripheral wall of the yoke. You can
  • FIG. 1 is a sectional view showing an example of an autofocus camera module according to the present invention
  • FIG. 2 is an exploded perspective view of the autofocus camera module of FIG. 1
  • FIG. 3 is an autofocus camera module of FIG.
  • FIG. 6 is a cross-sectional view showing the operation of FIG.
  • the autofocus camera module 1 includes a U-shaped cylindrical yoke 2, a magnet 4 attached to an outer wall of the yoke 2, a carrier 5 having a lens 3 at a central position, a coil 6 attached to the carrier 5, and a yoke.
  • 2 includes a base 7 on which the base 2 is mounted, a frame 8 that supports the base 7, two spring members 9a and 9b that vertically support the carrier 5, and two caps 10a and 10b that cover the top and bottom of these members.
  • the two spring members 9a and 9b are the same product, support the carrier 5 by sandwiching it from above and below in the same positional relationship, and function as a power supply path to the coil 6. By applying an electric current to the coil 6, the carrier 5 moves upward.
  • the terms “upper” and “lower” are used as appropriate, but the terms “upper” and “lower” in FIG. 1 indicate the positional relationship from the camera to the subject.
  • the yoke 2 is a magnetic material such as soft iron, and has a U-shaped cylindrical shape with an upper surface closed, and has a cylindrical inner wall 2a and an outer wall 2b.
  • the ring-shaped magnet 4 is attached (bonded) to the inner surface of the U-shaped outer wall 2b.
  • the carrier 5 is a molded product made of synthetic resin or the like having a cylindrical structure with a bottom surface, supports the lens at the central position, and is mounted with a preformed coil 6 adhered on the outside of the bottom surface.
  • the yoke 2 is fitted and incorporated in the inner peripheral portion of the base 7 of the rectangular resin molded product, and the entire yoke 2 is fixed by the frame 8 of the resin molded product.
  • the outermost peripheral portions of the spring members 9a and 9b are sandwiched between the frame 8 and the base 7, respectively, and fixed, and the notched groove portions at every 120 ° of the inner peripheral portion are fitted to the carrier 5 and fixed by thermal caulking or the like. To be done.
  • the spring member 9b and the base 7 and the spring member 9a and the frame 8 are fixed to each other by adhesion and heat caulking, and the cap 10b is attached to the bottom surface of the base 7 and the cap 10a is attached to the upper portion of the frame 8.
  • 9b is fixed between the base 7 and the cap 10b, and the spring member 9a is fixed between the frame 8 and the cap 10a.
  • One lead wire of the coil 6 passes through the groove provided on the inner peripheral surface of the carrier 5 and extends upward, and is soldered to the spring member 9a.
  • the other lead wire extends downward through a groove provided on the bottom surface of the carrier 5 and is soldered to the spring member 9b.
  • the spring members 9a and 9b are leaf springs of titanium copper foil according to the present invention. It has a spring property and elastically biases the lens 3 to the initial position in the optical axis direction. At the same time, it also acts as a power supply path to the coil 6. One portion of the outer peripheral portions of the spring members 9a and 9b is projected outward to function as a power supply terminal.
  • the cylindrical magnet 4 is magnetized in the radial direction, forms a magnetic path with the inner wall 2a of the U-shaped yoke 2, the upper surface portion and the outer wall 2b as a route, and the gap between the magnet 4 and the inner wall 2a.
  • the coil 6 is arranged in the.
  • the spring members 9a and 9b have the same shape and are attached in the same positional relationship as shown in FIGS. 1 and 2, it is possible to suppress the axial displacement when the carrier 5 moves upward. Since the coil 6 is manufactured by pressure molding after winding, the accuracy of the finished outer diameter is improved, and the coil 6 can be easily arranged in a predetermined narrow gap.
  • the carrier 5 collides with the base 7 at the lowermost position and collides with the yoke 2 at the uppermost position. Therefore, the carrier 5 is provided with an abutting mechanism in the vertical direction to prevent the carrier 5 from falling off.
  • FIG. 3 shows a sectional view when a current is applied to the coil 6 and the carrier 5 having the lens 3 for autofocus is moved upward.
  • a voltage is applied to the power supply terminals of the spring members 9a and 9b
  • a current flows through the coil 6 and an upward electromagnetic force acts on the carrier 5.
  • the restoring force of the two coupled spring members 9a and 9b acts downward on the carrier 5. Therefore, the upward movement distance of the carrier 5 is a position where the electromagnetic force and the restoring force are balanced.
  • the amount of movement of the carrier 5 can be determined by the amount of current applied to the coil 6.
  • the restoring force acts evenly on the upper surface and the lower surface of the carrier 5, and the lens 3 It is possible to suppress the axial deviation of the.
  • the magnet 4 is described as a cylindrical shape, but it is not limited to this, and it may be magnetized in the radial direction by dividing it into 3 to 4 parts, and sticking this to the inner surface of the outer wall 2b of the yoke 2 to fix it.
  • Hot rolling The above ingot was further heated and held at 950 ° C. for 3 hours and then rolled to 10 mm. (3) Grinding: The oxide scale produced by hot rolling was removed with a grinder.
  • the thickness after grinding was 9 mm.
  • Cold rolling 1 Taking into consideration the reduction ratios of cold rolling 2 and 3 and the thickness of the product sample, rolling was performed to a predetermined thickness.
  • Solution treatment The sample was charged into the electric furnace 1 heated to 800 ° C., held for 5 minutes, then placed in a water tank and rapidly cooled.
  • Cold rolling 2 (first cold rolling): Rolled to a predetermined thickness at the rolling reductions shown in Tables 1 and 2.
  • Aging treatment 1 preliminary aging: Heat treatment was performed under the conditions of treatment temperature and heating time shown in Tables 1 and 2 depending on the Fe concentration.
  • ⁇ Crystal orientation> For each test piece, an X-ray diffractometer (manufactured by Rigaku Corporation, RINT2500) was used to obtain the diffraction intensity curve of the rolled surface under the above-described measurement conditions, and the ⁇ 200 ⁇ crystal face, the ⁇ 220 ⁇ crystal face, and the ⁇ 311 ⁇ The half value width of each X-ray diffraction peak of the crystal plane was measured and the A value was calculated.
  • ⁇ Tensile strength> Based on JIS Z2241: 2011, using a tensile tester, the direction parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction, and 45 ° to the rolling direction. Each tensile strength was measured.
  • Etching was carried out using an aqueous ferric chloride solution of 37% by mass and a Baume degree of 40 ° so that the longitudinal direction of the linear circuit was parallel to the rolling surface of each sample foil and parallel to the rolling direction.
  • a linear circuit having a line width of 100 ⁇ m and a length of 150 mm was formed.
  • the linear circuit was etched so that the longitudinal direction thereof was parallel to the rolling surface of each sample foil and perpendicular to the rolling direction to form a linear circuit having a line width of 100 ⁇ m and a length of 150 mm. ..
  • etching is performed so that the longitudinal direction of the linear circuit is parallel to the rolling surface of each sample foil and is at 45 ° to the rolling direction to form a linear circuit having a line width of 100 ⁇ m and a length of 150 mm. did.
  • FIG. 4 shows the correlation between the Fe concentration and the heating time in the preliminary aging for the examples and the comparative examples.
  • Examples 1 to 27 have good tensile strength and etching uniformity in the direction parallel to the rolling surface, parallel to the rolling direction, perpendicular to the rolling direction, and 45 ° to the rolling direction. Met.
  • the heating time satisfying the following formula (4) with respect to the pre-aging treatment condition was used. ⁇ 0.2007x + 902 ⁇ y ⁇ ⁇ 0.2007x + 1802 ...
  • Formula (4) (In the formula, x represents the Fe concentration (mass ppm), and y represents the heating time (second).)
  • Example 27 since the reduction ratio of cold rolling 3 was low, the strength in the direction parallel to the rolling surface, that is, the direction parallel to the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction to the rolling direction. was less than 1100 MPa, but the A value exceeded 10, so the etching uniformity was good.
  • Comparative Example 1 the reduction ratio of the cold rolling 2 was low, and therefore the A value was less than 10, so that the strength in the direction parallel to the rolling surface and in the direction of 45 ° with respect to the rolling direction did not become 1100 MPa or more. It was Further, the etching uniformity deteriorated due to the occurrence of anisotropy.
  • Comparative Example 11 the Fe concentration in the parent phase was low, and sufficient precipitation was not obtained by preliminary aging, so the A value was less than 10, and the strength in the direction parallel to the rolling surface and in the direction of 45 ° with respect to the rolling direction. was lower than other directions. In addition, the etching uniformity deteriorated.
  • Comparative Example 13 has an A value of 10 or more as a result of performing appropriate preliminary aging. On the other hand, since the Ti concentration of the mother phase was low, the targeted strength (strength in three directions with respect to the rolling direction ⁇ 1100 MPa) could not be obtained.
  • Comparative Example 16 rolling at a rolling reduction of 20% and preliminary aging at 350 ° C. ⁇ 1200 seconds were sequentially performed after solution heat treatment. However, since Fe was not added, the A value was less than 10 and was parallel to the rolling surface. Direction, and the strength in the direction of 45 ° with respect to the rolling direction was lower than the other directions, and the etching uniformity deteriorated.

Abstract

ばねとして用いた際の所要の高い強度を有するとともに、エッチング均一性が良好であり、オートフォーカスカメラモジュール等の電子機器部品に使用される導電性ばね材として好適に用いることができるチタン銅箔を提供する。Tiを1.5~5.0質量%及びFeを10~3000質量ppmで含有し、残部がCu及び不可避的不純物からなり、圧延面をX線回折法により測定した場合に下記式(1)で与えられるAが10~40である結晶配向を有するチタン銅箔。 A=β{220}/(β{200}+β{311})・・・式(1) (ただし、β{220}、β{200}、β{311}は、それぞれ{220}結晶面、{200}結晶面、{311}結晶面でのX線回折ピークの半価幅を表す。)

Description

チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール
 本発明は、チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュールに関し、特にオートフォーカスカメラモジュール等の導電性ばね材として好適に用いることができるチタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュールに関するものである。
 携帯電話のカメラレンズ部には、オートフォーカスカメラモジュールと呼ばれる電子機器部品が使用される。携帯電話のカメラのオートフォーカス機能は、オートフォーカスカメラモジュールに使用される材料のばね力により、レンズを一定方向に動かすとともに、周囲に巻かれたコイルに電流を流すことで発生する電磁力により、レンズを材料のばね力が働く方向とは反対方向へ動かす。このような機構でカメラレンズが駆動してオートフォーカス機能が発揮される(例えば、特許文献1、2)。
 したがって、オートフォーカスカメラモジュールのばね材に使用される銅合金箔には、電磁力による材料変形に耐えるほどのばね強度が必要になる。ばね強度が低いと、電磁力による変位に材料が耐えることができず、永久変形(へたり)が発生し電磁力を除荷したあと初期の位置に戻らない。へたりが生じると、一定の電流を流したとき、レンズが所望の位置に移動できずオートフォーカス機能が発揮されない。
 オートフォーカスカメラモジュールには、箔厚0.1mm以下で、1100MPa以上の引張強さまたは0.2%耐力を有するCu-Ni-Sn系銅合金箔が使用されてきた。
 しかし、近年のコストダウン要求により、Cu-Ni-Sn系銅合金箔より比較的材料価格が安いチタン銅箔が使用されるようになり、その需要は増加しつつある。
 一方で、チタン銅箔の強度はCu-Ni-Sn系銅合金箔より低く、へたりが生じる問題があるため、その高強度化が望まれている。
 チタン銅の強度を高める手段としては、たとえば特許文献3、4に記載されたものがある。特許文献3には、チタン銅の製造工程を溶体化処理、亜時効処理、冷間圧延、時効処理とし、溶体化処理後の熱処理を二段階に分けることにより、スピノーダル分解によるTi濃度の幅(濃淡)を大きくさせ、強度と曲げ加工性のバランスを向上させる方法が記載されている。また、特許文献4ではチタン銅の製造工程を溶体化処理、予備時効処理、時効処理、仕上圧延、歪取焼鈍とすることで、同様にTi濃度のゆらぎを大きくすることが有効であると記載されている。
 その他、チタン銅の強度を更に改善する技術としては、特許文献5~8に記載されたもの等がある。特許文献5では最終再結晶焼鈍にて平均結晶粒径を調整し、その後、冷間圧延、時効処理を順次行う方法が記載されている。特許文献6では固溶化処理後に、冷間圧延、時効処理、冷間圧延を順次行う方法が記載されている。特許文献7では、熱間圧延及び冷間圧延を行った後、750~1000℃の温度域で5秒~5分間保持する溶体化処理を行い、次いで、圧延率0~50%の冷間圧延、300~550℃の時効処理、及び圧延率0~30%の仕上げ冷間圧延を順次行うことにより板面における{420}結晶面のX線回折強度を調整する方法が記載されている。特許文献8では、第一溶体化処理、中間圧延、最終の溶体化処理、焼鈍、最終の冷間圧延、及び時効処理を所定の条件で順次行うことにより圧延面における{220}結晶面のX線回折強度の半価幅を調整する方法が記載されている。
 さらに、強度を高くすることに加え、へたりの発生を抑制するため、特許文献9では、熱間圧延及び冷間圧延を行った後、溶体化処理、圧下率55%以上の冷間圧延、200~450℃の時効処理、圧下率35%以上の冷間圧延を順次に行い、銅合金箔の表面粗さを制御することが記載されている。また、特許文献10では、熱間圧延及び冷間圧延を行った後、溶体化処理、圧下率55%以上の冷間圧延、200~450℃の時効処理、圧下率50%以上の冷間圧延、必要に応じて歪取り焼鈍を順次に行い、溶体化処理後の冷間圧延の圧下率を制御することで、I(220)/I(311)を制御することが記載されている。特許文献9及び特許文献10に記載のチタン銅箔においては、圧延方向に平行な方向での0.2%耐力について1100MPa以上が達成可能であると記載されている。
 また、特許文献11では、800~1000℃で厚み5~20mmまで熱間圧延した後、加工度30~99%の冷間圧延を行い、400~500℃の平均昇温速度を1~50℃/秒として500~650℃の温度帯に5~80秒間保持することにより軟化度0.25~0.75の予備焼鈍を施し、圧下率7~50%の冷間圧延を行い、次いで、700~900℃で5~300秒間の溶体化処理、及び、350~550℃で2~20時間の時効処理を行うことにより、ヤング率を小さくすることが記載されている。
 特許文献12では、熱間圧延、冷間圧延を行った後、700~1000℃で5秒間~30分間の溶体化処理、圧下率95%以上の冷間圧延を順次行い、その後、15℃/h以下の速度で昇温し、200~400℃の範囲で1~20時間保持し、150℃まで15℃/h以下の速度で冷却する時効処理を行うことでへたりを改善する方法が記載されている。特許文献12に記載のチタン銅箔には、圧延方向に平行な方向及び直角方向での0.2%耐力が共に1200MPa以上であり、且つ、圧延方向に平行な方向及び直角な方向でのばね限界値について共に800MPa以上が達成可能であると記載されている。
 また、組織制御に着目した技術として、特許文献13では、Tiを0.5mass%以上3.5mass%以下の範囲内で含有し、残部がCu及び不可避的不純物からなる組成を有するチタン銅において冷間または温間で圧下率90%超えの仕上げ圧延、時効処理を行うことにより、時効処理後にラメラー状組織が形成され、強度と導電率のバランスを向上させる方法が記載されている。
特開2004-280031号公報 特開2009-115895号公報 特開2015-098622号公報 特開2015-127438号公報 特開2002-356726号公報 特開2004-091871号公報 特開2010-126777号公報 特開2011-208243号公報 特開2014-037613号公報 特開2014-080670号公報 特開2014-074193号公報 特開2016-050341号公報 特開2014-173145号公報
 近年はイメージセンサの高画素化などのカメラの高機能化に伴い、レンズの枚数が増加傾向にあり、カメラモジュールが落下した際には材料に塑性変形を与えるような強い力が加わる。したがって、カメラモジュールのばね材として使用する場合は、圧延面に平行な方向であって、圧延方向に対して平行方向だけでなく、圧延方向に対して直角方向及び圧延方向に対して45°方向といった3方向の強度が必要とされる。
 また、これらのチタン銅箔はエッチング加工によりばね材を製造するが、従来の高強度チタン銅箔のように圧下率95%以上の圧延によりばね材を製造する場合、上記3方向におけるエッチングにばらつきが生じる場合がある。エッチングにばらつきが生じると、カメラモジュールにした時に良好なばね性が発現し難くなるため、ばらつきは可能な限り小さい方が望ましい。
 なお、特許文献1~13には、3方向における強度及びエッチングのばらつきの制御について記載されていない。
 以上の背景から、従来のチタン銅箔は3方向の強度や良好なエッチング性(エッチング均一性)の観点から更に改善の余地があると考えられる。
 本発明は、このような問題を解決することを課題とするものであり、一実施形態において、ばね材として用いた際の所要の高い強度を有し、圧延面に平行であって、圧延方向に対して平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の強度及びエッチング均一性が良好であるチタン銅箔を提供することを目的とする。また、本発明は更に別の一実施形態において、そのようなチタン銅箔を備えた伸銅品を提供することを目的とする。また、本発明は更に別の一実施形態において、そのようなチタン銅箔を備えた電子機器部品を提供することを目的とする。また、本発明は更に別の一実施形態において、そのようなチタン銅箔を備えたオートフォーカスカメラモジュールを提供することを目的とする。
 本発明者は、チタン銅の強度及びエッチング均一性に及ぼす微量成分及び製造工程の影響を調査した結果、微量成分についてはFeの添加が、製造工程における溶体化後の冷間圧延及び短時間での予備時効処理が、圧延面に平行であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の強度とエッチング均一性との改善に有効であることを見出した。本発明は以上の知見を背景として完成したものであり、以下によって特定される。
 このような知見の下、本発明は一側面において、Tiを1.5~5.0質量%及びFeを10~3000質量ppmで含有し、残部がCu及び不可避的不純物からなり、圧延面をX線回折法により測定した場合に下記式(1)で与えられるAが10~40である結晶配向を有するチタン銅箔である。
 A=β{220}/(β{200}+β{311})・・・式(1)
 (ただし、β{220}、β{200}、β{311}は、それぞれ{220}結晶面、{200}結晶面、{311}結晶面でのX線回折ピークの半価幅を表す。)
 本発明に係るチタン銅箔の一実施形態においては、前記Aが12~38である。
 本発明に係るチタン銅箔の一実施形態においては、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の引張強さがそれぞれ1100MPa以上である。
 本発明に係るチタン銅箔の一実施形態においては、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の引張強さのうち、最大値と最小値の差が400MPa以下である。
 本発明に係るチタン銅箔の一実施形態においては、板厚が0.1mm以下である。
 本発明に係るチタン銅箔の一実施形態においては、Ag、B、Co、Mg、Mn、Mo、Ni、P、Si、Cr及びZrから選択される1種以上の元素を、総量1.0質量%以下でさらに含有する。
 また、本発明は別の一側面において、上記の何れかのチタン銅箔を備えた伸銅品である。
 また、本発明は別の一側面において、上記の何れかのチタン銅箔を備えた電子機器部品である。
 本発明に係る電子機器部品の一実施形態においては、オートフォーカスカメラモジュールである。
 また、本発明は別の一側面において、レンズと、このレンズを光軸方向の初期位置に弾性付勢するばね部材と、このばね部材の付勢力に抗する電磁力を生起して前記レンズを光軸方向へ駆動可能な電磁駆動手段を備え、前記ばね部材が上記の何れかのチタン銅箔であるオートフォーカスカメラモジュールである。
 本発明によれば、圧延面に平行であって、圧延方向に対し平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の強度とエッチング均一性とに優れるCu-Ti系合金を得ることができ、これは、オートフォーカスカメラモジュール等の電子機器部品に使用される導電性ばね材として好適に用いることができる。
本発明に係るオートフォーカスカメラモジュールの一例を示す断面図である。 図1のオートフォーカスカメラモジュールの分解斜視図である。 図1のオートフォーカスカメラモジュールの動作を示す断面図である。 実施例と比較例についてFe濃度と時効処理における加熱時間との関係性を示す図である。
 以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 [1.チタン銅箔]
 本発明に係るチタン銅箔の一実施形態は、Tiを1.5~5.0質量%及びFeを10~3000質量ppmで含有し、残部がCu及び不可避的不純物からなり、圧延面をX線回折法により測定した場合に下記式(1)で与えられるAが10~40である結晶配向を有する。
 A=β{220}/(β{200}+β{311})・・・式(1)
 (ただし、β{220}、β{200}、β{311}は、それぞれ{220}結晶面、{200}結晶面、{311}結晶面でのX線回折ピークの半価幅を表す。)
 以下、当該チタン銅箔の好適な条件例について説明する。
 (Ti濃度)
 本発明に係るチタン銅箔の一実施形態では、Ti濃度を1.5~5.0質量%とする。チタン銅箔は、溶体化処理によりCuマトリックス中へTiを固溶させ、時効処理により微細な析出物を合金中に分散させることにより、強度及び導電率を上昇させる。
 Ti濃度は、析出物の析出が充分にされ、所望の強度を得るという観点から、1.5質量%以上であり、1.8質量%以上が好ましく、2.0質量%以上がより好ましい。また、Ti濃度は、加工性が良好であり、圧延の際に材料が割れにくいという観点から、5.0質量%以下であり、4.8質量%以下が好ましく、4.6質量%以下がより好ましい。
 (Fe濃度)
 本発明に係るチタン銅箔の一実施形態では、後述のA値を高めるためにFeを10~3000質量ppm含有させることが重要である。当該チタン銅箔は、Feの添加と、下記製造方法における各工程の調整により、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の強度に寄与する。例えば、Fe濃度は、3方向のいずれの強度にも寄与し、エッチング均一性が良好であるという観点から、10質量ppm以上であり、15質量ppm以上が好ましく、50質量ppm以上がより好ましい。ただし、Fe濃度は、原料コストを考慮し、3000質量ppm以下であり、2800質量ppm以下が好ましい。
 (その他の添加元素)
 本発明の一の実施形態のチタン銅箔では、Ag、B、Co、Mg、Mn、Mo、Ni、P、Si、Cr及びZrのうち一種以上を総量1.0質量%以下で含有させることにより、強度を更に向上させることができる。これらの元素の合計含有量は0、つまり、これら元素を含まなくてもよい。これらの元素の合計含有量の上限を1.0質量%とする理由については、1.0質量%を超えると、加工性が劣化し、圧延の際に材料が割れやすくなるからである。強度及び加工性のバランスを考慮すると、上記元素の一種以上を総量で0.005~0.5質量%含有させることが好ましい。なお、本発明においては、上記添加元素を含有しなくても、所望の効果を有する。
 また、Agの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.1質量%以下である。Bの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.05質量%以下である。Coの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.1質量%以下である。Feの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.25質量%以下である。Mgの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.1質量%以下である。Mnの好ましい添加量は0.1質量%以下であり、より好ましい添加量は0.05質量%以下である。Moの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.3質量%以下である。Niの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.1質量%以下である。Pの好ましい添加量は0.1質量%以下であり、より好ましい添加量は0.05質量%以下である。Siの好ましい添加量は0.1質量%以下であり、より好ましい添加量は0.05質量%以下である。Crの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.4質量%以下である。Zrの好ましい添加量は0.5質量%以下であり、より好ましい添加量は0.1質量%以下である。ただし、上記の添加量に限定されない。
 (引張強さ)
 本発明に係るチタン銅箔の一実施形態では、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の引張強さが、それぞれ1100MPa以上、さらには1200MPa以上を達成することができる。圧延方向に対して平行方向での引張強さが1200MPa以上であることは、オートフォーカスカメラモジュールの導電性ばね材として利用する上で望ましい特性である。好ましい実施形態では、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の引張強さはともに1300MPa以上であり、さらに好ましい実施形態ではともに1400MPa以上である。
 一方、引張強さの上限値について、本発明が目的とする強度の点では特に制限はないが、手間及びコストを考慮すると、圧延面に平行であって、圧延方向に対して平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の引張強さは一般には2000MPa以下であり、典型的には1800MPa以下である。
 本発明においては、チタン銅箔の、圧延面に平行な方向であって、圧延方向に対して平行、圧延方向に対して直角方向及び圧延方向に対して45°方向の引張強さは、JIS Z2241:2011(金属材料引張試験方法)に準拠して測定する。
 (MAX-MIN)
 本発明に係るチタン銅箔の一実施形態では、ばね性の均一性を確保するという観点から、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の強度のうち、最大値と最小値の差(MAX-MIN)を小さくすることが好ましい。上記最大値と最小値の差(MAX-MIN)は、例えば400MPa以下とすることが好ましく、350MPa以下とすることがより好ましく、300MPa以下にすることが更に好ましい。ただし、上記最大値と最小値の差(MAX-MIN)は、下限値に特に制限はないが、典型的には50MPa以上であり、より典型的には100MPa以上である。
 (X線回折強度)
 好適な実施の態様において、本発明に係るチタン銅箔は、圧延面をX線回折法により測定した場合に下記式(1)で与えられるA値を適正な範囲に調整することが重要である。
A=β{220}/(β{200}+β{311})・・・式(1)
 (ただし、β{200}、β{220}、β{311}は、それぞれ{200}結晶面、{220}結晶面、{311}結晶面でのX線回折強度ピークの半価幅を表す。)
 なお、本発明において半価幅は、強度がImax/2の位置におけるピーク幅(2θ)をもって表示する。β{200}結晶面、β{220}結晶面、β{311}結晶面に相当する2θは、それぞれ48.3~53.3°、56.9~61.9°、86.5~91.5°、108.0~113°である。このImax(最大ピーク強度(単位 cps))は、バックグラウンドを除去した後、cpsが0のところからの最大ピーク強度までの高さである。
 ここで、A値は、エッチング均一性が向上するという観点から、10以上とし、12以上とすることが好ましく、14以上とすることがより好ましい。また、本発明のチタン銅を得るためのA値の上限は特に特定しないものの、A値が高い領域ではエッチング均一性への寄与が小さくなるため、A値は40以下とし、38以下とすることが好ましく、35以下とすることがより好ましく、25以下とすることが更に好ましい。
 なお、X線回折積分強度ピークの半価幅は、以下の測定条件でX線回折装置を用いることにより圧延面の回折強度曲線を取得し、測定可能である。
・ターゲット:Co管球
・管電圧:25kV
・管電流:20mA
・走査速度:5°/min
・サンプリング幅:0.02°
・測定範囲(2θ):5°~150°
 (エッチング均一性)
 所定のエッチング溶液を用いて、直線回路の長手方向が、試験対象となるチタン銅箔の圧延面に平行な方向であって圧延方向に対して平行方向となるようにエッチングして、線幅100μm、長さ150mmの直線回路を形成する。また、同様に、直線回路の長手方向が、試験対象となるチタン銅箔の圧延面に平行な方向であって圧延方向に対して直角方向となるようにエッチングして、線幅100μm、長さ150mmの直線回路を形成する。また、同様に、直線回路の長手方向が、試験対象となるチタン銅箔の圧延面に平行な方向であって圧延方向に対して45°方向となるようにエッチングして、線幅100μm、長さ150mmの直線回路を形成する。次に、それぞれ別個にエッチングした後の直線回路を走査型電子顕微鏡(SEM)で観察する。エッチング均一性を確認するため、各直線回路において任意に選択した10カ所の回路幅Wを測定し、下記式(2)により工程能力指数Cpkを計測する。上記Cpkは、エッチング均一性を確保するという観点から、1.00以上が好ましく、1.33以上がより好ましい。
 Cpk=(WMAX-WMIN)/6σ・・・式(2)
 (WMAX:最大回路幅、WMIN:最小回路幅、σ:回路幅の標準偏差)
 (チタン銅箔の厚み)
 本発明に係るチタン銅箔は、たとえば厚みが0.1mm以下であり、典型的な実施形態では厚みが0.018mm~0.08mmであり、より典型的な実施形態では厚みが0.02mm~0.06mmである。
 [2.チタン銅箔の製造方法]
 以下、本発明に係るチタン銅箔の好適な製造方法の条件例について説明する。本発明に係るチタン銅箔の製造プロセスでは、まず溶解炉で電気銅、Ti等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。チタンの酸化磨耗を防止するため、溶解及び鋳造は真空中又は不活性ガス雰囲気中で行うことが好ましい。その後、熱間圧延、冷間圧延1、溶体化処理、冷間圧延2、時効処理1(予備時効)、冷間圧延3、時効処理2(本時効)をこの順で実施し、所望の厚み及び所望の特性を有する箔に仕上げる。もちろん、上記方法により、箔だけでなく条の形態に仕上げても良い。
 熱間圧延及びその後の冷間圧延1の条件はチタン銅の製造で行われている慣例的な条件で行えば足り、ここでは特段要求される条件はない。また、次工程である溶体化処理についても慣例的な条件で構わないが、例えば700~1000℃で5秒間~30分間の条件で行うことができる。また、溶体化処理前に実施する、冷間圧延1は生産効率の観点から省略することもできる。
 冷間圧延2(以下、「第1冷間圧延」ともいう。)の圧下率は、圧延で異方性を抑制し、かつ、エッチング均一性を良好にするという観点から54%以下とすることが好ましく、50%以下とすることがより好ましく、40%以下とすることが更に好ましく、30%以下とすることが更により好ましく、20%以下とすることが更により好ましい。一方、冷間圧延2の圧下率が小さいと、その後の予備時効で最適な析出が生じず、前記A値が低くなり、3方向の強度が得られ難くなることに加え、エッチング均一性が悪化しやすい。したがって、強度及びエッチング均一性の観点からは冷間圧延2の圧下率を5%以上とすることが好ましく、7%以上とすることがより好ましく、9%以上とすることが更に好ましい。
 なお、圧下率R(%)は下記式(3)で定義される。
 R(%)={(t0-t)/t0}×100(t0:圧延前の板厚、t:圧延後の板厚)・・・式(3)
 上述のチタン銅箔を得るためには、時効処理1(予備時効)の処理温度を300~400℃とし、Fe濃度及び加熱時間が下記式(4)を満たすように行うことが好ましい。そうすることで、強度及びエッチング均一性に優れたチタン銅箔を作製することができる。
 -0.2007x+902≦y≦-0.2007x+1802・・・式(4)
(式中、xはFe濃度(質量ppm)、yは加熱時間(秒)を表す。)
 上述のチタン銅箔が高強度を得るため、時効処理1の後に冷間圧延3(以下、「第2冷間圧延」ともいう。)を行うことが必須であり、下記式(5)で表される合計圧下率を制御することが重要である。
合計圧下率(%)=((第1冷間圧延前の板厚-第2冷間圧延後の板厚)/第1冷間圧延前の板厚)×100・・・式(5)
 合計圧下率は、1100MPa以上の引張強さを得るという観点から、90%以上とすることが好ましく、95%以上とすることがより一層好ましい。圧下率の上限は、本発明が目的とする強度の点からは特に制限はないが、工業的に99.8%を超えることはない。
 仕上げの時効処理2(本時効)の加熱温度は200~450℃とし、加熱時間は2時間~20時間とすることが好ましい。このような好適な加熱温度及び加熱時間にすることで、1100MPa以上の引張強さを得ることができる。
 なお、一般に、熱処理後には、表面に生成した酸化皮膜または酸化物層を除去するために、表面の酸洗や研磨等を行う。本発明でも熱処理後に表面の酸洗や研磨等を行うことも可能である。
 [3.用途]
 本発明に係るチタン銅箔は、限定的ではないが、スイッチ、コネクタ、ジャック、端子、リレー等の電子機器用部品の材料或いは、伸銅品として好適に使用することができ、とりわけオートフォーカスカメラモジュール等の電子機器部品に使用される導電性ばね材として好適に使用することができる。
 オートフォーカスカメラモジュールは一実施形態において、レンズと、このレンズを光軸方向の初期位置に弾性付勢するばね部材と、このばね部材の付勢力に抗する電磁力を生起して前記レンズを光軸方向へ駆動可能な電磁駆動手段を備える。電磁駆動手段は例示的には、コの字形円筒形状のヨークと、ヨークの内部壁の内側に収容されるコイルと、コイルを囲繞すると共にヨークの外周壁の内側に収容されるマグネットを備えることができる。
 図1は、本発明に係るオートフォーカスカメラモジュールの一例を示す断面図であり、図2は、図1のオートフォーカスカメラモジュールの分解斜視図であり、図3は、図1のオートフォーカスカメラモジュールの動作を示す断面図である。
 オートフォーカスカメラモジュール1は、コの字形円筒形状のヨーク2と、ヨーク2の外壁に取付けられるマグネット4と、中央位置にレンズ3を備えるキャリア5と、キャリア5に装着されるコイル6と、ヨーク2が装着されるベース7と、ベース7を支えるフレーム8と、キャリア5を上下で支持する2個のばね部材9a、9bと、これらの上下を覆う2個のキャップ10a、10bとを備えている。2個のばね部材9a、9bは同一品であり、同一の位置関係でキャリア5を上下から挟んで支持すると共に、コイル6への給電経路として機能している。コイル6に電流を印加することによってキャリア5は上方に移動する。尚、本明細書においては、上及び下の文言を適宜、使用するが、図1における上下を指し、上はカメラから被写体に向う位置関係を表わす。
 ヨーク2は軟鉄等の磁性体であり、上面部が閉じたコの字形の円筒形状を成し、円筒状の内壁2aと外壁2bを持つ。コの字形の外壁2bの内面には、リング状のマグネット4が装着(接着)される。
 キャリア5は底面部を持った円筒形状構造の合成樹脂等による成形品であり、中央位置でレンズを支持し、底面外側上に予め成形されたコイル6が接着されて搭載される。矩形上樹脂成形品のベース7の内周部にヨーク2を嵌合させて組込み、更に樹脂成形品のフレーム8でヨーク2全体を固定する。
 ばね部材9a、9bは、いずれも最外周部がそれぞれフレーム8とベース7に挟まれて固定され、内周部120°毎の切欠き溝部がキャリア5に嵌合し、熱カシメ等にて固定される。
 ばね部材9bとベース7及びばね部材9aとフレーム8間は接着及び熱カシメ等にて固定され更に、キャップ10bはベース7の底面に取付け、キャップ10aはフレーム8の上部に取付けられ、それぞればね部材9bをベース7とキャップ10b間に、ばね部材9aをフレーム8とキャップ10a間に挟み込み固着している。
 コイル6の一方のリード線は、キャリア5の内周面に設けた溝内を通って上に伸ばし、ばね部材9aに半田付けする。他方のリード線はキャリア5の底面に設けた溝内を通って下方に伸ばし、ばね部材9bに半田付けする。
 ばね部材9a、9bは、本発明に係るチタン銅箔の板バネである。バネ性を持ち、レンズ3を光軸方向の初期位置に弾性付勢する。同時に、コイル6への給電経路としても作用する。ばね部材9a、9bの外周部の一箇所は外側に突出させて、給電端子として機能させている。
 円筒状のマグネット4はラジアル(径)方向に磁化されており、コの字形状ヨーク2の内壁2a、上面部及び外壁2bを経路とした磁路を形成し、マグネット4と内壁2a間のギャップには、コイル6が配置される。
 ばね部材9a、9bは同一形状であり、図1及び2に示すように同一の位置関係で取付けているので、キャリア5が上方へ移動したときの軸ズレを抑制することができる。コイル6は、巻線後に加圧成形して製作するので、仕上がり外径の精度が向上し、所定の狭いギャップに容易に配置することができる。キャリア5は、最下位置でベース7に突当り、最上位置でヨーク2に突当るので、上下方向に突当て機構を備えることとなり、脱落することを防いでいる。
 図3は、コイル6に電流を印加して、オートフォーカス用にレンズ3を備えたキャリア5を上方に移動させた時の断面図を示している。ばね部材9a、9bの給電端子に電圧が印加されると、コイル6に電流が流れてキャリア5には上方への電磁力が働く。一方、キャリア5には、連結された2個のばね部材9a、9bの復元力が下方に働く。従って、キャリア5の上方への移動距離は電磁力と復元力が釣合った位置となる。これによって、コイル6に印加する電流量によって、キャリア5の移動量を決定することができる。
 上側ばね部材9aはキャリア5の上面を支持し、下側ばね部材9bはキャリア5の下面を支持しているので、復元力はキャリア5の上面及び下面で均等に下方に働くこととなり、レンズ3の軸ズレを小さく抑えることができる。
 従って、キャリア5の上方への移動に当って、リブ等によるガイドは必要なく、使っていない。ガイドによる摺動摩擦がないので、キャリア5の移動量は、純粋に電磁力と復元力の釣合いで支配されることとなり、円滑で精度良いレンズ3の移動を実現している。これによってレンズブレの少ないオートフォーカスを達成している。
 なお、マグネット4は円筒形状として説明したが、これに拘わるものでなく、3乃至4分割してラジアル方向に磁化し、これをヨーク2の外壁2bの内面に貼付けて固着しても良い。
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
 表1及び2に示す合金成分を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、合金成分及び製造条件が引張強さ及びエッチング均一性に及ぼす影響を調査した。
 <製造条件>
 真空溶解炉にて電気銅2.5kgを溶解し、表1及び2に記載の合金組成が得られるよう合金元素を添加した。この溶湯を鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを、次の工程順で加工し、表1及び2に記載の所定の箔厚をもつ製品試料を作製した。
(1)溶解鋳造:鋳造温度は1300℃とした。
(2)熱間圧延:上記のインゴットをさらに950℃で3時間加熱保持した後、10mmまで圧延した。
(3)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削後の厚みは9mmであった。
(4)冷間圧延1:冷間圧延2及び3の圧下率と製品試料の厚みを考慮し、所定の厚みまで圧延した。
(5)溶体化処理:800℃に昇温した電気炉1に試料を装入し、5分間保持した後、試料を水槽に入れて急冷却した。
(6)冷間圧延2(第1冷間):表1及び2に示す圧下率でそれぞれ所定の厚みまで圧延した。
(7)時効処理1(予備時効):Fe濃度に応じて、表1及び2に示す処理温度及び加熱時間の条件で熱処理を行った。
(8)冷間圧延3(第2冷間):表1及び2に示す合計圧下率(下記式(5))となるように、圧下率を調整し、それぞれ製品厚みまで圧延した。
 合計圧下率(%)=((第1冷間圧延前の板厚-第2冷間圧延後の板厚)/第1冷間圧延前の板厚)×100・・・式(5)
(9)時効処理2(本時効):温度と時間はそれぞれ300℃、2時間とし、Ar雰囲気中で加熱した。
 上述したようにして作製した各製品試料について、次の評価を行った。
 <結晶方位>
 各試験片について、X線回折装置(株式会社リガク製、RINT2500)を用いて、上述した測定条件で圧延面の回折強度曲線を取得し、{200}結晶面、{220}結晶面、{311}結晶面のそれぞれのX線回折ピークの半価幅を測定して、A値を算出した。
 <引張強さ>
 JIS Z2241:2011に基づき、引張試験機を用いて、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の引張強さをそれぞれ測定した。
 <エッチング均一性>
 37質量%、ボーメ度40°の塩化第二鉄水溶液を用いて、直線回路の長手方向が各サンプル箔の圧延面に平行であって圧延方向に対して平行方向となるようにエッチングして、線幅100μm、長さ150mmの直線回路を形成した。また、同様に、直線回路の長手方向が各サンプル箔の圧延面に平行であって圧延方向に対して直角方向となるようにエッチングして、線幅100μm、長さ150mmの直線回路を形成した。また、同様に、直線回路の長手方向が各サンプル箔の圧延面に平行であって圧延方向に対して45°方向となるようにエッチングして、線幅100μm、長さ150mmの直線回路を形成した。
 次に、形成した直線回路については走査型電子顕微鏡(日立製、S-4700)を用いて、各方向の回路を観察した上で、任意の10カ所の回路幅Wをそれぞれ測定した。次に、各方向における10カ所の回路幅Wを測定した。そして、上記3方向で測定した回路幅計30カ所の標準偏差を算出し、下記式(2)で示される工程能力指数Cpkを算出した。上記Cpkが1.33以上であるものを「◎」、1.00以上1.33未満であるものを「○」、1.00より小さいものを「×」として評価した。
 Cpk=(WMAX-WMIN)/6σ・・・式(2)
 (WMAX:最大回路幅、WMIN:最小回路幅、σ:回路幅の標準偏差)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 各サンプルの試験結果を表3及び4に示す。また、実施例及び比較例について予備時効におけるFe濃度と加熱時間との相関を図4に示す。
 実施例1~27は、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の引張強さとエッチング均一性が良好であった。また、実施例1~27は、予備時効の処理条件について下記式(4)を満たす加熱時間であった。
 -0.2007x+902≦y≦-0.2007x+1802・・・式(4)
(式中、xはFe濃度(質量ppm)、yは加熱時間(秒)を表す。)
 実施例1~26は、A値が10以上となったため、圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の強度がそれぞれ1100MPa以上となり、優れたエッチング均一性が得られた。
 実施例27は、冷間圧延3の圧下率が低かったため、圧延面に平行な方向であって、圧延方向に平行方向、圧延方向に対して直角方向及び圧延方向に対して45°方向の強度がそれぞれ1100MPaを下回ったものの、A値が10を超えたため、エッチング均一性が良好であった。
 比較例1は冷間圧延2の圧下率が低かったため、A値が10を下回ったことにより、圧延面に平行な方向であって圧延方向に対して45°方向の強度が1100MPa以上とならなかった。また、異方性が生じたことによりエッチング均一性が悪化した。
 比較例2は予備時効前の圧延圧下率が高かったため、異方性が生じ、エッチング均一性が悪化した。
 比較例3~10は予備時効が不足もしくは過剰となったため、A値が10を下回り、圧延面に平行な方向であって圧延方向に対して45°方向の強度が他の方向と比べ低かった。また、エッチング均一性が悪化した。
 比較例11は母相のFe濃度が低く、予備時効で十分な析出が得られなかったため、A値が10を下回り、圧延面に平行な方向であって圧延方向に対して45°方向の強度が他の方向と比べ低かった。また、エッチング均一性が悪化した。
 比較例12は副成分の合計が1.0%を超えたため熱間圧延で割れが発生し、サンプルの調製及び強度、エッチング均一性の評価が出来なかった。
 比較例13は適切な予備時効を行った結果、A値が10以上となった。一方、母相のTi濃度が低かったため、狙った強度(圧延方向に対する3方向の強度≧1100MPa)が得られなかった。
 比較例14はチタンの濃度が5%を超えたため熱間圧延で割れが発生し、サンプルの調製及び強度、エッチング均一性の評価が出来なかった。
 比較例15は溶体化後の圧延及び予備時効を行わなかったため、A値が10を下回ったことで、45°方向の強度が低く、エッチング均一性が悪化した。
 比較例16は溶体化後に20%の圧下率での圧延、350℃×1200秒の予備時効を順次行ったが、Feが無添加であったため、A値が10を下回り、圧延面に平行な方向であって圧延方向に対して45°方向の強度が他の方向と比べ低く、エッチング均一性が悪化した。
 予備時効の処理温度が300~400℃で実施された比較例3~8においては、予備時効の加熱時間は上記式(4)を満たしていなかった。
1 オートフォーカスカメラモジュール
2 ヨーク
3 レンズ
4 マグネット
5 キャリア
6 コイル
7 ベース
8 フレーム
9a 上側のばね部材
9b 下側のばね部材
10a、10b キャップ

Claims (10)

  1.  Tiを1.5~5.0質量%及びFeを10~3000質量ppmで含有し、残部がCu及び不可避的不純物からなり、圧延面をX線回折法により測定した場合に下記式(1)で与えられるAが10~40である結晶配向を有するチタン銅箔。
     A=β{220}/(β{200}+β{311})・・・式(1)
     (ただし、β{220}、β{200}、β{311}は、それぞれ{220}結晶面、{200}結晶面、{311}結晶面でのX線回折ピークの半価幅を表す。)
  2.  前記Aが12~38である請求項1に記載のチタン銅箔。
  3.  圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の引張強さがそれぞれ1100MPa以上である請求項1または2に記載のチタン銅箔。
  4.  圧延面に平行な方向であって、圧延方向に対して平行方向、圧延方向に対して直角方向、及び圧延方向に対して45°方向の引張強さのうち、最大値と最小値の差が400MPa以下である請求項1~3の何れか一項に記載のチタン銅箔。
  5.  板厚が0.1mm以下である請求項1~4の何れか一項に記載のチタン銅箔。
  6.  Ag、B、Co、Mg、Mn、Mo、Ni、P、Si、Cr及びZrから選択される1種以上の元素を、総量1.0質量%以下でさらに含有する請求項1~5の何れか一項に記載のチタン銅箔。
  7.  請求項1~6の何れか一項に記載のチタン銅箔を備えた伸銅品。
  8.  請求項1~6の何れか一項に記載のチタン銅箔を備えた電子機器部品。
  9.  オートフォーカスカメラモジュールである請求項8に記載の電子機器部品。
  10.  レンズと、このレンズを光軸方向の初期位置に弾性付勢するばね部材と、このばね部材の付勢力に抗する電磁力を生起して前記レンズを光軸方向へ駆動可能な電磁駆動手段を備え、前記ばね部材が請求項1~6の何れか一項に記載のチタン銅箔であるオートフォーカスカメラモジュール。
PCT/JP2019/032487 2018-11-09 2019-08-20 チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール WO2020095509A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980068175.7A CN112867805B (zh) 2018-11-09 2019-08-20 钛铜箔、伸铜制品、电子设备部件以及自动对焦相机模块
EP19883007.7A EP3878989A4 (en) 2018-11-09 2019-08-20 Titanium-copper foil, elongated copper article, electronic device component, and autofocus camera module
US17/291,706 US20220002841A1 (en) 2018-11-09 2019-08-20 Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module
KR1020217012808A KR102525476B1 (ko) 2018-11-09 2019-08-20 티타늄 구리박, 신동품, 전자 기기 부품 및 오토포커스 카메라 모듈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211783 2018-11-09
JP2018211783A JP6650987B1 (ja) 2018-11-09 2018-11-09 チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール

Publications (1)

Publication Number Publication Date
WO2020095509A1 true WO2020095509A1 (ja) 2020-05-14

Family

ID=69568312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032487 WO2020095509A1 (ja) 2018-11-09 2019-08-20 チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール

Country Status (7)

Country Link
US (1) US20220002841A1 (ja)
EP (1) EP3878989A4 (ja)
JP (1) JP6650987B1 (ja)
KR (1) KR102525476B1 (ja)
CN (1) CN112867805B (ja)
TW (1) TWI726407B (ja)
WO (1) WO2020095509A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356726A (ja) 2001-02-20 2002-12-13 Nippon Mining & Metals Co Ltd 高強度チタン銅合金及びその製造法並びにそれを用いた端子・コネクター
JP2004091871A (ja) 2002-08-30 2004-03-25 Yamaha Metanikusu Kk 高強度銅合金及びその製造方法
JP2004280031A (ja) 2003-03-13 2004-10-07 Shicoh Eng Co Ltd レンズ駆動装置
JP2009115895A (ja) 2007-11-02 2009-05-28 Alps Electric Co Ltd カメラモジュール
JP2010126777A (ja) 2008-11-28 2010-06-10 Dowa Metaltech Kk 銅合金板材およびその製造方法
JP2011208243A (ja) 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp 銅合金、銅合金の製造方法及び電子部品の製造方法
JP2012097305A (ja) * 2010-10-29 2012-05-24 Jx Nippon Mining & Metals Corp 電子部品用チタン銅
JP2014037613A (ja) 2012-07-19 2014-02-27 Jx Nippon Mining & Metals Corp 高強度チタン銅箔及びその製造方法
JP2014074193A (ja) 2012-10-02 2014-04-24 Jx Nippon Mining & Metals Corp チタン銅及びその製造方法
JP2014080670A (ja) 2012-10-18 2014-05-08 Jx Nippon Mining & Metals Corp 高強度チタン銅箔及びその製造方法
JP2014173145A (ja) 2013-03-08 2014-09-22 Mitsubishi Materials Corp 電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、及び、端子
JP2015098622A (ja) 2013-11-18 2015-05-28 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP2015127438A (ja) 2013-12-27 2015-07-09 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP2016050341A (ja) 2014-08-29 2016-04-11 Jx金属株式会社 高強度チタン銅箔及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264202A (ja) * 1993-03-09 1994-09-20 Nikko Kinzoku Kk 高強度銅合金の製造方法
CN1688732B (zh) * 2002-09-13 2010-05-26 Gbc金属有限责任公司 时效硬化型铜基合金及其制备工艺
JP5542898B2 (ja) * 2012-10-24 2014-07-09 Jx日鉱日石金属株式会社 カメラモジュール及びチタン銅箔
CN104278171B (zh) * 2014-09-16 2016-09-07 中南大学 一种CuTi系弹性铜合金及其制备方法
JP6391621B2 (ja) * 2016-03-31 2018-09-19 Jx金属株式会社 チタン銅箔、伸銅品、電子機器部品およびオートフォーカスカメラモジュール
JP6703878B2 (ja) * 2016-03-31 2020-06-03 Jx金属株式会社 チタン銅箔および、その製造方法
CN110218899B (zh) * 2019-06-21 2020-04-10 灵宝金源朝辉铜业有限公司 一种高强耐蚀Cu-Ti系合金箔材及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356726A (ja) 2001-02-20 2002-12-13 Nippon Mining & Metals Co Ltd 高強度チタン銅合金及びその製造法並びにそれを用いた端子・コネクター
JP2004091871A (ja) 2002-08-30 2004-03-25 Yamaha Metanikusu Kk 高強度銅合金及びその製造方法
JP2004280031A (ja) 2003-03-13 2004-10-07 Shicoh Eng Co Ltd レンズ駆動装置
JP2009115895A (ja) 2007-11-02 2009-05-28 Alps Electric Co Ltd カメラモジュール
JP2010126777A (ja) 2008-11-28 2010-06-10 Dowa Metaltech Kk 銅合金板材およびその製造方法
JP2011208243A (ja) 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp 銅合金、銅合金の製造方法及び電子部品の製造方法
JP2012097305A (ja) * 2010-10-29 2012-05-24 Jx Nippon Mining & Metals Corp 電子部品用チタン銅
JP2014037613A (ja) 2012-07-19 2014-02-27 Jx Nippon Mining & Metals Corp 高強度チタン銅箔及びその製造方法
JP2014074193A (ja) 2012-10-02 2014-04-24 Jx Nippon Mining & Metals Corp チタン銅及びその製造方法
JP2014080670A (ja) 2012-10-18 2014-05-08 Jx Nippon Mining & Metals Corp 高強度チタン銅箔及びその製造方法
JP2014173145A (ja) 2013-03-08 2014-09-22 Mitsubishi Materials Corp 電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、及び、端子
JP2015098622A (ja) 2013-11-18 2015-05-28 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP2015127438A (ja) 2013-12-27 2015-07-09 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP2016050341A (ja) 2014-08-29 2016-04-11 Jx金属株式会社 高強度チタン銅箔及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3878989A4

Also Published As

Publication number Publication date
TWI726407B (zh) 2021-05-01
JP2020076140A (ja) 2020-05-21
CN112867805B (zh) 2022-05-06
CN112867805A (zh) 2021-05-28
JP6650987B1 (ja) 2020-02-19
US20220002841A1 (en) 2022-01-06
KR20210069074A (ko) 2021-06-10
EP3878989A1 (en) 2021-09-15
TW202018097A (zh) 2020-05-16
KR102525476B1 (ko) 2023-04-26
EP3878989A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
JP5723849B2 (ja) 高強度チタン銅箔及びその製造方法
JP5526212B2 (ja) 高強度チタン銅箔及びその製造方法
JP6080820B2 (ja) 高強度チタン銅箔及びその製造方法
JP6073268B2 (ja) 高強度チタン銅箔及びその製造方法
WO2020095509A1 (ja) チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール
JP6609589B2 (ja) 層状組織を有する高強度チタン銅条および箔
JP6609590B2 (ja) 層状組織を有する高強度チタン銅条および箔
JP6745859B2 (ja) チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217012808

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883007

Country of ref document: EP

Effective date: 20210609