WO2020093541A1 - 柔性液晶显示装置的制作方法 - Google Patents

柔性液晶显示装置的制作方法 Download PDF

Info

Publication number
WO2020093541A1
WO2020093541A1 PCT/CN2018/122179 CN2018122179W WO2020093541A1 WO 2020093541 A1 WO2020093541 A1 WO 2020093541A1 CN 2018122179 W CN2018122179 W CN 2018122179W WO 2020093541 A1 WO2020093541 A1 WO 2020093541A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
substrate
flexible conductive
film
liquid crystal
Prior art date
Application number
PCT/CN2018/122179
Other languages
English (en)
French (fr)
Inventor
吴梓荣
王秋生
邹志明
杜华
陈从心
Original Assignee
深圳秋田微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳秋田微电子股份有限公司 filed Critical 深圳秋田微电子股份有限公司
Publication of WO2020093541A1 publication Critical patent/WO2020093541A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Definitions

  • the present application relates to the field of display technology, and in particular to a method for manufacturing a flexible liquid crystal display device.
  • Display devices basically use a glass substrate as a substrate. Display devices based on the glass substrate cannot meet the designer's requirements for product appearance in many cases because they cannot be bent. Moreover, the glass substrate is generally thick, subject to compression or impact It is easy to crack afterwards.
  • the traditional flexible LCD production process uses double-sided tape to attach the flexible conductive film to the glass substrate, but the double-sided tape is generally only attached to the edge area of the flexible conductive film, resulting in the middle area of the flexible conductive adhesive not being completely Laminated together, there will be moisture remaining between the flexible conductive adhesive and the glass substrate after contact with the liquid, and due to the different deformation ratio of the glass substrate and the flexible conductive film, it will cause the flexible conductive film to bulge in the middle after heating, affecting the combination The thickness uniformity of the LCD cell.
  • the traditional flexible LCD production uses ordinary spacer particles, which may easily cause the movement of the spacer particles during the bending or twisting of the flexible LCD product and affect the uniformity of the cell thickness.
  • the purpose of the present application is to provide a method for manufacturing a flexible liquid crystal display device.
  • the obtained flexible liquid crystal display device has a uniform cell thickness and good quality, and does not exhibit uneven cell thickness due to movement of spacer particles when being bent or twisted Problem, long service life.
  • the present application provides a method for manufacturing a flexible liquid crystal display device, including:
  • Step 1 Provide a first flexible conductive film, a second flexible conductive film, a first hard substrate, a second hard substrate, a first UV peelable adhesive film, and a second UV peelable adhesive film;
  • the first flexible conductive film includes a first flexible substrate and a first conductive layer disposed on the first flexible substrate, and the second flexible conductive film includes a second flexible substrate and a second flexible substrate The second conductive layer on the flexible substrate;
  • Both the first UV peelable adhesive film and the second UV peelable adhesive film have double-sided adhesiveness, and both the first UV peelable adhesive film and the second UV peelable adhesive film have reduced viscosity after being irradiated with UV Or the disappeared characteristic;
  • the first flexible conductive film and the second flexible conductive film have corresponding processing areas, and the processing area is an area used for manufacturing a flexible liquid crystal display device;
  • the first UV peelable adhesive film adheres at least the entire surface of the processing area of the first flexible conductive film to the first hard substrate, and the second UV peelable adhesive film at least bonds the second The entire surface of the processing area of the flexible conductive film is adhered to the second hard substrate;
  • Step 2 Graphically process the first conductive layer and the second conductive layer respectively to obtain a first electrode and a second electrode;
  • Step 3 Form a first alignment film on the first flexible conductive film on the side where the first electrode is provided to obtain a first flexible conductive substrate, the first flexible conductive substrate includes a first flexible substrate and a first electrode And a first alignment film; forming a second alignment film on the side where the second electrode is provided on the second flexible conductive film to obtain a second flexible conductive substrate, the second flexible conductive substrate including a second flexible substrate, The second electrode and the second alignment film;
  • Step 4 Perform UV irradiation on the first UV peelable adhesive film and the second UV peelable adhesive film respectively, so as to reduce or disappear the viscosity of the first UV peelable adhesive film and the second UV peelable adhesive film;
  • Step 5 Adhere the first flexible conductive substrate to the first hard substrate by using a first double-sided tape, the first double-sided adhesive tape is provided on the first flexible conductive substrate and the first The edge position between the hard substrates; the second flexible conductive substrate is adhered to the second hard substrate using a second double-sided tape, the second double-sided adhesive tape is provided on the second flexible conductive An edge position between the substrate and the second hard substrate;
  • Step 6 Coat several frames of frame glue on the first flexible conductive substrate or the second flexible conductive substrate, and pre-cure the frames of frame glue;
  • the number of frame glues are all distributed on the inside of the first double-sided tape and the second double-sided tape, and the number of frame glues are all non-closed structures;
  • Spacer particles are provided on the second flexible conductive substrate or the first flexible conductive substrate corresponding to the inner side of the frame glue, and the spacer particles include a mother ball and an adhesive layer wrapped on the outer surface of the mother ball;
  • Step 7 Adhere the first flexible conductive substrate and the second flexible conductive substrate by a piece-to-piece bonding process, and the first flexible conductive substrate and the second flexible conductive substrate are adhered under the action of the frame glue Connected together, the two sides of the spacer particles are respectively bonded to the surfaces of the first flexible conductive film and the second flexible conductive film to obtain a bonded panel;
  • Step 8 Curing the frame glue in the laminated panel
  • Step 9 On the inner side of the first double-sided adhesive tape and the second double-sided adhesive tape, cut the laminated panel along the periphery of the number of frames of border glue to obtain several flexible empty boxes;
  • Step 10 Inject the liquid crystal material from the non-closed area of the frame glue into the flexible empty box, and seal the non-closed area of the frame glue to obtain a flexible liquid crystal box.
  • a first polarizer or a first UV protection film is attached to the outer surface of the flexible conductive substrate, and a second polarizer or a second UV protection film is attached to the outer surface of the second flexible conductive substrate of the flexible liquid crystal cell to obtain Flexible liquid crystal display device.
  • the preparation process of the first alignment film and the second alignment film includes: first coating an alignment material on the first flexible conductive film and the second flexible conductive film, and pre-curing the alignment material to After removing the solvent, curing is performed to crosslink and polymerize the alignment material to form a first polymer film and a second polymer film, respectively, and after the alignment treatment is performed on the first polymer film and the second polymer film, The first alignment film and the second alignment film are formed.
  • the alignment material includes polyimide
  • the pre-curing temperature is 60 ° C to 80 ° C
  • the curing temperature is 100 ° C to 150 ° C
  • the alignment treatment is friction alignment or optical alignment.
  • the adhesive layer on the surface of the spacer particles is not sticky before heating at 60 ° C to 120 ° C, and sticky after heating at 60 ° C to 120 ° C;
  • the second flexible conductive substrate is subjected to heat treatment to make the adhesive layer sticky, and the heat treatment temperature is 60 ° C ⁇ 120 °C.
  • pre-curing the frame glue of several circles is performed by heating, and the heating temperature is 60 ° C to 80 ° C;
  • step 8 the frame glue in the laminated panel is cured by heating, and the heating temperature is 100 ° C to 150 ° C.
  • the sheet-to-sheet bonding process includes: applying pressure from the outside of the first hard substrate 81 and the second hard substrate 82, respectively, to promote the first flexible conductive substrate 10 and the second flexible conductive The substrate 20 is bonded.
  • a laser is used to cut the laminated panel.
  • UV glue is used to seal the non-closed area of the frame glue, and the UV glue is irradiated with UV to cure it.
  • the materials of the first flexible substrate and the second flexible substrate include one or more of polyethylene terephthalate, cellulose triacetate, and polycarbonate;
  • the materials of the first electrode and the second electrode include at least one of molybdenum, aluminum, copper, titanium, chromium, and silver;
  • the liquid crystal material is a non-dichroic dye positive liquid crystal, a non-dichroic dye negative liquid crystal, a positive dichroic dye liquid crystal or a negative dichroic dye liquid crystal.
  • This application also provides a method for manufacturing a flexible liquid crystal display device, including:
  • Step 1 ' Provide a first flexible conductive film and a second flexible conductive film, the first flexible conductive film includes a first flexible substrate and a first conductive layer provided on the first flexible substrate, the first Two flexible conductive films include a second flexible substrate and a second conductive layer provided on the second flexible substrate;
  • the step 1 ' is completed on the reel production line.
  • the reel production line is provided with oppositely arranged unwinding shafts and rewinding shafts and a bearing shaft configured between the unwinding shafts and the rewinding shaft to support materials.
  • the unwinding reel and the rewinding shaft are configured to unwind or collect flexible raw materials used in production and flexible semi-finished products in the production process;
  • Step 2 ' providing a first hard substrate, a second hard substrate, a first UV peelable adhesive film and a second UV peelable adhesive film;
  • Both the first UV peelable adhesive film and the second UV peelable adhesive film have double-sided adhesiveness, and both the first UV peelable adhesive film and the second UV peelable adhesive film have reduced viscosity after being irradiated with UV Or the disappeared characteristic;
  • the first flexible conductive substrate and the second flexible conductive substrate have corresponding processing areas, and the processing area is an area used to manufacture a flexible liquid crystal display device;
  • the first UV peelable adhesive film adheres at least the entire surface of the processing area of the first flexible conductive film to the first hard substrate, and the second UV peelable adhesive film at least bonds the second The entire surface of the processing area of the flexible conductive film is adhered to the second hard substrate;
  • Step 3 ' Form a first alignment film on the side where the first electrode is provided on the first flexible conductive film to obtain a first flexible conductive substrate; a first electrode provided with a second electrode on the second flexible conductive film Forming a second alignment film on the side to obtain a second flexible conductive substrate;
  • Step 4 ' UV irradiate the first UV peelable adhesive film and the second UV peelable adhesive film separately, so as to reduce or disappear the viscosity of the first UV peelable adhesive film and the second UV peelable adhesive film ;
  • Step 5 ' Adhere the first flexible conductive substrate to the first rigid substrate by using a first double-sided tape, the first double-sided adhesive tape is provided on the first flexible conductive substrate and the first An edge position between a hard substrate; using a second double-sided tape to bond the second flexible conductive substrate to the second hard substrate, the second double-sided tape is provided on the second flexible The edge position between the conductive substrate and the second hard substrate;
  • Step 6 ' Applying several frames of frame glue on the first flexible conductive substrate or the second flexible conductive substrate, and pre-curing the frames of frame glue;
  • the number of frame glues are all distributed on the inside of the first double-sided tape and the second double-sided tape, and the number of frame glues are all non-closed structures;
  • Spacer particles are provided on the second flexible conductive substrate or the first flexible conductive substrate corresponding to the inner side of the frame glue, and the spacer particles include a mother ball and an adhesive layer wrapped on the outer surface of the mother ball;
  • Step 7 ' The first flexible conductive substrate and the second flexible conductive substrate are bonded using a sheet-to-sheet bonding process, and the first flexible conductive substrate and the second flexible conductive substrate are under the action of the frame glue Bonding together, two sides of the spacer particles are respectively bonded to the surfaces of the first flexible conductive film and the second flexible conductive film to obtain a bonded panel;
  • Step 8 ' curing the frame glue in the laminated panel
  • Step 9 ' on the inner side of the first double-sided adhesive tape and the second double-sided adhesive tape, cut the laminated panel along the periphery of the frame rubber of several circles to obtain several flexible empty boxes;
  • Step 10 ' Inject liquid crystal material from the non-closed area of the frame glue into the plurality of flexible empty boxes, and seal the non-closed area of the frame glue to obtain a flexible liquid crystal box.
  • a first polarizer or a first UV protection film is attached to the outer surface of the first flexible conductive substrate, and a second polarizer or a second UV protection is attached to the outer surface of the second flexible conductive substrate of each flexible liquid crystal cell Film to obtain several flexible liquid crystal display devices.
  • the manufacturing method of the flexible liquid crystal display device of the present application can prevent the contact with the liquid by bonding the entire surface of the flexible conductive film to the hard substrate by using a UV peelable adhesive film before the bonding process Liquid enters between the flexible conductive film and the hard substrate during the manufacturing process, and can avoid the uneven thickness of the liquid crystal cell caused by the bulging of the flexible conductive film in the middle of the heating process.
  • By disposing viscous spacer particles between the upper and lower substrates it is possible to avoid the uneven cell thickness caused by the movement of spacer particles when the flexible liquid crystal display device is bent or twisted, and improve the quality and service life of the flexible liquid crystal display device.
  • FIG. 1A and 1B are schematic diagrams of step 1 of the first embodiment of the method for manufacturing a flexible liquid crystal display device of the present application;
  • FIGS. 2A and 2B are a schematic diagram of step 2 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 2 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • 3A and 3B are a schematic diagram of step 3 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 3 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • 4A and 4B are a schematic diagram of step 4 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 4 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • 5A and 5B are a schematic diagram of step 5 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 5 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • 6A and 6B are a schematic diagram of step 6 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 6 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • step 7 is a schematic diagram of step 7 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 7 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • step 9 of the first embodiment of the manufacturing method of the flexible liquid crystal display device of the present application and a schematic diagram of step 9 'of the second embodiment of the manufacturing method of the flexible liquid crystal display device of the present application;
  • step 10 of the first embodiment of the method for manufacturing a flexible liquid crystal display device of the present application is a schematic diagram of step 10 'of the second embodiment of the method of manufacturing a flexible liquid crystal display device of the present application.
  • 10A, 10B, 10C, and 10D are schematic views of step 1 'of the second embodiment of the method for manufacturing a flexible liquid crystal display device of the present application.
  • the embodiment 1 provides a method for manufacturing a flexible liquid crystal display device, including:
  • Step 1 As shown in FIGS. 1A and 1B, a first flexible conductive film 11, a second flexible conductive film 21, a first hard substrate 81, a second hard substrate 82, a first UV peelable adhesive film 83, and Second UV peelable adhesive film 84.
  • the first flexible conductive film 11 includes a first flexible substrate 111 and a first conductive layer 112 provided on the first flexible substrate 111
  • the second flexible conductive film 21 includes a second flexible substrate 211 and A second conductive layer 212 provided on the second flexible substrate 211.
  • Both the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 have double-sided adhesiveness, and the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 both have UV exposure.
  • the first UV peelable adhesive film 83 is used to bond the first flexible conductive film 11 to the first hard substrate 81
  • the second UV peelable adhesive film 84 is used to bond the second flexible
  • the conductive film 21 is adhered to the second hard substrate 82.
  • the first flexible conductive film 11 and the second flexible conductive film 21 have corresponding processing areas, and the processing area is an area for manufacturing a flexible liquid crystal display device.
  • the first UV peelable adhesive film 83 adheres at least the entire surface of the processing area of the first flexible conductive film 11 to the first rigid substrate 81, and the second UV peelable adhesive film 84 at least The entire processing area of the second flexible conductive film 21 is adhered to the second hard substrate 82.
  • the first UV peelable adhesive film 83 adheres all areas of the first flexible conductive film 11 to the first hard substrate 81, and the second UV peelable adhesive film 84 All areas of the second flexible conductive film 21 are adhered to the second hard substrate 82 over the entire surface.
  • Step 2 As shown in FIGS. 2A and 2B, the first conductive layer 112 and the second conductive layer 212 are respectively patterned to obtain a first electrode 113 and a second electrode 213.
  • the patterning process includes the steps of coating photoresist, exposing, developing, etching, stripping the remaining photoresist, cleaning, and drying.
  • the combination of the first flexible conductive film 11 and the first rigid substrate 81 and the combination of the second flexible conductive film 21 and the second rigid substrate 82 The board needs to be immersed in the liquid multiple times and baked multiple times (there is also a baking process after development).
  • the flexible conductive It is difficult to completely seal between the film and the hard substrate, so liquid is poured between the flexible conductive film and the hard substrate, and these liquids are difficult to discharge and hard to be dried, which may cause defects to the flexible conductive film
  • the flexible conductive film is heated (such as the baking process)
  • the middle of the flexible conductive film is easy to swell, resulting in uneven thickness of the liquid crystal cell of the final flexible liquid crystal display device .
  • This application uses the first UV peelable adhesive film 83 to adhere the entire surface of the first flexible conductive film 11 to the first hard substrate 81, and uses the second UV peelable adhesive film 84 to conduct the second flexible conductive film
  • the entire surface of the film 21 is adhered to the second hard substrate 82, which can make the first flexible conductive film 11 and the first hard substrate 81 and the second flexible conductive film 21 and the second hard substrate 82 between Completely sealed, even if the combination plate of the first flexible conductive film 11 and the first rigid substrate 81 and the combination plate of the second flexible conductive film 21 and the second rigid substrate 82 are immersed in the liquid multiple times, the first flexible conductive film No liquid enters between 11 and the first rigid substrate 81 and between the second flexible conductive film 21 and the second rigid substrate 82, and when the first flexible conductive film 11 and the second flexible conductive film 21 are heated Since the first flexible conductive film 11 and the second flexible conductive film 21 are adhered to the first hard substrate 81 and the second hard substrate 82 on the entire surface, the first flexible
  • a first alignment film 114 is formed on the side of the first flexible conductive film 11 where the first electrode 113 is provided, to obtain a first flexible conductive substrate 10, the first
  • the flexible conductive substrate 10 includes a first flexible substrate 111, a first electrode 113, and a first alignment film 114; a second alignment film 214 is formed on the side of the second flexible conductive film 21 where the second electrode 213 is provided, to obtain
  • the second flexible conductive substrate 20 includes a second flexible substrate 211, a second electrode 213, and a second alignment film 214.
  • the preparation process of the first alignment film 114 and the second alignment film 214 includes: first, coating an alignment material on the first flexible conductive film 11 and the second flexible conductive film 21, and performing the alignment material Pre-curing to remove the solvent, and then curing to cross-link and polymerize the alignment material, respectively forming a first polymer film and a second polymer film, and aligning the first polymer film and the second polymer film respectively After the treatment, the first alignment film 114 and the second alignment film 214 are formed.
  • the alignment material includes polyimide (PI), the pre-curing temperature is 60 ° C to 80 ° C, and the curing temperature is 100 ° C to 150 ° C. Since the first flexible substrate 111 and the second flexible substrate 211 are generally made of PC, PET, TAC and other materials, the maximum temperature they can withstand is between 100 ° C and 150 ° C, so the curing temperature of the alignment material used in this application The first flexible substrate 111 and the second flexible substrate 211 are not damaged.
  • PI polyimide
  • the pre-curing temperature is 60 ° C to 80 ° C
  • the curing temperature is 100 ° C to 150 ° C. Since the first flexible substrate 111 and the second flexible substrate 211 are generally made of PC, PET, TAC and other materials, the maximum temperature they can withstand is between 100 ° C and 150 ° C, so the curing temperature of the alignment material used in this application The first flexible substrate 111 and the second flexible substrate 211 are not damaged.
  • the alignment process is friction alignment or optical alignment.
  • the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 can also avoid the The function of bubbling the first flexible conductive film 11 and the second flexible conductive film 21.
  • Step 4 As shown in FIGS. 4A and 4B, perform UV irradiation on the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 respectively, so that the first UV peelable adhesive film 83 and the second The viscosity of the second UV peelable adhesive film 84 decreases or disappears.
  • the first flexible conductive substrate 10 is separated from the first hard substrate 81, and the second flexible conductive substrate 20 is separated from the second hard substrate 82.
  • Step 5 the first double-sided adhesive tape 85 is used to bond the first flexible conductive substrate 10 to the first hard substrate 81, and the first double-sided adhesive tape 85 is provided. At the edge position between the first flexible conductive substrate 10 and the first hard substrate 81; using a second double-sided tape 86 to bond the second flexible conductive substrate 20 to the second hard substrate On 82, the second double-sided adhesive tape 86 is provided at an edge position between the second flexible conductive substrate 20 and the second hard substrate 82.
  • the first double-sided adhesive tape 85 and the second double-sided adhesive tape 86 are both high temperature resistant adhesive tapes (preferably adhesive tapes that can withstand a high temperature of 300 ° C.), so as to avoid the subsequent pre-curing and curing process of the frame adhesive 30 As the first double-sided adhesive tape 85 and the second double-sided adhesive tape 86 age, the viscosity decreases.
  • Step 6 As shown in FIG. 6A and FIG. 6B, apply several turns of frame glue 30 on the first flexible conductive substrate 10 or the second flexible conductive substrate 20, and pre-cure the several turns of frame glue 30.
  • the number of frame adhesives 30 are all distributed inside the first double-sided tape 85 and the second double-sided adhesive tape 86, and the number of frame adhesives 30 are all non-closed structures.
  • Spacer particles 50 are provided on the second flexible conductive substrate 20 or the first flexible conductive substrate 10 corresponding to the inner side of the frame glue 30.
  • the spacer particles 50 include a mother ball 51 and an outer surface wrapped around the mother ball 51 ⁇ ⁇ ⁇ 52 ⁇ The adhesive layer 52.
  • step 6 the number of frame glue 30 is pre-cured by heating or ultraviolet light irradiation, and the heating temperature of the number of frame glue 30 can be pre-cured by heating 60 °C ⁇ 80 °C.
  • step 6 spacer particles 50 are provided on the second flexible conductive substrate 20 corresponding to the inner side of the frame glue 30 by spraying.
  • the adhesive layer 52 on the surface of the spacer particles 50 has no tackiness before heating at 60 ° C to 120 ° C, and has tackiness after heating at 60 ° C to 120 ° C.
  • the second flexible conductive substrate 20 is heated to make the adhesive layer 52 sticky,
  • the heat treatment temperature is 60 ° C to 120 ° C.
  • Step 7 As shown in FIG. 7, the first flexible conductive substrate 10 and the second flexible conductive substrate 20 are bonded using a sheet-to-sheet bonding process, and the first flexible conductive substrate 10 and the second flexible conductive substrate 20 are bonded together under the action of the frame glue 30, and both sides of the spacer particles 50 are respectively bonded to the surfaces of the first flexible conductive film 11 and the second flexible conductive film 21 to obtain a fit Panel 91.
  • the sheet-to-sheet bonding process includes: applying pressure from the outside of the first hard substrate 81 and the second hard substrate 82, respectively, to promote the first flexible conductive substrate 10 and the second flexible conductive substrate 20 fit.
  • Step 8 Curing the frame glue 30 in the bonding panel 91.
  • the frame glue 30 in the laminated panel 91 is cured by heating, and the heating temperature is 100 ° C to 150 ° C. Since the maximum temperature that the first flexible substrate 111 and the second flexible substrate 211 can withstand is between 100 ° C and 150 ° C, the curing temperature of the frame glue 30 used in this application will not affect the first flexible substrate 111 Damage to the second flexible substrate 211 is caused.
  • step 8 the frame glue 30 in the flexible display panel is cured by ultraviolet (UV) irradiation.
  • UV ultraviolet
  • the frame glue 30 can form a sealed space configured to accommodate the liquid crystal material 40 between the first flexible conductive substrate 10 and the second flexible conductive substrate 20.
  • the first flexible conductive substrate 10 is also provided between the steps 7 and 8 Or a step of coating conductive glue on the second flexible conductive substrate 20.
  • Step 9 As shown in FIGS. 8A and 8B, on the inside of the first double-sided adhesive tape 85 and the second double-sided adhesive tape 86, the bonding panel 91 is cut along the periphery of the frame rubber 30 To obtain several flexible empty boxes 92.
  • a laser is used to cut the laminated panel 91.
  • the step 9 due to the inside of the first double-sided tape 85 and the second double-sided tape 86, between the first flexible conductive substrate 10 and the first hard substrate 81 and The second flexible conductive substrate 20 and the second hard substrate 82 are in a separated state. Therefore, after cutting, the first flexible conductive substrate 10 and the first hard substrate 81 are naturally separated. The second flexible conductive substrate 20 and the second rigid substrate 82 are naturally separated, so that a number of flexible empty boxes 92 are obtained.
  • Step 10 As shown in FIG. 9, inject the liquid crystal material 40 from the non-closed area of the frame glue 30 into the flexible empty box 92 and seal the non-closed area of the frame glue 30 to obtain a flexible liquid crystal box Affix the first polarizer 61 or the first UV protection film 71 on the outer surface of the first flexible conductive substrate 10 of the flexible liquid crystal cell, and stick the outer surface of the second flexible conductive substrate 20 of the flexible liquid crystal cell The second polarizer 62 or the second UV protection film 72 is attached to obtain a flexible liquid crystal display device.
  • the flexible empty cell 92 is evacuated to accelerate the filling of the liquid crystal material 40.
  • UV glue is used to seal the non-closed area of the frame glue 30, and the UV glue is irradiated with UV to cure it.
  • the flexible liquid crystal cell is placed under an optical table to check the appearance, and the electrical performance of the flexible liquid crystal cell is tested using a testing device.
  • the step 10 further includes: performing defoaming treatment on the flexible liquid crystal display device with a polarizer or an anti-UV protective film.
  • the step 10 further includes: packaging and storing the finished product of the flexible liquid crystal display device.
  • both the first hard substrate 81 and the second hard substrate 82 are glass substrates.
  • the materials of the first flexible substrate 111 and the second flexible substrate 211 include materials such as PET (polyethylene terephthalate), TAC (cellulose triacetate), and PC (polycarbonate). One or more of them.
  • materials of the first electrode 113 and the second electrode 213 include at least molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), chromium (Cr), and silver (Ag).
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • Cr chromium
  • silver silver
  • the material of the cue ball 51 may be an inorganic substance or an organic substance.
  • the inorganic substance is silicon and the organic substance is a polymer.
  • the liquid crystal material 40 is a non-dichroic dye positive liquid crystal, a non-dichroic dye negative liquid crystal, a positive dichroic dye liquid crystal, or a negative dichroic dye liquid crystal.
  • the flexible liquid crystal display device further includes a first polarizer 61 or a first UV protection film 71 attached to the side of the first flexible conductive substrate 10 away from the liquid crystal material 40, and the first The two flexible conductive substrates 20 are away from the second polarizer 62 or the second UV protection film 72 on the side of the liquid crystal material 40.
  • liquid crystal material 40 is a positive dichroic dye liquid crystal or a negative dichroic dye liquid crystal
  • liquid crystal material 40 is a non-dichroic dye positive liquid crystal or a non-dichroic dye negative liquid crystal
  • first anti-UV protective film 71 and a second Anti-UV protective film 72 are a non-dichroic dye positive liquid crystal or a non-dichroic dye negative liquid crystal
  • second Anti-UV protective film 72 is a first anti-UV protective film 71 and a second Anti-UV protective film 72.
  • the materials used for the frame glue 30, the first alignment film 114, and the second alignment film 214 in the flexible liquid crystal display device of the present application are all materials with a curing temperature of 100 ° C to 150 ° C, because the first flexible substrate
  • the bottom 111 and the second flexible substrate 211 are generally made of PC, PET, TAC and other materials, and the maximum temperature they can withstand is between 100 ° C and 150 ° C. Therefore, the frame glue 30, the first alignment film 114 and the second The curing temperature of the alignment film 214 does not damage the first flexible substrate 111 and the second flexible substrate 211.
  • the present application chooses to remove the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 before the bonding process, and change to the edge positions between the first flexible conductive film 11 and the first hard substrate 81, and The first double-sided tape 85 and the second double-sided tape 86 are provided at the edge positions between the second flexible conductive film 21 and the second hard substrate 82 for the following reasons:
  • the adhesiveness of the UV peelable adhesive film cannot completely disappear, that is to say, it still has a certain adhesive force.
  • the flexible conductive substrate and the hard substrate Separation is equivalent to tearing a flexible film from a hard substrate. This operation is relatively easy to implement.
  • the frame glue 30 is an epoxy resin frame glue with flexible and stretchable characteristics.
  • the traditional flexible LCD production process usually uses common epoxy resin frame glue, which has a strong brittleness, and the epoxy resin frame glue between the upper and lower substrates is likely to appear during the bending or twisting of the flexible LCD Cracking causes liquid crystal to leak out.
  • epoxy resin frame glue with flexible and stretchable characteristics, the cured frame glue 30 can be bent and stretched, and the frame glue 30 is intact during the bending process of the flexible LCD, which can avoid the flexible LCD in When bending, the frame glue 30 breaks to cause the liquid crystal to leak out, improving the quality and service life of the flexible LCD.
  • the advantages of the manufacturing method of the flexible liquid crystal display device of Embodiment 1 include:
  • the manufactured flexible liquid crystal display device also has the advantages of light weight, thin thickness, bendability, and resistance to breakage.
  • This embodiment 2 provides a method for manufacturing a flexible liquid crystal display device, including:
  • Step 1 ' as shown in FIGS. 10A, 10B, 10C, and 10D, a first flexible conductive film 11 and a second flexible conductive film 21 are provided.
  • the first flexible conductive film 11 includes a first flexible substrate 111 and A first conductive layer 112 provided on the first flexible substrate 111
  • the second flexible conductive film 21 includes a second flexible substrate 211 and a second conductive layer provided on the second flexible substrate 211 212.
  • the step 1 ' is completed on the reel production line.
  • the reel production line is provided with oppositely arranged unwinding shafts and rewinding shafts and a bearing shaft configured between the unwinding shafts and the rewinding shaft to support materials.
  • the unwinding shaft and the unwinding shaft are configured to unwind or collect the flexible raw materials used in production and the flexible semi-finished products in the production process.
  • Step 2 ' referring to FIGS. 2A and 2B, a first hard substrate 81, a second hard substrate 82, a first UV peelable adhesive film 83, and a second UV peelable adhesive film 84 are provided.
  • Both the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 have double-sided adhesiveness, and the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84 both have UV exposure.
  • the first UV peelable adhesive film 83 is used to bond the first flexible conductive film 11 to the first hard substrate 81
  • the second UV peelable adhesive film 84 is used to bond the second flexible
  • the conductive film 21 is adhered to the second hard substrate 82.
  • the first flexible conductive substrate 10 and the second flexible conductive substrate 20 have corresponding processing areas, and the processing area is an area for manufacturing a flexible liquid crystal display device.
  • the first UV peelable adhesive film 83 adheres at least the entire surface of the processing area of the first flexible conductive film 11 to the first rigid substrate 81, and the second UV peelable adhesive film 84 at least The entire processing area of the second flexible conductive film 21 is adhered to the second hard substrate 82.
  • the first UV peelable adhesive film 83 adheres all areas of the first flexible conductive film 11 to the first hard substrate 81, and the second UV peelable adhesive film 84 All areas of the second flexible conductive film 21 are adhered to the second hard substrate 82 over the entire surface.
  • Step 3 ' please refer to FIGS. 3A and 3B, a first alignment film 114 is formed on the side of the first flexible conductive film 11 where the first electrode 113 is provided, to obtain the first flexible conductive substrate 10; A second alignment film 214 is formed on the side where the second electrode 213 is provided on the two flexible conductive films 21 to obtain a second flexible conductive substrate 20.
  • Step 4 ' please refer to FIG. 4A and FIG. 4B, respectively performing UV irradiation on the first UV peelable adhesive film 83 and the second UV peelable adhesive film 84, so that the first UV peelable adhesive film 83 and the second The viscosity of the second UV peelable adhesive film 84 decreases or disappears.
  • the first flexible conductive substrate 10 is separated from the first hard substrate 81, and the second flexible conductive substrate 20 is separated from the second hard substrate 82.
  • Step 5 ' Please refer to FIGS. 5A and 5B.
  • the first double-sided adhesive tape 85 is used to bond the first flexible conductive substrate 10 to the first hard substrate 81.
  • the first double-sided adhesive tape 85 is provided.
  • the second double-sided adhesive tape 86 is provided at an edge position between the second flexible conductive substrate 20 and the second hard substrate 82.
  • Step 6 ' Please refer to FIG. 6A and FIG. 6B, applying a plurality of frame glue 30 on the first flexible conductive substrate 10 or the second flexible conductive substrate 20, and pre-curing the frame glue 30.
  • the number of frame adhesives 30 are all distributed inside the first double-sided tape 85 and the second double-sided adhesive tape 86, and the number of frame adhesives 30 are all non-closed structures.
  • Spacer particles 50 are provided on the second flexible conductive substrate 20 or the first flexible conductive substrate 10 corresponding to the inner side of the frame glue 30.
  • the spacer particles 50 include a mother ball 51 and an outer surface wrapped around the mother ball 51 ⁇ ⁇ ⁇ 52 ⁇ The adhesive layer 52.
  • Step 7 ' Please refer to FIG. 7, the first flexible conductive substrate 10 and the second flexible conductive substrate 20 are bonded using a chip-to-chip bonding process, and the first flexible conductive substrate 10 and the second flexible conductive substrate 20 are bonded together under the action of the frame glue 30, and both sides of the spacer particles 50 are respectively bonded to the surfaces of the first flexible conductive film 11 and the second flexible conductive film 21 to obtain a fit Panel 91.
  • Step 8 ' The frame glue 30 in the bonding panel 91 is cured.
  • Step 9 ' Please refer to FIG. 8A and FIG. 8B.
  • the laminated panel 91 is cut along the periphery of the frame glue 30 To obtain several flexible empty boxes 92.
  • Step 10 ' injecting liquid crystal material 40 from the non-closed area of the frame glue 30 into the plurality of flexible empty boxes 92, and sealing the non-closed area of the frame glue 30 to obtain flexibility
  • a first polarizer 61 or a first UV protection film 71 is attached to the outer surface of the first flexible conductive substrate 10 of each flexible liquid crystal cell, and outside the second flexible conductive substrate 20 of each flexible liquid crystal cell
  • a second polarizer 62 or a second anti-UV protective film 72 is attached to the surface to obtain several flexible liquid crystal display devices.
  • Embodiment 2 and Embodiment 1 the corresponding processes can be implemented by the same process.
  • the advantages of the manufacturing method of the flexible liquid crystal display device of Embodiment 1 include:
  • step 1 1) Provided is a production process for manufacturing a flexible liquid crystal display device by combining a reel production process (step 1 ') and a sheet-to-sheet bonding process (after step 1').

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)

Abstract

一种柔性液晶显示装置的制作方法,通过在贴合工艺之前,利用UV可剥胶膜(83,84)将柔性导电膜(11,21)整面粘合于硬质基板(81,82)上,能够避免在与液体接触的制程中柔性导电膜(11,21)与硬质基板(81,82)之间进入液体,并且能够避免在加热制程中柔性导电膜(11,21)中间鼓起导致液晶盒厚不均匀;通过在上下基板之间设置具有粘性的间隔粒子(50),能够避免柔性液晶显示装置在弯曲或扭曲时出现因间隔粒子(50)移动造成的盒厚不均问题,提升柔性液晶显示装置的质量与使用寿命。

Description

柔性液晶显示装置的制作方法
相关申请的交叉引用
本申请要求于2018年11月07日提交中国专利局的申请号为201811317652.2、名称为“柔性液晶显示装置的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种柔性液晶显示装置的制作方法。
背景技术
目前的LCD显示器件基本都是使用玻璃基板作为衬底,基于玻璃基板的显示器件由于不能弯曲导致在很多时候无法满足设计者对产品外形的要求,并且,玻璃基板一般较厚,受压或冲击后容易碎裂。
传统的柔性LCD生产工艺使用双面胶把柔性导电膜贴附在玻璃基板上作业,但双面胶一般仅贴附在柔性导电膜的边缘区域,导致柔性导电胶的中间区域不能和玻璃基板完全贴合在一起,与液体接触后会有水分残留在柔性导电胶与玻璃基板之间,并且由于玻璃基板和柔性导电膜的形变比例不同,会导致加热后柔性导电膜中间鼓起来,影响组合后的液晶盒厚均匀性。另外,传统的柔性LCD生产使用普通间隔粒子,在柔性LCD产品弯曲或扭曲使用过程中容易导致间隔粒子移动影响盒厚均匀性。
发明内容
本申请的目的在于提供一种柔性液晶显示装置的制作方法,制得的柔性液晶显示装置的盒厚均匀,质量好,在被弯曲或扭曲时不会出现因间隔粒子移动造成的盒厚不均问题,使用寿命长。
为实现以上发明目的,本申请提供一种柔性液晶显示装置的制作方法,包括:
步骤1、提供第一柔性导电膜、第二柔性导电膜、第一硬质基板、第二硬质基板、第一UV可剥胶膜以及第二UV可剥胶膜;
所述第一柔性导电膜包括第一柔性衬底与设于所述第一柔性衬底上的第一导电层,所述第二柔性导电膜包括第二柔性衬底与设于所述第二柔性衬底上的第二导电层;
所述第一UV可剥胶膜与第二UV可剥胶膜均具有双面粘性,并且所述第一UV可剥胶膜与第二UV可剥胶膜均具有在受到UV照射后粘性降低或者消失的特性;
利用所述第一UV可剥胶膜将所述第一柔性导电膜粘合于所述第一硬质基板上,利用所述第二UV可剥胶膜将所述第二柔性导电膜粘合于所述第二硬质基板上;
所述第一柔性导电膜与第二柔性导电膜具有相对应的加工区域,所述加工区域即用来制作柔性液晶显示装置的区域;
所述第一UV可剥胶膜至少将所述第一柔性导电膜的加工区域整面粘合于所述第一硬质基板上,所述第二UV可剥胶膜至少将所述第二柔性导电膜的加工区域整面粘合于所述第二硬质基板上;
步骤2、对所述第一导电层与所述第二导电层分别进行图形化处理,得到第一电极与第二电极;
步骤3、在所述第一柔性导电膜上设有第一电极的一侧形成第一配向膜,得到第一柔性导电基板,所述第一柔性导电基板包括第一柔性衬底、第一电极以及第一配向膜;在所述第二柔性导电膜上设有第二电极的一侧形成第二配向膜,得到第二柔性导电基板,所述第二柔性导电基板包括第二柔性衬底、第二电极以及第二配向膜;
步骤4、对所述第一UV可剥胶膜与第二UV可剥胶膜分别进行UV照射,使所述第一UV可剥胶膜与第二UV可剥胶膜的粘性降低或者消失;
使所述第一柔性导电基板与所述第一硬质基板分离,所述第二柔性导电基板与所述第二硬质基板分离;
步骤5、利用第一双面胶带将所述第一柔性导电基板粘合于所述第一硬质基板上,所述第一双面胶带设于所述第一柔性导电基板与所述第一硬质基板之间的边缘位置;利用第二双面胶带将所述第二柔性导电基板粘合于所述第二硬质基板上,所述第二双面胶带设于所述第二柔性导电基板与所述第二硬质基板之间的边缘位置;
步骤6、在所述第一柔性导电基板或第二柔性导电基板上涂布数圈边框胶,对所述数圈边框胶进行预固化;
所述数圈边框胶均分布于所述第一双面胶带与第二双面胶带的内侧,并且所述数圈边框胶均为非闭合结构;
在所述第二柔性导电基板或第一柔性导电基板上对应于所述边框胶的内侧设置间隔粒子,所述间隔粒子包括母球以及包裹于所述母球外表面的粘胶层;
步骤7、采用片对片贴合工艺对所述第一柔性导电基板与第二柔性导电基板进行贴合,所述第一柔性导电基板与第二柔性导电基板在所述边框胶的作用下粘接在一起,所述间隔粒子的两侧分别粘结于所述第一柔性导电膜与所述第二柔性导电膜的表面,得到贴合面板;
步骤8、对所述贴合面板中的边框胶进行固化;
步骤9、在所述第一双面胶带与第二双面胶带的内侧,沿所述数圈边框胶的外围对所述贴合面板进行切割,得到数个柔性空盒;
步骤10、将液晶材料从所述边框胶的非闭合区域注入所述柔性空盒中,并对所述边框胶的非闭合区域进行密封,得到柔性液晶盒,在所述柔性液晶盒的第一柔性导电基板的外表面贴附第一偏光片或第一防UV保护膜,在所述柔性液晶盒的第二柔性导电基板的外表面贴附第二偏光片或第二防UV保护膜,得到柔性液晶显示装置。
可选地,所述第一配向膜与第二配向膜的制备工艺包括:首先在所述第一柔性导电膜与第二柔性导电膜上涂布配向材料,对所述配向材料进行预固化以去除溶剂,之后进行固化以使所述配向材料交联聚合,分别形成第一聚合物膜与第二聚合物膜,对所述第一聚合物膜与第二聚合物膜分别进行配向处理后,形成第一配向膜与第二配向膜。
可选地,所述配向材料包括聚酰亚胺,所述预固化的温度为60℃~80℃,所述固化的温度为100℃~150℃,所述配向处理为摩擦配向或者光配向。
可选地,所述间隔粒子表面的粘胶层在60℃~120℃加热前不具有粘性,60℃~120℃加热之后具有粘性;
所述步骤6中,将所述间隔粒子喷洒在所述第二柔性导电基板上后,对所述第二柔性导电基板进行加热处理,使所述粘胶层具有粘性,加热处理温度为60℃~120℃。
可选地,所述步骤6中,采用加热的方法对所述数圈边框胶进行预固化,加热温度为60℃~80℃;
所述步骤8中,采用加热的方法对所述贴合面板中的边框胶进行固化,加热温度为100℃~150℃。
可选地,所述片对片贴合工艺包括:分别从所述第一硬质基板81与第二硬质基板82的外侧施加压力,促进所述第一柔性导电基板10与第二柔性导电基板20贴合。
可选地,所述步骤9中,采用激光对所述贴合面板进行切割。
可选地,所述步骤10中,采用UV胶对所述边框胶的非闭合区域进行密封,并对所述UV胶进行UV照射以使其固化。
可选地,所述第一柔性衬底与第二柔性衬底的材料包括聚对苯二甲酸乙二酯、三醋酸纤维素和聚碳酸酯中的一种或多种;
所述第一电极与第二电极的材料包括钼、铝、铜、钛、铬和银中的至少一种;
所述液晶材料为非二色性染料正性液晶、非二色性染料负性液晶、正性二色性染料液晶或负性二色性染料液晶。
本申请还提供一种柔性液晶显示装置的制作方法,包括:
步骤1’、提供第一柔性导电膜与第二柔性导电膜,所述第一柔性导电膜包括第一柔性衬底与设于所述第一柔性衬底上的第一导电层,所述第二柔性导电膜包括第二柔性衬底与设于所述第二柔性衬底上的第二导电层;
对所述第一导电层与第二导电层分别进行图形化处理,得到第一电极与第二电极;
所述步骤1’在卷轴生产线上流水作业完成,所述卷轴生产线上设有相对设置的放卷轴与收卷轴以及设于所述放卷轴与收卷轴之间配置成承托物料的承载轴,所述放卷轴与收卷轴配置成对生产使用的柔性原料以及生产过程中的柔性半成品进行放料或者收料;
步骤2’、提供第一硬质基板、第二硬质基板、第一UV可剥胶膜以及第二UV可剥胶膜;
所述第一UV可剥胶膜与第二UV可剥胶膜均具有双面粘性,并且所述第一UV可剥胶膜与第二UV可剥胶膜均具有在受到UV照射后粘性降低或者消失的特性;
利用所述第一UV可剥胶膜将所述第一柔性导电膜粘合于所述第一硬质基板上,利用所述第二UV可剥胶膜将所述第二柔性导电膜粘合于所述第二硬质基板上;
所述第一柔性导电基板与第二柔性导电基板具有相对应的加工区域,所述加工区域即用来制作柔性液晶显示装置的区域;
所述第一UV可剥胶膜至少将所述第一柔性导电膜的加工区域整面粘合于所述第一硬质基板上,所述第二UV可剥胶膜至少将所述第二柔性导电膜的加工区域整面粘合于所述第二硬质基板上;
步骤3’、在所述第一柔性导电膜上设有第一电极的一侧形成第一配向膜,得到第一柔性导电基板;在所述第二柔性导电膜上设有第二电极的一侧形成第二配向膜,得到第二柔性导电基板;
步骤4’、对所述第一UV可剥胶膜与第二UV可剥胶膜分别进行UV照射,使所述第一UV可剥胶膜与第二UV可剥胶膜的粘性降低或者消失;
使所述第一柔性导电基板与所述第一硬质基板分离,所述第二柔性导电基板与所述第二硬质基板分离;
步骤5’、利用第一双面胶带将所述第一柔性导电基板粘合于所述第一硬质基板上,所述第一双面胶带设于所述第一柔性导电基板与所述第一硬质基板之间的边缘位置;利用第二双面胶带将所述第二柔性导电基板粘合于所述第二硬质基板上,所述第二双面胶带设于所述第二柔性导电基板与所述第二硬质基板之间的边缘位置;
步骤6’、在所述第一柔性导电基板或第二柔性导电基板上涂布数圈边框胶,对所述数圈边框胶进行预固化;
所述数圈边框胶均分布于所述第一双面胶带与第二双面胶带的内侧,并且所述数圈边框胶均为非闭合结构;
在所述第二柔性导电基板或第一柔性导电基板上对应于所述边框胶的内侧设置间隔粒子,所述间隔粒子包括母球以及包裹于所述母球外表面的粘胶层;
步骤7’、采用片对片贴合工艺对所述第一柔性导电基板与第二柔性导电基板进行贴合,所述第一柔性导电基板与第二柔性导电基板在所述边框胶的作用下粘接在一起,所述间隔粒子的两侧分别粘结于所述第一柔性导电膜与所述第二柔性导电膜的表面,得到贴合面板;
步骤8’、对所述贴合面板中的边框胶进行固化;
步骤9’、在所述第一双面胶带与第二双面胶带的内侧,沿所述数圈边框胶的外围对所述贴合面板进 行切割,得到数个柔性空盒;
步骤10’、将液晶材料从所述边框胶的非闭合区域注入所述数个柔性空盒中,并对所述边框胶的非闭合区域进行密封,得到柔性液晶盒,在每个柔性液晶盒的第一柔性导电基板的外表面贴附第一偏光片或第一防UV保护膜,在每个柔性液晶盒的第二柔性导电基板的外表面贴附第二偏光片或第二防UV保护膜,得到数个柔性液晶显示装置。
本申请的有益效果:本申请的柔性液晶显示装置的制作方法通过在贴合工艺之前,利用UV可剥胶膜将柔性导电膜整面粘合于硬质基板上,能够避免在与液体接触的制程中柔性导电膜与硬质基板之间进入液体,并且能够避免在加热制程中柔性导电膜中间鼓起导致液晶盒厚不均匀。通过在上下基板之间设置具有粘性的间隔粒子,能够避免柔性液晶显示装置在弯曲或扭曲时出现因间隔粒子移动造成的盒厚不均问题,提升柔性液晶显示装置的质量与使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请范围的限定。
图1A与图1B为本申请柔性液晶显示装置的制作方法第一实施例步骤1的示意图;
图2A与图2B为本申请柔性液晶显示装置的制作方法第一实施例步骤2的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤2’的示意图;
图3A与图3B为本申请柔性液晶显示装置的制作方法第一实施例步骤3的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤3’的示意图;
图4A与图4B为本申请柔性液晶显示装置的制作方法第一实施例步骤4的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤4’的示意图;
图5A与图5B为本申请柔性液晶显示装置的制作方法第一实施例步骤5的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤5’的示意图;
图6A与图6B为本申请柔性液晶显示装置的制作方法第一实施例步骤6的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤6’的示意图;
图7为本申请柔性液晶显示装置的制作方法第一实施例步骤7的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤7’的示意图;
图8A与图8B为本申请柔性液晶显示装置的制作方法第一实施例步骤9的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤9’的示意图;
图9为本申请柔性液晶显示装置的制作方法第一实施例步骤10的示意图以及本申请柔性液晶显示装置的制作方法第二实施例步骤10’的示意图。
图10A、图10B、图10C以及图10D为本申请柔性液晶显示装置的制作方法第二实施例步骤1’的示意图。
主要元件符号说明:
10、第一柔性导电基板;20、第二柔性导电基板;30、边框胶;40、液晶材料;50、间隔粒子;51、母球;52、粘胶层;11、第一柔性导电膜;21、第二柔性导电膜;111、第一柔性衬底;112、第一导电层;113、第一电极;114、第一配向膜;211、第二柔性衬底;212、第二导电层;213、第二电极;214、第二配向膜;61、第一偏光片;71、第一防UV保护膜;62、第二偏光片;72、第二防UV保护膜;81、第一硬质基板;82、第二硬质基板;83、第一UV可剥胶膜;84、第二UV可剥胶膜;85、第一双面胶带;86、第二双面胶带;91、贴合面板;92、柔性空盒。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚和完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
实施例1
请参阅图2A至图9,该实施例1提供一种柔性液晶显示装置的制作方法,包括:
步骤1、如图1A与图1B所示,提供第一柔性导电膜11、第二柔性导电膜21、第一硬质基板81、第二硬质基板82、第一UV可剥胶膜83以及第二UV可剥胶膜84。
所述第一柔性导电膜11包括第一柔性衬底111与设于所述第一柔性衬底111上的第一导电层112,所述第二柔性导电膜21包括第二柔性衬底211与设于所述第二柔性衬底211上的第二导电层212。
所述第一UV可剥胶膜83与第二UV可剥胶膜84均具有双面粘性,并且所述第一UV可剥胶膜83与第二UV可剥胶膜84均具有在受到UV照射后粘性降低或者消失的特性。
利用所述第一UV可剥胶膜83将所述第一柔性导电膜11粘合于所述第一硬质基板81上,利用所述第二UV可剥胶膜84将所述第二柔性导电膜21粘合于所述第二硬质基板82上。
所述第一柔性导电膜11与第二柔性导电膜21具有相对应的加工区域,所述加工区域即用来制作柔性液晶显示装置的区域。
所述第一UV可剥胶膜83至少将所述第一柔性导电膜11的加工区域整面粘合于所述第一硬质基板81上,所述第二UV可剥胶膜84至少将所述第二柔性导电膜21的加工区域整面粘合于所述第二硬质基板82上。
可选地,所述第一UV可剥胶膜83将所述第一柔性导电膜11的所有区域整面粘合于所述第一硬质基板81上,所述第二UV可剥胶膜84将所述第二柔性导电膜21的所有区域整面粘合于所述第二硬质基板82上。
步骤2、如图2A与图2B所示,对所述第一导电层112与所述第二导电层212分别进行图形化处理,得到第一电极113与第二电极213。
具体地,所述步骤2中,所述图形化处理包括涂布光刻胶、曝光、显影、蚀刻、剥离剩余光刻胶、清洗以及烘干等步骤。
在所述图形化处理的过程中,所述第一柔性导电膜11与所述第一硬质基板81的组合板以及所述第二柔性导电膜21与所述第二硬质基板82的组合板均需要多次浸泡于液体中并进行多次烘烤(显影之后也有烘烤制程),如果按照传统工艺仅在柔性导电膜与硬质基板之间的边缘位置设置双面胶的话,柔性导电膜与硬质基板之间很难完全密封,因此柔性导电膜与硬质基板之间会灌入液体,这些液体很难排出,也很难被烘干,从而会对所述柔性导电膜造成不良影响,另外,当柔性导电膜受热(例如烘烤制程)时,基于热胀冷缩的原理,柔性导电膜的中间很容易鼓起,导致最后制得的柔性液晶显示装置的液晶盒厚不均。
本申请通过利用第一UV可剥胶膜83将所述第一柔性导电膜11整面粘合于所述第一硬质基板81上,利用第二UV可剥胶膜84将第二柔性导电膜21整面粘合于所述第二硬质基板82上,能够使第一柔性导电膜11与第一硬质基板81之间以及第二柔性导电膜21与第二硬质基板82之间完全密封,即使将第一柔性导电膜11与第一硬质基板81的组合板以及第二柔性导电膜21与第二硬质基板82的组合板多次浸泡于液体中,第一柔性导电膜11与第一硬质基板81之间以及第二柔性导电膜21与第二硬质基板82之间都不会进入液体,并且,当第一柔性导电膜11与第二柔性导电膜21受热时,由于第一柔性导电膜11与第二柔性导电膜21分别整面粘合于第一硬质基板81与第二硬质基板82上,因此在加热过程中所述第一柔性导电膜11和第二柔性导电膜21的形变比例分别与所述第一硬质基板81和第二硬质基板82的形变比例保持相同,因此所述第一柔性导电膜11和第二柔性导电膜21均不会出现中间鼓泡 的现象,保证后续制得的柔性液晶显示装置的液晶盒厚均匀。
步骤3、如图3A与图3B所示,在所述第一柔性导电膜11上设有第一电极113的一侧形成第一配向膜114,得到第一柔性导电基板10,所述第一柔性导电基板10包括第一柔性衬底111、第一电极113以及第一配向膜114;在所述第二柔性导电膜21上设有第二电极213的一侧形成第二配向膜214,得到第二柔性导电基板20,所述第二柔性导电基板20包括第二柔性衬底211、第二电极213以及第二配向膜214。
具体地,所述第一配向膜114与第二配向膜214的制备工艺包括:首先在所述第一柔性导电膜11与第二柔性导电膜21上涂布配向材料,对所述配向材料进行预固化以去除溶剂,之后进行固化以使所述配向材料交联聚合,分别形成第一聚合物膜与第二聚合物膜,对所述第一聚合物膜与第二聚合物膜分别进行配向处理后,形成第一配向膜114与第二配向膜214。
具体地,所述配向材料包括聚酰亚胺(PI),所述预固化的温度为60℃~80℃,所述固化的温度为100℃~150℃。由于所述第一柔性衬底111与第二柔性衬底211一般为PC、PET和TAC等材料,能承受的最高温度在100℃~150℃之间,因此本申请采用的配向材料的固化温度不会对第一柔性衬底111与第二柔性衬底211造成损伤。
可选地,所述配向处理为摩擦配向或者光配向。
具体地,在制作第一配向膜114与第二配向膜214的预固化与固化过程中,所述第一UV可剥胶膜83与第二UV可剥胶膜84同样能够起到避免所述第一柔性导电膜11与第二柔性导电膜21鼓泡的作用。
步骤4、如图4A与图4B所示,对所述第一UV可剥胶膜83与第二UV可剥胶膜84分别进行UV照射,使所述第一UV可剥胶膜83与第二UV可剥胶膜84的粘性降低或者消失。
使所述第一柔性导电基板10与所述第一硬质基板81分离,所述第二柔性导电基板20与所述第二硬质基板82分离。
步骤5、如图5A与图5B所示,利用第一双面胶带85将所述第一柔性导电基板10粘合于所述第一硬质基板81上,所述第一双面胶带85设于所述第一柔性导电基板10与所述第一硬质基板81之间的边缘位置;利用第二双面胶带86将所述第二柔性导电基板20粘合于所述第二硬质基板82上,所述第二双面胶带86设于所述第二柔性导电基板20与所述第二硬质基板82之间的边缘位置。
优选地,所述第一双面胶带85与第二双面胶带86均为耐高温胶带(优选为能耐受300℃高温的胶带),以避免在后续边框胶30的预固化与固化过程中所述第一双面胶带85与第二双面胶带86老化导致粘性降低。
步骤6、如图6A与图6B所示,在所述第一柔性导电基板10或第二柔性导电基板20上涂布数圈边框胶30,对所述数圈边框胶30进行预固化。
所述数圈边框胶30均分布于所述第一双面胶带85与第二双面胶带86的内侧,并且所述数圈边框胶30均为非闭合结构。
在所述第二柔性导电基板20或第一柔性导电基板10上对应于所述边框胶30的内侧设置间隔粒子50,所述间隔粒子50包括母球51以及包裹于所述母球51外表面的粘胶层52。
可选地,所述步骤6中,采用加热或者紫外光照射的方法对所述数圈边框胶30进行预固化,采用加热的方法对所述数圈边框胶30进行预固化时加热温度可以为60℃~80℃。
可选地,所述步骤6中,采用喷洒的方式在所述第二柔性导电基板20上对应于所述边框胶30的内侧设置间隔粒子50。
具体地,所述间隔粒子50表面的粘胶层52在60℃~120℃加热前不具有粘性,60℃~120℃加热之后具有粘性。
因此,所述步骤6中,将所述间隔粒子50喷洒在所述第二柔性导电基板20上后,对所述第二柔性导电基板20进行加热处理,使所述粘胶层52具有粘性,加热处理温度为60℃~120℃。
步骤7、如图7所示,采用片对片贴合工艺对所述第一柔性导电基板10与第二柔性导电基板20进行贴合,所述第一柔性导电基板10与第二柔性导电基板20在所述边框胶30的作用下粘接在一起,所述间隔粒子50的两侧分别粘结于所述第一柔性导电膜11与所述第二柔性导电膜21的表面,得到贴合面板91。
具体地,所述片对片贴合工艺包括:分别从所述第一硬质基板81与第二硬质基板82的外侧施加压力,促进所述第一柔性导电基板10与第二柔性导电基板20贴合。
步骤8、对所述贴合面板91中的边框胶30进行固化。
可选地,所述步骤8中,采用加热的方法对所述贴合面板91中的边框胶30进行固化,加热温度为100℃~150℃。由于所述第一柔性衬底111与第二柔性衬底211能承受的最高温度在100℃~150℃之间,因此本申请采用的边框胶30的固化温度不会对第一柔性衬底111与第二柔性衬底211造成损伤。
可选地,所述步骤8中,采用紫外光(UV)照射的方法对所述柔性显示面板中的边框胶30进行固化。
具体地,所述边框胶30能够在所述第一柔性导电基板10与第二柔性导电基板20之间形成配置成容置液晶材料40的密封空间。
具体地,对于所述第一柔性导电基板10与第二柔性导电基板20需要实现电性导通的情况,在所述步骤7与步骤8之间还设有在所述第一柔性导电基板10或第二柔性导电基板20上涂布导电胶的步骤。
步骤9、如图8A与图8B所示,在所述第一双面胶带85与第二双面胶带86的内侧,沿所述数圈边框胶30的外围对所述贴合面板91进行切割,得到数个柔性空盒92。
可选地,所述步骤9中,采用激光对所述贴合面板91进行切割。
具体地,所述步骤9中,由于在所述第一双面胶带85与第二双面胶带86的内侧,由于所述第一柔性导电基板10与所述第一硬质基板81之间以及所述第二柔性导电基板20与所述第二硬质基板82之间均呈分离状态,因此经过切割后,所述第一柔性导电基板10与所述第一硬质基板81自然分离,所述第二柔性导电基板20与所述第二硬质基板82自然分离,从而得到数个柔性空盒92。
步骤10、如图9所示,将液晶材料40从所述边框胶30的非闭合区域注入所述柔性空盒92中,并对所述边框胶30的非闭合区域进行密封,得到柔性液晶盒,在所述柔性液晶盒的第一柔性导电基板10的外表面贴附第一偏光片61或第一防UV保护膜71,在所述柔性液晶盒的第二柔性导电基板20的外表面贴附第二偏光片62或第二防UV保护膜72,得到柔性液晶显示装置。
优选地,所述步骤10中,将液晶材料40注入所述柔性空盒92中之前,对所述柔性空盒92进行抽真空,以加速液晶材料40灌入。
可选地,所述步骤10中,采用UV胶对所述边框胶30的非闭合区域进行密封,并对所述UV胶进行UV照射以使其固化。
优选地,所述步骤10中,在贴附偏光片或防UV保护膜之前,将所述柔性液晶盒放置于光台下检查外观,使用测试设备测试所述柔性液晶盒的电性能。
优选地,所述步骤10还包括:对所述柔性液晶显示装置进行偏光片或者防UV保护膜的脱泡处理。可选地,所述步骤10还包括:对所述柔性液晶显示装置的成品进行包装及入库处理。
可选地,所述第一硬质基板81与第二硬质基板82均为玻璃基板。可选地,所述第一柔性衬底111与第二柔性衬底211的材料包括PET(聚对苯二甲酸乙二酯)、TAC(三醋酸纤维素)和PC(聚碳酸酯)等材质中的一种或多种。可选地,所述第一电极113与第二电极213的材料包括钼(Mo)、铝(Al)、 铜(Cu)、钛(Ti)、铬(Cr)和银(Ag)中的至少一种。
具体地,所述母球51的材料可以为无机物或者有机物,可选地,所述无机物为硅,所述有机物为聚合物。
具体地,所述液晶材料40为非二色性染料正性液晶、非二色性染料负性液晶、正性二色性染料液晶或负性二色性染料液晶。
具体地,所述柔性液晶显示装置还包括贴附于所述第一柔性导电基板10远离所述液晶材料40一侧的第一偏光片61或第一防UV保护膜71以及设于所述第二柔性导电基板20远离所述液晶材料40一侧的第二偏光片62或第二防UV保护膜72。
具体地,所述液晶材料40为正性二色性染料液晶或负性二色性染料液晶时,所述柔性液晶显示装置两侧不需要设置偏光片,分别设置第一防UV保护膜71与第二防UV保护膜72即可。
具体地,所述液晶材料40为非二色性染料正性液晶或非二色性染料负性液晶时,需要在所述柔性液晶显示装置两侧分别设置第一防UV保护膜71与第二防UV保护膜72。
具体地,本申请的柔性液晶显示装置中的边框胶30、第一配向膜114和第二配向膜214选用的材料均为固化温度在100℃~150℃的材料,由于所述第一柔性衬底111与第二柔性衬底211一般为PC、PET和TAC等材料,能承受的最高温度在100℃~150℃之间,因此本申请采用的边框胶30、第一配向膜114和第二配向膜214的固化温度不会对第一柔性衬底111与第二柔性衬底211造成损伤。
本申请选择在贴合工艺之前去除第一UV可剥胶膜83与第二UV可剥胶膜84,改为分别在第一柔性导电膜11与第一硬质基板81之间的边缘位置以及第二柔性导电膜21与第二硬质基板82之间的边缘位置分别设置第一双面胶带85与第二双面胶带86,原因如下:
在大部分情况下,UV可剥胶膜在受到UV光照射后,其粘性并不能完全消失,也即是说仍然具有一定粘合力,在这种情况下,将柔性导电基板与硬质基板分离,相当于将一张柔性膜从一块硬质基板上撕离,这种操作相对比较容易实现。
反之,如果在上下基板贴合之后,再想把第一硬质基板81和第二硬质基板82从液晶盒的两侧去除,这种操作的难度是相当大的,这就相当于将两块粘合在一起的硬质基板掰开,需要的掰扯的力度非常大,另外还会对中间的液晶盒造成损伤,造成液晶盒质量下降或者不能使用。
另外,在贴合工艺之后,由于第一柔性导电膜11与第二柔性导电膜21通过边框胶30固定在一起,并且二者之间注有液晶材料40,因此在受热时形变比例相同,不易出现鼓泡现象。
优选地,所述边框胶30为具备可弯曲和可拉伸特性的环氧树脂边框胶。
传统的柔性LCD生产制程通常使用普通的环氧树脂边框胶,这种环氧树脂边框胶具有较强的脆性,在柔性LCD的弯曲或扭曲过程中容易出现上下基板之间的环氧树脂边框胶开裂导致液晶漏出的现象。本申请通过选用具备可弯曲和可拉伸特性的环氧树脂边框胶,固化后的边框胶30可弯曲可拉伸,在柔性LCD的弯曲过程中边框胶30完好不开裂,能够避免柔性LCD在弯曲时出现边框胶30破裂导致液晶漏出的现象,提升柔性LCD的质量和使用寿命。
该实施例1的柔性液晶显示装置的制作方法的优点包括:
1)通过在贴合工艺之前,利用UV可剥胶膜将柔性导电膜整面粘合于硬质基板上,能够避免在与液体接触的制程中柔性导电膜与硬质基板之间进入液体,并且能够避免在加热制程中柔性导电膜中间鼓起导致液晶盒厚不均匀。
2)通过在上下基板之间设置具有粘性的间隔粒子50,能够避免柔性液晶显示装置在弯曲或扭曲时出现因间隔粒子50移动造成的盒厚不均问题,提升柔性液晶显示装置的质量与使用寿命。另外,还通过选择具有较低固化温度的边框胶材料与配向膜材料,保证边框胶30、第一配向膜114和第二配向膜 214固化时不会对上下基板的柔性衬底造成损伤。通过选用具备可弯曲和可拉伸特性的环氧树脂边框胶,能够避免柔性LCD在弯曲时出现边框胶30破裂导致液晶漏出的现象。
3)制得的柔性液晶显示装置还具有重量轻、厚度薄、可弯曲和耐压不易碎等优点。
实施例2
请参阅图10A至图10D,同时参阅图2A至图9,该实施例2提供一种柔性液晶显示装置的制作方法,包括:
步骤1’、如图10A、图10B、图10C以及图10D所示,提供第一柔性导电膜11与第二柔性导电膜21,所述第一柔性导电膜11包括第一柔性衬底111与设于所述第一柔性衬底111上的第一导电层112,所述第二柔性导电膜21包括第二柔性衬底211与设于所述第二柔性衬底211上的第二导电层212。
对所述第一导电层112与第二导电层212分别进行图形化处理,得到第一电极113与第二电极213。
所述步骤1’在卷轴生产线上流水作业完成,所述卷轴生产线上设有相对设置的放卷轴与收卷轴以及设于所述放卷轴与收卷轴之间配置成承托物料的承载轴,所述放卷轴与收卷轴配置成对生产使用的柔性原料以及生产过程中的柔性半成品进行放料或者收料。
步骤2’、请参阅图2A与图2B,提供第一硬质基板81、第二硬质基板82、第一UV可剥胶膜83以及第二UV可剥胶膜84。
所述第一UV可剥胶膜83与第二UV可剥胶膜84均具有双面粘性,并且所述第一UV可剥胶膜83与第二UV可剥胶膜84均具有在受到UV照射后粘性降低或者消失的特性。
利用所述第一UV可剥胶膜83将所述第一柔性导电膜11粘合于所述第一硬质基板81上,利用所述第二UV可剥胶膜84将所述第二柔性导电膜21粘合于所述第二硬质基板82上。
所述第一柔性导电基板10与第二柔性导电基板20具有相对应的加工区域,所述加工区域即用来制作柔性液晶显示装置的区域。
所述第一UV可剥胶膜83至少将所述第一柔性导电膜11的加工区域整面粘合于所述第一硬质基板81上,所述第二UV可剥胶膜84至少将所述第二柔性导电膜21的加工区域整面粘合于所述第二硬质基板82上。
可选地,所述第一UV可剥胶膜83将所述第一柔性导电膜11的所有区域整面粘合于所述第一硬质基板81上,所述第二UV可剥胶膜84将所述第二柔性导电膜21的所有区域整面粘合于所述第二硬质基板82上。
步骤3’、请参阅图3A与图3B,在所述第一柔性导电膜11上设有第一电极113的一侧形成第一配向膜114,得到第一柔性导电基板10;在所述第二柔性导电膜21上设有第二电极213的一侧形成第二配向膜214,得到第二柔性导电基板20。
步骤4’、请参阅图4A与图4B,对所述第一UV可剥胶膜83与第二UV可剥胶膜84分别进行UV照射,使所述第一UV可剥胶膜83与第二UV可剥胶膜84的粘性降低或者消失。
使所述第一柔性导电基板10与所述第一硬质基板81分离,所述第二柔性导电基板20与所述第二硬质基板82分离。
步骤5’、请参阅图5A与图5B,利用第一双面胶带85将所述第一柔性导电基板10粘合于所述第一硬质基板81上,所述第一双面胶带85设于所述第一柔性导电基板10与所述第一硬质基板81之间的边缘位置;利用第二双面胶带86将所述第二柔性导电基板20粘合于所述第二硬质基板82上,所述第二双面胶带86设于所述第二柔性导电基板20与所述第二硬质基板82之间的边缘位置。
步骤6’、请参阅图6A与图6B,在所述第一柔性导电基板10或第二柔性导电基板20上涂布数圈边框胶30,对所述数圈边框胶30进行预固化。
所述数圈边框胶30均分布于所述第一双面胶带85与第二双面胶带86的内侧,并且所述数圈边框胶30均为非闭合结构。
在所述第二柔性导电基板20或第一柔性导电基板10上对应于所述边框胶30的内侧设置间隔粒子50,所述间隔粒子50包括母球51以及包裹于所述母球51外表面的粘胶层52。
步骤7’、请参阅图7,采用片对片贴合工艺对所述第一柔性导电基板10与第二柔性导电基板20进行贴合,所述第一柔性导电基板10与第二柔性导电基板20在所述边框胶30的作用下粘接在一起,所述间隔粒子50的两侧分别粘结于所述第一柔性导电膜11与所述第二柔性导电膜21的表面,得到贴合面板91。
步骤8’、对所述贴合面板91中的边框胶30进行固化。
步骤9’、请参阅图8A与图8B,在所述第一双面胶带85与第二双面胶带86的内侧,沿所述数圈边框胶30的外围对所述贴合面板91进行切割,得到数个柔性空盒92。
步骤10’、请参阅图9,将液晶材料40从所述边框胶30的非闭合区域注入所述数个柔性空盒92中,并对所述边框胶30的非闭合区域进行密封,得到柔性液晶盒,在每个柔性液晶盒的第一柔性导电基板10的外表面贴附第一偏光片61或第一防UV保护膜71,在每个柔性液晶盒的第二柔性导电基板20的外表面贴附第二偏光片62或第二防UV保护膜72,得到数个柔性液晶显示装置。
具体地,该实施例2与实施例1中,相对应的制程可采用相同的工艺实现。
除了具备上述实施例1的柔性液晶显示装置的制作方法的优点外,该实施例1的柔性液晶显示装置的制作方法的优点还包括:
1)提供了一种通过对卷轴生产工艺(步骤1’)与片对片贴合工艺(步骤1’之后)进行结合来制作柔性液晶显示装置的生产工艺。
2)能够利用卷轴生产工艺效率高的优点提高柔性液晶显示装置的生产效率,实现大批量生产。

Claims (10)

  1. 一种柔性液晶显示装置的制作方法,其特征在于,包括:
    步骤1、提供第一柔性导电膜、第二柔性导电膜、第一硬质基板、第二硬质基板、第一UV可剥胶膜以及第二UV可剥胶膜;
    所述第一柔性导电膜包括第一柔性衬底与设于所述第一柔性衬底上的第一导电层,所述第二柔性导电膜包括第二柔性衬底与设于所述第二柔性衬底上的第二导电层;
    所述第一UV可剥胶膜与第二UV可剥胶膜均具有双面粘性,并且所述第一UV可剥胶膜与第二UV可剥胶膜均具有在受到UV照射后粘性降低或者消失的特性;
    利用所述第一UV可剥胶膜将所述第一柔性导电膜粘合于所述第一硬质基板上,利用所述第二UV可剥胶膜将所述第二柔性导电膜粘合于所述第二硬质基板上;
    所述第一柔性导电膜与第二柔性导电膜具有相对应的加工区域,所述加工区域即用来制作柔性液晶显示装置的区域;
    所述第一UV可剥胶膜至少将所述第一柔性导电膜的加工区域整面粘合于所述第一硬质基板上,所述第二UV可剥胶膜至少将所述第二柔性导电膜的加工区域整面粘合于所述第二硬质基板上;
    步骤2、对所述第一导电层与所述第二导电层分别进行图形化处理,得到第一电极与第二电极;
    步骤3、在所述第一柔性导电膜上设有第一电极的一侧形成第一配向膜,得到第一柔性导电基板,所述第一柔性导电基板包括第一柔性衬底、第一电极以及第一配向膜;在所述第二柔性导电膜上设有第二电极的一侧形成第二配向膜,得到第二柔性导电基板,所述第二柔性导电基板包括第二柔性衬底、第二电极以及第二配向膜;
    步骤4、对所述第一UV可剥胶膜与第二UV可剥胶膜分别进行UV照射,使所述第一UV可剥胶膜与第二UV可剥胶膜的粘性降低或者消失;
    使所述第一柔性导电基板与所述第一硬质基板分离,所述第二柔性导电基板与所述第二硬质基板分离;
    步骤5、利用第一双面胶带将所述第一柔性导电基板粘合于所述第一硬质基板上,所述第一双面胶带设于所述第一柔性导电基板与所述第一硬质基板之间的边缘位置;利用第二双面胶带将所述第二柔性导电基板粘合于所述第二硬质基板上,所述第二双面胶带设于所述第二柔性导电基板与所述第二硬质基板之间的边缘位置;
    步骤6、在所述第一柔性导电基板或第二柔性导电基板上涂布数圈边框胶,对所述数圈边框胶进行预固化;
    所述数圈边框胶均分布于所述第一双面胶带与第二双面胶带的内侧,并且所述数圈边框胶均为非闭合结构;
    在所述第二柔性导电基板或第一柔性导电基板上对应于所述边框胶的内侧设置间隔粒子,所述间隔粒子包括母球以及包裹于所述母球外表面的粘胶层;
    步骤7、采用片对片贴合工艺对所述第一柔性导电基板与第二柔性导电基板进行贴合,所述第一柔性导电基板与第二柔性导电基板在所述边框胶的作用下粘接在一起,所述间隔粒子的两侧分别粘结于所述第一柔性导电膜与所述第二柔性导电膜的表面,得到贴合面板;
    步骤8、对所述贴合面板中的边框胶进行固化;
    步骤9、在所述第一双面胶带与第二双面胶带的内侧,沿所述数圈边框胶的外围对所述贴合面 板进行切割,得到数个柔性空盒;
    步骤10、将液晶材料从所述边框胶的非闭合区域注入所述柔性空盒中,并对所述边框胶的非闭合区域进行密封,得到柔性液晶盒,在所述柔性液晶盒的第一柔性导电基板的外表面贴附第一偏光片或第一防UV保护膜,在所述柔性液晶盒的第二柔性导电基板的外表面贴附第二偏光片或第二防UV保护膜,得到柔性液晶显示装置。
  2. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述第一配向膜与第二配向膜的制备工艺包括:首先在所述第一柔性导电膜与第二柔性导电膜上涂布配向材料,对所述配向材料进行预固化以去除溶剂,之后进行固化以使所述配向材料交联聚合,分别形成第一聚合物膜与第二聚合物膜,对所述第一聚合物膜与第二聚合物膜分别进行配向处理后,形成第一配向膜与第二配向膜。
  3. 如权利要求2所述的柔性液晶显示装置的制作方法,其特征在于,所述配向材料包括聚酰亚胺,所述预固化的温度为60℃~80℃,所述固化的温度为100℃~150℃,所述配向处理为摩擦配向或者光配向。
  4. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述间隔粒子表面的粘胶层在60℃~120℃加热前不具有粘性,60℃~120℃加热之后具有粘性;
    所述步骤6中,将所述间隔粒子喷洒在所述第二柔性导电基板上后,对所述第二柔性导电基板进行加热处理,使所述粘胶层具有粘性,加热处理温度为60℃~120℃。
  5. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述步骤6中,采用加热的方法对所述数圈边框胶进行预固化,加热温度为60℃~80℃;
    所述步骤8中,采用加热的方法对所述贴合面板中的边框胶进行固化,加热温度为100℃~150℃。
  6. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述片对片贴合工艺包括:分别从所述第一硬质基板81与第二硬质基板82的外侧施加压力,促进所述第一柔性导电基板10与第二柔性导电基板20贴合。
  7. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述步骤9中,采用激光对所述贴合面板进行切割。
  8. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述步骤10中,采用UV胶对所述边框胶的非闭合区域进行密封,并对所述UV胶进行UV照射以使其固化。
  9. 如权利要求1所述的柔性液晶显示装置的制作方法,其特征在于,所述第一柔性衬底与第二柔性衬底的材料包括聚对苯二甲酸乙二酯、三醋酸纤维素和聚碳酸酯中的一种或多种;
    所述第一电极与第二电极的材料包括钼、铝、铜、钛、铬和银中的至少一种;
    所述液晶材料为非二色性染料正性液晶、非二色性染料负性液晶、正性二色性染料液晶或负性二色性染料液晶。
  10. 一种柔性液晶显示装置的制作方法,其特征在于,包括:
    步骤1’、提供第一柔性导电膜与第二柔性导电膜,所述第一柔性导电膜包括第一柔性衬底与设于所述第一柔性衬底上的第一导电层,所述第二柔性导电膜包括第二柔性衬底与设于所述第二柔性衬底上的第二导电层;
    对所述第一导电层与第二导电层分别进行图形化处理,得到第一电极与第二电极;
    所述步骤1’在卷轴生产线上流水作业完成,所述卷轴生产线上设有相对设置的放卷轴与收卷轴以及设于所述放卷轴与收卷轴之间配置成承托物料的承载轴,所述放卷轴与收卷轴配置成对生 产使用的柔性原料以及生产过程中的柔性半成品进行放料或者收料;
    步骤2’、提供第一硬质基板、第二硬质基板、第一UV可剥胶膜以及第二UV可剥胶膜;
    所述第一UV可剥胶膜与第二UV可剥胶膜均具有双面粘性,并且所述第一UV可剥胶膜与第二UV可剥胶膜均具有在受到UV照射后粘性降低或者消失的特性;
    利用所述第一UV可剥胶膜将所述第一柔性导电膜粘合于所述第一硬质基板上,利用所述第二UV可剥胶膜将所述第二柔性导电膜粘合于所述第二硬质基板上;
    所述第一柔性导电基板与第二柔性导电基板具有相对应的加工区域,所述加工区域即用来制作柔性液晶显示装置的区域;
    所述第一UV可剥胶膜至少将所述第一柔性导电膜的加工区域整面粘合于所述第一硬质基板上,所述第二UV可剥胶膜至少将所述第二柔性导电膜的加工区域整面粘合于所述第二硬质基板上;
    步骤3’、在所述第一柔性导电膜上设有第一电极的一侧形成第一配向膜,得到第一柔性导电基板;在所述第二柔性导电膜上设有第二电极的一侧形成第二配向膜,得到第二柔性导电基板;
    步骤4’、对所述第一UV可剥胶膜与第二UV可剥胶膜分别进行UV照射,使所述第一UV可剥胶膜与第二UV可剥胶膜的粘性降低或者消失;
    使所述第一柔性导电基板与所述第一硬质基板分离,所述第二柔性导电基板与所述第二硬质基板分离;
    步骤5’、利用第一双面胶带将所述第一柔性导电基板粘合于所述第一硬质基板上,所述第一双面胶带设于所述第一柔性导电基板与所述第一硬质基板之间的边缘位置;利用第二双面胶带将所述第二柔性导电基板粘合于所述第二硬质基板上,所述第二双面胶带设于所述第二柔性导电基板与所述第二硬质基板之间的边缘位置;
    步骤6’、在所述第一柔性导电基板或第二柔性导电基板上涂布数圈边框胶,对所述数圈边框胶进行预固化;
    所述数圈边框胶均分布于所述第一双面胶带与第二双面胶带的内侧,并且所述数圈边框胶均为非闭合结构;
    在所述第二柔性导电基板或第一柔性导电基板上对应于所述边框胶的内侧设置间隔粒子,所述间隔粒子包括母球以及包裹于所述母球外表面的粘胶层;
    步骤7’、采用片对片贴合工艺对所述第一柔性导电基板与第二柔性导电基板进行贴合,所述第一柔性导电基板与第二柔性导电基板在所述边框胶的作用下粘接在一起,所述间隔粒子的两侧分别粘结于所述第一柔性导电膜与所述第二柔性导电膜的表面,得到贴合面板;
    步骤8’、对所述贴合面板中的边框胶进行固化;
    步骤9’、在所述第一双面胶带与第二双面胶带的内侧,沿所述数圈边框胶的外围对所述贴合面板进行切割,得到数个柔性空盒;
    步骤10’、将液晶材料从所述边框胶的非闭合区域注入所述数个柔性空盒中,并对所述边框胶的非闭合区域进行密封,得到柔性液晶盒,在每个柔性液晶盒的第一柔性导电基板的外表面贴附第一偏光片或第一防UV保护膜,在每个柔性液晶盒的第二柔性导电基板的外表面贴附第二偏光片或第二防UV保护膜,得到数个柔性液晶显示装置。
PCT/CN2018/122179 2018-11-07 2018-12-19 柔性液晶显示装置的制作方法 WO2020093541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811317652.2 2018-11-07
CN201811317652.2A CN109192077B (zh) 2018-11-07 2018-11-07 柔性液晶显示装置的制作方法

Publications (1)

Publication Number Publication Date
WO2020093541A1 true WO2020093541A1 (zh) 2020-05-14

Family

ID=64942174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122179 WO2020093541A1 (zh) 2018-11-07 2018-12-19 柔性液晶显示装置的制作方法

Country Status (2)

Country Link
CN (1) CN109192077B (zh)
WO (1) WO2020093541A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11960173B1 (en) * 2019-02-15 2024-04-16 Apple Inc. Switchable panel with tension control components

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724676B (zh) * 2019-03-21 2022-09-02 昆山工研院新型平板显示技术中心有限公司 可拉伸导线及其制作方法和显示装置
CN110189634B (zh) * 2019-05-27 2021-04-27 武汉华星光电半导体显示技术有限公司 一种柔性显示装置
CN110908534B (zh) * 2019-10-18 2023-10-13 Tcl华星光电技术有限公司 一种电极层保护结构及其保护方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738774A (zh) * 2008-11-06 2010-06-16 北京海维元电子有限公司 超薄柔性液晶显示器及其制造方法
US20110027551A1 (en) * 2009-08-03 2011-02-03 Industrial Technology Research Institute Substrate structures applied in flexible electrical devices and fabrication method thereof
CN102736322A (zh) * 2011-04-06 2012-10-17 陈国平 柔性基板lcd的制作方法及其柔性基板lcd
CN103091888A (zh) * 2012-09-26 2013-05-08 友达光电股份有限公司 制作显示面板的方法
CN103246177A (zh) * 2013-05-03 2013-08-14 中山新诺科技有限公司 一种柔性面板连续无掩膜光刻方法及用于该方法的装置
CN104375337A (zh) * 2014-04-02 2015-02-25 中能柔性光电(滁州)有限公司 一种柔性液晶屏及其切割制造方法
CN105137634A (zh) * 2015-08-05 2015-12-09 深圳市华星光电技术有限公司 柔性显示面板的制作方法以及用于其制作的基板组件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042340A (ja) * 1999-08-03 2001-02-16 Minolta Co Ltd 液晶表示素子の製造方法
KR101276750B1 (ko) * 2008-12-04 2013-06-19 엘지디스플레이 주식회사 플렉시블 액정표시장치 및 그 제조방법
CN102436089A (zh) * 2011-08-19 2012-05-02 天马微电子股份有限公司 一种柔性基板强化方法及柔性强化基板
KR102107170B1 (ko) * 2013-08-09 2020-05-07 삼성디스플레이 주식회사 표시장치
CN103456900B (zh) * 2013-08-20 2016-07-06 Tcl集团股份有限公司 柔性显示装置的制造方法
CN103681486B (zh) * 2013-12-06 2018-07-17 京东方科技集团股份有限公司 一种柔性显示基板的制造方法
CN203799158U (zh) * 2014-03-31 2014-08-27 中能柔性光电(滁州)有限公司 一种高密封强度的柔性液晶盒
KR102353801B1 (ko) * 2015-02-23 2022-01-21 삼성디스플레이 주식회사 표시 패널 어셈블리
CN106530972B (zh) * 2016-12-20 2017-12-29 深圳市华星光电技术有限公司 柔性阵列基板的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738774A (zh) * 2008-11-06 2010-06-16 北京海维元电子有限公司 超薄柔性液晶显示器及其制造方法
US20110027551A1 (en) * 2009-08-03 2011-02-03 Industrial Technology Research Institute Substrate structures applied in flexible electrical devices and fabrication method thereof
CN102736322A (zh) * 2011-04-06 2012-10-17 陈国平 柔性基板lcd的制作方法及其柔性基板lcd
CN103091888A (zh) * 2012-09-26 2013-05-08 友达光电股份有限公司 制作显示面板的方法
CN103246177A (zh) * 2013-05-03 2013-08-14 中山新诺科技有限公司 一种柔性面板连续无掩膜光刻方法及用于该方法的装置
CN104375337A (zh) * 2014-04-02 2015-02-25 中能柔性光电(滁州)有限公司 一种柔性液晶屏及其切割制造方法
CN105137634A (zh) * 2015-08-05 2015-12-09 深圳市华星光电技术有限公司 柔性显示面板的制作方法以及用于其制作的基板组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11960173B1 (en) * 2019-02-15 2024-04-16 Apple Inc. Switchable panel with tension control components

Also Published As

Publication number Publication date
CN109192077B (zh) 2019-09-03
CN109192077A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020093541A1 (zh) 柔性液晶显示装置的制作方法
JP5218802B1 (ja) 画像表示装置の製造方法
JP5138820B1 (ja) 画像表示装置の製造方法
US10274768B2 (en) Display apparatus and method of manufacturing the same
EP3196018B1 (en) Substrate bonding method
US8246894B2 (en) Flexible substrate, method of manufacturing display substrate, and method of manufacturing display panel
WO2021004051A1 (zh) 显示模组、显示装置及制备方法
JP2018124566A (ja) 片面型薄型偏光板の製造方法
TWI616706B (zh) 顯示面板製造方法與系統
WO2016112595A1 (zh) Oled器件及其封装方法和封装装置
US9759859B2 (en) Display device and manufacturing method thereof
JP5399805B2 (ja) 表示装置
JPH11174435A (ja) 液晶表示装置の製造方法
JP2011033912A5 (zh)
WO2010109682A1 (ja) 表示装置の製造方法
JP4685256B2 (ja) プラスチック液晶パネルの製造方法
JP2016147737A (ja) 積層フィルムの剥離方法、及び機能性フィルムの製造方法
JP2014081642A (ja) 画像表示装置の製造方法
JP4999836B2 (ja) 表示パネルの製造方法
JP5440725B2 (ja) 画像表示装置の製造方法
JP2000241823A (ja) 液晶パネルの製造方法
CN112162437B (zh) 液晶面板光路加强板及精密加工工艺
WO2017185825A1 (zh) 面板及其加工方法
JP4685853B2 (ja) プラスチック液晶パネルの製造方法
TWI572488B (zh) 防塵薄膜組件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939385

Country of ref document: EP

Kind code of ref document: A1