WO2017185825A1 - 面板及其加工方法 - Google Patents

面板及其加工方法 Download PDF

Info

Publication number
WO2017185825A1
WO2017185825A1 PCT/CN2017/070369 CN2017070369W WO2017185825A1 WO 2017185825 A1 WO2017185825 A1 WO 2017185825A1 CN 2017070369 W CN2017070369 W CN 2017070369W WO 2017185825 A1 WO2017185825 A1 WO 2017185825A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electric field
region
sealant
curing
Prior art date
Application number
PCT/CN2017/070369
Other languages
English (en)
French (fr)
Inventor
周晓东
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/545,095 priority Critical patent/US10564451B2/en
Publication of WO2017185825A1 publication Critical patent/WO2017185825A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1357Electrode structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present disclosure relates to the field of liquid crystal display technologies, and in particular, to a panel and a method of processing the panel.
  • the manufacturing process of the display product it is often necessary to bond the two substrates disposed in the opposite direction or to bond by the bonding material, and then perform the preset process and then separate.
  • the yield of the product is likely to be lowered.
  • the ultra-thin substrate attached to the carrier substrate is separated, the ultra-thin substrate is damaged, and the liquid crystal material is damaged by the ultraviolet-curable adhesive material, and the heat-curing adhesive is used. Long process time, etc.
  • the present disclosure provides a method for processing a panel and a panel, which can improve the curing effect and reduce adverse effects on the substrate or other mechanisms of the display.
  • the panel provided by the present disclosure includes a first substrate and a second substrate disposed opposite to each other, the first substrate including an electric field curing region coated with an electric field cured product; and between the first substrate and the second substrate An electric field cured product is disposed at a position corresponding to the electric field solidification region; the electric field cured product can be cured and/or decomposed by an electric field.
  • the electric field cured product can be solidified in an electric field in a first direction, and/or the electric field cured product can be decomposed in a reverse electric field in a first direction.
  • an electrode is disposed in the electric field curing region for generating the electric field.
  • the first substrate is a carrier substrate; the second substrate is an ultra-thin substrate; and the carrier substrate is used to carry the ultra-thin substrate during an ultra-thin substrate fabrication process.
  • the electric field curing region is an entire area on one side of the carrier substrate.
  • the first substrate is a display substrate
  • the electric field curing region is a sealant region for setting a sealant
  • the sealant region is provided with an electrode
  • the electrode is a plurality of spaced electrode blocks.
  • the electrodes are continuous strip electrodes.
  • the width of the electrode is smaller than the width of the sealant region.
  • the width of the electrode is 5%-95% of the width of the sealant region.
  • an electrode is disposed in a region of the second substrate opposite to the sealant region for cooperating with an electrode on the sealant region to generate an electric field to cure the electric field cured product.
  • the frame sealant further comprises a heat curing material.
  • the electric field cured product is a carbene polymer.
  • the present disclosure provides a method of processing a panel, the method comprising: providing an electric field between a first substrate and a second substrate disposed in a pair of the panels included in the panel, such that the first substrate and the first An electric field cured product between the two substrates is cured by the electric field; wherein the first substrate includes an electric field curing region coated with an electric field cured product; and the electric field cured product is disposed at a position corresponding to the electric field solidified region position.
  • the first substrate is a display substrate
  • the electric field curing region is a sealant region for setting a sealant
  • the sealant region is provided with the electrode
  • the first Providing an electric field between the substrate and the second substrate to cure the electric field cured body includes: applying a voltage to the electrode, forming an electric field between the electrode on the first substrate and the second substrate, such that the seal The frame glue is cured.
  • the sealant further comprises a heat curing material, the method further comprising:
  • the sealant is heated.
  • the first substrate is a carrier substrate
  • the second substrate is an ultra-thin substrate
  • the electric field cured product is cured by an electric field in a first direction such that the ultrathin substrate is fixed on the carrier substrate.
  • the method further includes: performing a predetermined processing process on the ultra-thin substrate; decomposing the electric field cured material by using a reverse electric field in a first direction, so that the ultra-thin substrate can be combined with the carrier The substrate is separated.
  • the ultra-thin substrate is cleaned.
  • the electric field in the first direction and the reverse electric field in the first direction are respectively applied to the electrode by a voltage between 0 and 20 V.
  • the electric field duration in the first direction is T1; the reverse electric field duration in the first direction is T2, where 0 ⁇ T1 ⁇ 60s, 0 ⁇ T2 ⁇ 120s.
  • the thickness of the electric field cured product ranges from 10 to 300 ⁇ m.
  • the panel and the processing method thereof provided by the present disclosure use the electric field cured material to laminate the first substrate and the second substrate, thereby simplifying the process of curing the electric field cured material and the decomposition between the bonded substrates.
  • the electric field required for curing and decomposition does not adversely affect the liquid crystal material in the product, thereby ensuring the quality of the liquid crystal product; in addition, curing using an electric field can prevent damage to the cured panel due to curing.
  • the electric field cured product in the embodiment of the present disclosure can be cured or decomposed in an electric field, so that it can be applied to a product manufacturing process in which a substrate needs to be fixed or a substrate needs to be separated.
  • FIG. 1A is a schematic structural view of a carrier substrate according to an embodiment of the present disclosure
  • FIG. 1B is a schematic structural view of an electrode on a carrier substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a display substrate according to an embodiment of the present disclosure
  • 3A is a schematic diagram of a first substrate and a second substrate disposed in an embodiment of the present disclosure
  • 3B is a schematic view showing another direction of the first substrate and the second substrate disposed in an embodiment of the present disclosure
  • FIG. 4 is a schematic flow chart of a processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flow chart of a processing method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic view showing the bonding of a carrier substrate and an ultra-thin substrate according to an embodiment of the present disclosure.
  • the present disclosure firstly provides a panel comprising a first substrate and a second substrate disposed opposite to each other, the first substrate comprising an electric field curing region coated with an electric field cured product; between the first substrate and the second substrate, An electric field cured product is disposed at a position corresponding to the electric field solidification region; the electric field cured product can be cured and/or decomposed by an electric field (or a magnetic field). Alternatively, the electric field cured product can be solidified in an electric field in a first direction, and/or the electric field cured product can be decomposed in a reverse electric field in a first direction.
  • the panel provided by the present disclosure includes an electric field curing region for coating an electric field cured product, so that when the first substrate is bonded to the second substrate, it can be bonded by an electric field cured product.
  • the electric field does not adversely affect other mechanisms of the panel, thereby avoiding adverse effects on the quality of the display product due to the environment during curing or adhesive decomposition.
  • the electric field curing region may be any region on the substrate.
  • an electric field required to cure the electric field cured product may be generated by an electrode disposed on the first substrate and/or the second substrate, or may be generated by an electric field other than the first substrate and the second substrate. Institutional production.
  • the first substrate is a carrier substrate; the electric field cured product can be solidified in a first electric field and can be decomposed in a reverse electric field of a first electric field; the second substrate is ultra-thin a substrate; the carrier substrate is used to carry the ultra-thin substrate during fabrication of the ultra-thin substrate; the electric field cured product can be decomposed in a reverse electric field in a first direction.
  • the ultra-thin substrate represents a substrate whose thickness is less than a certain thickness threshold, and those skilled in the art can determine the thickness threshold according to practical applications.
  • ultra-thin substrate manufacturing process since the thickness is very thin, the ultra-thin substrate can be attached to the carrier substrate first, and the existing production line can be put into the existing production line. After the process is completed, the ultra-thin substrate is divided. Therefore, the damage of the ultra-thin substrate is liable to occur during the lamination and separation process, and the product yield is lowered.
  • the current carrier substrate is generally made of a thick glass material, and there is a strong force between the ultra-thin substrate and the carrier substrate, especially after the high-temperature treatment process, the force is increased to make the two substrates inseparable. degree.
  • the related art solution is to sputter or coat a thin layer of ITO (indium tin oxide) or other film on the carrier substrate, but the actual test effect is not too good. Ideally, the process of substrate separation is complicated and the yield is low.
  • the bonding layer material between the carrier substrate and the ultra-thin substrate is an electric field curing material, and the material is cured and decomposed under the action of an electric field, and the ultra-thin substrate is easily realized.
  • the laminating separation process has low technical process difficulty, controllable curing and separation effects, and can effectively improve the yield of the ultra-thin substrate related process.
  • the electric field curing region is an arbitrary region on the carrier substrate 101.
  • the electric field curing region is the substrate peripheral region; or the electric field curing region is the entire region on the substrate side.
  • the electric field curing region is an entire region on one side of the carrier substrate.
  • an electrode 102 is disposed in the electric field curing region for generating an electric field, which may cause the electric field cured material to solidify.
  • the electrode may be in the shape of a comb as shown in FIGS. 1A and 1B, or may have other shapes.
  • the electrode 102 includes a set of positive electrodes and a set of negative electrodes, both of which are comb-shaped as shown in FIGS. 1A and 1B, on the carrier substrate.
  • the staggered arrangement on 101 has a certain interval between the positive electrode and the negative electrode, so that an electric field can be generated within the range covered by the electrode 102.
  • the electrode can be fabricated from ITO.
  • the first substrate is a display substrate 201
  • the electric field curing region is a sealant region 202 for setting a sealant, the sealant region 202.
  • An electrode 203 is provided.
  • the sealant region 202 is located outside the display area of the display substrate 201.
  • the curing method of the frame sealant used in the LCD (Liquid Crystal Display) mass production process is UV (Ultraviolet) curing and heat curing, and the two curing processes respectively use UV curing glue and heat curing glue.
  • the two curing processes are simultaneously used in actual production, pre-curing is completed by UV curing, and fully cured by heat curing.
  • the advantage of UV curing is that the curing speed of the UV material is fast.
  • the disadvantage is that the curing effect is affected by the uniformity of the UV light source and the aperture ratio, and the ultraviolet light used in the curing process may damage the LC (Liquid Crystal) material;
  • the advantage of thermal curing is The curing effect is good, the strength is high, and there is no influence on the LC material, but the long process time is an important link that restricts the production efficiency.
  • a sealant region for setting a sealant is disposed on the first substrate, the sealant includes an electric field cured product, and an electrode is disposed in the sealant region to enable subsequent During the process, the electric field curing frame sealant can be used to reduce the influence of the conventional frame sealant curing process on the liquid crystal molecules. At the same time, the electric field curing can make the frame sealant cure more quickly and thoroughly.
  • the uncured complete upper substrate and the lower substrate are first moved to the curing region for curing. In the moving process, the sealing material is uncured, which tends to cause misalignment of the substrate and affect the matching effect. And the quality of the final product.
  • the electrode is disposed in the sealant region, and after the step of the blending step is completed, the electric field can be immediately energized to pre-cure the sealant, so that the mated substrate is less likely to be misaligned during the moving process. Guaranteed the effect of the match.
  • the electrode 203 is a continuous strip electrode as shown in FIG. 2, and may also be a plurality of spaced electrode blocks.
  • the plurality of electrode blocks comprise a positive electrode and a negative electrode which are disposed at intervals.
  • the plurality of electrode blocks may also be electrodes of the same polarity.
  • the electrodes are continuous strip electrodes.
  • the width of the electrode is less than the width of the sealant region such that the electrode does not subsequently affect the normal display of the display.
  • the width of the electrode is 5% to 95% of the width of the sealant region.
  • an electrode is disposed in a region of the second substrate opposite to the sealant region for cooperating with an electrode on the first substrate to generate an electric field to cure the electric field cured product. That is, the structure of the second substrate can be referred to FIG. 2.
  • a panel structure provided by a specific embodiment of the present disclosure includes a first substrate and a second substrate disposed in a pair.
  • the first substrate is an array substrate 301
  • the second substrate is a color filter substrate 302
  • a sealant 303 is disposed between the array substrate 301 and the color filter substrate 302.
  • the sealant 303 includes an electric field cured product.
  • a liquid crystal layer is disposed between the array substrate 301 and the color filter substrate 302 304
  • electrodes 305 are disposed in the frame sealant region of the array substrate 301 and the color filter substrate 302.
  • the electric field cured product is a carbene polymer.
  • a carbene polymer is used as a material of the frame sealant, and the carbene polymer can adhere to the surface of the surrounding substance in an electric field, thereby realizing electric field curing.
  • the time and voltage magnitude of the applied voltage By adjusting the time and voltage magnitude of the applied voltage, the amount of carbene polymer attached to the surrounding material can be controlled. Therefore, after the carbene polymer is added to the sealant, the hardness of the sealant can be controlled by adjusting the voltage to adapt to different needs of different products. Since UV is not used during curing, the electric field does not adversely affect the LC material, thereby ensuring the quality of the LC material in the product.
  • the use of a carbene polymer as an adhesive between the ultra-thin substrate and the carrier substrate for bonding and fixing can also control the hardness of the adhesive by voltage magnitude and application time to adapt to different needs of different product lines;
  • the process is reversible, and the adhesion can be released by applying a reverse voltage, which reduces the damage to the ultra-thin substrate caused by the fixing and separation, and improves the yield of the ultra-thin substrate.
  • the frame sealant used in the panel further includes a heat curing material.
  • a method of processing a panel is also provided, as shown in FIG. 4, the method includes:
  • Step 41 An electric field is provided between the first substrate and the second substrate disposed in the opposite direction included in the panel, so that the electric field cured product between the first substrate and the second substrate is cured by the electric field.
  • the first substrate includes an electric field curing region coated with an electric field cured product; and the electric field cured product is disposed at a position corresponding to the electric field curing region.
  • the panel includes a first substrate and a second substrate disposed opposite to each other, the first substrate is a display substrate 201 as shown in FIG. 2; and an electric field curing region is disposed on the display substrate 201, the electric field
  • the curing region is a sealant region 202 for setting a sealant, and the sealant region 202 is provided with an electrode 203.
  • the sealant is disposed on the sealant region between the first substrate and the second substrate.
  • a voltage is applied to the electrodes to form an electric field between the first substrate and the second substrate such that the sealant is cured.
  • the range of the applied electric field can be adjusted to achieve high uniformity and rapid solidification, so that only a small amount of energy can be used to achieve the curing effect, and the production energy consumption can be reduced to achieve green production.
  • an electrode is also disposed on the second substrate, and an electric field is generated in cooperation with the electrode on the first substrate to cure the electric field cured product.
  • the sealant of the display panel includes both an electric field cured product and a heat curing material
  • the step of applying a voltage to the electrode to form an electric field between the first substrate and the second substrate, so that the step of curing the sealant comprises:
  • the sealant is heated.
  • a panel including a first substrate and a second substrate disposed opposite to each other; the first substrate is an array substrate, and the second substrate is a color film substrate; An electric field curing region is disposed on the array substrate and the color filter substrate, wherein the electric field curing region is a sealant region for setting a sealant, and the sealant region is provided with continuous strip electrodes or spaced electrode blocks.
  • the electrode width is about 5% to 100% of the width of the sealant region.
  • a sealant is disposed between the first substrate and the second substrate at a position corresponding to the sealant region, the sealant includes the electric field cured product, and the electric field cured product can be cured in an electric field .
  • a sealant is disposed between the array substrate and the color filter substrate, and the sealant is distributed around the array substrate and the color filter substrate.
  • the manufacturing process of the above display panel includes the following steps:
  • the electro-curing sealant is coated on the color filter substrate by screen printing or scribing; the LC material is dropped on the surface of the array substrate; after the process is completed, the substrate is sent to the vacuum matching device;
  • the matching device presses the liquid crystal cell to a predetermined position, the electric curing device power is turned on, an electric field is applied, and the sealant is cured; then a subsequent preparation process is performed, and the subsequent preparation process is similar to the related art.
  • a panel including a first substrate and a second substrate disposed opposite to each other; the first substrate is an array substrate, and the second substrate is a color film substrate; An electric field curing region is disposed on the array substrate and the color filter substrate, wherein the electric field curing region is a sealant region for setting a sealant, and the sealant region is provided with continuous strip electrodes or spaced electrode blocks.
  • the electrode width is about 5% to 100% of the width of the sealant region.
  • a sealant is disposed between the first substrate and the second substrate at a position corresponding to the sealant region, and the sealant includes the electric field cured product and a heat cured material, and the electric field cured product is It can be cured in an electric field.
  • a sealant is disposed between the array substrate and the color filter substrate, and the sealant is distributed around the array substrate and the color filter substrate.
  • the electro-curing sealant is coated on the color filter substrate by screen printing or scribing; the LC material is dropped on the surface of the array substrate; after the process is completed, the substrate is sent to the vacuum matching device;
  • the bonding device presses the liquid crystal cell to a predetermined position, the power of the electric curing device is started, an electric field is applied, and the sealing frame rubber is pre-cured;
  • Heating the frame sealant causes the frame sealant to fully cure; then a subsequent preparation process is performed, which is similar to the related art.
  • some embodiments of the present disclosure provide a method of processing a panel, the method including the steps shown in FIG. 5:
  • Step 401 An electric field solidified object is disposed on an electric field curing region on the carrier substrate; and the carrier substrate includes an electric field curing region coated with an electric field cured product;
  • Step 402 placing the ultra-thin substrate on the electric field cured product
  • Step 403 curing the electric field cured product by an electric field in a first direction, so that the ultra-thin substrate is fixed on the carrier substrate.
  • the carrier substrate is used to carry an ultra-thin substrate during the fabrication of the ultra-thin substrate.
  • an electrode is disposed in an electric field curing region of the carrier substrate for generating an electric field to cure the electric field cured product.
  • the method further includes:
  • the electric field solidified material is decomposed by a reverse electric field in a first direction, so that the ultrathin substrate can be separated from the carrier substrate.
  • the method further includes:
  • the ultrathin substrate is cleaned.
  • the electric field in the first direction and the reverse electric field in the first direction are respectively applied to the voltage by a voltage between 0 and 20 V.
  • the electrode is generated on the electrode; the electric field duration in the first direction is T1; and the reverse electric field duration in the first direction is T2, wherein 0 ⁇ T1 ⁇ 60s, 0 ⁇ T2 ⁇ 120s.
  • the carrier substrate is a thicker glass substrate, and the ultrathin substrate has a smaller thickness than the carrier substrate.
  • the ultrathin substrate has a smaller thickness than the carrier substrate.
  • the processing process of the ultra-thin substrate includes the following steps:
  • the carbene polymer 501 can be disposed on the carrier substrate 502 by a process such as transfer, spin coating or knife coating, and the thickness ranges from 10 to 300 ⁇ m;
  • the ultra-thin substrate 503 is stacked on the carrier substrate 502, and a negative voltage is applied to the electrode 504.
  • the voltage intensity ranges from 0 to 20 V; the power-on time ranges from 0 to 60 s; other effects may be used according to specific effects.
  • a forward voltage is applied to the electrode 504, and the voltage intensity ranges from 0 to 20 V; the energization time ranges from 0 to 120 s, and the current is applied until the carbene is polymerized.
  • the object 501 is completely decomposed so that the ultra-thin substrate 503 can be separated from the carrier substrate 502;
  • the ultra-thin substrate 503 can be cleaned.
  • Curing process after the carrier substrate is completed, according to the laminated structure as shown in FIG. 1 , a negative voltage (0 ⁇ -20 V) is applied between the electrodes 21 and 22, and the power-on time ranges from 0 to 60 s.
  • the parameters can be determined based on the curing strength and the bonding effect.
  • a positive voltage (0-20V) is applied between the electrodes 21, 22, and the energization time ranges from 0 to 120 s, and the ultra-thin substrate is removed after the bonding layer is completely decomposed; Carry out the cleaning process and proceed to the next step.
  • the voltage intensity in the curing process or the separation process may be constant or may vary with time, and the voltage intensity may also be equal to or greater than 20 V, which is not limited in the present invention.
  • the panel, the sealant curing method and the ultra-thin substrate processing method provided by the present disclosure use the electric field cured material to bond the first substrate and the second substrate to simplify the curing of the panel and the subsequent curing.
  • the process, the electric field required for simultaneous curing does not adversely affect the liquid crystal material in the product, and improves the quality of the liquid crystal product; in addition, curing using an electric field can prevent damage to the cured panel due to curing.
  • the electric field cured product in the embodiment of the present disclosure can be cured and decomposed in an electric field, so that it can be applied to a product manufacturing process that requires both a fixed substrate and a separate substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种面板及其加工方法。面板包括对合设置的第一基板(101,201,301)和第二基板(302);其中第一基板(201)上包括涂覆电场固化物的电场固化区域(202);第一基板(301)和第二基板(302)之间、与电场固化区域(202)对应的位置设置有电场固化物,电场固化物在电场的作用下能够固化和/或分解。

Description

面板及其加工方法
相关申请的交叉引用
本申请要求于2016年4月28日提交中国专利局、发明名称为“一种面板、封框胶固化方法及超薄基板加工方法”,申请号为201610274497.5的优先权,其全部内容据此通过引用并入本申请。
技术领域
本公开涉及液晶显示技术领域,尤其涉及一种面板、及面板的加工方法。
背景技术
在显示器产品制造过程中,常常需要将对合设置的两基板进行贴合或通过粘合材料进行粘合,实行预设工艺后再分离。然而,在该过程中容易造成产品良率的降低,例如,分离贴合在载体基板上的超薄基板时损坏超薄基板,采用紫外光固化粘合材料损伤液晶材料,采用热固化粘合所需工艺时间长,等。
由于显示器产品存在超薄、高画质、曲面或柔性等需求,因此,为了提高显示器质量,需要改进显示产品制造过程中的工艺(如粘合或分离工艺)以及粘合材料。
发明内容
有鉴于此,本公开提供一种面板、及面板的加工方法,能够改善固化效果并减少对基板或显示器其它机构造成的不良影响。
基于上述目的本公开提供的面板,包括对合设置的第一基板和第二基板,所述第一基板上包括涂覆电场固化物的电场固化区域;所述第一基板和第二基板之间、与所述电场固化区域对应的位置设置有电场固化物;所述电场固化物在电场的作用下能够固化和/或分解。
可选地,所述电场固化物在第一方向的电场中能够固化,和/或所述电场固化物在第一方向的反向电场中能够分解。
可选地,所述电场固化区域中设置有电极,用于产生所述电场。
可选地,所述第一基板为载体基板;所述第二基板为超薄基板;所述载体基板用于在超薄基板制作过程中承载所述超薄基板。
可选地,所述电场固化区域为所述载体基板一侧全部区域。
可选地,所述第一基板为显示基板,所述电场固化区域为用于设置封框胶的封框胶区域,所述封框胶区域设置有电极。
可选地,所述电极为多个间隔设置的电极块。
可选地,所述电极为连续的条状电极。
可选地,所述电极的宽度小于所述封框胶区域的宽度。
可选地,所述电极的宽度为所述封框胶区域宽度的5%-95%。
可选地,所述第二基板上与所述封框胶区域相对的区域中设置有电极,用于与所述封框胶区域上的电极配合产生电场固化所述电场固化物。
可选地,所述封框胶还包括热固化材料。
可选地,所述电场固化物为碳烯聚合物。
同时,本公开提供一种面板的加工方法,该方法包括:向所述面板中包括的对合设置的第一基板和第二基板之间提供电场,使得在所述第一基板和所述第二基板之间的电场固化物在所述电场的作用下固化;其中所述第一基板上包括涂覆电场固化物的电场固化区域;所述电场固化物设置在与所述电场固化区域对应的位置。可选地,所述第一基板为显示基板,所述电场固化区域为用于设置封框胶的封框胶区域,所述封框胶区域设置有所述电极,所述在所述第一基板和第二基板之间提供电场,使得所述电场固化物固化,包括:向所述电极施加电压,在所述第一基板上的电极和第二基板上之间形成电场,使得所述封框胶固化。
可选地,所述封框胶还包括热固化材料,所述方法还包括:
对所述封框胶进行加热。
可选地,所述第一基板为载体基板,所述第二基板为超薄基板,在提供所述电场之前,所述方法还包括:
在所述载体基板上的电场固化区域设置电场固化物;
将所述超薄基板置于所述电场固化物上;
所述在所述第一基板和第二基板之间提供电场,使得所述电场固化物固化,包括:
利用第一方向的电场使得所述电场固化物固化,使得所述超薄基板固定在所述载体基板上。
可选地,所述方法还包括:对所述超薄基板实行预设的加工过程;利用第一方向的反向电场使得所述电场固化物分解,使得所述超薄基板能够与所述载体基板分离。
可选地,对所述超薄基板进行清洗。
可选地,当所述电场固化区域中设置有电极时,所述第一方向的电场以及第一方向的反向电场分别由取值在0-20V之间的电压施加于所述电极上产生;所述第一方向的电场持续时间为T1;所述第一方向的反向电场持续时间为T2,其中,0<T1≤60s,0<T2≤120s。
可选地,所述电场固化物的厚度的取值范围为10-300μm。
从上面所述可以看出,本公开所提供的面板及其加工方法,利用电场固化物对第一基板和第二基板进行贴合,简化电场固化物固化和粘合基板之间的分解过程,同时固化以及分解所需的电场不会对产品中的液晶材料产生不良影响,从而能够保证液晶产品的质量;此外,使用电场进行固化能够避免因为固化而对被固化的面板产生损伤。本公开实施例中的电场固化物能够在电场中固化或分解,从而能够应用于需要固定基板或者需要分离基板的产品制造过程。
附图说明
下面所描述的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为本公开实施例的载体基板结构示意图;
图1B为本公开实施例的载体基板上的电极结构示意图;
图2为本公开实施例的显示基板结构示意图;
图3A为本公开实施例对合设置的第一基板、第二基板示意图;
图3B为本公开实施例对合设置的第一基板、第二基板另一个方向示意图;
图4为本公开实施例提供的加工方法的流程示意图;
图5为本公开实施例提供的加工方法的流程示意图;
图6为本公开实施例的载体基板与超薄基板贴合示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开首先提供一种面板,包括对合设置的第一基板和第二基板,所述第一基板上包括涂覆电场固化物的电场固化区域;所述第一基板和第二基板之间、与所述电场固化区域对应的位置设置有电场固化物;所述电场固化物在电场(或磁场)的作用下能够固化和/或分解。可选地,所述电场固化物在第一方向的电场中能够固化,和/或所述电场固化物在第一方向的反向电场中能够分解。
从上面所述可以看出,本公开所提供的面板,包括用于涂覆电场固化物的电场固化区域,从而第一基板与第二基板粘合时,能够通过电场固化物进行粘合,而电场不会对面板其它机构产生不良影响,从而避免因为固化或粘合分解时的环境对显示器产品质量造成不良影响。
在本公开具体实施例中,所述电场固化区域可以为所述基板上的任意区域。
在本公开具体实施例中,固化所述电场固化物所需要的电场可以由设置在第一基板和/或第二基板上的电极产生,也可以由第一基板和第二基板以外的电场发生机构产生。
在本公开一些实施例中,所述第一基板为载体基板;所述电场固化物能够在第一电场中固化并能够在第一电场的反向电场中分解;所述第二基板为超薄基板;所述载体基板用于在超薄基板制作过程中承载所述超薄基板;所述电场固化物能够在第一方向的反向电场中分解。其中,超薄基板表示厚度小于一定厚度阈值的基板,本领域技术人员可以根据实际应用确定该厚度阈值。
未来显示器件的发展方向是超薄,高画质,曲面,柔性等。这些技术都有一个共同的技术需求,即超薄基板工艺,包括超薄基板的生产,和在超薄基板上制作显示器件结构。在超薄基板制造过程中,由于其厚度很薄,只能先把超薄基板贴合在载体基板上,才能投入现有产线,工艺完成后,再将超薄基板分 离,该贴合和分离过程中容易出现超薄基板的损坏,降低产品良率。
当前的载体基板一般都是较厚的玻璃材料制作,超薄基板和载体基板之间存在有较强的作用力,尤其在经过高温处理工艺后,该作用力会增加到使两基板不能分离的程度。为减小该作用力,达到分离两基板目的,相关技术的方案有在载体基板上溅射或者涂布一层很薄的ITO(氧化铟锡)或其他膜层,但实际测试的效果不太理想,基板分离的过程复杂,良率较低。
本公开所提供的面板的载体基板在支撑超薄基板时,载体基板和超薄基板之间的贴合层材料为电场固化材料,该材料在电场作用下实现固化和分解,容易实现超薄基板的贴合的分离工艺,技术工艺难度低,固化和分离效果可控,能有效提高超薄基板相关工艺的良率。
在具体实施例中,如图1A所示,当所述第一基板为载体基板101时,所述电场固化区域为所述载体基板101上的任意区域。例如,所述电场固化区域为所述基板周边区域;或所述电场固化区域为所述基板一侧的全部区域。
在本公开一些实施例中,所述电场固化区域为所述载体基板一侧全部区域。
在本公开一些实施例中,仍然参照图1A,所述电场固化区域中设置有电极102,用于产生电场,可以使得所述电场固化物固化。
所述电极具体可以是图1A、1B所示的梳齿状,也可以为其它形状。在图1A、1B所示的实施例中,电极102包括一组正电极和一组负电极,所述正电极和负电极均为图1A、1B所示的梳齿状,在所述载体基板101上交错设置,正电极和负电极之间具有一定的间隔,从而在电极102所覆盖的范围内能够产生电场。
在本公开任意实施例中,所述电极可以为ITO制作。
在本公开一些实施例中,如图2所示,所述第一基板为显示基板201,所述电场固化区域为用于设置封框胶的封框胶区域202,所述封框胶区域202设置有电极203。封框胶区域202位于显示基板201的显示区域以外。
相关技术中,LCD(Liquid Crystal Display,液晶显示器)量产工艺中使用的封框胶固化方式是UV(Ultraviolet,紫外线)固化和热固化,两种固化工艺分别采用UV固化胶和热固化胶。实际生产中同时使用该两种固化工艺,用UV固化完成预固化,用热固化进行完全固化。
上述两种固化方式各有优缺点。UV固化的优点是UV材料固化速度快,缺点是固化效果受UV光源均匀性和开口率的影响,并且固化工艺中使用的紫外光会损伤LC(Liquid Crystal,液晶)材料;热固化的优点是固化效果好,强度高,对LC材料没有影响,但工艺时间长,是制约生产效率的一个重要环节。
本公开实施例所提供的面板,在第一基板上设置有用于设置封框胶的封框胶区域,封框胶中包括电场固化物,在封框胶区域中还设置有电极,使得后续对合过程中,能够使用电场固化封框胶,减少使用传统的封框胶固化过程对液晶分子造成的影响,同时,电场固化能够使得封框胶固化更为迅速彻底。相关技术中,基板对合后首先要将未固化完全的上基板、下基板移动到固化区域进行固化,在移动过程中由于封框胶处于未固化状态,容易产生基板的错位,影响对合效果以及最终产品的质量。本公开实施例将所述电极设置在封框胶区域,在对合步骤完成之后,可以立即通电产生电场,对封框胶进行预固化,从而在移动过程中对合后的基板不易发生错位,保证了对合效果。
在本公开一些实施例中,仍然参照图2,所述电极203为如图2所示的连续条状电极,也可以是多个间隔设置的电极块。其中,所述多个电极块包括间隔设置的正电极和负电极。所述多个电极块也可以为同一种极性的电极。
在本公开一些实施例中,所述电极为连续的条状电极。
在本公开一些实施例中,所述电极的宽度小于所述封框胶区域的宽度,使得所述电极后续不会对显示器的正常显示造成影响。
在本公开一些实施例中,所述电极的宽度为所述封框胶区域宽度的5%-95%。
在本公开一些实施例中,所述第二基板上与所述封框胶区域相对的区域中设置有电极,用于与所述第一基板上的电极配合产生电场固化所述电场固化物。即所述第二基板的结构可参照图2。
本公开的一种具体实施例所提供的面板结构参照图3A、图3B,包括对合设置的第一基板和第二基板。其中,第一基板为阵列基板301,第二基板为彩膜基板302,阵列基板301和彩膜基板302之间设置有封框胶303。所述封框胶303包括电场固化物。在阵列基板301和彩膜基板302之间设置有液晶层 304,在阵列基板301和彩膜基板302的封框胶区域中设置有电极305。
在本公开具体实施例中,所述电场固化物为碳烯聚合物。本公开实施例中采用碳烯聚合物作为封框胶的材料,碳烯聚合物能够电场中能够附着到周围物质的表面上,从而实现电场固化。通过调整施加电压的时间和电压大小,可以控制碳烯聚合物附着到周围物质上的数量。从而在封框胶中添加碳烯聚合物后,能够通过调节电压控制封框胶的坚硬程度,来适应不同产品的不同需求。由于在固化时不使用UV,而电场不会对LC材料产生不良影响,从而保证了产品中LC材料的质量。而在超薄基板和载体基板之间使用碳烯聚合物作为粘合物进行粘合固定,也能够通过电压大小和施加时间控制粘合物坚硬程度,来适应不同产品生产线的不同需求;同时固化过程可逆,通过施加反向电压即可解除粘合,降低了因固定、分离而对超薄基板造成的损伤,提高了超薄基板的良率。
在本公开具体实施例中,所述面板中使用的封框胶还包括热固化材料。
在本公开的一些实施例中,还提供了一种面板的加工方法,如图4所示,该方法包括:
步骤41,向面板中包括的对合设置的第一基板和第二基板之间提供电场,使得第一基板和第二基板之间的电场固化物在电场的作用下固化。
其中所述第一基板上包括涂覆电场固化物的电场固化区域;所述电场固化物设置在与所述电场固化区域对应的位置。
可选地,所述面板包括对合设置的第一基板和第二基板,所述第一基板为如图2所示的显示基板201;在显示基板201上设置有电场固化区域,所述电场固化区域为用于设置封框胶的封框胶区域202,所述封框胶区域202设置有电极203。所述封框胶设置于第一基板和第二基板之间的所述封框胶区域。在步骤41中,向所述电极施加电压,在所述第一基板和第二基板上之间形成电场,使得所述封框胶固化。可根据实际工艺过程,调整施加电场的范围大小,实现高均匀性和快速固化,这样只需要耗费较少的能量就可以实现固化效果,也能够降低生产能耗,实现绿色生产。
在本公开具体实施例中,第二基板上也设置有电极,与第一基板上的电极配合产生电场使得所述电场固化物固化。
在本公开一些实施例中,所述显示面板的封框胶中同时包括电场固化物和 热固化物,所述向所述电极施加电压、在所述第一基板和第二基板上之间形成电场,使得所述封框胶固化的步骤之后,还包括:
对所述封框胶进行加热。
在本公开一种具体实施例中,提供一种面板,包括对合设置的第一基板和第二基板;所述第一基板为阵列基板,所述第二基板为彩膜基板;在所述阵列基板和彩膜基板上设置有电场固化区域,所述电场固化区域为用于设置封框胶的封框胶区域,所述封框胶区域设置有连续的条状电极或间隔分布的电极块,电极宽度约为封框胶区域宽度的5%~100%。所述第一基板和第二基板之间、与所述封框胶区域对应的位置设置有封框胶,所述封框胶包括所述电场固化物,所述电场固化物在电场中能够固化。在所述阵列基板和彩膜基板之间设置有封框胶,封框胶分布于所述阵列基板和彩膜基板的周边。
上述显示面板的制作过程包括如下步骤:
制备阵列基板和彩膜基板;
通过丝网印刷或划线方式将电固化封框胶涂布在彩膜基板;将LC材料滴注在阵列基板表面;工艺完成后将基板送入真空对合设备;
在对合设备将液晶盒厚压到预定位置时,启动电固化设备电源,施加电场,将封框胶固化;然后进行后续制备过程,所述后续制备过程与相关技术类似。
在本公开另一种实施例中,提供一种面板,包括对合设置的第一基板和第二基板;所述第一基板为阵列基板,所述第二基板为彩膜基板;在所述阵列基板和彩膜基板上设置有电场固化区域,所述电场固化区域为用于设置封框胶的封框胶区域,所述封框胶区域设置有连续的条状电极或间隔分布的电极块,电极宽度约为封框胶区域宽度的5%~100%。所述第一基板和第二基板之间、与所述封框胶区域对应的位置设置有封框胶,所述封框胶包括所述电场固化物和热固化物,所述电场固化物在电场中能够固化。在所述阵列基板和彩膜基板之间设置有封框胶,封框胶分布于所述阵列基板和彩膜基板的周边。
上述面板的制备过程如下:
制备阵列基板和彩膜基板;
通过丝网印刷或划线方式将电固化封框胶涂布在彩膜基板;将LC材料滴注在阵列基板表面;工艺完成后将基板送入真空对合设备;
在对合设备将液晶盒厚压到预定位置时,启动电固化设备电源,施加电场,将封框胶预固化;
对封框胶加热使得封框胶完全固化;然后进行后续制备过程,所述后续制备过程与相关技术类似。
进一步,本公开一些实施例提供一种面板的加工方法,该方法包括如图5所示的步骤:
步骤401:在载体基板上的电场固化区域设置电场固化物;所述载体基板上包括涂覆电场固化物的电场固化区域;
步骤402:将所述超薄基板置于所述电场固化物上;
步骤403:利用第一方向的电场使得所述电场固化物固化,使得所述超薄基板固定在所述载体基板上。
在本公开具体实施例中,所述载体基板用于在超薄基板制作过程中承载超薄基板。
在本公开具体实施例中,所述载体基板的电场固化区域中设置有电极,用于产生电场使得所述电场固化物固化。
在本公开一些实施例中,所述利用电场使得所述电场固化物固化、使得所述超薄基板固定在所述载体基板上的步骤之后,还包括:
对所述超薄基板实行预设的加工过程;
利用第一方向的反向电场使得所述电场固化物分解,使得所述超薄基板能够与所述载体基板分离。
在本公开具体实施例中,利用第一方向的反向电场使得所述电场固化物分解、使得所述超薄基板能够与所述载体基板分离的步骤之后,还包括:
对所述超薄基板进行清洗。
在本公开一些实施例中,当所述电场固化区域中设置有电极时,所述第一方向的电场以及第一方向的反向电场分别由取值在0-20V之间的电压施加于所述电极上产生;所述第一方向的电场持续时间为T1;所述第一方向的反向电场持续时间为T2,其中,0<T1≤60s,0<T2≤120s。
在本公开一种具体实施例中,载体基板为较厚的玻璃基板,超薄基板的厚度小于载体基板。在载体基板表面设置有至少一对电极;为保证固化和分离过 程,所述电极可设计为平行的条状结构或其他结构,具体形状根据实际效果进行设计;电极的设置通过现有溅射镀膜和刻蚀工艺完成。
在一种具体实施例中,参照图6,超薄基板的加工工艺中包括如下步骤:
可通过转印、旋涂或刮涂等工艺将碳烯聚合物501设置于载体基板502上,厚度的取值范围为10~300μm;
将超薄基板503层叠放置于载体基板502上,对电极504施加负向电压,电压强度的取值范围为0-20V;通电时间的取值范围为0-60s;也可以根据具体效果采用其他通电参数;
超薄基板503在载体基板502上的加工过程完成后,向电极504施加正向电压,电压强度的取值范围为0-20V;通电时间的取值范围为0-120s,通电直至碳烯聚合物501完全分解使得超薄基板503能够从载体基板502上分离;
可选地,可以对超薄基板503进行清洗。
固化工艺:所述载体基板完成后,按照如图1所示叠层结构放置,在电极21,22之间施加负电压(0~-20V),通电时间的取值范围为0~60s,具体参数可以根据固化强度和贴合效果确定。
分离工艺:器件工艺完成后,在电极21,22之间施加正电压(0~20V),通电时间的取值范围为0~120s,直至贴合层完全分解后,将超薄基板取下;进行清洗工艺,进入下一步工艺。
应理解,固化工艺或分离工艺中的电压强度可以是恒定的也可以是随时间变化的,电压强度也可以等于或大于20V,本发明对此不做限定。
从上面所述可以看出,本公开所提供的面板、封框胶固化方法及超薄基板加工方法,利用电场固化物对第一基板和第二基板进行贴合,简化面板对和后的固化过程,同时固化所需的电场不会对产品中的液晶材料产生不良影响,提高液晶产品的质量;此外,使用电场进行固化能够避免因为固化而对被固化的面板产生损伤。本公开实施例中的电场固化物能够在电场中固化和分解,从而能够应用于既需要固定基板也需要分离基板的产品制造过程。
应当理解,本说明书所描述的多个实施例仅用于说明和解释本公开,并不用于限定本公开。并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种面板,包括对合设置的第一基板和第二基板,其中,所述第一基板上包括涂覆电场固化物的电场固化区域;所述第一基板和第二基板之间、与所述电场固化区域对应的位置设置有电场固化物;所述电场固化物在电场的作用下能够固化和/或分解。
  2. 根据权利要求1所述的面板,其中,所述电场固化区域中设置有电极,用于产生所述电场。
  3. 根据权利要求1或2所述的面板,其中,所述第一基板为载体基板;所述第二基板为超薄基板;所述载体基板用于在超薄基板制作过程中承载所述超薄基板。
  4. 根据权利要求3所述的面板,其中,所述电场固化区域为所述载体基板一侧全部区域,或者所述电场固化区域为所述载体基板的周边区域。
  5. 根据权利要求2所述的面板,其中,所述第一基板为显示基板,所述电场固化区域为用于设置封框胶的封框胶区域,所述封框胶区域设置有电极。
  6. 根据权利要求5所述的面板,其中,所述电极为多个间隔设置的电极块,或者所述电极为连续的条状电极。
  7. 根据权利要求5或6所述的面板,其中,所述电极的宽度小于所述封框胶区域的宽度。
  8. 根据权利要求7所述的面板,其中,所述电极的宽度为所述封框胶区域宽度的5%-95%。
  9. 根据权利要求5-8中任意一项所述的面板,其中,所述第二基板上与所述封框胶区域相对的区域中设置有电极,用于与所述封框胶区域上的电极配合产生所述电场。
  10. 根据权利要求5-9中任意一项所述的面板,其中,所述封框胶还包括热固化材料。
  11. 根据权利要求1-10中任意一项所述的面板,其中,所述电场固化物为碳烯聚合物。
  12. 根据权利要求1-11中任意一项所述的面板,其中,所述电场固化物在 第一方向的电场中能够固化,和/或所述电场固化物在第一方向的反向电场中能够分解。
  13. 一种面板的加工方法,包括:
    向面板中包括的对合设置的第一基板和第二基板之间提供电场,使得在所述第一基板和所述第二基板之间的电场固化物在所述电场的作用下固化;
    其中所述第一基板上包括涂覆电场固化物的电场固化区域;所述电场固化物设置在与所述电场固化区域对应的位置。
  14. 根据权利要求13所述的加工方法,其中,所述第一基板为显示基板,所述电场固化区域为用于设置封框胶的封框胶区域,所述封框胶区域设置有所述电极,所述在所述第一基板和第二基板之间提供电场,使得所述电场固化物固化,包括:
    向所述电极施加电压,在所述第一基板上的电极和第二基板之间形成电场,使得所述封框胶固化。
  15. 根据权利要求14所述的加工方法,其中,所述封框胶还包括热固化材料,在所述封框胶固化之后,所述方法还包括:
    对所述封框胶进行加热。
  16. 根据权利要求13所述的加工方法,其中所述第一基板为载体基板,所述第二基板为超薄基板,在提供所述电场之前,所述方法还包括:
    在所述载体基板上的电场固化区域设置电场固化物;
    将所述超薄基板置于所述电场固化物上;
    所述在所述第一基板和第二基板之间提供电场,使得所述电场固化物固化,包括:
    利用第一方向的电场使得所述电场固化物固化,使得所述超薄基板固定在所述载体基板上。
  17. 根据权利要求16所述的方法,还包括:
    对所述超薄基板实行预设的加工过程;
    利用第一方向的反向电场使得所述电场固化物分解,使得所述超薄基板能够与所述载体基板分离。
  18. 根据权利要求17所述的方法,还包括:
    对所述超薄基板进行清洗。
  19. 根据权利要求18所述的方法,其中,当所述电场固化区域中设置有电极时,所述第一方向的电场以及第一方向的反向电场分别由取值在0-20V之间的电压施加于所述电极上产生;所述第一方向的电场持续时间为T1,所述第一方向的反向电场持续时间为T2,其中,0<T1≤60s,0<T2≤120s。
  20. 根据权利要求15-19中任意一项所述的方法,其中,所述电场固化物的厚度的取值范围为10-300μm。
PCT/CN2017/070369 2016-04-28 2017-01-06 面板及其加工方法 WO2017185825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/545,095 US10564451B2 (en) 2016-04-28 2017-01-06 Panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610274497.5A CN105739138A (zh) 2016-04-28 2016-04-28 一种面板、封框胶固化方法及超薄基板加工方法
CN201610274497.5 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017185825A1 true WO2017185825A1 (zh) 2017-11-02

Family

ID=56288535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070369 WO2017185825A1 (zh) 2016-04-28 2017-01-06 面板及其加工方法

Country Status (3)

Country Link
US (1) US10564451B2 (zh)
CN (1) CN105739138A (zh)
WO (1) WO2017185825A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739138A (zh) * 2016-04-28 2016-07-06 京东方科技集团股份有限公司 一种面板、封框胶固化方法及超薄基板加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089633A1 (en) * 2001-01-09 2002-07-11 International Business Machines Corporation System and method for producing thin film patterns interspersed with voids to admit light to otherwise shadowed regions
CN1388818A (zh) * 2000-06-21 2003-01-01 三井化学株式会社 塑性液晶显示元件用密封剂组合物
JP2007302635A (ja) * 2006-05-15 2007-11-22 Chisso Corp シルセスキオキサン骨格を有する酸無水物および重合体
CN101561591A (zh) * 2008-04-17 2009-10-21 北京京东方光电科技有限公司 封框胶涂覆固化方法、封框胶和液晶面板
CN101840111A (zh) * 2009-03-20 2010-09-22 奇美电子股份有限公司 取向膜的制造方法及液晶显示面板的制造方法
CN105739138A (zh) * 2016-04-28 2016-07-06 京东方科技集团股份有限公司 一种面板、封框胶固化方法及超薄基板加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665298B2 (ja) * 2000-08-25 2011-04-06 東レ株式会社 半導体装置用接着剤付きテープおよびそれを用いた銅張り積層板、半導体接続用基板ならびに半導体装置
US8049863B2 (en) * 2008-01-24 2011-11-01 Au Optronics Corp. Method for manufacturing liquid crystal display panel
CN104793385B (zh) * 2015-04-23 2018-01-19 京东方科技集团股份有限公司 超薄衬底的剥离方法、显示基板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388818A (zh) * 2000-06-21 2003-01-01 三井化学株式会社 塑性液晶显示元件用密封剂组合物
US20020089633A1 (en) * 2001-01-09 2002-07-11 International Business Machines Corporation System and method for producing thin film patterns interspersed with voids to admit light to otherwise shadowed regions
JP2007302635A (ja) * 2006-05-15 2007-11-22 Chisso Corp シルセスキオキサン骨格を有する酸無水物および重合体
CN101561591A (zh) * 2008-04-17 2009-10-21 北京京东方光电科技有限公司 封框胶涂覆固化方法、封框胶和液晶面板
CN101840111A (zh) * 2009-03-20 2010-09-22 奇美电子股份有限公司 取向膜的制造方法及液晶显示面板的制造方法
CN105739138A (zh) * 2016-04-28 2016-07-06 京东方科技集团股份有限公司 一种面板、封框胶固化方法及超薄基板加工方法

Also Published As

Publication number Publication date
CN105739138A (zh) 2016-07-06
US10564451B2 (en) 2020-02-18
US20190041672A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP3196018B1 (en) Substrate bonding method
JPS63109413A (ja) 液晶デイスプレイの製造方法
TWI662351B (zh) 電子紙顯示屏及其製造方法
JP2001356354A (ja) 液晶表示素子の製造方法
WO2015010426A1 (zh) 显示面板的对盒方法
JP2013235196A (ja) 液晶表示装置及びその製造方法
KR101104271B1 (ko) 디스플레이 패널 유리판의 초박형화를 위한 에칭방법
WO2017185825A1 (zh) 面板及其加工方法
WO2020186542A1 (zh) 配向膜的制作方法及配向膜
CN104898316A (zh) 薄型液晶面板的制作方法
WO2013007065A1 (zh) 一种液晶显示板的制造方法和装置
WO2013170476A1 (zh) 液晶显示装置及其制作方法
US10503003B2 (en) Polarizer and method for producing the same, display panel and display apparatus
JP5406805B2 (ja) 接着剤層付き基材の製造方法
KR101630321B1 (ko) 액정표시장치의 제조방법
TW200925746A (en) Method of fabricating a display panel having dielectric arranging structure
US8970814B2 (en) Liquid crystal display device and manufacturing method thereof
CN106292005A (zh) 一种液晶盒的制作方法
JP2010054749A (ja) 液晶表示パネル及びその製造方法
JP2001222016A (ja) 液晶表示パネル及びその製造方法
JPS61160720A (ja) 液晶素子の製造方法
CN105843453B (zh) 触摸屏制作方法、触摸屏及显示基板
US20170102573A1 (en) Method for manufacturing alignment film
JP2016161863A (ja) 液晶セルの製造方法、調光材の製造方法及び合わせガラスの製造方法
JP2000187201A (ja) フィルム状の液晶表示パネルの製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788488

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788488

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17788488

Country of ref document: EP

Kind code of ref document: A1