WO2020090539A1 - 二酸化塩素発生装置 - Google Patents

二酸化塩素発生装置 Download PDF

Info

Publication number
WO2020090539A1
WO2020090539A1 PCT/JP2019/041278 JP2019041278W WO2020090539A1 WO 2020090539 A1 WO2020090539 A1 WO 2020090539A1 JP 2019041278 W JP2019041278 W JP 2019041278W WO 2020090539 A1 WO2020090539 A1 WO 2020090539A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
container
air
reaction
solution
Prior art date
Application number
PCT/JP2019/041278
Other languages
English (en)
French (fr)
Inventor
翔平 辻本
Original Assignee
大幸薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大幸薬品株式会社 filed Critical 大幸薬品株式会社
Priority to JP2020553797A priority Critical patent/JP7412007B2/ja
Priority to KR1020217007122A priority patent/KR20210082160A/ko
Publication of WO2020090539A1 publication Critical patent/WO2020090539A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/024Preparation from chlorites or chlorates from chlorites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/24Oxygen compounds of fluorine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine

Definitions

  • the present invention relates to a novel chlorine dioxide generator.
  • Chlorine dioxide gas is a gas that is safe for living organisms of animals at low concentrations (for example, 0.1 ppm or less), but even at such low concentrations, it has an inactivating effect on microorganisms such as bacteria, fungi, and viruses. It is known to have a deodorizing effect and the like.
  • Patent Document 1 a method for stably generating chlorine dioxide with a composition containing a dissolved chlorine dioxide gas, an aqueous chlorite solution, and a pH adjusting agent
  • Patent Document 2 a method for producing chlorine dioxide by electrolyzing an electrolytic solution containing an acid salt
  • Patent Document 3 a device for generating chlorine dioxide by irradiating solid chlorite with visible light has been proposed.
  • the present invention has an object to provide a device which has a simpler structure and can stably generate chlorine dioxide for a long period of time as compared with a conventional chlorine dioxide generator.
  • the present invention is, in one embodiment, a chlorine dioxide generator including a humidifying mechanism and a bubbling mechanism
  • the apparatus includes a reaction container, a humidification container, and an air introduction device
  • the reaction vessel contains an aqueous chlorite solution and a catalyst
  • the humidifying container contains a humidifying solution
  • the humidifying container includes a first conduit for introducing air from the outside of the device, The humidifying container and the reaction container are connected by a second conduit, or the air above the solution contained in each container is interconnected so as to be movable between the containers,
  • the humidifying container is generally sealed,
  • the air introduction device is provided in the flow path of the chlorine dioxide generator, In the humidifying container, the air in the humidifying container is humidified by bubbling air provided through the first conduit into the humidifying solution when the air introducing device operates.
  • the reaction vessel is configured such that the humidified air in the humidification vessel is bubbled through the second conduit to the aqueous chlorite solution in the reaction vessel. It is characterized by being
  • One embodiment of the present invention is a chlorine dioxide generator including a humidifying mechanism and a bubbling mechanism
  • the apparatus includes a reaction container, a reaction liquid holding container, a humidifying container, and an air introducing device,
  • the reaction vessel contains a catalyst
  • the reaction solution holding container contains an aqueous chlorite solution
  • the humidifying container contains a humidifying solution
  • the humidifying container includes a first conduit for introducing air from the outside of the device,
  • the humidifying container and the reaction liquid holding container are connected by a second conduit, or interconnected so that the air above the solution contained in each container can move between the containers.
  • the reaction solution holding container and the reaction container are connected by a third conduit,
  • the humidifying container is generally sealed,
  • the reaction solution holding container is almost sealed,
  • the air introduction device is provided in the flow path of the chlorine dioxide generator,
  • the humidifying container when the air introducing device is operated, air provided from the air introducing device through the first conduit is bubbled into the humidifying solution, whereby Configured to humidify the air
  • the reaction liquid holding container is configured such that, when the air introducing device is operated, the humidified air in the humidifying container is provided in the reaction liquid holding container.
  • the aqueous chlorite solution in the reaction solution holding vessel is provided into the reaction vessel via the third conduit when the air introducing device is operated, and then the reaction is performed.
  • the humidified air in the liquid holding container is configured to be bubbled through the third conduit into the aqueous chlorite solution in the reaction container,
  • the reaction liquid holding container and the reaction container, when the air introducing device is stopped from the operating state, the reaction liquid that has been moved into the reaction container in the operating state of the air introducing device, 3 is configured to return to the reaction solution holding container via the conduit of 3. It is characterized by
  • One embodiment of the present invention is characterized in that the reaction container is arranged above the reaction liquid holding container.
  • One embodiment of the present invention is characterized in that the air bubbled through the aqueous solution of chlorite in the reaction vessel during operation of the air introduction device is configured to come into contact with the catalyst.
  • the reaction vessel is at least partially opened, and the air containing chlorine dioxide produced in the reaction vessel is discharged to the outside of the apparatus. It is characterized by
  • One embodiment of the present invention is characterized in that the reaction container contains only the aqueous chlorite solution and the catalyst when the air introduction device is in operation.
  • One embodiment of the present invention is characterized by not including an electrolysis mechanism.
  • chlorite aqueous solution is an alkali metal chlorite aqueous solution or an alkaline earth metal chlorite aqueous solution.
  • the aqueous solution of alkali metal chlorite is an aqueous solution of sodium chlorite, an aqueous solution of potassium chlorite, or an aqueous solution of lithium chlorite
  • the aqueous solution of alkaline earth metal chlorite is , Calcium chlorite aqueous solution, magnesium chlorite aqueous solution, or barium chlorite aqueous solution.
  • One embodiment of the present invention is characterized in that the concentration of the chlorite aqueous solution is 0.01 to 45% by weight.
  • One embodiment of the present invention is characterized in that the humidifying solution is water.
  • One embodiment of the present invention is characterized in that the humidifying solution is tap water.
  • One embodiment of the present invention is characterized in that the catalyst is a solid catalyst.
  • One embodiment of the present invention is characterized in that the catalyst is a metal-based catalyst, a mineral-based catalyst, a carbon-based catalyst, or a combination thereof.
  • the metal catalyst is platinum (Pt), ruthenium (Rh), rhodium (Rh), palladium (Pd), iridium (Ir), osmium (Os), iron (Fe), copper ( Cu), manganese (Mn), cobalt (Co), nickel (Ni), molybdenum (Mo), or a compound containing these metals, wherein the mineral-based catalyst is silica (Si), or A catalyst containing a compound containing silica, wherein the carbon-based catalyst is a catalyst containing activated carbon.
  • One embodiment of the present invention is characterized in that the catalyst is supported on a carrier.
  • the carrier is a carrier containing a material selected from the group consisting of titanium, valve metal, stainless steel, nickel, ceramics, carbon, and a porous material.
  • the air introduction device is a device that introduces air into the flow passage from the starting point of the flow passage of the chlorine dioxide generation device, the flow passage in the middle of the flow passage of the chlorine dioxide generation device. It is a device for moving the air inside in one direction, or a device for sucking the air in the flow path from the end point of the flow path of the chlorine dioxide generation device.
  • One embodiment of the present invention is characterized in that the air introduction device is an electric air pump.
  • the chlorine dioxide concentration contained in the air discharged from the device at the time of continuously operating the device for one month indicates that the chlorine dioxide concentration at the time of continuous operation of the device at It is characterized in that at least 50% or more is maintained as compared with the concentration of chlorine dioxide contained in the air discharged from the device.
  • the present invention has at least one or more of the following advantages over the conventional chlorine dioxide generation method / generation device.
  • the present invention utilizes the generation of chlorine dioxide due to the reaction between a chlorite and a catalyst. With this technique, It has been confirmed that there is almost no risk that a large amount of chlorine dioxide will be generated due to a rapid reaction, and that no harmful gas other than chlorine dioxide gas will be generated.Therefore, an acidic substance is added to chlorite to add chlorine dioxide.
  • the safety is higher than that of the method of generating and the method of using electrolysis (for example, when chlorine dioxide is generated by electrolysis, chlorine gas or hydrogen gas may be generated when the electrolytic solution deteriorates). Further, since the power of the device of the present invention is only the air introduction device, the risk of device failure is low, and repairs when the device fails are easy.
  • the present invention can stably generate chlorine dioxide for several months without maintenance by providing a humidifying mechanism that prevents evaporation of water in the chlorite aqueous solution. Further, when the chlorite aqueous solution reaches the end of its life, it is possible to continue the operation of the apparatus simply by exchanging the chlorite aqueous solution.
  • the present invention has an extremely simple structure as compared with, for example, a chlorine dioxide generation device by electrolysis, it is possible to reduce the size and cost of the device.
  • FIG. 1 shows a design example 1 of the present invention.
  • FIG. 2 shows a design example 2 (when the reaction is stopped) of the present invention.
  • FIG. 3 shows a design example 2 (at the time of reaction) of the present invention.
  • FIG. 4 shows Design Example 3 (when the reaction is stopped) of the present invention.
  • FIG. 5 shows Design Example 4 (when the reaction is stopped) of the present invention.
  • FIG. 6 shows Design Example 4 (during reaction) of the present invention.
  • FIG. 7 shows a design example 5 (when the reaction is stopped) of the present invention.
  • FIG. 8 shows Design Example 6 (when the reaction is stopped) of the present invention.
  • FIG. 9 shows the design of the device used in Experiment 1.
  • FIG. 10 shows the results of Experiment 1 (amount of chlorine dioxide generated).
  • FIG. 11 shows the result of Experiment 2 (qualitative analysis of generated gas).
  • FIG. 12 shows the results of Experiment 3 (without a humidifying mechanism).
  • FIG. 13 shows the results
  • a chlorine dioxide generator according to an embodiment of the present invention shown in FIG. 1 includes a reaction container 5 ′, a humidification container 3 and an air introducing device 1, and the reaction container 5 ′ is an aqueous chlorite solution 6 and A humidification vessel 3 contains a catalyst 7 and a humidification solution 4.
  • the air introducing device 1 and the humidifying container 3 are connected by a first conduit 2, and the humidifying container 3 and the reaction container 5 ′ are connected by a second conduit 2 ′.
  • the humidifying container 3 is substantially sealed.
  • the reaction vessel 5 ′ chlorine dioxide is produced by the reaction between the aqueous chlorite solution 6 and the catalyst 7.
  • the air in the humidifying container 3 is humidified by bubbling the air provided through the first conduit 2 into the humidifying solution 4, and further, The humidified air in the humidifying container 3 is bubbled through the second conduit 2'to the aqueous chlorite solution 6 in the reaction container 5 '.
  • the aqueous chlorite solution 6 and the catalyst 7 are stirred by bubbling, chlorine dioxide produced on the surface of the catalyst 7 is released from the catalyst surface, and chlorine dioxide is produced again on the surface of the catalyst 7.
  • Chlorine dioxide liberated by bubbling is discharged to the outside of the apparatus together with air through a third conduit (gas discharge pipe) 2 ′′ provided at the upper part of the reaction vessel 5 ′.
  • the chlorine dioxide generator of the present invention shown in FIG. 1 is provided with a bubbling mechanism centered on the air introduction device 1 to promote the reaction between the aqueous chlorite solution 6 and the catalyst 7 and to generate chlorine dioxide. Can be discharged to the outside of the device. Further, the chlorine dioxide generator of the present invention is equipped with a humidifying mechanism centering on the humidifying container 3 to prevent evaporation of the aqueous chlorite solution 6 in the reaction container 5 ′, and thus for a very long time. Enables operation of the device.
  • the chlorine dioxide generation device according to one embodiment of the present invention shown in FIGS. 2 and 3 is also a device that generates chlorine dioxide according to the same principle as in design example 1, but in this design example, the catalyst and chlorite are used. It further comprises a mechanism for controlling the reaction with the aqueous solution.
  • FIG. 2 shows the device when the reaction is stopped.
  • the apparatus of design example 2 further includes a reaction liquid holding container 5 in addition to the apparatus of design example 1.
  • the reaction liquid holding container 5 contains only the chlorite aqueous solution 6 and does not contain the catalyst 7.
  • the reaction vessel 9 contains only the catalyst 7 and does not contain the aqueous chlorite solution 6.
  • the reaction container 9 is installed above the reaction liquid holding container 5, and the reaction container 9 and the reaction liquid holding container 5 are connected by a conduit 2 ′′.
  • the conduit 2 ′′ is installed so that its lower end is immersed in the aqueous chlorite solution 6 in the reaction solution holding container 5. In this state, since the chlorite aqueous solution 6 and the catalyst 7 do not come into contact with each other, chlorine dioxide is not generated.
  • the device of design example 2 can generate chlorine dioxide for an extremely long period of time as well as the device of design example 1, and can also generate chlorine dioxide by a simple mechanism such as an air introduction device. Can be controlled.
  • Design example 3 The chlorine dioxide generation device according to one embodiment of the present invention shown in FIG. 4 is a device provided with the same control mechanism as in design example 2.
  • the humidifying container 3 and the reaction liquid holding container 5 are integrated, and only the air above each container is designed to be movable between the containers.
  • the conduit 2 ′ and integrating the humidifying container 3 and the reaction liquid holding container 5 the size of the device can be reduced.
  • Design example 4 The chlorine dioxide generation device according to the embodiment of the present invention shown in FIGS. 5 and 6 is a device provided with the same control mechanism as in design example 2.
  • the end of the conduit 2 ′ on the side of the reaction solution holding container is immersed in the aqueous chlorite solution, and the end of the conduit 2 ′ on the side of the reaction solution holding container is the conduit 2 ′′. It is installed so that it is below the bottom edge. With such a design, bubbling can be performed even in the reaction liquid holding container 5 during the operation of the air introducing device 1.
  • Repeated operation / stop of the device may increase the amount of chlorine dioxide dissolved in the chlorite aqueous solution 6.
  • chlorine dioxide may be released from the aqueous chlorite solution 6 even when the reaction is stopped.
  • bubbling is also performed in the reaction liquid holding container 5, whereby the dissolved chlorine dioxide can be removed when the aqueous chlorite solution 6 is present in the reaction liquid holding container 5, and the reaction is stopped. It is possible to prevent the emission of chlorine dioxide at the time. Further, even during the reaction, it is possible to prevent the excessive release of chlorine dioxide due to the influence of dissolved chlorine dioxide, and as a result, it is possible to more stably control the generation of chlorine dioxide.
  • Design example 5 The chlorine dioxide generation device according to one embodiment of the present invention shown in FIG. 7 is a device provided with the same control mechanism as in design example 2.
  • the air introduction device is installed in the middle of the flow path.
  • Design example 6 The chlorine dioxide generation device according to one embodiment of the present invention shown in FIG. 8 is a device provided with the same control mechanism as in design example 2.
  • the suction-type air introduction device is installed at the end portion of the flow path.
  • the present invention can be embodied in various aspects and should not be construed as being limited to the design examples described herein. ..
  • the size and shape of the device can be optimized by variously changing the arrangement of the containers and conduits that make up the device.
  • Examples of the chlorite used in the present invention include alkali metal chlorite and alkaline earth metal chlorite.
  • alkali metal chlorite examples include sodium chlorite, potassium chlorite, and lithium chlorite
  • examples of the alkaline earth metal chlorite include calcium chlorite, magnesium chlorite, and hypochlorite. Examples include barium chlorate.
  • sodium chlorite / potassium chlorite is preferable, and sodium chlorite is most preferable, from the viewpoint of easy availability.
  • These chlorite oxygen alkalis may be used alone or in combination of two or more.
  • the proportion of alkali chlorite in the aqueous chlorite solution is preferably 0.01% by weight to 45% by weight.
  • a preferable range is 0.1% by weight to 25% by weight, a more preferable range is 1% by weight to 20% by weight, and a further preferable range. Is 2 to 15%.
  • the catalyst used in the apparatus of the present invention is not limited as long as it is a catalyst that reacts with an aqueous solution of chlorite to generate chlorine dioxide, but is required to be separated from the aqueous solution of chlorite at the time of stopping the reaction, and thus solid. It is preferably a catalyst (or a heterogeneous catalyst).
  • solid catalysts that can be used in the device of the present invention include metal catalysts (for example, platinum (Pt), ruthenium (Rh), rhodium (Rh), palladium (Pd), iridium (Ir), osmium (Os), iron.
  • a mineral catalyst for example, silica (Si), or , A compound containing silica
  • a carbon-based catalyst for example, a catalyst containing activated carbon
  • the catalyst used in the apparatus of the present invention may be used alone, or may be supported on a carrier in order to improve the reaction efficiency between the aqueous chlorite solution and the catalyst.
  • the carrier on which the catalyst is carried is not limited as long as it contributes to the improvement of the reaction efficiency between the chlorite aqueous solution and the catalyst, but, for example, titanium, valve metal, stainless steel, nickel, ceramics, carbon, and a porous material, It is preferred that the carrier comprises a material selected from the group consisting of:
  • the air introduction device used in the device of the present invention is not limited as long as it can move the air or the chlorite aqueous solution in the flow path of the device in one direction, but is, for example, an electric air pump. Good. Electricity may be supplied to the electric air pump from a power supply device via a power cable, or a battery may be used.
  • the air introduction device used in the device of the present invention can be installed at various positions as long as the air or the chlorite aqueous solution in the flow path of the device can be moved in one direction.
  • an air introducing device may be installed at the starting point of the flow path to introduce air into the flow path, or an air introducing device may be installed in the middle of the flow path to move the air in the flow path in one direction.
  • the air introducing device may be installed at the end point of the flow path, and the air in the flow path of the device or the chlorite aqueous solution may be moved in one direction by sucking the air in the flow path. Good.
  • the gas introduced into the flow path in the apparatus by the air introduction apparatus is typically air, but an inert gas such as nitrogen or argon may be used.
  • the chlorine dioxide generator of the present invention may further include a blower fan for discharging the chlorine dioxide gas generated in the device to the outside of the device.
  • a blower fan for discharging the chlorine dioxide gas generated in the device to the outside of the device.
  • the chlorine dioxide gas outside the device is diffused further by strengthening the air volume of the blower fan, and when the amount of chlorine dioxide gas generated is relatively small, By preventing the chlorine dioxide gas outside the device from unnecessarily diffusing by weakening the air volume of the blower fan, it is possible to adjust the chlorine dioxide gas concentration outside the device to fall within a certain range.
  • Fig. 10 shows a comparison of chlorine dioxide generation under both conditions. As shown in FIG. 10, chlorine dioxide was generated under the condition of using the catalyst, but chlorine dioxide was not generated under the condition of not using the catalyst. That is, it was confirmed that a catalyst is required to generate chlorine dioxide in the device of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

【課題】 本発明は、従来の二酸化塩素発生装置と比較して、より簡易な構成で、長期間安定して二酸化塩素を発生させることができる装置を提供することを課題とした。 【解決手段】 亜塩素酸塩水溶液と触媒との反応を利用した、新規な二酸化塩素発生装置を提供する。

Description

二酸化塩素発生装置
 本発明は、新規な二酸化塩素発生装置に関する。
 二酸化塩素ガスは、低濃度(例えば、0.1ppm以下)では動物の生体に対して安全なガスである一方、そのような低濃度でも、細菌・真菌・ウイルス等の微生物に対する失活作用や、消臭作用等を有していることが知られている。
 二酸化塩素の発生方法としては、例えば、溶存二酸化塩素ガス、亜塩素酸塩水溶液、および、pH調整剤を含む組成物により、安定的に二酸化塩素を発生させる方法(特許文献1)や、亜塩素酸塩を含有する電解液を電気分解して二酸化塩素を製造する方法が知られている(特許文献2)。
 また、近年、固形の亜塩素酸塩に可視光を照射することによって二酸化塩素を発生させる装置も提案されている(特許文献3)
WO/2008/111357 WO/2009/154143 WO/2015/098732
 本発明は、従来の二酸化塩素発生装置と比較して、より簡易な構成で、長期間安定して二酸化塩素を発生させることができる装置を提供することを課題とした。
 本発明者らは、鋭意研究を重ねた結果、亜塩素酸塩水溶液と触媒との反応による二酸化塩素発生メカニズムを利用した、新規な二酸化塩素発生装置の開発に成功し、本発明を完成させるに到った。
 すなわち本発明は、一実施形態は、加湿機構とバブリング機構とを備えた二酸化塩素発生装置であって、
 当該装置は、反応用容器と加湿用容器と空気導入装置とを含み、
 前記反応用容器は、亜塩素酸塩水溶液、及び、触媒を含み、
 前記加湿用容器は、加湿用溶液を含み、
 前記加湿用容器は、装置外部から空気を導入する第1の導管を備え、
 前記加湿用容器と前記反応用容器とは第2の導管によって接続されている、または、それぞれの容器に含まれる溶液の上方の空気が容器間を移動可能なように相互に連結されており、
 前記加湿用容器は、概ね密閉されており、
 前記空気導入装置は前記二酸化塩素発生装置の流路に設けられており、
 前記加湿用容器は、前記空気導入装置の作動時に、前記第1の導管を介して提供される空気が前記加湿用溶液中にバブリングされることにより、前記加湿用容器中の空気が加湿されるように構成され
 前記反応用容器は、前記加湿用容器中の加湿された空気が前記第2の導管を介して、前記反応用容器中の亜塩素酸塩水溶液にバブリングされるように構成されている
ことを特徴とする。
 本発明の一実施形態は、加湿機構とバブリング機構とを備えた二酸化塩素発生装置であって、
 当該装置は、反応用容器と反応液保持容器と加湿用容器と空気導入装置とを含み、
 前記反応用容器は、触媒を含み、
 前記反応液保持容器は、亜塩素酸塩水溶液を含み、
 前記加湿用容器は、加湿用溶液を含み、
 前記加湿用容器は、装置外部から空気を導入する第1の導管を備え、
 前記加湿用容器と前記反応液保持容器は、第2の導管によって接続されている、または、それぞれの容器に含まれる溶液の上方の空気が容器間を移動可能なように相互に連結されており、
 前記反応液保持容器と前記反応用容器は第3の導管によって接続されており、
 前記加湿用容器は、概ね密閉されており、
 前記反応液保持容器は、概ね密閉されており、
 前記空気導入装置は前記二酸化塩素発生装置の流路に設けられており、
 前記加湿用容器は、前記空気導入装置の作動時に、前記空気導入装置から前記第1の導管を介して提供される空気が前記加湿用溶液中にバブリングされることにより、前記加湿用容器中の空気が加湿されるように構成され、
 前記反応液保持容器は、前記空気導入装置の作動時に、前記加湿用容器中の加湿された空気が前記反応液保持容器中に提供されるように構成されており、
 前記反応用容器は、前記空気導入装置の作動時に、前記反応液保持容器中の亜塩素酸塩水溶液が前記第3の導管を介して、前記反応用容器中に提供され、続いて、前記反応液保持容器中の加湿された空気が前記第3の導管を介して、前記反応用容器中の前記亜塩素酸塩水溶液にバブリングされるように構成されており、
 前記反応液保持容器及び前記反応用容器は、前記空気導入装置を作動状態から停止させる場合に、前記空気導入装置を作動状態において前記反応用容器中に移動していた前記反応液が、前記第3の導管を介して、前記反応液保持容器中に戻るように構成されている、
ことを特徴とする。
 本発明の一実施形態は、前記反応用容器が、前記反応液保持用容器の上方に配置されることを特徴とする。
 本発明の一実施形態は、前記空気導入装置の作動時に前記反応用容器中の前記亜塩素酸塩水溶液にバブリングされる空気が、前記触媒に接触するように構成されることを特徴とする。
 本発明の一実施形態は、前記反応用容器は、少なくとも部分的に開放されており、前記反応用容器内で生成された二酸化塩素を含む空気が前記装置の外部へ放出されるように構成されることを特徴とする。
 本発明の一実施形態は、前記空気導入装置の作動時において、前記反応用容器が、前記亜塩素酸塩水溶液および前記触媒のみを含むことを特徴とする。
 本発明の一実施形態は、電気分解機構を含まないことを特徴とする。
 本発明の一実施形態は、前記亜塩素酸塩水溶液が、亜塩素酸アルカリ金属塩水溶液または亜塩素酸アルカリ土類金属塩水溶液であることを特徴とする。
 本発明の一実施形態は、前記亜塩素酸アルカリ金属塩水溶液が、亜塩素酸ナトリウム水溶液、亜塩素酸カリウム水溶液、または、亜塩素酸リチウム水溶液であり、亜塩素酸アルカリ土類金属塩水溶液が、亜塩素酸カルシウム水溶液、亜塩素酸マグネシウム水溶液、または、亜塩素酸バリウム水溶液であることを特徴とする。
 本発明の一実施形態は、前記亜塩素酸塩水溶液の濃度が0.01~45重量%であることを特徴とする。
 本発明の一実施形態は、前記加湿用溶液が水であることを特徴とする。
 本発明の一実施形態は、前記加湿用溶液が水道水であることを特徴とする。
 本発明の一実施形態は、前記触媒が、固体触媒であることを特徴とする。
 本発明の一実施形態は、前記触媒が、金属系触媒、鉱物系触媒、炭素系触媒、または、これらの組み合わせであることを特徴とする。
 本発明の一実施形態は、前記金属触媒が、白金(Pt)、ルテニウム(Rh)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、オスミウム(Os)、鉄(Fe)、銅(Cu)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)、または、これらの金属の化合物、を含む触媒であり、前記鉱物系触媒が、シリカ(Si)、または、シリカを含む化合物、を含む触媒であり、前記炭素系触媒が、活性炭を含む触媒、であることを特徴とする。
 本発明の一実施形態は、前記触媒が、担体に担持されていることを特徴とする。
 本発明の一実施形態は、前記担体が、チタン、バルブ金属、ステンレス、ニッケル、セラミックス、炭素、および、多孔質物質からなる群から選択される材料を含む担体であることを特徴とする。
 本発明の一実施形態は、前記空気導入装置が、前記二酸化塩素発生装置の流路の始点から前記流路内へ空気を導入する装置、前記二酸化塩素発生装置の流路の途中において前記流路内の空気を一方向に移動させる装置、または、前記二酸化塩素発生装置の流路の終点から前記流路内の空気を吸引する装置、であることを特徴とする。
 本発明の一実施形態は、前記空気導入装置が、電動式のエアポンプであることを特徴とする。
 本発明の一実施形態は、前記装置を1月継続して作動させた時点において前記装置から放出される空気に含まれる二酸化塩素濃度が、前記装置を1週間継続して作動させた時点において前記装置から放出される空気に含まれる二酸化塩素濃度と比較して、少なくとも50%以上維持されることを特徴とする。
 上記に挙げた本発明の一又は複数の特徴を任意に組みわせた発明も、本発明の範囲に含まれる。
 本発明は、従来の二酸化塩素発生方法/発生装置に対して、少なくとも以下の1つ以上の利点を有する。
(1)安全性、耐久性の向上
 本発明は、亜塩素酸塩と触媒との反応による二酸化塩素の発生を利用する。この手法では、
急激な反応により大量の二酸化塩素が発生するリスクがほとんどなく、また、二酸化塩素ガス以外の有害ガスが発生しないことが確認されているため、亜塩素酸塩に酸性物質を添加して二酸化塩素を発生させる手法や、電気分解を用いる手法と比較して安全性が高い(例えば、電気分解による二酸化塩素発生においては、電解液が劣化すると塩素ガスや水素ガス等が発生し得る)。また、本発明の装置の動力は空気導入装置のみであるため、装置の故障のリスクが低く、また、装置が故障した場合の修繕も容易である。
(2)メンテナンスフリー
 本発明は、亜塩素酸塩水溶液の水分の蒸発を防ぐ加湿機構を備えることにより、数か月に渡ってメンテナンスなしで安定的に二酸化塩素を発生させることができる。また、亜塩素酸塩水溶液が寿命に達したときは、亜塩素酸塩水溶液を交換するだけで装置の稼働を継続することができる。
(3)小型化、コストダウン
 本発明は、例えば電気分解による二酸化塩素発生装置等と比較して極めて簡素な構造であるため、装置の小型化やコストダウンが可能である。
図1は、本発明の設計例1を示す。 図2は、本発明の設計例2(反応停止時)を示す。 図3は、本発明の設計例2(反応時)を示す。 図4は、本発明の設計例3(反応停止時)を示す。 図5は、本発明の設計例4(反応停止時)を示す。 図6は、本発明の設計例4(反応時)を示す。 図7は、本発明の設計例5(反応停止時)を示す。 図8は、本発明の設計例6(反応停止時)を示す。 図9は、実験1に用いた装置の設計を示す。 図10は、実験1の結果(二酸化塩素の発生量)を示す。 図11は、実験2の結果(発生ガスの定性分析)を示す。 図12は、実験3の結果(加湿機構なし)を示す。 図13は、実験3の結果(加湿機構あり)を示す。
 本発明を実施するための形態を、図1~図8に示す設計例を用いて説明する。
設計例1
 図1に示す本発明の一実施形態に係る二酸化塩素発生装置は、反応用容器5’と加湿用容器3と空気導入装置1とを備え、反応用容器5’は亜塩素酸塩水溶液6および触媒7を含み、加湿用容器3は加湿用溶液4を含む。空気導入装置1と加湿用容器3とは、第1の導管2によって接続されており、加湿用容器3と反応用容器5’とは第2の導管2’によって接続されている。加湿用容器3は、概ね密閉されている。
 反応用容器5’においては、亜塩素酸塩水溶液6と触媒7との反応により、二酸化塩素が生成される。空気導入装置1が作動すると、第1の導管2を介して提供される空気が加湿用溶液4中にバブリングされることにより、前記加湿用容器3中の空気が加湿され、さらに、
加湿用容器3中の加湿された空気が第2の導管2’を介して、反応用容器5’中の亜塩素酸塩水溶液6にバブリングされる。バブリングによって亜塩素酸塩水溶液6と触媒7とが撹拌されると、触媒7の表面で生成された二酸化塩素が触媒表面から遊離し、再び触媒7の表面で二酸化塩素が生成される。バブリングによって遊離した二酸化塩素は、反応用容器5’の上部に設けられた第3の導管(ガス放出管)2’’を介して、空気とともに装置外へ放出される。
 図1に示す本発明の二酸化塩素発生装置は、空気導入装置1を中心とするバブリング機構を備えることにより、亜塩素酸塩水溶液6と触媒7との反応を促進させつつ、生成された二酸化塩素を装置外へ放出することができる。また、本発明の二酸化塩素発生装置は、加湿用容器3を中心とする加湿機構を備えることにより、反応用容器5’中の亜塩素酸塩水溶液6の蒸発を防ぐことによって、極めて長期間の装置の稼働を可能にする。
設計例2
 図2および図3に示す本発明の一実施形態に係る二酸化塩素発生装置も、設計例1と同様の原理で二酸化塩素を生成する装置であるが、本設計例では、触媒と亜塩素酸塩水溶液との反応の制御機構をさらに備える。
(1)反応停止時
 反応停止時の装置を図2に示す。設計例2の装置においては、設計例1の装置に加え、さらに反応液保持容器5を備える。反応液保持容器5は亜塩素酸塩水溶液6のみを含み、触媒7は含まない。一方、反応用容器9は触媒7のみを含み、亜塩素酸塩水溶液6を含まない。反応用容器9は反応液保持容器5の上方に設置され、反応用容器9と反応液保持容器5とは、導管2’’によって接続される。導管2’’は、下端が反応液保持容器5中の亜塩素酸塩水溶液6に浸漬されるように設置される。この状態においては、亜塩素酸塩水溶液6と触媒7が接触しないため、二酸化塩素は発生しない。
(2)反応時
 反応時の装置を図3に示す。空気導入装置1が作動すると、図中の矢印方向に流路が形成され、反応液保持容器5中の亜塩素酸塩水溶液6が、導管2’’を介して反応用容器9中に誘導される。空気導入装置1の作動中は、反応液保持容器5中が陽圧となるため、亜塩素酸塩水溶液6が反応用容器9中に存在する状態が維持される、また、亜塩素酸塩水溶液6は、導管2’’を介して供給される空気によってバブリングされる。この状態においては、亜塩素酸塩水溶液6と触媒7が接触しており、また、バブリングによって亜塩素酸塩水溶液6と触媒7とが撹拌されるため、設計例1の場合と同様に効率的に二酸化塩素が生成される。バブリングによって遊離した二酸化塩素は、反応用容器9の上部から、空気とともに装置外へ放出される。
(3)反応時再停止時
 (2)の状態から空気導入装置1を停止すると、反応液保持容器5の陽圧状態が解除されるため、反応用容器9中にあった亜塩素酸塩水溶液6が反応液保持容器5中へ戻り、再び図2の状態となる。この状態においては、亜塩素酸塩水溶液6と触媒7が接触しないため、二酸化塩素は発生しない。
 このように、設計例2の装置は、設計例1の装置と同様に、極めて長期間にわたって二酸化塩素を発生させることができるのみならず、空気導入装置という簡易な機構によって、二酸化塩素の発生を制御することができる。
設計例3
 図4に示す本発明の一実施形態に係る二酸化塩素発生装置は、設計例2と同様の制御機構を備える装置である。設計例3では、加湿用容器3と反応液保持容器5とが一体となっており、それぞれの容器の上方の空気のみが容器間を移動可能なように設計されている。導管2’を省略し、加湿用容器3と反応液保持容器5とを一体とすることで、装置のサイズダウンを可能とする。
設計例4
 図5および図6に示す本発明の一実施形態に係る二酸化塩素発生装置は、設計例2と同様の制御機構を備える装置である。設計例4では、導管2’の反応液保持容器側の端部が亜塩素酸塩水溶液に浸漬されるように、かつ、導管2’の反応液保持容器側の端部が導管2’’の下端よりも下になるように設置される。このように設計することで、空気導入装置1の作動中において、反応液保持容器5においてもバブリングを行うことができる。
 装置の作動/停止を繰り返すと、亜塩素酸塩水溶液6中の二酸化塩素溶存量が増加し得る。亜塩素酸塩水溶液6中の二酸化塩素溶存量が増加すると、反応停止時においても亜塩素酸塩水溶液6から二酸化塩素が放出され得る。本設計例においては、反応液保持容器5においてもバブリングを行うことで、亜塩素酸塩水溶液6が反応液保持容器5中に存在する場合に溶存二酸化塩素を除去することが可能となり、反応停止時における二酸化塩素の放出を防ぐことができる。また、反応時においても、溶存二酸化塩素の影響による二酸化塩素の過剰な放出を防ぐことができ、結果として、より安定的な二酸化塩素発生の制御が可能となる。
設計例5
 図7に示す本発明の一実施形態に係る二酸化塩素発生装置は、設計例2と同様の制御機構を備える装置である。設計例5では、設計例2とは異なり、流路の途中に空気導入装置が設置される。
設計例6
 図8に示す本発明の一実施形態に係る二酸化塩素発生装置は、設計例2と同様の制御機構を備える装置である。設計例6では、設計例2とは異なり、流路の終端部に吸引式の空気導入装置が設置される。
 以上において、設計例を参照して本発明の内容を説明したが、本発明はいろいろな態様により具現化することができ、ここに記載される設計例に限定されるものとして解釈されてはならない。例えば、本発明の一実施形態においては、装置を構成する容器や導管の配置を様々に変更することによって、装置の大きさや形状を最適化することができる。
 本発明で使用される亜塩素酸塩としては、例えば亜塩素酸アルカリ金属塩や亜塩素酸アルカリ土類金属塩が挙げられる。亜塩素酸アルカリ金属塩としては、例えば亜塩素酸ナトリウム・亜塩素酸カリウム・亜塩素酸リチウムが挙げられ、亜塩素酸アルカリ土類金属塩としては、亜塩素酸カルシウム・亜塩素酸マグネシウム・亜塩素酸バリウムが挙げられる。なかでも、入手が容易という点から、亜塩素酸ナトリウム・亜塩素酸カリウムが好ましく、亜塩素酸ナトリウムが最も好ましい。これら亜塩素酸素アルカリは1種を単独で用いてもよいし、2種以上を併用しても構わない。亜塩素酸塩水溶液における亜塩素酸アルカリの割合は、0.01重量%~45重量%であることが好ましい。0.01重量%未満の場合は、二酸化塩素の発生に必要な亜塩素酸塩が短期間で枯渇する可能性があり、45重量%を超える場合は、亜塩素酸塩が飽和して結晶が析出しやすいという問題が生じる可能性がある。安全性や安定性、二酸化塩素の発生効率などを鑑みた場合、好ましい範囲は、0.1重量%~25重量%であり、より好ましい範囲は1重量%~20重量%であり、さらに好ましい範囲は2~15%である。
 本発明の装置において用いる触媒は、亜塩素酸塩水溶液と反応して二酸化塩素を発生させる触媒であれば限定されないが、反応停止時において亜塩素酸塩水溶液と分離される必要があるため、固体触媒(または、不均一系触媒)であることが好ましい。本発明の装置に用い得る固体触媒の例としては、金属触媒(例えば、白金(Pt)、ルテニウム(Rh)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、オスミウム(Os)、鉄(Fe)、銅(Cu)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)、または、これらの金属の化合物)、鉱物系触媒(例えば、シリカ(Si)、または、シリカを含む化合物)、炭素系触媒(例えば、活性炭を含む触媒)が挙げられる。
 本発明の装置において用いる触媒は、単独で用いられてもよいが、亜塩素酸塩水溶液と触媒との反応効率を向上させるために、担体に担持されたものを用いてもよい。触媒が担持される担体は、亜塩素酸塩水溶液と触媒との反応効率の向上に寄与する限り限定されないが、例えば、チタン、バルブ金属、ステンレス、ニッケル、セラミックス、炭素、および、多孔質物質、からなる群から選択される材料を含む担体であることが好ましい。
 本発明の装置において用いられる空気導入装置は、装置の流路中の空気または亜塩素酸塩水溶液を一方向に移動させることができるものであれば限定されないが、例えば電動式のエアポンプであってよい。電動式のエアポンプへの電気の供給は、電力ケーブルを介して電力供給装置から行ってもよいし、電池を利用してもよい。
 本発明の装置において用いられる空気導入装置は、装置の流路中の空気または亜塩素酸塩水溶液を一方向に移動させることができる限り、様々な位置に設置することができる。例えば、空気導入装置を流路の始点に設置して、流路内へ空気を導入してもよく、空気導入装置を流路の途中に設置して、流路内の空気を一方向に移動させてもよく、空気導入装置を流路の終点に設置して、流路内の空気を吸引することにより、装置の流路中の空気または亜塩素酸塩水溶液を一方向に移動させてもよい。
 本発明の装置において、空気導入装置によって装置内の流路に導入されるガスは、典型的には空気であるが、例えば、窒素やアルゴン等の不活性化ガスを用いてもよい。
 本発明の二酸化塩素発生装置は、装置において発生した二酸化塩素ガスを装置の外へと放出するための送風ファンをさらに備えてもよい。送風ファンを備えることによって、装置内で発生した二酸化塩素ガスを効率よく装置外へと送り出すことができ、また、ファンの風量を調節することによって、装置外へと送り出す二酸化塩素ガスの量を調節することもできる。例えば、二酸化塩素ガスの発生量が比較的多い場合は、送風ファンの風量を強めることによって装置外の二酸化塩素ガスをより遠くへ拡散させ、二酸化塩素ガスの発生量が比較的少ない場合には、送風ファンの風量を弱めることによって装置外の二酸化塩素ガスが必要以上に拡散されることを防ぐことにより、装置外の二酸化塩素ガス濃度が一定の範囲内に収まるように調節することができる。
 本明細書において用いられる用語は、特定の実施態様を説明するために用いられるのであり、発明を限定する意図ではない。
 また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記載された事項(部材、ステップ、要素または数字等)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素または数字等)が存在することを排除しない。
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語および科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書および関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、または、過度に形式的な意味において解釈されるべきではない。
 本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
 本明細書において、例えば、「1~10w/w%」と表現されている場合、当業者は、当該表現が、1、2、3、4、5、6、7、8、9、または10w/w%を個別具体的に指すことを理解する。
 本明細書において、成分含有量や数値範囲を示すのに用いられるあらゆる数値は、特に明示がない限り、用語「約」の意味を包含するものとして解釈される。例えば、「10倍」とは、特に明示がない限り、「約10倍」を意味するものと理解される。
 本明細書中に引用される文献は、それらのすべての開示が、本明細書中に援用されているとみなされるべきであって、当業者は、本明細書の文脈に従って、本発明の精神および範囲を逸脱することなく、それらの先行技術文献における関連する開示内容を、本明細書の一部として援用して理解する。
 本発明の効果を確認するため、以下の実験を行った。
[実験1.触媒と亜塩素酸塩水溶液との反応]
 本実験においては、本発明の装置をより簡素化した図9に示す装置を用いて、二酸化塩素発生実験を行った。触媒としてはチタン(担体)に白金ベースの触媒を担持させたものを用い、亜塩素酸塩水溶液は1%亜塩素酸塩ナトリウム水溶液1Lを用いた。空気導入装置11を用いて、亜塩素酸塩水溶液14および触媒15を含む反応用容器13へ、約1L/minの流量で空気をバブリングさせた。一方、コントロールとして、触媒を使用しないこと以外は上記と同様の条件で、装置を作動させた。
 両条件における二酸化塩素発生の比較を図10に示す。図10に示すとおり、触媒を用いる条件においては二酸化塩素が発生したが、触媒を用いない条件においては二酸化塩素が発生しなかった。すなわち、本発明の装置において二酸化塩素を発生させるためには、触媒が必要であることが確認された。
[実験2.発生ガスの定性分析]
 実験1の方法で発生したガスを収集し、その成分をイオンクロマトグラフィによって定性分析を行った。その結果を図11に示す。図11に示すとおり、亜塩素酸塩と触媒との反応によって発生したガス成分は、実質的に二酸化塩素のみであった。
[実験3.加湿機構の効果の確認]
 実験1で使用した装置(図9に示す装置)と、設計例1に示す本発明の装置(図1に示す装置)とを用いて、長時間の装置稼働テストを行った。実験1で使用した装置を用いた場合の結果を図12に示し、設計例1に示す本発明の装置を用いた場合の結果を図13に示す。図12に示すとおり、加湿機構を有しない装置は、1カ月程度までは安定的に二酸化塩素を発生したが、約1カ月程度で亜塩素酸塩水溶液の水分が蒸発し、二酸化塩素の発生量が不安定になる現象が見られた。一方、図13に示すとおり、加湿機構を有する装置は、3カ月以上に渡って安定的に二酸化塩素を放出し続けた。以上のとおり、本発明の装置が有する加湿機構は、装置の長時間の安定的な稼働を可能にすることが示された。

Claims (20)

  1.  加湿機構とバブリング機構とを備えた二酸化塩素発生装置であって、
     当該装置は、反応用容器と加湿用容器と空気導入装置とを含み、
     前記反応用容器は、亜塩素酸塩水溶液、及び、触媒を含み、
     前記加湿用容器は、加湿用溶液を含み、
     前記加湿用容器は、装置外部から空気を導入する第1の導管を備え、
     前記加湿用容器と前記反応用容器とは第2の導管によって接続されている、または、それぞれの容器に含まれる溶液の上方の空気が容器間を移動可能なように相互に連結されており、
     前記加湿用容器は、概ね密閉されており、
     前記空気導入装置は前記二酸化塩素発生装置の流路に設けられており、
     前記加湿用容器は、前記空気導入装置の作動時に、前記第1の導管を介して提供される空気が前記加湿用溶液中にバブリングされることにより、前記加湿用容器中の空気が加湿されるように構成され
     前記反応用容器は、前記加湿用容器中の加湿された空気が前記第2の導管を介して、前記反応用容器中の亜塩素酸塩水溶液にバブリングされるように構成されている
    ことを特徴とする、
    装置。
  2.  加湿機構とバブリング機構とを備えた二酸化塩素発生装置であって、
     当該装置は、反応用容器と反応液保持容器と加湿用容器と空気導入装置とを含み、
     前記反応用容器は、触媒を含み、
     前記反応液保持容器は、亜塩素酸塩水溶液を含み、
     前記加湿用容器は、加湿用溶液を含み、
     前記加湿用容器は、装置外部から空気を導入する第1の導管を備え、
     前記加湿用容器と前記反応液保持容器は、第2の導管によって接続されている、または、それぞれの容器に含まれる溶液の上方の空気が容器間を移動可能なように相互に連結されており、
     前記反応液保持容器と前記反応用容器は第3の導管によって接続されており、
     前記加湿用容器は、概ね密閉されており、
     前記反応液保持容器は、概ね密閉されており、
     前記空気導入装置は前記二酸化塩素発生装置の流路に設けられており、
     前記加湿用容器は、前記空気導入装置の作動時に、前記空気導入装置から前記第1の導管を介して提供される空気が前記加湿用溶液中にバブリングされることにより、前記加湿用容器中の空気が加湿されるように構成され、
     前記反応液保持容器は、前記空気導入装置の作動時に、前記加湿用容器中の加湿された空気が前記反応液保持容器中に提供されるように構成されており、
     前記反応用容器は、前記空気導入装置の作動時に、前記反応液保持容器中の亜塩素酸塩水溶液が前記第3の導管を介して、前記反応用容器中に提供され、続いて、前記反応液保持容器中の加湿された空気が前記第3の導管を介して、前記反応用容器中の前記亜塩素酸塩水溶液にバブリングされるように構成されており、
     前記反応液保持容器及び前記反応用容器は、前記空気導入装置を作動状態から停止させる場合に、前記空気導入装置を作動状態において前記反応用容器中に移動していた前記反応液が、前記第3の導管を介して、前記反応液保持容器中に戻るように構成されている、
    ことを特徴とする、
    装置。
  3.  請求項2に記載の二酸化塩素発生装置であって、
     前記反応用容器が、前記反応液保持容器の上方に配置されることを特徴とする、
    装置。
  4.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記装置は、前記空気導入装置の作動時に前記反応用容器中の前記亜塩素酸塩水溶液にバブリングされる空気が、前記触媒に接触するように構成されることを特徴とする、
    装置。
  5.  請求項1または2項に記載の二酸化塩素発生装置であって、
     前記反応用容器は、少なくとも部分的に開放されており、前記反応用容器内で生成された二酸化塩素を含む空気が前記装置の外部へ放出されるように構成されることを特徴とする、
    装置。
  6.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記空気導入装置の作動時において、前記反応用容器が、前記亜塩素酸塩水溶液および前記触媒のみを含むことを特徴とする、
    装置。
  7.  請求項1または2に記載の二酸化塩素発生装置であって、
     電気分解機構を含まないことを特徴とする、
    装置。
  8.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記亜塩素酸塩水溶液が、亜塩素酸アルカリ金属塩水溶液または亜塩素酸アルカリ土類金属塩水溶液であることを特徴とする、
    装置。
  9.  請求項8に記載の二酸化塩素発生装置であって、
     前記亜塩素酸アルカリ金属塩水溶液が、亜塩素酸ナトリウム水溶液、亜塩素酸カリウム水溶液、または、亜塩素酸リチウム水溶液であり、
     亜塩素酸アルカリ土類金属塩水溶液が、亜塩素酸カルシウム水溶液、亜塩素酸マグネシウム水溶液、または、亜塩素酸バリウム水溶液である、
    ことを特徴とする、
    装置。
  10.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記亜塩素酸塩水溶液の濃度が0.01~45重量%であることを特徴とする、
    装置。
  11.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記加湿用溶液が水であることを特徴とする、
    装置。
  12.  請求項11に記載の二酸化塩素発生装置であって、
     前記加湿用溶液が水道水であることを特徴とする、
    装置。
  13.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記触媒が、固体触媒であることを特徴とする、
    装置。
  14.  請求項13に記載の二酸化塩素発生装置であって、
     前記触媒が、金属系触媒、鉱物系触媒、炭素系触媒、または、これらの組み合わせであることを特徴とする、
    装置。
  15.  請求項14に記載の二酸化塩素発生装置であって、
     前記金属触媒が、白金(Pt)、ルテニウム(Rh)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、オスミウム(Os)、鉄(Fe)、銅(Cu)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)、または、これらの金属の化合物、を含む触媒であり、
     前記鉱物系触媒が、シリカ(Si)、または、シリカを含む化合物、を含む触媒であり、
     前記炭素系触媒が、活性炭を含む触媒、
    であることを特徴とする、
    装置。
  16.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記触媒が、担体に担持されていることを特徴とする、
    装置。
  17.  請求項16に記載の二酸化塩素発生装置であって、
     前記担体が、チタン、バルブ金属、ステンレス、ニッケル、セラミックス、炭素、および、多孔質物質からなる群から選択される材料を含む担体であることを特徴とする、
    装置。
  18.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記空気導入装置が、前記二酸化塩素発生装置の流路の始点から前記流路内へ空気を導入する装置、前記二酸化塩素発生装置の流路の途中において前記流路内の空気を一方向に移動させる装置、または、前記二酸化塩素発生装置の流路の終点から前記流路内の空気を吸引する装置、であることを特徴とする、
    装置。
  19.  請求項18に記載の二酸化塩素発生装置であって、
     前記空気導入装置が、電動式のエアポンプであることを特徴とする、
    装置。
  20.  請求項1または2に記載の二酸化塩素発生装置であって、
     前記装置を1月継続して作動させた時点において前記装置から放出される空気に含まれる二酸化塩素濃度が、前記装置を1週間継続して作動させた時点において前記装置から放出される空気に含まれる二酸化塩素濃度と比較して、少なくとも50%以上維持されることを特徴とする、
    装置。
PCT/JP2019/041278 2018-10-29 2019-10-21 二酸化塩素発生装置 WO2020090539A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020553797A JP7412007B2 (ja) 2018-10-29 2019-10-21 二酸化塩素発生装置
KR1020217007122A KR20210082160A (ko) 2018-10-29 2019-10-21 이산화 염소 발생 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-202566 2018-10-29
JP2018202566 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020090539A1 true WO2020090539A1 (ja) 2020-05-07

Family

ID=70421511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041278 WO2020090539A1 (ja) 2018-10-29 2019-10-21 二酸化塩素発生装置

Country Status (5)

Country Link
JP (1) JP7412007B2 (ja)
KR (1) KR20210082160A (ja)
CN (2) CN211595036U (ja)
TW (1) TWI810392B (ja)
WO (1) WO2020090539A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210482A1 (ja) * 2020-04-15 2021-10-21 大幸薬品株式会社 二酸化塩素発生装置および二酸化塩素発生方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090539A1 (ja) * 2018-10-29 2020-05-07 大幸薬品株式会社 二酸化塩素発生装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057429A (ja) * 2008-09-04 2010-03-18 Okuno Chem Ind Co Ltd 食品の殺菌処理方法
JP2017110277A (ja) * 2015-12-18 2017-06-22 株式会社大阪ソーダ 二酸化塩素の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407656A (en) * 1992-03-04 1995-04-18 Arco Research Co., Inc. Method and compositions for the production of chlorine dioxide
FR2817545B1 (fr) * 2000-12-04 2003-01-03 Atofina Procede de generation du dioxyde de chlore
WO2008111357A1 (ja) 2007-03-15 2008-09-18 Taiko Pharmaceutical Co., Ltd. 純粋二酸化塩素液剤、これを含有するゲル状組成物及び発泡性組成物
JP5469601B2 (ja) 2008-06-19 2014-04-16 大幸薬品株式会社 1液型電解式の二酸化塩素製造方法
JP2011152234A (ja) * 2010-01-26 2011-08-11 Inabata Koryo Kk 二酸化塩素ガス発生具
CN103964384B (zh) * 2013-01-24 2017-04-12 高砂热学工业株式会社 二氧化氯气体生成系统和二氧化氯气体分解装置
AU2014371304B2 (en) 2013-12-27 2017-12-07 Taiko Pharmaceutical Co., Ltd. Unit for chlorine dioxide generation and chlorine dioxide generation device
WO2015098730A1 (ja) * 2013-12-27 2015-07-02 大幸薬品株式会社 二酸化塩素発生装置及び二酸化塩素発生用ユニット
CN105439095B (zh) * 2015-12-02 2018-02-27 广西大学 一种以综合法二氧化氯工艺制备亚氯酸钠的方法及装置
WO2020090539A1 (ja) * 2018-10-29 2020-05-07 大幸薬品株式会社 二酸化塩素発生装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057429A (ja) * 2008-09-04 2010-03-18 Okuno Chem Ind Co Ltd 食品の殺菌処理方法
JP2017110277A (ja) * 2015-12-18 2017-06-22 株式会社大阪ソーダ 二酸化塩素の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210482A1 (ja) * 2020-04-15 2021-10-21 大幸薬品株式会社 二酸化塩素発生装置および二酸化塩素発生方法

Also Published As

Publication number Publication date
CN111099560A (zh) 2020-05-05
JP7412007B2 (ja) 2024-01-12
TWI810392B (zh) 2023-08-01
KR20210082160A (ko) 2021-07-02
CN211595036U (zh) 2020-09-29
JPWO2020090539A1 (ja) 2021-09-24
TW202016011A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP5764179B2 (ja) 殺菌用途のpH制御次亜ハロゲン酸水溶液を発生させるための電解装置
JP5113892B2 (ja) 膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法
JP5113891B2 (ja) オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法
WO2020090539A1 (ja) 二酸化塩素発生装置
JP2011246800A5 (ja)
JP2011246799A5 (ja)
JPH09510143A (ja) ヒドロキシル遊離基を発生しそして水中に溶解した化学物質を酸化する電気化学的方法および装置
US20230129237A1 (en) Water-processing electrochemical reactor
KR101916455B1 (ko) 복합 산화 미스트 분무에 의한 탈취 장치 및 이를 이용한 탈취 방법
WO2021132708A1 (ja) 電解水の生成方法、生成噴霧器及び生成噴霧装置
WO2020090538A1 (ja) 二酸化塩素発生装置
WO2021210482A1 (ja) 二酸化塩素発生装置および二酸化塩素発生方法
JP2004010904A (ja) 過酸化水素製造用電解セル
JP2001300560A (ja) 廃水処理方法、廃水処理装置及び廃水処理用触媒
JP5540721B2 (ja) 抗菌処理水生成装置およびそれを用いた抗菌処理方法
CN115094462B (zh) 基于泡沫钛单原子整体电极的二氧化氯气体发生装置
Sakaguchi et al. Effect of dissolved oxygen and lanthanide ions in solution on TiO 2 photocatalytic oxidation of 2-propanol
CN115532317A (zh) 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用
JP2010133010A (ja) めっき液供給機構およびめっき装置並びにめっき膜の形成方法
Jin-zhang et al. Degradation of chloroanilines in aqueous solution by contact glow discharge electrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553797

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878130

Country of ref document: EP

Kind code of ref document: A1