CN115532317A - 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用 - Google Patents

一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115532317A
CN115532317A CN202211283871.XA CN202211283871A CN115532317A CN 115532317 A CN115532317 A CN 115532317A CN 202211283871 A CN202211283871 A CN 202211283871A CN 115532317 A CN115532317 A CN 115532317A
Authority
CN
China
Prior art keywords
zifs
electrocatalyst
composite carrier
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211283871.XA
Other languages
English (en)
Other versions
CN115532317B (zh
Inventor
陈红军
刘秀
唐兴
于意
文瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Humanities Science and Technology
Original Assignee
Hunan University of Humanities Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Humanities Science and Technology filed Critical Hunan University of Humanities Science and Technology
Priority to CN202211283871.XA priority Critical patent/CN115532317B/zh
Publication of CN115532317A publication Critical patent/CN115532317A/zh
Application granted granted Critical
Publication of CN115532317B publication Critical patent/CN115532317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Pd/ZIFs‑8@Ti3C2Tx电催化剂及其制备方法和在氯酚类化合物电催化氢化还原脱氯中的应用,所述Pd/ZIFs‑8@Ti3C2Tx电催化剂包括Pd纳米颗粒和ZIFs‑8@Ti3C2Tx复合载体,所述ZIFs‑8@Ti3C2Tx复合载体由ZIFs‑8修饰二维层状Ti3C2Tx而成,所述Pd纳米颗粒负载在ZIFs‑8@Ti3C2Tx复合载体上。本发明的Pd/ZIFs‑8@Ti3C2Tx电催化剂用于氯酚类化合物的电催化氢化还原脱氯反应,兼具氢气吸附性能和高效催化效果,Pd负载量少,催化活性高,重复利用率高。

Description

一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用
技术领域
本发明属于电化学水处理技术领域,具体涉及一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和在氯酚类化合物电催化氢化还原脱氯中的应用。
背景技术
氯酚类化合物(Chlorophenols Compounds,CPs)是一种化学性质稳定的广谱杀菌防腐剂和化工生产有机中间体,对生物体具有致畸、致癌、致突变的“三致”作用,是公认的环境持久性有毒有害污染物。目前,降解CPs污染物的方法研究主要集中在物理化学法、生物技术、化学还原法和化学氧化法,并取得了显著的成果,但各方法各有其不足。实际废水处理一般利用活性污泥工艺对含CPs 的废水进行生化处理,但CPs能改变细胞膜的结构,使污泥膨胀和降低泥水分离效率作用而毒化活性污泥,进而导致常规水处理无法使废水中的氯酚类污染物有效降解。基于Fenton反应、活化过硫酸盐氧化反应等能产生强氧化活性自由基(主要为·OH和SO4 ·-)的高级氧化反应技术能实现对CPs的深度降解。研究发现 Fenton反应和过硫酸盐催化体系能将2,4-二氯苯酚和2,4,6-三氯苯酚彻底降解成二氧化碳和水。然而,CPs在高级氧化降解过程中容易产生多种毒性更强且更难以被降解的含氯芳烃,这要求对CPs氧化降解前首先进行脱氯处理。研发高效的还原脱氯方法对高效深度降解CPs具有重要意义和应用前景。
电化学催化氧化技术能实现对CPs污染物的矿化,达到深度降解的效果,该技术包括电催化氢化还原脱氯(Electrocatalytic Hydrodechlorination,EHDC)过程和电化学氧化过程,其中EHDC效果是影响深度降解程度的关键。EHDC是指含氯有机污染物在阴极发生电化学催化还原反应,使苯环上的氯原子被水或质子电解产生的活性氢所取代,从而被转化为无毒或低毒容易被氧化的化合物过程。EHDC通常利用具有催化活性的金属材料修饰制作阴极电极,使水溶液电解产生强还原性的吸附在阴极材料表面的活性氢原子,进而攻击吸附在基材表面的氯酚类污染物,实现还原脱氯目标。
电催化氢离子在阴极材料界面发生2个电子转移,还原产生氢气(HER)过程能在金属材料界面产生活性吸附氢,其具体过程包含两个基本步骤,第一步为氢离子发生单电子转移在金属界面形成活性吸附氢(Volmer reaction);第二步为氢气的电化学脱附过程,包含两种不同类型反应机制,分别为Heyrovsky反应和Tafel反应类型。具有HER催化性能的阴极材料如Pd、Cu、Ti、Fe等金属及其合金和复合材料被用于电化学还原脱氯研究,且确实发现具备良好的EHDC 能力。其中,Pd因具有高效的催化产生活性氢H*效率,以及对H*良好的保持能力,容易在阴极界面产生(H*)adsM(催化电极界面吸附的活性氢物种),成为最有利于EHDC的阴极材料。但是金属Pd价格昂贵,同时在较高的还原电位下, (H*)adsM能通过Heyrovsky或Tafel反应消耗(H*)adsM,且产生的H2气泡会干扰氢离子和CPs向阴极界面的传质过程,从而降低EHDC效率。
金属钯(Pd)是性能较优和结构较稳定的电化学脱氯催化剂,被广泛使用。但研究表明,在电催化氢化还原脱氯过程中,Pd很容易被脱氯产物毒化(如针对2,4- 二氯苯酚的脱氯反应中,脱氯产物苯酚难从Pd表面脱附,毒化严重),因此如何提高Pd抗毒化效果,以提升其脱氯效率和动力学,显得尤为重要。目前,行之有效的方法是通过调控Pd电子结构,优化其吸附脱氯产物强度来缓解毒化。调控的方式包括在金属中引入晶格缺陷;或引入导电载体形成金属-载体界面;或引入另一种金属,与Pd形成金属合金等。但目前这些调控方式所对应的材料合成比较复杂,且电子调控的幅度不够宽泛,无法满足要求
电催化氢化还原脱氯技术,通过外接电源提供电子,原位电解水形成H*取代 Cl实现脱氯。电催催化氢化还原脱氯具有以下优点:1)源源不断地提供电子,保证反应连续高效;2)可控制电压来调节反应动力学和路径,其适用范围广泛;3) 无需外加化学物质,无二次污染,反应条件温和,环境友好,这些优点使电催化氢化还原脱氯技术成为一种前景较优的“环境友好型”技术。
近年来先后有关于Pd/ACF电极,Pd/GC电极,Pd/Ni电极,Pd/Ti电极等Pd 直接沉积于基材上的电极的研究,但是由于结合位点之间的相互作用力不稳固,造成Pd催化剂颗粒容易脱落,催化电极稳定性差,使用寿命不长的技术缺陷。
发明内容
本发明的目的是在于提供了一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和在氯酚类化合物电催化氢化还原脱氯中的应用,采用ZIFs-8@Ti3C2Tx作为复合载体,用于负载Pd纳米颗粒,旨在提高EHDC效率的同时,改善整个电极的稳定性。
为了实现上述技术目的,本发明采用如下技术方案:
一种Pd/ZIFs-8@Ti3C2Tx电催化剂,包括Pd纳米颗粒和ZIFs-8@Ti3C2Tx复合载体,所述ZIFs-8@Ti3C2Tx复合载体由ZIFs-8修饰二维层状Ti3C2Tx而成,所述Pd纳米颗粒负载在ZIFs-8@Ti3C2Tx复合载体上。
作为优选,所述Pd纳米颗粒和ZIFs-8@Ti3C2Tx复合载体的质量比为 0.05-0.1:1;所述ZIFs-8@Ti3C2Tx复合载体中,ZIFs-8和Ti3C2Tx的质量比为1-0.5: 4-8。
电极界面(H)adsM的生成速率是决定EHDC效果的关键因素,电解析出的氢气与电催化氢化脱氯反应中的(H)adsM产生竞争,阻碍催化剂表面与液体表面间的电子传递和传质作用,导致脱氯性能下降。阴极材料的析氢过电位对电催化氢化脱氯性能有着显著影响,此外,增加阴极材料的比表面积能增强目标物质和活性位点作用效率,良好的导电能力有利于电子的传递,均对电化学催化效率有促进作用。综合上述电化学催化氢化脱氯性能与材料形态、电化学性能之间的联系,得出大的比表面积、良好的电子转移能力、较低的析氢过电位和电催化产生活性吸附氢能力,并尽可能降低H2析出副反应均对阴极材料的EHDC性能有利。
本发明采用ZIFs-8@Ti3C2Tx作为复合载体,用于负载Pd纳米颗粒,其中先以二维层状Ti3C2Tx作为基础,其具有良好的导电性,可加速电子在电极界面的转移速度,增加电子转移能力,还具有低的催化析氢电位,且在制备过程中表面含有杂原子掺杂(Al,F,O等),而尺寸效应、大比表面积、杂原子掺杂均具有增强电催化活性潜力,再辅以对氢气具有良好的吸附存储能力的超高孔隙率和巨大比表面积的沸石骨架MOFs材料ZIFs-8,通过吸附与催化两者结合形成复合载体,最后负载Pd纳米颗粒,得到兼具氢气吸附性能和高效催化效果的复合电催化材料。
本发明还提供了上述Pd/ZIFs-8@Ti3C2Tx电催化剂的制备方法,包括如下步骤:
(1)将2-甲基咪唑溶解于甲醇中得到2-甲基咪唑甲醇溶液;
(2)将Zn(NO3)2·6H2O分散于甲醇中,并加入Ti3C2Tx超声处理得到均匀分散的混合悬浮液;
(3)将步骤(1)的2-甲基咪唑甲醇溶液缓慢滴入步骤(2)的混合悬浮液中,搅拌反应后,经离心、洗涤、干燥即得ZIFs-8@Ti3C2Tx复合载体;
(4)将ZIFs-8@Ti3C2Tx复合载体超声分散于水中,再加入四氯钯酸钠溶液,混合后,调节pH至8-10,最后加入水合肼溶液,搅拌反应,经离心、洗涤、干燥即得Pd/ZIFs-8@Ti3C2Tx电催化剂。
本发明还提供了上述Pd/ZIFs-8@Ti3C2Tx电催化剂的应用,将 Pd/ZIFs-8@Ti3C2Tx电催化剂与聚偏氟乙烯混合,并加入N-甲基吡咯烷酮溶液,搅拌成均匀的浆状物质,然后均匀涂抹在碳纸电极表面,得到负载了 Pd/ZIFs-8@Ti3C2Tx电催化剂的工作电极,用于氯酚类化合物的电催化氢化还原脱氯反应。
与现有技术相比,本发明的优势在于:
(1)本发明的复合载体,二维层状Ti3C2Tx作为基础,其具有良好的导电性,可加速电子在电极界面的转移速度,增加电子转移能力,还具有低的催化析氢电位,且在制备过程中表面含有杂原子掺杂(Al,F,O等),再辅以对氢气具有良好的吸附存储能力的超高孔隙率和巨大比表面积的沸石骨架MOFs材料ZIFs-8,通过吸附与催化两者结合形成复合载体,最后负载Pd纳米颗粒,得到兼具氢气吸附性能和高效催化效果的复合电催化材料。
(2)本发明的复合载体,通过二维层状Ti3C2Tx与沸石骨架MOFs材料ZIFs-8 复合,形成一定的尺寸效应,具有大的比表面积和吸附能力,可以使得Pd纳米颗粒更好的分散和活性暴露于复合载体表面,同时对Pd纳米颗粒形成好的锚固性,可以改进现有脱氯用修饰电极存在的结合位点之间的相互作用力不稳固、催化剂和基质容易脱离等缺点,提高整个电极的催化稳定性。
(3)本发明的Pd/ZIFs-8@Ti3C2Tx电催化剂,Pd负载量少,催化活性高,重复利用率高。
附图说明
图1为2,4-DCP,CP,2-CP和4-CP混合液的色谱图;
图2为2,4-DCP,CP,2-CP和4-CP的色谱校准曲线;
图3为Ti3C2TX(A,B)和ZIF-8@Ti3C2Tx(C,D)的TEM图;
图4为脱氯反应中2,4-DCP的去除率随时间变化曲线图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图与具体实施方式对本发明作进一步详细描述(应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明)。
2,4-DCP储备液:配制5g/L的2,4-DCP溶液,用于梯度稀释后绘制2,4-DCP 标准曲线,及电解池中作为脱氯实验原液。准确称取1.25g 2,4-DCP溶解于一定量的无水甲醇中,转移到250mL的容量瓶,用甲醇定容后置于4℃环境中冷藏,取用后要及时放回冷藏。
电解液储备液:配制50mM Na2SO4溶液作为电解液。准确称取7.1gNa2SO4粉末溶于一定量去离子水中,转移到1L容量瓶定容后,用水系微孔滤膜过滤,备用。
流动相储备液:取甲醇和超纯水溶液,作为液相色谱的流动相。色谱甲醇用有机系微孔滤膜过滤待用;超纯水用水系微孔滤膜过滤,将过滤后的甲醇溶液与水溶液分别置于1000mL的流动相试剂瓶中,超声1h,使溶液混合均匀并排出气泡,冷却后备用。
产物浓度测定:
本发明采用高效液相色谱仪(SHIMADZU 2010-AT)来测定有机物的浓度。其分析测试条件为,色谱柱ODS-SP colum(250×4.6mm),恒定流速1.0mL/min, 紫外检测波长280nm,柱温25℃,样品检测体积10μL。每个预设时间点取出的样品,都要用一次性0.45μm纤维素膜过滤,以保护色谱柱。
为得到产物浓度,本发明制作了标准曲线,便可根据色谱峰面积得到准确的产物浓度。将分别2,4-DCP(2,4-二氯苯酚),CP(氯苯酚),2-CP(2-氯苯酚) 和4-CP(4-氯苯酚)储备液取1mL混合稀释到100mL容量瓶中定容,再梯度稀释,分别得到50mg/L,25mg/L,10mg/L,1mg/L的标准溶液,得出色谱图,如图1所示,并制作出标准曲线,如图2所示。其中CP的表征曲线为y=10678x+13091,r=0.996;2-CP的标准曲线为y=18680x+19161,r=0.996,;4-CP的标准曲线为y=12725x+11404,r=0.996;2,4-DCP的标准曲线为y=11807x+10957, r=0.996。
从图2中可以看出,在280nm的紫外工作波长下2,4-DCP的浓度范围内, HPLC色谱响应值与2,4-DCP,CP,2-CP和4-CP的浓度成良好的线性关系,由此可以得到色谱响应值相对应的2,4-DCP浓度,进而根据公式(1)算出2,4-DCP 的去除率η
Figure BDA0003899147670000061
其中,C0表示在反应初始时对应的2,4-DCP浓度,C表示在t时刻对应的 2,4-DCP浓度(单位mg/L)。同理根据也可得到CP,2-CP和4-CP的标准曲线,用于中间产物和最终产物产量的计算。
实施例1
(1)量取去离子水24mL于聚四氟乙烯烧杯中,磁力搅拌下将16mL HF(22.5M)缓慢倒入聚四氟乙烯烧杯中。然后,将2.0g Ti3AlC2粉末缓慢加入到烧杯中,为避免产生大量的热及液体飞溅,此过程使用保鲜膜密封烧杯口,同时在保鲜膜上用小针扎出若干小孔便于气体的扩散。持续均匀搅拌,常温反应6 小时后,往其中加入去离子水,而后以6000rpm离心清洗3次直至上清液pH约为中性(每次清洗加入20mL的去离子水离心10分钟),最后于60℃烘箱中干燥6小时得黑色固体;接着,取上述所得黑色固体样品0.3g加入小烧杯中,加入7.5mL 25%四甲基氢氧化铵(TMAOH),磁力搅拌下反应12小时剥离得到二维碳化钛悬浮液。最后,将反应得到的黑色悬浊液以8000rpm离心,取沉淀,再用水离心洗涤三次,最后置于65℃干燥箱中干燥得到二维层状Ti3C2Tx;其 TEM图如图3所示,Ti3AlC2经过HF刻蚀和四甲基氢氧化铵处理后成功得到层状薄层二维Ti3C2TX
(2)取2-甲基咪唑(818mg)溶解于50mL甲醇中备用,另取Zn(NO3)2·6H2O (735mg)分散于50mL甲醇中,并加入Ti3C2Tx(100mg)超声处理30分钟得到均匀分散的混合悬浮液。然后,搅拌下将2-甲基咪唑甲醇溶液缓缓滴入Ti3C2Tx和Zn2+的混合悬浮液中,滴加完毕继续搅拌反应60分钟得到ZIF-8材料修饰 Ti3C2Tx复合材料悬浮液。最后6000rpm离心20min取沉淀,水洗离心3次取沉淀并在60℃烘箱干燥3小时得到蓝黑色ZIF-8@Ti3C2Tx复合载体;其TEM图如图3所示,颗粒状物质ZIF-8附着于Ti3C2TX材料表面,进一步增大二维Ti3C2TX的比表面积,将有助于分子在其界面的吸附和Pd纳米颗粒的分散。
(3)取100mg ZIFs-8@Ti3C2Tx复合载体超声分散于50mL去离子水中,缓慢滴入1g/L的四氯钯酸钠溶液20mL,超声混合30min,再滴入10g/L的氢氧化钠溶液调节pH到9,最后加入1g/L的水合肼溶液25mL,搅拌反应2h,6000rpm 离心20min除去上清液,剩余沉淀用去离子水和乙醇洗涤,放入60℃真空干燥箱中,烘干后得到Pd/ZIFs-8@Ti3C2Tx电催化剂,其中Pd纳米颗粒和 ZIFs-8@Ti3C2Tx复合载体的质量比约为0.07:1。
对比例1
(1)量取去离子水24mL于聚四氟乙烯烧杯中,磁力搅拌下将16mL HF(22.5M)缓慢倒入聚四氟乙烯烧杯中。然后,将2.0g Ti3AlC2粉末缓慢加入到烧杯中,为避免产生大量的热及液体飞溅,此过程使用保鲜膜密封烧杯口,同时在保鲜膜上用小针扎出若干小孔便于气体的扩散。持续均匀搅拌,常温反应6 小时后,往其中加入去离子水,而后以6000rpm离心清洗3次直至上清液pH约为中性(每次清洗加入20mL的去离子水离心10分钟),最后于60℃烘箱中干燥6小时得黑色固体;接着,取上述所得黑色固体样品0.3g加入小烧杯中,加入7.5mL 25%四甲基氢氧化铵(TMAOH),磁力搅拌下反应12小时剥离得到二维碳化钛悬浮液(Ti3C2Tx)。最后,将反应得到的黑色悬浊液以8000rpm离心,取沉淀,再用水离心洗涤三次,最后置于65℃干燥箱中干燥得到二维层状 Ti3C2Tx
(2)取100mg Ti3C2Tx超声分散于50mL去离子水中,缓慢滴入1g/L的四氯钯酸钠溶液20mL,超声混合30min,再滴入10g/L的氢氧化钠溶液调节pH到 9,最后加入1g/L的水合肼溶液25mL,搅拌反应2h,6000rpm离心20min除去上清液,剩余沉淀用去离子水和乙醇洗涤,放入60℃真空干燥箱中,烘干后得到Pd/Ti3C2Tx电催化剂。
对比例2
(1)以甲醇为溶剂,将0.372g(1.25mmol)六水合硝酸锌溶入50mL甲醇中,0.205g(2.5mmol)2-甲基咪唑溶入50mL甲醇中,在搅拌的过程中将上述的两种溶液迅速混合,很快乳状的悬浮体就会出现,然后在常温下通过磁力搅拌器搅拌24h左右,在将反应液在离心机中离心分离得到ZIF-8固体,在用去离子水洗涤3次,最后将样品放在干燥箱中于60℃干燥12h,取出研磨得到白色 ZIF-8粉末。
(2)取100mg Ti3C2Tx超声分散于50mL去离子水中,缓慢滴入1g/L的四氯钯酸钠溶液20mL,超声混合30min,再滴入10g/L的氢氧化钠溶液调节pH到 9,最后加入1g/L的水合肼溶液25mL,搅拌反应2h,6000rpm离心20min除去上清液,剩余沉淀用去离子水和乙醇洗涤,放入60℃真空干燥箱中,烘干后得到Pd/ZIF-8电催化剂。
2,4-DCP电催化氢化脱氯实验:
取相同量的实施例1和对比例1-2制得的电催化剂分别与聚偏氟乙烯(PVDF) 均匀混合,并加入适量N-甲基吡咯烷酮(NMP)溶液,搅拌成均匀的浆状物质,将其均匀涂抹至碳纸电极(有效尺寸1.0cm×1.0cm),并在背面涂抹适量的绝缘胶,最后干燥得到工作电极。电催化氢化脱氯实验采用典型的三电极体系,在H 型电解槽中进行,整个脱氯实验装置置于25℃的恒温水浴槽中,避免室内温度变化对反应产生影响。阳极室与阴极室中的电解液的体积都为100mL浓度为50 mM的Na2SO4电解质溶液,其中阴极电解液中加入100mg/L的2,4-DCP初始浓度。每次测试前,通入氮气一段时间排除电解液中的溶解氧气。在电解过程中,阴极加入搅拌子,保持匀速搅拌,使反应液浓度保持均匀,同时增大反应扩散速率。阳极室与阴极室间用阳离子交换膜Nafion-117隔开,以防止阴极电解产生的氯离子扩散到阳极室,被阳极氧化生成氯气,另外还可以减少阳极产生的氧气扩散到阴极,影响到脱氯反应的顺利进行。
采用计时电流法,设置电压为-0.85V,对2,4-DCP进行电化学催化氢化还原脱氯处理,并以间歇批量方式取样,在0,15,30,60,90,120min预设时间点,使用玻璃注射器,从阴极室的反应液中取出0.5mL于色谱进样瓶中,待检测其成分及含量。然后利用高效液相色谱法测定样品中2,4-二氯苯酚及氢化还原脱氯有机产物含量变化,并通过保留时间与标准色谱图比对方式,对电解产物进行定性和定量分析,结果如图4所示,实施例1制得的Pd/ZIFs-8@Ti3C2Tx电催化剂电极在120min时,2,4-DCP去除率接近100%,而对比例1制得的Pd/Ti3C2Tx电催化剂电极和对比例2制得的Pd/ZIFs-8电催化剂电极在120min时,2,4-DCP去除率分别为82.5%和58.8%。
重复使用的脱氯效果实验:
使用实施例1制备的Pd/ZIFs-8@Ti3C2Tx电催化剂电极作为工作电极,重复进行5次脱氯反应,结果如表1所示,结果显示5次实验结果没有明显差异,经过5次脱氯实验后效率依然较高,第五次重复反应2,4-DCP去除率为98.6%,和首次使用相比仅下降了1.3%,说明Pd/ZIFs-8@Ti3C2Tx电催化剂电极的稳定性和重复性较好。
表1 Pd/ZIFs-8@Ti3C2Tx电催化剂电极的重复使用性能
重复次数 0 1 2 3 4
去除率(%) 99.9 99.5 99.3 99.2 98.6
上述实施例1和对比例1-2证明,相对于单一的ZIFs-8或Ti3C2Tx载体,本发明提供的ZIFs-8@Ti3C2Tx复合载体,两者具有明显的协同增效作用,其负载 Pd纳米颗粒后,对水中含氯有机物的脱氯效果明显强于单一Pd/ZIFs-8或 Pd/Ti3C2Tx,且电极的稳定性和重复性较好。

Claims (4)

1.一种Pd/ZIFs-8@Ti3C2Tx电催化剂,其特征在于,包括Pd纳米颗粒和ZIFs-8@Ti3C2Tx复合载体,所述ZIFs-8@Ti3C2Tx复合载体由ZIFs-8修饰二维层状Ti3C2Tx而成,所述Pd纳米颗粒负载在ZIFs-8@Ti3C2Tx复合载体上。
2.根据权利要求1所述的Pd/ZIFs-8@Ti3C2Tx电催化剂,其特征在于:所述Pd纳米颗粒和ZIFs-8@Ti3C2Tx复合载体的质量比为0.05-0.1:1;所述ZIFs-8@Ti3C2Tx复合载体中,ZIFs-8和Ti3C2Tx的质量比为1-0.5:4-8。
3.权利要求1或2所述的Pd/ZIFs-8@Ti3C2Tx电催化剂的制备方法,其特征在于,包括如下步骤:
(1)将2-甲基咪唑溶解于甲醇中得到2-甲基咪唑甲醇溶液;
(2)将Zn(NO3)2·6H2O分散于甲醇中,并加入Ti3C2Tx超声处理得到均匀分散的混合悬浮液;
(3)将步骤(1)的2-甲基咪唑甲醇溶液缓慢滴入步骤(2)的混合悬浮液中,搅拌反应后,经离心、洗涤、干燥即得ZIFs-8@Ti3C2Tx复合载体;
(4)将ZIFs-8@Ti3C2Tx复合载体超声分散于水中,再加入四氯钯酸钠溶液,混合后,调节pH至8-10,最后加入水合肼溶液,搅拌反应,经离心、洗涤、干燥即得Pd/ZIFs-8@Ti3C2Tx电催化剂。
4.权利要求1或2所述的Pd/ZIFs-8@Ti3C2Tx电催化剂或权利要求3所述的制备方法制得的Pd/ZIFs-8@Ti3C2Tx电催化剂的应用,其特征在于,将Pd/ZIFs-8@Ti3C2Tx电催化剂与聚偏氟乙烯混合,并加入N-甲基吡咯烷酮溶液,搅拌成均匀的浆状物质,然后均匀涂抹在碳纸电极表面,得到负载了Pd/ZIFs-8@Ti3C2Tx电催化剂的工作电极,用于氯酚类化合物的电催化氢化还原脱氯反应。
CN202211283871.XA 2022-10-20 2022-10-20 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用 Active CN115532317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211283871.XA CN115532317B (zh) 2022-10-20 2022-10-20 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211283871.XA CN115532317B (zh) 2022-10-20 2022-10-20 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115532317A true CN115532317A (zh) 2022-12-30
CN115532317B CN115532317B (zh) 2023-10-20

Family

ID=84735520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211283871.XA Active CN115532317B (zh) 2022-10-20 2022-10-20 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115532317B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058724A1 (en) * 2009-10-14 2013-03-07 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
US20130273461A1 (en) * 2012-04-11 2013-10-17 Uchicago Argonne, Llc Synthesis of electrocatalysts using metal-organic framework materials
CN110184623A (zh) * 2019-05-27 2019-08-30 重庆工商大学 季铵盐修饰的Pd/C电催化剂、电极及其制备与应用
CN110474062A (zh) * 2019-08-02 2019-11-19 北京化工大学常州先进材料研究院 一种高效MXene碳化钛电池催化剂的制备及应用
CN112553646A (zh) * 2020-12-08 2021-03-26 湖南省益思迪科技有限公司 一种MXene负载纳米合金催化剂、制备方法及其应用
CN112968188A (zh) * 2021-02-03 2021-06-15 台州学院 一种氮掺杂MXene载Pd催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058724A1 (en) * 2009-10-14 2013-03-07 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
US20130273461A1 (en) * 2012-04-11 2013-10-17 Uchicago Argonne, Llc Synthesis of electrocatalysts using metal-organic framework materials
CN110184623A (zh) * 2019-05-27 2019-08-30 重庆工商大学 季铵盐修饰的Pd/C电催化剂、电极及其制备与应用
CN110474062A (zh) * 2019-08-02 2019-11-19 北京化工大学常州先进材料研究院 一种高效MXene碳化钛电池催化剂的制备及应用
CN112553646A (zh) * 2020-12-08 2021-03-26 湖南省益思迪科技有限公司 一种MXene负载纳米合金催化剂、制备方法及其应用
CN112968188A (zh) * 2021-02-03 2021-06-15 台州学院 一种氮掺杂MXene载Pd催化剂及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LAN-XIN LI ET AL.: ""Construction of ultra-small Pt nanoparticles@Ti3C2Tx MXene electrocatalyst for efffcient and stable electrochemical hydrodechlorination of chloramphenicol"", 《CHEMICAL ENGINEERING JOURNAL》, pages 1 - 9 *
YANQING YAO ET AL.: ""Detection of Hydrazine at MXene/ZIF-8 Nanocomposite Modified Electrode"", 《CHIN. J. CHEM.》, pages 330 - 336 *
崔春月,全燮,陈硕,赵慧敏,李新勇,崔昕毅,赵雅芝: "阴极扩展电催化还原法对五氯苯酚的脱氯特性", 安全与环境学报, no. 04, pages 53 - 56 *
张欣;张建峰;杨水仙;曹惠杨;黄华杰;江莞;: "碳纳米管复合二维碳化钛负载钯粒子电催化性能研究", 无机材料学报, no. 02, pages 98 - 104 *

Also Published As

Publication number Publication date
CN115532317B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
Shu et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes
CN107473337B (zh) 电催化膜与三维电极耦合处理难降解废水的装置和方法
Su et al. Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity
Polatides et al. Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode
Zhou et al. Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst
Zhao et al. Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon
Yang et al. Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode
Tong et al. Electrocatalytic oxygen reduction to produce hydrogen peroxide: rational design from single-atom catalysts to devices
US20200165148A1 (en) A method using photocatalytic electrode coupled with microbial fuel cell to promote treatment of coking wastewater
Dongare et al. Electrocatalytic reduction of CO2 to useful chemicals on copper nanoparticles
Wang et al. Preparation of multifunctional gas-diffusion electrode and its application to the degrading of chlorinated phenols by electrochemical reducing and oxidizing processes
Zhao et al. On-site H2O2 electro-generation process combined with ultraviolet: A promising approach for odorous compounds purification in drinking water system
CN115896862B (zh) 一种用于电合成h2o2的金属单位点催化材料及其制备方法与应用
Chen et al. Electrochemically reductive dechlorination of micro amounts of 2, 4, 6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium
Wang et al. Electrochemical degradation of 2, 4-dichlorophenol on a palladium modified gas-diffusion electrode
Hasnat et al. Lean Cu-immobilized Pt and Pd films/–H+ conducting membrane assemblies: relative electrocatalytic nitrate reduction activities
Wang et al. A novel strategy to achieve simultaneous efficient formate production and p-nitrophenol removal in a co-electrolysis system of CO2 and p-nitrophenol
Zhang et al. Improved alkaline water electrolysis system for green energy: sulfonamide antibiotic-assisted anodic oxidation integrated with hydrogen generation
CN108191008B (zh) 一种Pd/TiN电催化电极的制备方法及应用
CN113813957B (zh) 一种双金属复合催化剂及其制备方法和应用、工作电极、电池体系
Ding et al. A spontaneous catalytic membrane reactor to dechlorinate 2, 4, 6-TCP as an organic pollutant in wastewater and to reclaim electricity simultaneously
CN115532317B (zh) 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用
CN114573079B (zh) 一种电化学生成硫酸根自由基去除有机微污染物的方法
CN111617795B (zh) 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用
Choi et al. Semi-solid electrolyte with layered heterometallic low-valent electron-mediator enabling indirect destruction of gaseous toluene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant