CN111617795B - 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用 - Google Patents

钯/氮掺杂二氧化钛电催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN111617795B
CN111617795B CN202010514178.3A CN202010514178A CN111617795B CN 111617795 B CN111617795 B CN 111617795B CN 202010514178 A CN202010514178 A CN 202010514178A CN 111617795 B CN111617795 B CN 111617795B
Authority
CN
China
Prior art keywords
palladium
titanium dioxide
tio
doped titanium
electrocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010514178.3A
Other languages
English (en)
Other versions
CN111617795A (zh
Inventor
蒋光明
李向军
彭敏
江侃馨
吕晓书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202010514178.3A priority Critical patent/CN111617795B/zh
Publication of CN111617795A publication Critical patent/CN111617795A/zh
Application granted granted Critical
Publication of CN111617795B publication Critical patent/CN111617795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钯/氮掺杂二氧化钛电催化剂及其制备方法和应用;所述钯/氮掺杂二氧化钛电催化剂包括N‑TiO2载体和Pd纳米颗粒,所述N‑TiO2载体为掺杂N的TiO2,所述Pd纳米颗粒负载在N‑TiO2载体上。本发明的Pd/N‑TiO2电催化剂通过半导体能带结构的调控来优化Pd电子结构,以平衡其吸附含氯污染物和产物的能力,提升其抗毒化能力,强化脱氯性能,相较于Pd/TiO2电催化剂活性有明显的提升,脱氯性能更强。

Description

钯/氮掺杂二氧化钛电催化剂及其制备方法与应用
技术领域
本发明属于电化学技术领域,具体涉及一种钯/氮掺杂二氧化钛电催化剂及其制备方法与应用。
背景技术
在有机氯污染物中,氯酚类污染物(chlorophenols,CPs)为典型代表,其毒性、持久性以及生物富集性都是棘手的问题。美国国家环保局(U.S.EPA)颁布的法案中明确将25种氯酚类污染物纳入总量为129种的优先控制毒性污染物中,欧洲决议(2455/2001/EC)直接将氯酚类化合物定为优先控制有毒污染物[2],我国国家环保部发布的优先控制污染物的名单也将多种氯酚类化合物纳入。目前,各相关研究中普遍关注的氯酚类污染物主要包括2-氯酚 (2-CP)、2,4-二氯苯酚(2,4-DCP)、2,4,6-三氯苯酚(2,4,6-TCP)和五氯酚(PCP)等。氯酚类污染物具有热稳定性、化学稳定性以及生物富集性,致使在环境中很难自然降解,其残留能长期稳定存,如五氯酚在氧气充足的水中的半衰期可以达到3至5个月,在土壤及沉积物里可以达到几年甚至十几年。氯酚类污染物的通过食物链富集,最终必然进入人体内,威胁人类健康。当人体摄入的氯酚类化合物达到一定量时,会出现抽搐等急性中毒症状,若长期从饮用水中或空气中摄入氯酚类化合物,会引起头晕、贫血等症状。含氯有机污染物的高毒性和难降解性,引起了科学界的广泛关注和研究。
目前针对含氯有机污染物的处理技术主要有物理法、化学法、生物法等几大类。物理处理方法主要包括填埋、混凝、吸附等,一般作为其他处理方法的前处理或后处理工艺,较少单独使用,但物理方法存在脱氯效率较低、选择性差、费用过高等问题;生物法是指利用微生物或者植物利用含氯有机污染物作为碳源、能源物质,通过新陈代谢将含氯有机污染物进行转化降解的一种处理方法,但生物法反应较慢、易堵塞等缺点,限制了该技术在生产上的应用。此外,由于含氯有机污染物本身具有生物毒性,使得利用生物法对含氯有机污染物的降解见效缓慢,降解时间长,使得该种方法难以推广;而电催化加氢还原脱氯具有设备简单、易控制、反应条件温和以及去除率高等优势,引起了国内外研究者们的广泛关注。
电催化氢化还原脱氯技术,一是直接电还原,氯酚类污染物直接在阴极上发生电子转移从而脱氯;二是间接还原,氯酚类污染物利用电化学过程电解水溶液产生的活性氢原子作为还原剂实现脱氯。电催化氢化脱氯就是以间接还原为主的脱氯过程,通常以具有催化活性的金属修饰阴极电极,使水溶液电解产生强还原性的活性氢原子吸附在金属表面,进而攻击吸附在基材表面的氯酚类污染物。然而其活性组分金属Pd价格昂贵,因此,为降低成本,需要提高Pd的本征催化活性,并且降低Pd用量。
发明内容
有鉴于此,本发明的目的在于提供一种钯/氮掺杂二氧化钛电催化剂及其制备方法与应用,平衡其吸附含氯污染物和产物的能力,提升其抗毒化能力,强化脱氯性能。
为达到上述目的,本发明提供如下技术方案:
本发明提供了一种钯/氮掺杂二氧化钛电催化剂,所述钯/氮掺杂二氧化钛电催化剂包括 N-TiO2载体和Pd纳米颗粒,所述N-TiO2载体为掺杂N的TiO2,所述Pd纳米颗粒负载在N-TiO2载体上。
作为优选的技术方案,所述Pd纳米颗粒和N-TiO2载体的质量比为0.1~1:1。
本发明提供了一种钯/氮掺杂二氧化钛电催化剂的制备方法,包括以下步骤:
(1)将TiN和Pd前驱体混合后煅烧,然后降至室温;
(2)将步骤(1)得到的复合材料分散于溶剂中,对其恒电流还原,得到钯/氮掺杂二氧化钛电催化剂。
作为优选的技术方案,所述步骤(1)中,Pd前驱体为四氯钯酸钠、四氯钯酸钾和氯化钯的一种或几种。
作为优选的技术方案,所述步骤(1)中,煅烧温度为400~500℃,煅烧时间为1~3h。
作为优选的技术方案,所述步骤(2)中,溶剂为浓度1.5~3g/L的NaCl溶液,电流为-5~-10mA,电还原时间不低于2h。
本发明还提供了上述钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,将所述钯/氮掺杂二氧化钛电催化剂分散于有机溶剂中,然后均匀涂抹在碳纸上,得到负载了钯/氮掺杂二氧化钛电催化剂的电极,用于电催化氢化还原脱氯反应。
作为优选的技术方案,所述电催化氢化还原脱氯反应时的电压为-0.75~-0.90V,初始pH 值为2~7。
本发明的有益效果在于:
1、本发明以N-TiO2为催化剂载体,通过半导体能带结构的调控来优化Pd电子结构,以平衡其吸附含氯污染物和产物的能力,提升其抗毒化能力,强化脱氯性能。
2、本发明采用N-TiO2为催化剂载体,由于掺杂N-TiO2载体相对于TiO2价带和导带上移,禁带宽度变窄,导带与Pd的费米能级的距离更近,进而优化Pd电子结构。同时,掺杂N元素后增强了整体的导电性,且有利于对污染物的吸附。因此,钯/氮掺杂二氧化钛电催化剂相较于Pd/TiO2电催化剂活性有明显的提升,脱氯性能更强。
3、本发明的钯/氮掺杂二氧化钛电催化剂制备方法简单,条件温和,易于操作,且无环境污染。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为实施例1制备得到的Pd/N-TiO2电催化剂的TEM图;
图2为实施例1制备得到的Pd/N-TiO2电催化剂电极的实拍照片;
图3为脱氯反应装置图;
图4为脱氯反应中2,4-二氯苯酚的去除率随时间变化图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
下列实施例中所用方法如无特别说明,均为常规方法。下列实施例中所需要的材料或试剂,如无特殊说明均为市场购得。
实施例1:制备Pd/N-TiO2电催化剂
(1)称取3g的氮化钛和4.2g的四氯钯酸钠置于坩埚中,放置马弗炉中央(不加盖),以2℃/min升至设定温度,450℃下煅烧2h,处理完毕后自然降温至室温;
(2)将步骤(1)得到的复合材料分散于2g/L的NaCl溶液中,在-8mA下电还原2h,得到Pd/N-TiO2电催化剂。
实施例1中,TiN在煅烧过程中生成N-TiO2载体,四氯钯酸钠电还原为Pd纳米颗粒负载在N-TiO2载体上,Pd纳米颗粒和N-TiO2载体的质量比为0.2:1。
图1为实施例1制备得到的Pd/N-TiO2电催化剂的TEM图,TEM图说明Pd纳米颗粒可以均匀负载在N-TiO2上,且Pd纳米颗粒粒径在5nm左右,并且证实了该纳米颗粒确为Pd,且暴露晶面为(111)面,晶格间距为0.23nm。
实施例2:制备Pd/N-TiO2电催化剂电极
(1)裁剪3*3cm2的碳纸,再截取2cm长度的铜胶,将其对折,贴于碳纸两面上边缘处,并留出0.5cm长度,用硅胶涂抹在贴有铜胶的碳纸区域,硅胶涂抹区域为3*1cm2,厚度为1mm;
(2)称取8mg实施例1制备的Pd/N-TiO2电催化剂和8mg碳粉,加入0.4mL异丙醇和3.6mL乙醇溶液混合,加入40uL Nafion作为粘合剂,超声使混合液分散均匀;用滴管移取该悬浮液,匀速缓慢滴到碳纸的空白区域上(即没有铜胶和硅胶的区域),每次滴涂时需等上一次涂抹的液体彻底挥发后才能进行;滴涂完毕后烘干即得到Pd/N-TiO2电催化剂电极。
图2为实施例2制备得到的Pd/N-TiO2电催化剂电极的实拍照片,从图中可以看到,电极外观呈现黑色,Pd/N-TiO2电催化剂能够很均匀的分散在碳纸上。
实施例3:使用实施例2制备的Pd/N-TiO2电催化剂电极,考察其对污染物2,4-二氯苯酚的脱氯效果实验
(1)脱氯反应装置的搭建,如图3所示,步骤如下:
a)脱氯反应电解槽为H型电解槽。阳极室与阴极室中间用阳离子交换膜(Nafion-117) 隔开,两室体积均为150mL,分别往阳极室与阴极室中添加硫酸钠(50mM)作为电解液,体积均为100mL,并且在反应前均需要通15min的氮气;然后用1mL移液管往阴极电解室中加入2,4-二氯苯酚储备液,其初始浓度为50mg/L,再加入B型磁力搅拌子搅拌;
b)按照三电极体系原理,搭建电催化脱氯装置的电路。其中对电极为铂片电极(30mm×30 mm),参比电极为Ag/AgCl(3.0M KCl),工作电极即是实施例2制备的Pd/N-TiO2电催化剂电极;
c)脱氯反应效果的评价,通过高效液相色谱(SHIMADZU 2010-AT)检测污染物、中间产物及终产物的浓度。
(2)脱氯反应装置的运行,步骤如下:
a)整个脱氯实验装置放在25℃的恒温水浴磁力搅拌器中,搅拌速率为400rpm,保持匀速搅拌;
b)设置电化学工作站参数,选用计时安培法程序,设定电压为-0.85V,开始电催化加氢脱氯反应实验。
(3)确定脱氯反应活性,步骤如下:
a)在反应进行0、5、10、20、30、60、90、120、180min时,使用玻璃注射器从阴极室的反应液中取样(0.5mL左右),再用色谱专用进样针吸取10μL注入色谱进样瓶中;
b)使用高效液相色谱仪(SHIMADZU 2010-AT)分别测定进样瓶中的样品内2,4-二氯苯酚、4-氯苯酚、2-氯苯酚和苯酚的浓度;
c)将液相色谱中测得的各物质峰面积带入其对应的标准曲线中,计算其浓度,根据结果绘制2,4-二氯苯酚的去除率随时间变化曲线和产物分布图。去除率的计算公式如下:
Figure BDA0002529547330000041
η是脱氯效率(%),C0是2,4-二氯苯酚的初始浓度(mg/L),C是某一电解时间点下测得2,4-二氯苯酚的浓度(mg/L)。
使用实施例2制备的Pd/N-TiO2电催化剂电极作为工作电极,按照上述步骤进行脱氯反应。图4为脱氯反应中2,4-二氯苯酚的去除率随时间变化图,从图中可见,使用Pd/N-TiO2电催化剂电极作为工作电极时,2,4-二氯苯酚的去除率持续上升,经过3小时的反应后,去除率达到89.52%,证明该Pd/N-TiO2电催化剂电极具有极强的脱氯能力。
同时,Pd/N-TiO2电催化剂电极相较于Pd/TiO2电催化剂电极活性有明显的提升,脱氯性能更强。参见在先专利CN201910340739.X,其Pd/TiO2电催化剂中Pd纳米颗粒和TiO2载体的质量比为0.48:1;对初始浓度为50mg/L的2,4-二氯苯酚,在-0.85V电压下,Pd/TiO2电催化剂电极脱氯效率最高为80.55%。而实施例2制备的Pd/N-TiO2电催化剂电极在Pd用量更少的情况下(Pd纳米颗粒和N-TiO2载体的质量比为0.2:1),脱氯效率反而更高。
实施例4:不同电压下的脱氯效果实验
使用实施例2制备的Pd/N-TiO2电催化剂电极作为工作电极,按照实施例3的步骤进行脱氯反应,另外改变电压设置的条件,将电压的值分别设置为-0.65、-0.70、-0.75、-0.80、-0.85、 -0.90和-0.95V,进行7次相同条件下的脱氯反应。
不同电压下Pd/N-TiO2电催化剂电极脱氯反应的结果如表1所示。随着电压的增高,活性氢的量不断增加,有更多的活性氢用于脱氯反应,因此脱氯效率不断增强。当电压达到实施例3中设置的-0.85V时,脱氯效率最高(89.52%)。但是随着电压进一步增强,虽然活性氢增加,但是氢气的产生量也增加。氢气的产生不仅需要消耗大量的活性氢,还要影响2,4-二氯苯酚在液体中传质扩散,降低了脱氯的效率。所以,电压超过-0.85V后,随着电压增加,脱氯效率减少。但是阴极上施加的电压过于低时,则不利于活性氢(H*)的产生和利用,也会影响脱氯过程。因此,-0.85V是该脱氯反应最适合的电压,脱氯效率最高。
表1不同电压下Pd/N-TiO2电催化剂电极的脱氯效率
Figure BDA0002529547330000051
实施例5:不同初始pH值下的脱氯效果实验
使用实施例2制备的Pd/N-TiO2电催化剂电极作为工作电极,按照实施例3的步骤进行脱氯反应,另外改变脱氯反应溶液的初始pH值,分别调节为2、7、12,进行3次相同条件下的脱氯反应。
不同初始pH值下Pd/N-TiO2电极脱氯反应的结果如表2所示。随着初始pH值的下降,氢离子数量急剧增加,丰富的氢离子加速了活性氢(H*)的产生,同时酸性条件会抑制2,4-DCP 的电离趋势,降低其电负性,减小与电极的排斥力,因此电催化脱氯效率呈提升趋势。因此反应是pH值越低其脱氯活性越好,最佳脱氯效率在初始pH值为2时取得,180min就能达到95.45%的去除率。
表2不同初始pH值下Pd/N-TiO2电催化剂电极的脱氯效率
Figure BDA0002529547330000061
实施例6:重复使用的脱氯效果实验
使用实施例2制备的Pd/N-TiO2电催化剂电极作为工作电极,按照实施例3的步骤进行脱氯反应,重复进行5次脱氯反应。
多次重复实验得到的结果如表3所示,结果显示5次实验结果没有明显差异,第五次重复反应脱氯效率为87.35%,和首次使用相比只下降了2.17%。说明Pd/N-TiO2电催化剂电极的稳定性和重复性较好。
表3 Pd/N-TiO2电催化剂电极的重复使用效果
Figure BDA0002529547330000062
上述实施例证明,本发明所提供的Pd/N-TiO2电催化剂可靠,对水中含氯有机物有很好的脱氯效果,并且相较于Pd/TiO2电催化剂活性有明显的提升,脱氯性能更强。特别地,电压在-0.75~-0.90V时脱氯效果更好,溶液初始pH值为2~7时脱氯效果也更好。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

1.钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:
所述钯/氮掺杂二氧化钛电催化剂包括N-TiO2载体和Pd纳米颗粒,所述N-TiO2载体为掺杂N的TiO2,所述Pd纳米颗粒负载在N-TiO2载体上;
将所述钯/氮掺杂二氧化钛电催化剂分散于有机溶剂中,然后均匀涂抹在碳纸上,得到负载了钯/氮掺杂二氧化钛电催化剂的电极,用于电催化氢化还原脱氯反应。
2.根据权利要求1所述的钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:所述Pd纳米颗粒和N-TiO2载体的质量比为0.1~1:1。
3.根据权利要求1所述的钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:所述钯/氮掺杂二氧化钛电催化剂的制备方法包括以下步骤:
(1)将TiN和Pd前驱体混合后煅烧,然后降至室温;
(2)将步骤(1)得到的复合材料分散于溶剂中,对其恒电流还原,得到钯/氮掺杂二氧化钛电催化剂。
4.根据权利要求3所述的钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:所述步骤(1)中,Pd前驱体为四氯钯酸钠、四氯钯酸钾和氯化钯的一种或几种。
5.根据权利要求3所述的钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:所述步骤(1)中,煅烧温度为400~500℃,煅烧时间为1~3h。
6.根据权利要求3所述的钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:所述步骤(2)中,溶剂为浓度1.5~3g/L的NaCl溶液,电流为-5~-10mA,电还原时间不低于2h。
7.根据权利要求1所述的钯/氮掺杂二氧化钛电催化剂在电催化氢化还原脱氯反应中的应用,其特征在于:所述电催化氢化还原脱氯反应时的电压为-0.75~-0.90V,初始pH值为2~7。
CN202010514178.3A 2020-06-08 2020-06-08 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用 Active CN111617795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010514178.3A CN111617795B (zh) 2020-06-08 2020-06-08 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010514178.3A CN111617795B (zh) 2020-06-08 2020-06-08 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111617795A CN111617795A (zh) 2020-09-04
CN111617795B true CN111617795B (zh) 2022-12-20

Family

ID=72255307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010514178.3A Active CN111617795B (zh) 2020-06-08 2020-06-08 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111617795B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003671A (zh) * 2021-04-28 2021-06-22 浙江工业大学 一种Pd/TiN颗粒协同电化学降解有机污染物的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022394A2 (en) * 2008-08-22 2010-02-25 The Board Of Trustees Of The University Of Illinois Catalytic compositions, composition production methods, and aqueous solution treatment methods
CN102553626A (zh) * 2011-12-29 2012-07-11 复旦大学 一种碳氮共掺杂TiO2纳米催化材料的制备方法
TW201313310A (zh) * 2011-09-26 2013-04-01 Islands Praised Inc 光觸媒、其製造方法、及將水轉換成氫的方法
CN108191008A (zh) * 2018-03-15 2018-06-22 重庆工商大学 一种Pd/TiN电催化电极的制备方法及应用
CN108722464A (zh) * 2018-05-29 2018-11-02 福州大学 一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用
CN109746020A (zh) * 2019-01-16 2019-05-14 浙江理工大学 一种表面具有高能晶面的氮掺杂二氧化钛的制备方法
CN109939674A (zh) * 2019-04-25 2019-06-28 重庆工商大学 一种具有肖特基异质结的Pd/TiO2电催化剂及其制备和应用
CN110665529A (zh) * 2019-10-12 2020-01-10 南京农业大学 一种含氮掺杂改性纳米二氧化钛催化降解抗生素的方法及评价方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022394A2 (en) * 2008-08-22 2010-02-25 The Board Of Trustees Of The University Of Illinois Catalytic compositions, composition production methods, and aqueous solution treatment methods
TW201313310A (zh) * 2011-09-26 2013-04-01 Islands Praised Inc 光觸媒、其製造方法、及將水轉換成氫的方法
CN102553626A (zh) * 2011-12-29 2012-07-11 复旦大学 一种碳氮共掺杂TiO2纳米催化材料的制备方法
CN108191008A (zh) * 2018-03-15 2018-06-22 重庆工商大学 一种Pd/TiN电催化电极的制备方法及应用
CN108722464A (zh) * 2018-05-29 2018-11-02 福州大学 一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用
CN109746020A (zh) * 2019-01-16 2019-05-14 浙江理工大学 一种表面具有高能晶面的氮掺杂二氧化钛的制备方法
CN109939674A (zh) * 2019-04-25 2019-06-28 重庆工商大学 一种具有肖特基异质结的Pd/TiO2电催化剂及其制备和应用
CN110665529A (zh) * 2019-10-12 2020-01-10 南京农业大学 一种含氮掺杂改性纳米二氧化钛催化降解抗生素的方法及评价方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles;Wenyang Fu et al.;《Nanoscale》;20190805;第11卷;第15892-15899页 *
Palladium nanoparticles assembled on titanium nitride for enhanced electrochemical hydrodechlorination of 2,4-dichlorophenol in water;Wenyang Fu et al.;《Chinese Journal of Catalysis》;20180405;第39卷;第693-700页 *
Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction;Kaifeng Wang et al.;《Chemical Engineering Journa》;20190831;第381卷;第1-8页 *
The promoting effect of visible light on the CO + NO reaction over the Pd/N–TiO2 catalyst;Xiaofang Tan et al.;《Catalysis Science & Technology》;20190701;第9卷(第14期);第3571-3838页 *
钯基纳米材料的制备及电催化氢化还原脱氯性能研究;李向军;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20210823;第40-53页 *

Also Published As

Publication number Publication date
CN111617795A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
Zhang et al. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics
Zhang et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion
Lou et al. MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs
Ma et al. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction
Wang et al. Electrochemical properties of the erbium–chitosan–fluorine–modified PbO2 electrode for the degradation of 2, 4-dichlorophenol in aqueous solution
CN110184623B (zh) 季铵盐修饰的Pd/C电催化剂、电极及其制备与应用
Wang et al. Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells
Sun et al. Preparation of foam-nickel composite electrode and its application to 2, 4-dichlorophenol dechlorination in aqueous solution
US8277657B2 (en) Systems and methods for microbial reductive dechlorination of environmental contaminants
Jiwanti et al. Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes
Wang et al. Comparative study on electrochemical degradation of 2, 4-dichlorophenol by different Pd/C gas-diffusion cathodes
CN111285446A (zh) 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用
CN110713233B (zh) Pd/MnO2-Ni电极及其制备方法和应用
Chen et al. Electrochemically reductive dechlorination of micro amounts of 2, 4, 6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium
Zhang et al. Degradation characteristics of 2, 4-dichlorophenoxyacetic acid in electro-biological system
Wang et al. Electrochemical degradation of 2, 4-dichlorophenol on a palladium modified gas-diffusion electrode
Ajeel et al. Preparation and characterization of carbon black diamond composite electrodes for anodic degradation of phenol
Xu et al. Rh-Pd-alloy catalyzed electrochemical hydrodefluorination of 4-fluorophenol in aqueous solutions
CN109939674A (zh) 一种具有肖特基异质结的Pd/TiO2电催化剂及其制备和应用
CN113353932A (zh) 火龙果皮制备的分级孔生物炭电催化剂及制备方法和应用
Wang et al. A novel strategy to achieve simultaneous efficient formate production and p-nitrophenol removal in a co-electrolysis system of CO2 and p-nitrophenol
CN108191008B (zh) 一种Pd/TiN电催化电极的制备方法及应用
CN111617795B (zh) 钯/氮掺杂二氧化钛电催化剂及其制备方法与应用
An et al. Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater
CN109110882B (zh) 一种电化学去除对二甲苯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant