CN111285446A - 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用 - Google Patents

一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用 Download PDF

Info

Publication number
CN111285446A
CN111285446A CN202010112322.0A CN202010112322A CN111285446A CN 111285446 A CN111285446 A CN 111285446A CN 202010112322 A CN202010112322 A CN 202010112322A CN 111285446 A CN111285446 A CN 111285446A
Authority
CN
China
Prior art keywords
nico
foam
electrode
composite electrode
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010112322.0A
Other languages
English (en)
Other versions
CN111285446B (zh
Inventor
俞伟婷
方金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010112322.0A priority Critical patent/CN111285446B/zh
Publication of CN111285446A publication Critical patent/CN111285446A/zh
Application granted granted Critical
Publication of CN111285446B publication Critical patent/CN111285446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用,所示Pd/NiCo2O4/Ni foam复合电极是以泡沫镍为基体,先通过水热反应、煅烧两步处理过程,以在泡沫镍基体表面上形成NiCo2O4中间层,再电沉积钯纳米颗粒层而制得。本发明的复合电极采用绿色环保的方法合成,且对含氯有机污染物具有超高催化脱氯性能,并具备催化寿命长的特点,在电催化处理废水中的2,4‑D的应用中,具有非常广阔的应用前景。本发明的Pd/NiCo2O4/Ni foam复合电极,相比于同等脱氯效果的Pd/Ni foam电极,节省了大约75%的贵金属钯载量,从而大幅度地降低了含氯有机污染物脱氯处理的成本。

Description

一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用
技术领域
本发明涉及一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用。
背景技术
含氯有机物作为广泛应用于农业、工业和医药业的原料,多制备用于除草、杀虫、灭菌、消毒和防腐,这些用途使得污染物直接排放到自然环境,造成污染。因此,自然环境中存在大量的农药残留,又由于自然演化作用,这些含氯有机物在土壤水体中渗流转化,最终进入到地下水系统,形成了地下水污染。含氯有机污染物具有高毒性、难降解性、持续稳定性、耐热性、生物富集、遗传毒害性等特点。值得一提的是,含氯有机污染物的毒性和持久性主要来自于氯元素。若能去除其中的氯元素,毒性会大大降低,去除氯后的芳香烃还可以通过生物过程完全降解。
贵金属钯催化剂在工业催化和环境治理中有着十分重要的作用。然而,在使用中存在众多局限性,比如钯属于贵金属元素,成本较高;化学沉积法负载纳米钯颗粒于泡沫镍基底上,由于其沉积的钯颗粒直径较大易发生团聚,阻碍其催化活性的发挥;使用后活性降低,限制其重复利用。
发明内容
针对现有技术存在的上述技术问题,本发明的目的在于提供一种Pd/NiCo2O4/Nifoam复合电极及其制备方法和应用。
所述的一种Pd/NiCo2O4/Ni foam复合电极,其特征在于所述复合电极是以泡沫镍为基体,先通过水热反应、煅烧两步处理过程,以在泡沫镍基体表面上形成NiCo2O4中间层,再电沉积钯纳米颗粒层而制得。
所述的一种Pd/NiCo2O4/Ni foam复合电极,其特征在于所述复合电极中,钯纳米颗粒在泡沫镍上的沉积量为0.25~0.3mg/cm2,优选为0.27mg/cm2;NiCo2O4中间层在泡沫镍上的负载量为0.2~0.3mg/ cm2
所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于包括以下步骤:
1)泡沫镍预处理:将泡沫镍基体先用2-4mol/L的盐酸超声20-50min以去除其表面氧化层,再用无水乙醇清洗3-10min以去除其表面有机物,最后用蒸馏水反复清洗2~5次后,在空气中晾干,得到预处理过的泡沫镍基体;
2)NiCo2O4中间层的制备:将镍盐、钴盐、NH4F和CO(NH2)2溶于水中,配制得到反应液;将步骤1)所得预处理过的泡沫镍基体静置在反应液中,然后移入到反应釜中进行水热反应,反应结束后自然冷却至室温,将泡沫镍基体取出并依次用乙醇和去离子水清洗干净,晾干,然后在惰性气氛下煅烧,使泡沫镍基体上形成NiCo2O4中间层,得到NiCo2O4/Ni foam电极;
3)电沉积钯纳米颗粒层:电沉积过程在单室反应器中进行,单室反应器中盛有含有钯盐的酸性电镀液,以步骤2)所得的NiCo2O4/Ni foam电极作为阴极,铂电极为阳极,辅以银/氯化银电极作为参比电极;在含有钯盐的酸性电镀液中电沉积钯纳米颗粒层,电沉积方式为恒电位法,制得Pd/NiCo2O4/Ni foam复合电极。
所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤2)中,水热反应的温度为110~130℃,优选为120℃;反应时间为3~7h,优选为5h。
所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤2)中,所述惰性气氛的气体为Ar;煅烧过程为:从室温以2-3℃/min速率升温至300-400℃后,恒温煅烧1.5-3h,随后自然降温至室温。
所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤3)中,所述酸性电镀液由钯盐和钠盐的混合水溶液组成,钯盐的浓度为0.5-2mol/L;所述钯盐为氯化钯,钠盐为氯化钠,钯盐和钠盐的摩尔比为1:20-40,优选为1:30。
所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤3)采用恒电位法中,电位为-0.5V至-2V之间,优选-1V。
所述的Pd/NiCo2O4/Ni foam复合电极在电催化废水中的含氯有机污染物进行还原脱氯中的应用。
所述的Pd/NiCo2O4/Ni foam复合电极在电催化废水中的含氯有机污染物进行还原脱氯中的应用,其特征在于所述含氯有机污染物为2,4-二氯苯氧乙酸。
相对于现有技术,本发明取得的有益效果是:
1)本发明的Pd/NiCo2O4/Ni foam复合电极具有催化活性位点多、使用寿命长,贵金属钯使用量少、成本低等特点。利用Pd/NiCo2O4/Ni foam复合电极,通过电化学还原方法可实现水中含氯有机污染物的有效去除,操作简单,管理方便,具有广泛的社会和经济效益。本发明总体分两步制备Pd/NiCo2O4/Ni foam复合电极:第一步是利用先水热反应后煅烧的方法,制备出NiCo2O4中间层;第二步是利用电沉积的方法把钯颗粒负载到NiCo2O4表面。
2)本发明的复合电极采用绿色环保的方法合成,且对含氯有机污染物具有超高催化脱氯性能,并具备催化寿命长的特点,在电催化处理废水中的2,4-D的应用中,具有非常广阔的应用前景。本发明的Pd/NiCo2O4/Ni foam复合电极,相比于同等脱氯效果的Pd/Nifoam电极,节省了大约75%的贵金属钯载量,从而大幅度地降低了含氯有机污染物脱氯处理的成本。
附图说明
图1为本发明进行电催化还原脱氯装置的结构示意图;
图2为实施例1中步骤a所得Ni foam电极的电镜扫描图;
图3为实施例1中步骤b所得NiCo2O4/Ni foam电极的电镜扫描图;
图4为实施例1中步骤c所得Pd/NiCo2O4/Ni foam复合电极的电镜扫描图;
图5为实施例7所得Pd/NiCo2O4/Ni foam复合电极重复使用5次过程中,对含2,4-D废水的电催化还原脱氯结果图;
图1中:a-阳极池,b-阴极池,c-参比池,1-1阳极,1-2阴极,1-3阳离子交换膜,2-循环水浴池,3-电化学工作站。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
以下实施例1-7中,电催化还原脱氯装置的结构示意图如图1所示。
对照图1,所述电催化还原脱氯装置包括电解池、循环水浴池2和电化学工作站3。所述电解池包括存放阳极液及阳极1-1的阳极池a、存放阴极液及阴极1-2的阴极池b、存放饱和甘汞电极的参比池c(阴极池b与参比池c相连通)、阳离子交换膜1-3,所述阴极池b上部设置有取样口,所述阳极池a和阴极池b底部设有连通管道,所述连通管道设阳离子交换膜1-3将阳极池a和阴极池b分隔。其中,阳极1-1选用铂电极,阴极1-2选用Pd/NiCo2O4/Ni foam复合电极,阳极液为硫酸钠的水溶液,阴极液为硫酸钠与2,4-D的混合水溶液。阳极1-1、阴极1-2和饱和甘汞电极均与电化学工作站3相连接。
实施例1
制备一种Pd/NiCo2O4/Ni foam复合电极,包括以下步骤:
a、泡沫镍预处理:将厚度为1.2mm的、尺寸面积为4cm2(2cm × 2cm)的泡沫镍基体依次用3mol/L的盐酸超声30min以去除其表面氧化层,再用无水乙醇清洗5min以去除表面有机物,最后用蒸馏水反复清洗三次后,在空气中晾干,得到预处理过的泡沫镍基体。预处理过的泡沫镍基体的电镜扫描图如图2所示;
b、NiCo2O4中间层的制备:将Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F、CO(NH2)2以1:2:6:15的摩尔比溶于水中,其中Ni(NO3)2·6H2O在水中的浓度为0.00167mol/L,配制得到反应液A;将步骤a预处理过的泡沫镍基体静置在50mL配制的反应液A中,然后移入反应釜中进行水热反应,水热反应的温度为120℃,反应时间为5h。待反应结束后自然降温至室温,将反应后的泡沫镍基体取出,依次用乙醇和去离子水清洗干净,在空气中晾干,然后在管式炉中于通Ar的条件下进行煅烧,煅烧过程为:从室温以2℃/min速率升温至350℃后,恒温煅烧2h,随后自然降温至室温,即制得NiCo2O4/Ni foam电极。所得NiCo2O4/Ni foam复合电极的电镜扫描图如图3所示。可以观察到呈片状的NiCo2O4均匀的负载在泡沫镍基体上;
c、电沉积钯纳米颗粒层:电沉积过程在单室反应器中进行,以步骤b所得的NiCo2O4/Nifoam电极作为阴极,等面积的铂片(2cm × 2cm)为阳极,辅以银/氯化银电极作为参比电极。在20ml酸性电镀液中电沉积钯纳米颗粒层,电极间距为1cm,控制酸性电镀液温度为25℃,电沉积方式为恒电位法(电压为-1.0V),制得Pd/NiCo2O4/Ni foam复合电极。所得Pd/NiCo2O4/Ni foam复合电极的电镜扫描图如图4所示。可以观察到Pd颗粒分散在NiCo2O4表面。所得Pd/NiCo2O4/Ni foam复合电极中,Pd的负载量为0.27mg/cm2,且NiCo2O4中间层的负载量为0.25mg/ cm2
所述酸性电镀液按如下组成配制:取氯化钯0.0887g和氯化钠0.8775g溶于500ml水中,配制得到所述的酸性电镀液。
上述实施例1制备的Pd/NiCo2O4/Ni foam复合电极,应用于含2,4-D废水的电催化还原脱氯反应,过程如下:
电催化还原脱氯装置为H型三室反应器,其结构示意图如图1所示,以实施例1制备的Pd/NiCo2O4/Ni foam复合电极为阴极,铂电极为阳极,阴极和阳极的电极面积均为4cm2(2cm× 2cm),辅以甘汞电极为参比电极,电极间距为7cm。恒电压为-1.5V,阴极池内的电解液为硫酸钠与2,4-D的混合水溶液(硫酸钠的浓度为2mmol/L,且2,4-D的浓度为0.045mol/L),以模拟天然有机废水,阴极池内电解液的反应体积为72ml。阳极池内的电解液为浓度为2mmol/L的硫酸钠水溶液,阳极池内电解液的反应体积为36ml。并且反应进行到不同的时刻对阴极池内电解液进行取样分析,进行电催化还原脱氯2h,结果如表1所示。
实施例2
本实施例2中,NiCo2O4/Ni foam复合电极的制备过程重复实施例1中a,b步骤。
实施例2制备的NiCo2O4/Ni foam复合电极,应用于含2,4-D废水的电催化还原脱氯反应,电催化还原脱氯反应的实验过程与实施例1相同,进行电催化还原脱氯2h的结果如表1所示。
实施例3
本实施例3中,Pd/NiCo2O4/Ni foam复合电极的制备过程重复实施例1。
实施例3制备的Pd/NiCo2O4/Ni foam复合电极,应用于含2,4-D废水的电催化还原脱氯反应,电催化还原脱氯反应的实验过程与实施例1相同,不同之处在于将恒电压替换成-1.2V,其余电催化还原脱氯反应的实验步骤均与实施例1相同,进行电催化还原脱氯2h的结果如表1所示。
实施例4
本实施例4中,Pd/NiCo2O4/Ni foam复合电极的制备过程重复实施例1。
实施例4制备的Pd/NiCo2O4/Ni foam复合电极,应用于含2,4-D废水的电催化还原脱氯反应,电催化还原脱氯反应的实验过程与实施例1相同,不同之处在于将恒电压替换成-2.0V,其余电催化还原脱氯反应的实验步骤均与实施例1相同,进行电催化还原脱氯2h的结果如表1所示。
实施例5
制备一种Pd/Ni foam电极,包括以下步骤:
1)泡沫镍预处理:将厚度为1.2mm的、尺寸面积为4cm2(2cm × 2cm)的泡沫镍基体依次用3mol/L的盐酸超声30min以去除其表面氧化层,再用无水乙醇清洗5min以去除表面有机物,最后用蒸馏水反复清洗三次后,在空气中晾干,得到预处理过的泡沫镍基体;
2)电沉积钯纳米颗粒层:电沉积过程在单室反应器中进行,以步骤1)所得的泡沫镍基体作为阴极,等面积的铂片(2cm × 2cm)为阳极,辅以银/氯化银电极作为参比电极。在20ml酸性电镀液中电沉积钯纳米颗粒层,电极间距为1cm,控制酸性电镀液温度为25℃,电沉积方式为恒电位法(电压为-1.0V),制得Pd/Ni foam电极。所得Pd/Ni foam电极中,Pd的负载量为0.27mg/cm2
所述酸性电镀液按如下组成配制:取氯化钯0.0887g和氯化钠0.8775g溶于500ml水中,配制得到所述的酸性电镀液。
实施例5制备的Pd/Ni foam电极,应用于含2,4-D废水的电催化还原脱氯反应,电催化还原脱氯反应的实验过程与实施例1相同,进行电催化还原脱氯2h的结果如表1所示。
实施例6
本实施例6中,Pd/Ni foam电极的制备过程重复实施例5,不同之处在于:“将步骤2)中酸性电镀液的体积量替换为80mL”,最终制得的Pd/Ni foam电极中,Pd的负载量为1.06 mg/cm2
实施例6制备的Pd/Ni foam电极,应用于含2,4-D废水的电催化还原脱氯反应,电催化还原脱氯反应的实验过程与实施例1相同,进行电催化还原脱氯2h的结果如表1所示。
利用实施例1~6所得的电极对2,4-D进行电催化还原脱氯2h,试验结果如表1所示。
表1. Pd/NiCo2O4/Ni foam复合电极和Pd/Ni foam电极在不同电位下对2,4-D进行电催化还原脱氯2h的去除率
Figure DEST_PATH_IMAGE002
从表1可以看出,制得的Pd/NiCo2O4/Ni foam复合电极在保持较好的脱氯性能的同时还降低了贵金属钯的使用量。这可能是因为,在泡沫镍基体表面引入NiCo2O4中间层能够调控电极表面的电子分布,NiCo2O4/Ni foam复合电极表面加入少量的Pd后,即可有较好的催化反应效果,从而起到降低Pd载量和节约成本的作用。
本发明以2,4-二氯苯氧乙酸(2,4-D)为代表性污染物,进行电化学还原处理去除废水中难降解有机污染物。如表1所示,泡沫镍负载的NiCo2O4本身不显示脱氯活性,但泡沫镍负载的Pd/NiCo2O4显示了远超泡沫镍负载的Pd电极的脱氯活性。只有当加大Pd的载量至原来的4倍时,泡沫镍负载的Pd电极才能达到与泡沫镍负载的Pd/NiCo2O4相似的脱氯性能。由此可见,NiCo2O4的加入调控了电极的电子分布,极大地改善了其脱氯性能,相当于节省了大约75%的贵金属Pd。
实施例7
本实施例中,Pd/NiCo2O4/Ni foam复合电极的制备过程重复实施例1。
实施例7制备的Pd/NiCo2O4/Ni foam复合电极,应用于含2,4-D废水的电催化还原脱氯反应,电催化还原脱氯反应的实验过程与实施例1相同,电催化还原脱氯反应过程中多次对废水进行取样分析,电解2h后结束本次反应,并更换新鲜废水进行下一次重复电催化反应。由此Pd/NiCo2O4/Ni foam复合电极重复使用5次过程中,对含2,4-D废水的电催化还原脱氯结果如图5所示。
从图5可以看出,在Pd/NiCo2O4/Ni foam复合电极重复使用5次的过程中,其电催化性能稳定性较好。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (9)

1. 一种Pd/NiCo2O4/Ni foam复合电极,其特征在于所述复合电极是以泡沫镍为基体,先通过水热反应、煅烧两步处理过程,以在泡沫镍基体表面上形成NiCo2O4中间层,再电沉积钯纳米颗粒层而制得。
2. 如权利要求1所述的一种Pd/NiCo2O4/Ni foam复合电极,其特征在于所述复合电极中,钯纳米颗粒在泡沫镍上的沉积量为0.25~0.3mg/cm2,优选为0.27mg/cm2;NiCo2O4中间层在泡沫镍上的负载量为0.2~0.3mg/ cm2
3. 如权利要求1所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于包括以下步骤:
1)泡沫镍预处理:将泡沫镍基体先用2-4mol/L的盐酸超声20-50min以去除其表面氧化层,再用无水乙醇清洗3-10min以去除其表面有机物,最后用蒸馏水反复清洗2~5次后,在空气中晾干,得到预处理过的泡沫镍基体;
2)NiCo2O4中间层的制备:将镍盐、钴盐、NH4F和CO(NH2)2溶于水中,配制得到反应液;将步骤1)所得预处理过的泡沫镍基体静置在反应液中,然后移入到反应釜中进行水热反应,反应结束后自然冷却至室温,将泡沫镍基体取出并依次用乙醇和去离子水清洗干净,晾干,然后在惰性气氛下煅烧,使泡沫镍基体上形成NiCo2O4中间层,得到NiCo2O4/Ni foam电极;
3)电沉积钯纳米颗粒层:电沉积过程在单室反应器中进行,单室反应器中盛有含有钯盐的酸性电镀液,以步骤2)所得的NiCo2O4/Ni foam电极作为阴极,铂电极为阳极,辅以银/氯化银电极作为参比电极;在含有钯盐的酸性电镀液中电沉积钯纳米颗粒层,电沉积方式为恒电位法,制得Pd/NiCo2O4/Ni foam复合电极。
4. 如权利要求3所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤2)中,水热反应的温度为110~130℃,优选为120℃;反应时间为3~7h,优选为5h。
5. 如权利要求3所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤2)中,所述惰性气氛的气体为Ar;煅烧过程为:从室温以2-3℃/min速率升温至300-400℃后,恒温煅烧1.5-3h,随后自然降温至室温。
6. 如权利要求3所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤3)中,所述酸性电镀液由钯盐和钠盐的混合水溶液组成,钯盐的浓度为0.5-2mol/L;所述钯盐为氯化钯,钠盐为氯化钠,钯盐和钠盐的摩尔比为1:20-40,优选为1:30。
7. 如权利要求3所述的一种Pd/NiCo2O4/Ni foam复合电极的制备方法,其特征在于步骤3)采用恒电位法中,电位为-0.5V至-2V之间,优选-1V。
8. 如权利要求1所述的Pd/NiCo2O4/Ni foam复合电极在电催化废水中的含氯有机污染物进行还原脱氯中的应用。
9.如权利要求8所述的应用,其特征在于所述含氯有机污染物为2,4-二氯苯氧乙酸。
CN202010112322.0A 2020-02-24 2020-02-24 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用 Active CN111285446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010112322.0A CN111285446B (zh) 2020-02-24 2020-02-24 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010112322.0A CN111285446B (zh) 2020-02-24 2020-02-24 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111285446A true CN111285446A (zh) 2020-06-16
CN111285446B CN111285446B (zh) 2022-05-06

Family

ID=71017957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010112322.0A Active CN111285446B (zh) 2020-02-24 2020-02-24 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111285446B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559880A (zh) * 2021-07-30 2021-10-29 曲阜师范大学 一种Pd@NiCo2O4双功能纳米仿酶及其制备方法与应用
CN114540873A (zh) * 2022-04-25 2022-05-27 清华大学 一种钯/γ-二氧化锰/泡沫镍复合电极及其制备方法和应用
CN114538678A (zh) * 2022-04-25 2022-05-27 清华大学 一种臭氧氧化耦合电催化还原的染料废水处理方法
CN114904538A (zh) * 2022-06-09 2022-08-16 浙江工业大学 生物质炭负载的钯/钴酸铜复合材料及其制备方法和应用
CN114956267A (zh) * 2021-12-20 2022-08-30 天津工业大学 一种以双金属有机骨架为中间层的负载金属钯粒子电极及其制备和应用
CN115645814A (zh) * 2022-10-27 2023-01-31 浙江工业大学 一种超低载量钯纳米晶体修饰电极及其制备方法与其在电化学脱氯中的应用
CN115646503A (zh) * 2022-10-08 2023-01-31 河北师范大学 一种泡沫镍负载Ni-WC复合材料及其制备方法和应用
CN115784388A (zh) * 2022-11-23 2023-03-14 苏州大学 一种原位硫化电沉积制备Pd/Ni3S2/NF纳米片阵列电极的方法及EHDC的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040087A (en) * 1996-12-27 2000-03-21 Canon Kabushiki Kaisha Powdery material, electrode member, and method for manufacturing same for a secondary cell
CN105040041A (zh) * 2015-05-29 2015-11-11 广西大学 一种Pd/Co3O4/泡沫镍电极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040087A (en) * 1996-12-27 2000-03-21 Canon Kabushiki Kaisha Powdery material, electrode member, and method for manufacturing same for a secondary cell
CN105040041A (zh) * 2015-05-29 2015-11-11 广西大学 一种Pd/Co3O4/泡沫镍电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGLONG XIAO ET AL.: "Bifunctional Porous NiFe/NiCo2O4/Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Effi cient Whole Cell Water Splitting", 《ADVANCED FUNCTIONAL MATERIALS》 *
QIUXIANG LIU ET AL.: "Enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenoxyacetic acid by a Pd-Co3O4/Ni foam electrode", 《RSC ADVANCES》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559880B (zh) * 2021-07-30 2023-09-01 曲阜师范大学 一种Pd@NiCo2O4双功能纳米仿酶及其制备方法与应用
CN113559880A (zh) * 2021-07-30 2021-10-29 曲阜师范大学 一种Pd@NiCo2O4双功能纳米仿酶及其制备方法与应用
CN114956267A (zh) * 2021-12-20 2022-08-30 天津工业大学 一种以双金属有机骨架为中间层的负载金属钯粒子电极及其制备和应用
CN114956267B (zh) * 2021-12-20 2023-06-20 天津工业大学 一种以双金属有机骨架为中间层的负载金属钯粒子电极及其制备和应用
CN114540873B (zh) * 2022-04-25 2022-08-12 清华大学 一种钯/γ-二氧化锰/泡沫镍复合电极及其制备方法和应用
CN114538678A (zh) * 2022-04-25 2022-05-27 清华大学 一种臭氧氧化耦合电催化还原的染料废水处理方法
CN114540873A (zh) * 2022-04-25 2022-05-27 清华大学 一种钯/γ-二氧化锰/泡沫镍复合电极及其制备方法和应用
CN114904538A (zh) * 2022-06-09 2022-08-16 浙江工业大学 生物质炭负载的钯/钴酸铜复合材料及其制备方法和应用
CN114904538B (zh) * 2022-06-09 2023-07-18 浙江工业大学 生物质炭负载的钯/钴酸铜复合材料及其制备方法和应用
CN115646503A (zh) * 2022-10-08 2023-01-31 河北师范大学 一种泡沫镍负载Ni-WC复合材料及其制备方法和应用
CN115645814A (zh) * 2022-10-27 2023-01-31 浙江工业大学 一种超低载量钯纳米晶体修饰电极及其制备方法与其在电化学脱氯中的应用
CN115645814B (zh) * 2022-10-27 2024-04-05 浙江工业大学 一种超低载量钯纳米晶体修饰电极及其制备方法与其在电化学脱氯中的应用
CN115784388A (zh) * 2022-11-23 2023-03-14 苏州大学 一种原位硫化电沉积制备Pd/Ni3S2/NF纳米片阵列电极的方法及EHDC的方法

Also Published As

Publication number Publication date
CN111285446B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN111285446B (zh) 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用
Yang et al. Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol
Zhou et al. Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation
Gajda et al. Improved power and long term performance of microbial fuel cell with Fe-NC catalyst in air-breathing cathode
Zhang et al. Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor
Le et al. Facile preparation of porous carbon cathode to eliminate paracetamol in aqueous medium using electro-Fenton system
Lou et al. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2, 4-DCBA: Enhanced electrical conductivity and reactive activity
Wu et al. Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: Enhanced activity and stability
Wu et al. Enhanced electrocatalytic dechlorination of para-chloronitrobenzene based on Ni/Pd foam electrode
Lou et al. Pd/TiC/Ti electrode with enhanced atomic H* generation, atomic H* adsorption and 2, 4-DCBA adsorption for facilitating electrocatalytic hydrodechlorination
Xu et al. Electrogeneration of hydrogen peroxide using Ti/IrO2–Ta2O5 anode in dual tubular membranes Electro-Fenton reactor for the degradation of tricyclazole without aeration
Sun et al. Preparation of foam-nickel composite electrode and its application to 2, 4-dichlorophenol dechlorination in aqueous solution
Wu et al. Degradation of chloramphenicol with novel metal foam electrodes in bioelectrochemical systems
Fu et al. Electrochemical CO2 reduction to formic acid on crystalline SnO2 nanosphere catalyst with high selectivity and stability
JP4223958B2 (ja) 改良されたロジウム電気触媒の製造方法
CN103435134B (zh) 一种基于CNTs/Fe3O4三维电-Fenton提高兰炭废水可生化性的方法
CN1408037A (zh) 可还原染料的电化学还原
CN107364934A (zh) 电催化还原复合电极、制备方法及其应用
Li et al. Fabrication of Ti/TiO2/SnO2-Sb-Cu electrode for enhancing electrochemical degradation of ceftazidime in aqueous solution
CN106277229A (zh) 一种修饰电极电催化氧化处理有毒有机污染物阿特拉津的方法
CN113511763B (zh) 利用TiO2-NTs/Sb-SnO2/PbO2电催化氧化去除水中氨氮的方法及应用
Gupta et al. Conversion of CO2 to formate using activated carbon fiber-supported g-C3N4-NiCoWO4 photoanode in a microbial electrosynthesis system
Rabiee et al. Microtubular electrodes: An emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications
Tan et al. Preparation of three dimensional bimetallic Cu–Ni/NiF electrodes for efficient electrochemical removal of nitrate nitrogen
CN108328703A (zh) 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant