WO2020090026A1 - 表示パネルおよび表示パネルの製造方法 - Google Patents
表示パネルおよび表示パネルの製造方法 Download PDFInfo
- Publication number
- WO2020090026A1 WO2020090026A1 PCT/JP2018/040478 JP2018040478W WO2020090026A1 WO 2020090026 A1 WO2020090026 A1 WO 2020090026A1 JP 2018040478 W JP2018040478 W JP 2018040478W WO 2020090026 A1 WO2020090026 A1 WO 2020090026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- conductive film
- anisotropic conductive
- resin
- display panel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Definitions
- the present invention relates to a display panel and a method for manufacturing the display panel.
- Such a display panel includes a panel body including a large number of pixels, and a drive circuit externally attached to the panel body to drive the panel body. A signal for driving the pixels of the panel body is transmitted from the drive circuit to the panel body.
- a liquid crystal display device in which a driver IC and a drive circuit board are mounted on a flexible circuit board is known (see Patent Document 1).
- a flexible circuit board having a drive circuit board mounted closer to the liquid crystal display panel body than the driver IC is provided with an anisotropic conductive adhesive at a connection portion of the array substrate of the liquid crystal display panel body. Fixed through.
- the present invention has been made in view of the above problems, and an object thereof is to provide a display panel and a method for manufacturing the display panel in which deterioration of the connection between the panel substrate and the anisotropic conductive film is suppressed.
- a method of manufacturing a display panel according to the present invention includes a first panel substrate, a second panel substrate facing the first panel substrate and having a projecting region projecting from the first panel substrate, and the second panel substrate.
- a method of manufacturing a display panel comprising: a wiring board connected to the projecting region.
- the display panel according to the present invention includes a first panel substrate, a second panel substrate facing the first panel substrate, a wiring substrate, an anisotropic conductive film, and a buffer member containing a resin.
- the second panel substrate has a projecting region that projects from the first panel substrate.
- the wiring board is connected to the projecting region of the second panel board.
- a terminal is provided in the overhang area.
- the wiring board has one surface on which wiring is provided and the other surface.
- the terminal in the projecting region of the second panel substrate and the wiring on the one surface of the wiring substrate face each other via the anisotropic conductive film and are overlapped with each other.
- the cushioning member is arranged on the other surface of the wiring board.
- the resin of the buffer member covers at least a boundary portion of the exposed portion of the terminal not covered with the anisotropic conductive film with the anisotropic conductive film.
- the deterioration of the connection between the panel substrate and the anisotropic conductive film in the display panel can be suppressed.
- FIG. 3 is a schematic view of the display panel of the first embodiment.
- (A) is a partially enlarged view of the vicinity of COF in the display panel of the first embodiment, and (b) is a schematic side view of (a).
- (A)-(d) is a schematic diagram for demonstrating the manufacturing method of the display panel of 1st Embodiment.
- (A)-(d) is a schematic diagram for demonstrating the manufacturing method of the display panel of 2nd Embodiment.
- (A)-(d) is a schematic diagram for demonstrating the manufacturing method of the display panel of 3rd Embodiment.
- FIG. 1 is a schematic diagram of the display panel 100 of the first embodiment.
- the display panel 100 includes a panel body portion 110, a drive circuit portion 120, an anisotropic conductive film 130, and a cushioning member 140.
- the panel body 110 displays an image.
- the drive circuit unit 120 drives the panel body unit 110.
- a terminal 112 is provided at an end of the panel body 110.
- the drive circuit unit 120 is arranged on one side of the panel body 110.
- the drive circuit unit 120 is electrically connected to the terminal 112 of the TFT substrate 110b and transmits a signal to the panel body unit 110.
- the anisotropic conductive film 130 joins the panel body 110 and the drive circuit unit 120.
- the anisotropic conductive film 130 electrically connects the panel body 110 and the drive circuit unit 120.
- the anisotropic conductive film 130 covers the end of the panel body 110 and extends to the outside of the panel body 110.
- the buffer member 140 is arranged in a part of the drive circuit unit 120.
- the cushioning member 140 cushions the pressure by deforming when pressed. Further, the cushioning member 140 has an insulating property and an adhesive property. It is preferable that the buffer member 140 has low hygroscopicity.
- the buffer member 140 may have a tape shape.
- the cushioning member 140 may have a thin plate shape.
- the cushioning member 140 may be a hot melt tape.
- the cushioning member 140 may include a fluororesin.
- the cushioning member 140 includes polytetrafluoroethylene.
- the panel body 110 has a rectangular shape.
- the longitudinal direction of the panel body 110 is the X direction
- the lateral direction of the panel body 110 is the Y direction.
- the panel body 110 is a liquid crystal display panel.
- the panel body 110 includes a color filter substrate 110a and a TFT substrate 110b.
- a color filter is provided on the color filter substrate 110a.
- a thin film transistor (TFT) is provided for each pixel on the TFT substrate 110b.
- a liquid crystal layer is arranged between the color filter substrate 110a and the TFT substrate 110b.
- the color filter substrate 110a is stacked on the TFT substrate 110b.
- the color filter substrate 110a is an example of a first panel substrate.
- the TFT substrate 110b is an example of the second panel substrate.
- the color filter substrate 110a and the TFT substrate 110b face each other.
- the size of the TFT substrate 110b is larger than the size of the color filter substrate 110a.
- the TFT substrate 110b has a projecting region 111 that projects from the color filter substrate 110a.
- the terminal 112 is provided in the overhang region 111 of the TFT substrate 110b.
- the terminal 112 includes a conductive material. In one example, the terminals 112 are formed from copper.
- the drive circuit unit 120 includes a printed circuit board 122 and a COF (Chip on Film) 124.
- the COF 124 has a thin film shape.
- the panel body 110 is electrically connected to the printed circuit board 122 via the COF 124.
- the COF 124 is pressure-bonded to the TFT substrate 110b.
- the COF 124 is connected to the overhang region 111 of the TFT substrate 110b.
- the COF 124 preferably has flexibility.
- the printed circuit board 122 has a rectangular shape.
- the longitudinal direction of the printed board 122 is the X direction, and the lateral direction of the printed board 122 is the Y direction.
- the length of the printed board 122 in the X direction is substantially equal to the length of the panel body 110 in the X direction.
- the COF 124 is arranged at the end of the panel body 110. Specifically, the COF 124 is electrically connected to the terminal 112 of the TFT substrate 110b of the panel body 110 via the anisotropic conductive film 130.
- a plurality of COFs 124 are provided for one printed circuit board 122 and one panel body 110.
- the length of the COF 124 in the X direction is shorter than the length of the panel body 110 and the printed board 122 in the X direction.
- Wiring is provided on the base material of the COF 124, and the wiring of the COF 124 is electrically connected to the semiconductor chip mounted on the base material.
- the COF 124 is an example of a wiring board.
- the buffer member 140 contains a resin.
- the resin of the buffer member 140 is deformed by heating.
- the resin of the buffer member 140 covers the terminals 112 of the TFT substrate 110b.
- the resin of the cushioning member 140 may be contained in the cushioning member 140 throughout the cushioning member 140.
- the display panel 100 In the display panel 100 according to the first embodiment, at least a boundary portion of the exposed portion of the terminal 112 of the TFT substrate 110b that is not covered with the anisotropic conductive film 130 with the anisotropic conductive film 130 is formed of the buffer member 140. Covered with resin. Therefore, deterioration of the connection between the TFT substrate 110b and the anisotropic conductive film 130 in the display panel 100 can be suppressed. Further, in the display panel 100 of the first embodiment, the exposed portion of the terminal 112 on the TFT substrate 110b is covered with the resin of the buffer member 140. Therefore, even when the display panel 100 is under high humidity, it is possible to suppress malfunction due to the adhesion of moisture to the terminals 112.
- FIG. 2A is a partially enlarged view of the vicinity of the COF 124 of the display panel 100 of the first embodiment
- FIG. 2B is a side view of FIG. 2A.
- the size of the TFT substrate 110b in the panel body 110 is larger than the size of the color filter substrate 110a. Most of the main surface of the TFT substrate 110b overlaps with the color filter substrate 110a, but the projecting region 111 of the TFT substrate 110b projects from the color filter substrate 110a. A terminal 112 is provided in the overhang area 111.
- the COF 124 has a thin film shape.
- the COF 124 has two main surfaces. One surface of the COF 124 is one of the two main surfaces and faces the TFT substrate 110b. The other surface of the COF 124 is the other of the two main surfaces and faces the cushioning member 140.
- the COF 124 has a base material 124a, wirings 124b, and an insulating layer 124c.
- the wiring 124b is provided on one main surface (one surface) of the base material 124a.
- the wiring 124b is provided on the main surface on the lower side (TFT substrate 110b) side of the base material 124a.
- the insulating layer 124c covers at least a part of the wiring 124b without covering a portion of the wiring 124b that overlaps with the terminal 112 of the TFT substrate 110b.
- the COF 124 has a single-sided mounting structure.
- the base material 124a includes a thermosetting resin.
- the base material 124a is formed of a polyimide resin.
- the wiring 124b includes a conductive material.
- the wiring 124b is formed of copper.
- the insulating layer 124c contains a thermosetting resin.
- the insulating layer 124c is formed of epoxy resin.
- the anisotropic conductive film 130 joins the TFT substrate 110b of the panel body 110 and the COF 124.
- the terminal 112 provided in the overhang region 111 of the TFT substrate 110b of the panel body 110 and the wiring 124b provided on one surface of the COF 124 face each other with the anisotropic conductive film 130 interposed therebetween.
- the anisotropic conductive film 130 also electrically connects the terminal 112 provided on the TFT substrate 110b of the panel body 110 and the wiring 124b of the COF 124.
- the terminal 112 is provided in the overhang area 111 of the TFT substrate 110b.
- the anisotropic conductive film 130 is arranged in the overhang region 111 of the TFT substrate 110b, a part of the terminal 112 is covered with the anisotropic conductive film 130 and the rest of the terminal 112 is covered with the anisotropic conductive film 130.
- the anisotropic conductive film 130 is not covered and is exposed.
- the terminal 112 has the covered portion 112 a covered with the anisotropic conductive film 130 and the exposed portion 112 b not covered with the anisotropic conductive film 130.
- the buffer member 140 is arranged in the COF 124.
- the buffer member 140 contains resin.
- the cushioning member 140 is made of a material harder than the COF 124.
- the cushioning member 140 may include the same material as the base material 124a. In this case, the cushioning member 140 is preferably thicker than the base material 124a.
- the cushioning member 140 may be a mixture of a cushioning material having a cushioning effect against pressure and a resin that flows by heating.
- the cushioning material may include, for example, a fluororesin.
- the cushioning material includes polytetrafluoroethylene.
- the resin may be uniformly dispersed in the buffer material.
- the resin of the cushioning member 140 may be dispersed in the cushioning material so that the resin concentration below the cushioning member 140 is higher than the resin concentration above it.
- the cushioning member 140 includes a thermoplastic resin.
- the cushioning member 140 may include an acrylic resin.
- the cushioning member 140 includes a thermosetting resin.
- the buffer member 140 may include a polyimide resin.
- the COF 124 is pressed by the pressing member in order to press the COF 124 to the TFT substrate 110b via the anisotropic conductive film 130.
- the buffer member 140 buffers the pressure from the pressure member.
- the buffer member 140 covers the terminal 112 of the TFT substrate 110b. At least a portion of the buffer member 140 that covers the terminal 112 of the TFT substrate 110b contains a resin.
- the resin of the buffer member 140 is insulative and functions as a so-called adhesive. In the display panel 100 of the first embodiment, the resin of the buffer member 140 covers at least the boundary portion of the exposed portion 112b of the terminal 112 with the anisotropic conductive film 130. Therefore, deterioration of the connection between the TFT substrate 110b and the anisotropic conductive film 130 in the display panel 100 can be suppressed.
- the boundary between the portion of the wiring 124b covered with the insulating layer 124c and the portion not covered with the insulating layer 124c preferably faces the cushioning member 140 via the base material 124a. In this case, the load on the wiring 124b can be reduced even when the COF 124 is bent, and the disconnection of the wiring 124b can be suppressed.
- the anisotropic conductive film 130 when disposing the anisotropic conductive film 130 in the COF 124, the anisotropic conductive film 130 preferably overlaps the insulating layer 124c. Accordingly, the entire wiring 124b can be covered with the insulating layer 124c and / or the anisotropic conductive film 130, and the occurrence of defects due to moisture attached to the exposed wiring 124b can be suppressed.
- the display panel 100 of the first embodiment is manufactured by pressing the COF 124 onto the TFT substrate 110b.
- a method of manufacturing the display panel 100 according to the first embodiment will be described with reference to FIG. 3A to 3D are schematic views for explaining the method of manufacturing the display panel 100 according to the first embodiment.
- the anisotropic conductive film 130 attached to the COF 124 is arranged in the overhang region 111 of the TFT substrate 110b.
- a terminal 112 is provided in the overhang region 111 of the TFT substrate 110b, and the wiring 124b of the COF 124 faces the terminal 112 of the TFT substrate 110b via the anisotropic conductive film 130.
- the insulating layer 124c covers a part of the wiring 124b. Although another part of the wiring 124b is exposed from the insulating layer 124c, the exposed wiring 124b is covered with the anisotropic conductive film 130.
- the anisotropic conductive film 130 is arranged so as to overlap the insulating layer 124c of the COF 124. Specifically, the terminal 112 provided in the overhang region 111 of the TFT substrate 110b and the wiring 124b provided on one surface of the COF 124 are overlapped with each other with the anisotropic conductive film 130 interposed therebetween.
- the anisotropic conductive film 130 By disposing the anisotropic conductive film 130 in the overhang region 111 of the TFT substrate 110b, a part of the terminal 112 becomes a covered portion 112a covered with the anisotropic conductive film 130, and the rest of the terminal 112 is different.
- the exposed portion 112b is not covered with the anisotropic conductive film 130.
- the cushioning member 140 is arranged on the other surface of the COF 124.
- the boundary between the portion of the wiring 124b of the COF 124 covered with the insulating layer 124c and the portion not covered with the insulating layer 124c faces the cushioning member 140 via the base material 124a.
- the buffer member 140 is pressed by the heated pressing member P. Specifically, in a state where the terminal 112 of the TFT substrate 110b and the wiring 124b of the COF 124 are overlapped with each other via the anisotropic conductive film 130, the pressing member P moves the COF 124 to the TFT substrate 110b side via the buffer member 140. Pressurize toward. In the majority of the area of the buffer member 140 that is pressed by the pressing member P, the TFT substrate 110b, the anisotropic conductive film 130, the COF 124, and the buffer member 140 overlap. When the pressure member P presses the buffer member 140, pressure is applied to the anisotropic conductive film 130 located between the COF 124 and the TFT substrate 110b.
- the pressing member P that pressurizes the buffer member 140 is heated.
- the pressing member P heats the anisotropic conductive film 130 in a state where the COF 124 is pressed toward the TFT substrate 110b side via the buffer member 140.
- the pressure member P is heated to a temperature of 150 ° C. or higher and 250 ° C. or lower.
- the heat of the pressing member P is transferred to the anisotropic conductive film 130 via the buffer member 140 and the COF 124.
- the anisotropic conductive film 130 electrically connects the terminal 112 of the TFT substrate 110b and the wiring 124b of the COF 124, and then joins the TFT substrate 110b and the COF 124. As a result, the COF 124 is pressure bonded to the TFT substrate 110b.
- the buffer member 140 when the buffer member 140 is heated by the pressure member P, the buffer member 140 is deformed.
- the resin of the buffer member 140 covers at least the boundary portion of the exposed portion 112 b of the terminal 112 with the anisotropic conductive film 130.
- the resin of the buffer member 140 flows so as to cover the overhang region 111 of the TFT substrate 110b. Therefore, the resin of the buffer member 140 covers not only the boundary portion of the exposed portion 112b of the terminal 112 with the anisotropic conductive film 130 but also the entire exposed portion 112b of the terminal 112.
- the buffer member 140 contains a thermoplastic resin
- the resin of the buffer member 140 is melted by the heat from the pressure member P. After that, the resin of the buffer member 140 flows and covers at least a part of the exposed portion 112b of the terminal 112 (the entire exposed portion 112b in the present embodiment).
- the buffer member 140 contains a thermosetting resin
- the resin of the buffer member 140 is once softened by the heat of the heated pressing member P.
- the resin of the buffer member 140 flows to cover at least a part of the exposed portion 112b of the terminal 112 (the entire exposed portion 112b in the present embodiment). After that, if heating is continued by the pressure member P, the resin of the buffer member 140 is cured.
- the pressing member P may start heating after starting pressing the buffer member 140.
- the pressurizing member P may start pressurizing the buffer member 140 in a preheated state.
- the pressing member P is removed from the cushioning member 140, and the pressing and heating are completed.
- the resin of the buffer member 140 covers the terminals 112 of the TFT substrate 110b.
- the COF 124 is pressure bonded to the TFT substrate 110b.
- the resin of the buffer member 140 which buffers the pressure when the COF 124 is pressure-bonded to the TFT substrate 110b, is at least a boundary portion of the exposed portion 112b of the terminal 112 with the anisotropic conductive film 130. Cover. Therefore, at least the boundary between the exposed portion 112b of the terminal 112 of the TFT substrate 110b and the anisotropic conductive film 130 can be protected, and the connection between the TFT substrate 110b and the anisotropic conductive film 130 in the display panel 100 is deteriorated. Can be suppressed.
- the exposed portion 112b of the terminal 112 of the TFT substrate 110b can be covered. Therefore, the terminals 112 of the TFT substrate 110b can be protected without increasing the number of steps.
- the cushioning member 140 covers the entire exposed portion 112b of the terminal 112, but the present invention is not limited to this.
- the buffer member 140 may cover only a part of the exposed portion 112b of the terminal 112.
- the buffer member 140 has a single-layer structure, but the present invention is not limited to this.
- the cushioning member 140 may have a laminated structure.
- FIG. 4A to 4D are schematic views for explaining the method of manufacturing the display panel 100 according to the second embodiment.
- the manufacturing method of the second embodiment is the same as the manufacturing method of the display panel 100 described above with reference to FIG. 3, except that the cushioning member 140 has a laminated structure. Therefore, redundant description is omitted for the purpose of avoiding redundant description.
- the anisotropic conductive film 130 attached to the COF 124 is arranged in the overhang region 111 of the TFT substrate 110b.
- the wiring 124b of the COF 124 faces the terminal 112 of the TFT substrate 110b via the anisotropic conductive film 130.
- the insulating layer 124c covers a part of the wiring 124b. Although another part of the wiring 124b is exposed from the insulating layer 124c, the exposed wiring 124b is covered with the anisotropic conductive film 130.
- the anisotropic conductive film 130 is arranged so as to overlap the insulating layer 124c of the COF 124.
- the buffer layer 140a preferably exhibits high elasticity.
- the buffer layer 140a preferably contains silicone rubber or fluororesin.
- the resin layer 140b has a resin that deforms at a temperature higher than room temperature.
- the resin layer 140b may include a thermoplastic resin.
- the resin layer 140b may include a thermosetting resin.
- the pressure member P presses the buffer member 140.
- the pressure member P is heated.
- the heat of the pressing member P is transferred to the anisotropic conductive film 130 via the buffer member 140 and the COF 124.
- the anisotropic conductive film 130 electrically connects the terminal 112 of the TFT substrate 110b and the wiring 124b of the COF 124, and then joins the TFT substrate 110b and the COF 124.
- the COF 124 is pressure bonded to the TFT substrate 110b.
- the buffer member 140 when the buffer member 140 is heated by the pressure member P, the buffer member 140 is deformed. Specifically, the buffer layer 140a of the buffer member 140 does not deform, while the resin layer 140b of the buffer member 140 deforms so as to cover the terminals 112 of the TFT substrate 110b.
- the resin of the resin layer 140b covers at least the boundary between the exposed portion 112b of the terminal 112 and the anisotropic conductive film 130.
- the resin of the resin layer 140b flows so as to cover the overhang region 111 of the TFT substrate 110b. Therefore, the resin of the resin layer 140b covers not only the boundary portion of the exposed portion 112b of the terminal 112 with the anisotropic conductive film 130 but also the entire exposed portion 112b of the terminal 112.
- the resin layer 140b may include a thermoplastic resin.
- the thermoplastic resin of the resin layer 140b melts when the buffer member 140 is heated and the temperature rises. After that, when the heating ends and the temperature decreases, the thermoplastic resin solidifies again.
- the resin layer 140b may include a thermosetting resin.
- the thermosetting resin of the resin layer 140b once softens when the buffer member 140 is heated and the temperature rises. When the temperature further rises, the thermosetting resin of the resin layer 140b cures.
- the pressure member P is removed from the buffer member 140, and the pressure and heating are completed.
- the resin layer 140b of the buffer member 140 covers the terminals 112 of the panel body 110 (TFT substrate 110b).
- the COF 124 can be pressure-bonded to the TFT substrate 110b as described above with reference to FIGS. 4 (a) to 4 (d).
- the cushioning member 140 has a two-layer laminated structure including the cushioning layer 140a and the resin layer 140b, but the present invention is not limited to this.
- the cushioning member 140 may have a laminated structure of three or more layers.
- the cushioning member 140 may further include an adhesive layer between the cushioning layer 140a and the resin layer 140b, in addition to the cushioning layer 140a and the resin layer 140b.
- the COF 124 is pressure-bonded to the TFT substrate 110b by heating the pressure member P that pressurizes the buffer member 140, but the present invention is not limited to this. ..
- the pressure member P that pressurizes the buffer member 140 when the COF 124 is pressure-bonded to the TFT substrate 110b may not be heated.
- FIGS. 5A to 5D are schematic views for explaining the method of manufacturing the display panel 100 according to the third embodiment.
- the manufacturing method of the third embodiment is the same as the manufacturing method described above with reference to FIGS. 3 and 4, except that a heating member is used separately from the pressing member. Therefore, redundant description is omitted for the purpose of avoiding redundant description.
- the anisotropic conductive film 130 attached to the COF 124 is arranged in the overhang region 111 of the TFT substrate 110b.
- the wiring 124b of the COF 124 faces the terminal 112 of the TFT substrate 110b via the anisotropic conductive film 130.
- the insulating layer 124c covers a part of the wiring 124b. Although another part of the wiring 124b is exposed from the insulating layer 124c, the exposed wiring 124b is covered with the anisotropic conductive film 130.
- the anisotropic conductive film 130 is arranged so as to overlap the insulating layer 124c of the COF 124.
- the cushioning member 140 is placed on the COF 124.
- the boundary between the insulating layer 124c of the COF 124 and the anisotropic conductive film 130 faces the buffer member 140 via the base material 124a.
- the pressure member Pa presses the buffer member 140.
- the pressure member Pa presses the buffer member 140 from above.
- the pressure member Pa presses the buffer member 140 at room temperature.
- the heating member Pb heats the anisotropic conductive film 130 from below (on the side of one surface of the COF 124).
- the heating member Pb may be in contact with the COF 124 as well as the anisotropic conductive film 130.
- the pressure member Pa presses the buffer member 140 to apply pressure to the anisotropic conductive film 130 located between the COF 124 and the TFT substrate 110b. Further, the heating member Pb heats the anisotropic conductive film 130, so that the anisotropic conductive film 130 electrically connects the terminal 112 of the TFT substrate 110b and the wiring 124b of the COF 124, and then the TFT substrate 110b. And COF124 are joined. As a result, the COF 124 is pressure bonded to the TFT substrate 110b.
- the buffer member 140 when the buffer member 140 is heated by the heating member Pb, the buffer member 140 is deformed.
- the resin of the buffer member 140 flows so as to cover the terminals 112 of the TFT substrate 110b.
- the resin of the buffer member 140 covers at least the boundary portion of the exposed portion 112 b of the terminal 112 with the anisotropic conductive film 130.
- the resin of the buffer member 140 flows so as to cover the overhang region 111 of the TFT substrate 110b. Therefore, the resin of the buffer member 140 covers not only the boundary portion of the exposed portion 112b of the terminal 112 with the anisotropic conductive film 130 but also the entire exposed portion 112b of the terminal 112.
- the pressurizing member Pa and the heating member Pb are removed from the cushioning member 140 to end the pressurizing and heating.
- the resin of the buffer member 140 covers the terminals 112 of the panel body 110 (TFT substrate 110b).
- the COF 124 can be pressure bonded to the TFT substrate 110b as described with reference to FIGS. 5A to 5D.
- liquid crystal display panel is exemplified as the panel main body 110 described above with reference to FIGS. 1 to 5, the present invention is not limited to this.
- the panel body 110 may be an organic EL display panel.
- the present invention is useful in the field of display panels and display panel manufacturing methods.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
表示パネル(100)の製造方法は、第1パネル基板(110a)から張り出した第2パネル基板(110b)の張出領域(111)に設けられた端子(112)と配線基板(124)の一方面に設けられた配線(124b)とを異方性導電膜(130)を介して対向させて重ね合わせるステップと、緩衝部材(140)を配線基板(124)に配置するステップと、加圧部材(P)が緩衝部材(140)を介して配線基板(124)を第2パネル基板(110b)側に向けて加圧するステップと、異方性導電膜(130)を加熱するステップとを包含する。加熱するステップにおいて、緩衝部材(140)の樹脂は、端子(112)における異方性導電膜(130)に覆われていない露出部分のうちの少なくとも異方性導電膜(130)との境界部分を覆う。
Description
本発明は、表示パネルおよび表示パネルの製造方法に関する。
平板型の表示パネルは、薄型化を容易に実現できることから、一般に広く普及している。このような表示パネルは、多数の画素を含むパネル本体部と、パネル本体部に外付けされてパネル本体部を駆動する駆動回路とを備える。駆動回路からはパネル本体部の画素を駆動するための信号がパネル本体部に送信される。
このような表示パネルとして、可撓性回路基板にドライバICおよび駆動回路基板を搭載した液晶表示装置が知られている(特許文献1参照)。特許文献1の表示装置では、ドライバICよりも液晶表示パネル本体部側に駆動回路基板を搭載した可撓性回路基板を液晶表示パネル本体部のアレイ基板の接続部に異方導電性接着剤を介して固定している。
しかしながら、特許文献1の液晶表示装置では、アレイ基板に可撓性回路基板を固定した際に、アレイ基板のうちの可撓性回路基板接続部が露出される。このため、表示装置が高湿下に曝された場合、可撓性回路基板接続部に水分が付着すると、表示装置に不具合が生じることがあった。特に、異方導電性接着剤とアレイ基板の接続部との境界に水分が浸入すると、アレイ基板と異方導電性接着剤との接続が劣化してしまうことがある。
本発明は、上記課題に鑑みてなされたものであり、その目的は、パネル基板と異方性導電膜との接続の劣化を抑制した表示パネルおよび表示パネルの製造方法を提供することである。
本発明による表示パネルの製造方法は、第1パネル基板と、前記第1パネル基板に対向するとともに前記第1パネル基板から張り出した張出領域を有する第2パネル基板と、前記第2パネル基板の前記張出領域に接続される配線基板とを備える表示パネルの製造方法である。前記製造方法は、前記張出領域に設けられた端子と前記配線基板の一方面に設けられた配線とを異方性導電膜を介して対向させて重ね合わせるステップと、樹脂を含有する緩衝部材を前記配線基板の他方面上に配置するステップと、前記端子と前記配線とを前記異方性導電膜を介して重ね合わせた状態で、加圧部材が前記緩衝部材を介して前記配線基板を前記第2パネル基板側に向けて加圧するステップと、前記加圧部材が前記緩衝部材を介して前記配線基板を前記第2パネル基板側に向けて加圧している状態で、前記異方性導電膜を加熱するステップとを包含する。前記加熱するステップにおいて、前記緩衝部材の前記樹脂は、前記端子における前記異方性導電膜に覆われていない露出部分のうちの少なくとも前記異方性導電膜との境界部分を覆う。
本発明による表示パネルは、第1パネル基板と、前記第1パネル基板に対向する第2パネル基板と、配線基板と、異方性導電膜と、樹脂を含有する緩衝部材とを備える。前記第2パネル基板は、前記第1パネル基板から張り出した張出領域を有する。前記配線基板は、前記第2パネル基板の前記張出領域に接続される。前記張出領域には端子が設けられる。前記配線基板は、配線の設けられた一方面と、他方面とを有する。前記第2パネル基板における前記張出領域の前記端子と前記配線基板における前記一方面の前記配線とは、前記異方性導電膜を介して対向して重ね合わされている。前記緩衝部材は前記配線基板の前記他方面上に配置されている。前記緩衝部材の前記樹脂は、前記端子における前記異方性導電膜に覆われていない露出部分のうちの少なくとも前記異方性導電膜との境界部分を覆う。
本発明によれば、表示パネルにおけるパネル基板と異方性導電膜との接続の劣化を抑制できる。
以下、図面を参照して本発明による表示パネルおよび表示パネルの製造方法の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。なお、本願明細書では、発明の理解を容易にするため、互いに直交するX方向、Y方向およびZ方向を記載することがある。X方向およびY方向は水平方向に平行であり、Z方向は鉛直方向に平行である。
図1を参照して、本発明による表示パネル100の第1実施形態を説明する。図1は、第1実施形態の表示パネル100の模式図である。
表示パネル100は、パネル本体部110と、駆動回路部120と、異方性導電膜130と、緩衝部材140とを備える。パネル本体部110は、画像を表示する。駆動回路部120は、パネル本体部110を駆動する。パネル本体部110の端部には端子112が設けられる。駆動回路部120は、パネル本体部110の一方の側部に配置される。駆動回路部120は、TFT基板110bの端子112と電気的に接続し、パネル本体部110に信号を送信する。
異方性導電膜130は、パネル本体部110と駆動回路部120とを接合する。異方性導電膜130は、パネル本体部110と駆動回路部120とを電気的に接続する。なお、異方性導電膜130は、パネル本体部110の端部を覆うとともに、パネル本体部110の外部にまで延びる。
緩衝部材140は、駆動回路部120の一部に配置される。緩衝部材140は、加圧されたときに変形することで圧力を緩衝する。また、緩衝部材140は、絶縁性および接着性を有する。なお、緩衝部材140の吸湿性が低いことが好ましい。
緩衝部材140は、テープ状であってもよい。あるいは、緩衝部材140は、薄板状であってもよい。例えば、緩衝部材140は、ホットメルトテープであってもよい。
または、緩衝部材140は、フッ素樹脂を含んでもよい。一例として、緩衝部材140は、ポリテトラフルオロエチレンを含む。
ここで、パネル本体部110は矩形状である。パネル本体部110の長手方向はX方向であり、パネル本体部110の短手方向はY方向である。
例えば、パネル本体部110は、液晶表示パネルである。パネル本体部110は、カラーフィルタ基板110aと、TFT基板110bとを含む。カラーフィルタ基板110aには、カラーフィルタが設けられる。TFT基板110bには、薄膜トランジスタ(Thin Film Transistor:TFT)が画素ごとに設けられる。カラーフィルタ基板110aとTFT基板110bとの間には液晶層が配置される。カラーフィルタ基板110aはTFT基板110bの上に積層される。カラーフィルタ基板110aは、第1パネル基板の一例である。また、TFT基板110bは、第2パネル基板の一例である。
カラーフィルタ基板110aおよびTFT基板110bは互いに対向する。TFT基板110bのサイズはカラーフィルタ基板110aのサイズよりも大きい。TFT基板110bは、カラーフィルタ基板110aから張り出した張出領域111を有する。TFT基板110bの張出領域111に端子112が設けられる。端子112は、導電材を含む。一例では、端子112は、銅から形成される。
駆動回路部120は、プリント基板122と、COF(Chip on Film)124とを含む。COF124は薄膜状である。パネル本体部110は、COF124を介してプリント基板122と電気的に接続する。COF124は、TFT基板110bに圧着される。COF124は、TFT基板110bの張出領域111に接続される。COF124は可撓性(フレキシブル性)を有することが好ましい。
ここでは、プリント基板122は矩形状である。プリント基板122の長手方向はX方向であり、プリント基板122の短手方向はY方向である。プリント基板122のX方向の長さは、パネル本体部110のX方向の長さとほぼ等しい。
COF124は、パネル本体部110の端部に配置される。具体的には、COF124は、異方性導電膜130を介してパネル本体部110のTFT基板110bの端子112と電気的に接続される。ここでは、1つのプリント基板122および1つのパネル本体部110に対して複数のCOF124が設けられる。COF124のX方向の長さは、パネル本体部110およびプリント基板122のX方向の長さよりも短い。
COF124には基材上に配線が設けられ、COF124の配線は基材上に実装された半導体チップと電気的に接続される。COF124は、配線基板の一例である。
緩衝部材140は、樹脂を含有する。緩衝部材140の樹脂は加熱によって変形する。緩衝部材140の樹脂は、TFT基板110bの端子112を覆う。例えば、緩衝部材140の樹脂は、緩衝部材140の全体にわたって緩衝部材140に含有されてもよい。
第1実施形態の表示パネル100では、TFT基板110bの端子112における異方性導電膜130に覆われていない露出部分のうちの少なくとも異方性導電膜130との境界部分は、緩衝部材140の樹脂で覆われる。このため、表示パネル100におけるTFT基板110bと異方性導電膜130との接続の劣化を抑制できる。また、第1実施形態の表示パネル100では、TFT基板110bにおける端子112の露出部分が緩衝部材140の樹脂で覆われる。このため、表示パネル100が高湿下でも端子112への水分の付着に起因する誤動作を抑制できる。
次に、図2を参照して第1実施形態の表示パネル100のうちのCOF124の近傍の構成を説明する。図2(a)は、第1実施形態の表示パネル100のCOF124近傍の一部拡大図であり、図2(b)は図2(a)の側面図である。
上述したように、パネル本体部110においてTFT基板110bのサイズはカラーフィルタ基板110aのサイズよりも大きい。TFT基板110bの主面の大部分はカラーフィルタ基板110aと重なるが、TFT基板110bの張出領域111は、カラーフィルタ基板110aから張り出している。張出領域111には端子112が設けられる。
上述したように、COF124は薄膜状である。COF124は、2つの主面を有する。COF124の一方面は、2つの主面の一方であり、TFT基板110bに対向する。また、COF124の他方面は、2つの主面の他方であり、緩衝部材140に対向する。
COF124は、基材124aと、配線124bと、絶縁層124cとを有する。配線124bは、基材124aの一方の主面(一方面)に設けられる。ここでは、配線124bは、基材124aの下方(TFT基板110b)側の主面に設けられる。絶縁層124cは、配線124bのうちTFT基板110bの端子112と重なる部分を覆うことなく配線124bの少なくとも一部を覆う。COF124は、片面実装構造である。
例えば、基材124aは、熱硬化性樹脂を含む。一例では、基材124aは、ポリイミド樹脂から形成される。配線124bは、導電材を含む。一例では、配線124bは、銅から形成される。絶縁層124cは、熱硬化性樹脂を含む。一例では、絶縁層124cは、エポキシ樹脂から形成される。
異方性導電膜130は、パネル本体部110のTFT基板110bとCOF124とを接合する。パネル本体部110のTFT基板110bにおける張出領域111に設けられた端子112とCOF124の一方面に設けられた配線124bとは異方性導電膜130を介して対向している。また、異方性導電膜130は、パネル本体部110のTFT基板110bに設けられた端子112とCOF124の配線124bとを電気的に接続する。
上述したように、TFT基板110bの張出領域111には端子112が設けられる。異方性導電膜130がTFT基板110bの張出領域111に配置される場合、端子112の一部は、異方性導電膜130に覆われ、端子112の残りは異方性導電膜130に覆われず異方性導電膜130に対して露出される。このように、端子112は、異方性導電膜130に覆われた被覆部分112aと、異方性導電膜130に覆われない露出部分112bとを有する。
第1実施形態の表示パネル100では、COF124に緩衝部材140が配置される。緩衝部材140は樹脂を含む。緩衝部材140は、COF124よりも硬い材料から形成される。緩衝部材140は、基材124aと同じ材料を含んでもよい。この場合、緩衝部材140は、基材124aよりも厚いことが好ましい。
例えば、緩衝部材140は、圧力に対して緩衝作用を有する緩衝材と、加熱によって流動する樹脂との混合物であってもよい。緩衝材は、例えば、フッ素樹脂を含んでもよい。一例として、緩衝材は、ポリテトラフルオロエチレンを含む。なお、緩衝部材140が混合物である場合、樹脂は緩衝材に対して均一に分散していてもよい。あるいは、緩衝部材140中の下方の樹脂濃度が上方の樹脂濃度よりも高くなるように、緩衝部材140の樹脂は緩衝材に分散されてもよい。
例えば、緩衝部材140は、熱可塑性樹脂を含む。一例として、緩衝部材140は、アクリル樹脂を含んでもよい。あるいは、緩衝部材140は、熱硬化性樹脂を含む。一例として、緩衝部材140は、ポリイミド樹脂を含んでもよい。
図3を参照して後述するが、異方性導電膜130を介してCOF124をTFT基板110bに圧着するためにCOF124は加圧部材で加圧される。COF124が加圧される際に、緩衝部材140は、加圧部材からの圧力を緩衝する。
緩衝部材140は、TFT基板110bの端子112を覆う。緩衝部材140のうち、少なくともTFT基板110bの端子112を覆う部分は樹脂を含有する。緩衝部材140の樹脂は、絶縁性であり、いわゆる接着剤として機能する。第1実施形態の表示パネル100では、緩衝部材140の樹脂は、端子112における露出部分112bのうちの少なくとも異方性導電膜130との境界部分を覆う。このため、表示パネル100におけるTFT基板110bと異方性導電膜130との接続の劣化を抑制できる。
なお、配線124bにおける絶縁層124cに覆われている部分と絶縁層124cに覆われていない部分との境界は、基材124aを介して緩衝部材140と対向することが好ましい。この場合、COF124を曲げる際にも配線124bに係る負荷を低減でき、配線124bの断線を抑制できる。
また、COF124に異方性導電膜130を配置する際に、異方性導電膜130は、絶縁層124cと重なることが好ましい。これにより、絶縁層124cおよび/または異方性導電膜130によって配線124bの全体を覆うことができ、露出した配線124bに水分が付着することによる不具合の発生を抑制できる。
COF124をTFT基板110bに圧着することで第1実施形態の表示パネル100は製造される。以下、図3を参照して、第1実施形態の表示パネル100の製造方法を説明する。図3(a)~図3(d)は、第1実施形態の表示パネル100の製造方法を説明するための模式図である。
図3(a)に示すように、COF124に貼り付けられた異方性導電膜130をTFT基板110bの張出領域111に配置する。TFT基板110bの張出領域111には端子112が設けられており、COF124の配線124bは、異方性導電膜130を介してTFT基板110bの端子112に対向する。
COF124において絶縁層124cは配線124bの一部を覆う。なお、配線124bの別の一部は絶縁層124cから露出されるが、露出した配線124bは異方性導電膜130に覆われる。異方性導電膜130は、COF124の絶縁層124cと重なるように配置される。具体的には、TFT基板110bの張出領域111に設けられた端子112とCOF124の一方面に設けられた配線124bとは、異方性導電膜130を介して対向させて重ね合わされる。異方性導電膜130がTFT基板110bの張出領域111に配置されることにより、端子112の一部は、異方性導電膜130に覆われた被覆部分112aとなり、端子112の残りは異方性導電膜130に覆われない露出部分112bとなる。
図3(b)に示すように、COF124の他方面上に緩衝部材140を配置する。ここで、COF124の配線124bのうち絶縁層124cに覆われる部分と覆われない部分との境界は、基材124aを介して緩衝部材140と対向する。
図3(c)に示すように、加熱した加圧部材Pで緩衝部材140を加圧する。詳細には、TFT基板110bの端子112とCOF124の配線124bとを異方性導電膜130を介して重ね合わせた状態で、加圧部材Pが緩衝部材140を介してCOF124をTFT基板110b側に向けて加圧する。緩衝部材140のうち加圧部材Pによって加圧される領域の大部分では、TFT基板110b、異方性導電膜130、COF124および緩衝部材140が重なる。加圧部材Pが緩衝部材140を加圧することにより、COF124とTFT基板110bとの間に位置する異方性導電膜130に圧力が付与される。
なお、ここでは、緩衝部材140を加圧する加圧部材Pは加熱される。加圧部材Pは、緩衝部材140を介してCOF124をTFT基板110b側に向けて加圧している状態で、異方性導電膜130を加熱する。例えば、加圧部材Pは、150℃以上250℃以下の温度に加熱される。加熱した加圧部材Pで緩衝部材140を加圧することにより、加圧部材Pの熱は緩衝部材140およびCOF124を介して異方性導電膜130に伝達する。加圧部材Pの熱により、異方性導電膜130は、TFT基板110bの端子112とCOF124の配線124bとを電気的に接続した上で、TFT基板110bとCOF124とを接合する。これにより、COF124は、TFT基板110bに圧着される。
また、加圧部材Pによって緩衝部材140が加熱されると、緩衝部材140は変形する。本実施形態では、緩衝部材140の樹脂は、端子112の露出部分112bのうちの少なくとも異方性導電膜130との境界部分を覆う。なお、ここでは、緩衝部材140の樹脂がTFT基板110bの張出領域111を覆うように流動する。このため、緩衝部材140の樹脂により、端子112の露出部分112bのうちの異方性導電膜130との境界部分だけでなく端子112の露出部分112bの全体が覆われる。
例えば、緩衝部材140が熱可塑性樹脂を含有する場合、緩衝部材140の樹脂は、加圧部材Pからの熱によって溶解する。その後、緩衝部材140の樹脂は、流動して端子112の露出部分112bの少なくとも一部(本実施形態では露出部分112bの全体)を覆う。
また、緩衝部材140が熱硬化性樹脂を含有する場合、緩衝部材140の樹脂は、加熱された加圧部材Pの熱によって一旦軟化する。このとき、緩衝部材140の樹脂が流動して端子112の露出部分112bの少なくとも一部(本実施形態では露出部分112bの全体)を覆う。その後、加圧部材Pによって加熱され続けると、緩衝部材140の樹脂は硬化する。
なお、加圧部材Pは、緩衝部材140への加圧を開始した後で、加熱を開始してもよい。あるいは、加圧部材Pは、予め加熱された状態で緩衝部材140への加圧を開始してもよい。
図3(d)に示すように、緩衝部材140から加圧部材Pを外して加圧および加熱を終了する。このとき、緩衝部材140の樹脂は、TFT基板110bの端子112を覆う。図3(a)~図3(d)を参照して説明した上述したようにして、COF124はTFT基板110bに圧着される。
第1実施形態の表示パネル100では、TFT基板110bにCOF124を圧着する際に圧力を緩衝した緩衝部材140の樹脂が端子112の露出部分112bのうちの少なくとも異方性導電膜130との境界部分を覆う。このため、TFT基板110bの端子112の露出部分112bのうちの少なくとも異方性導電膜130との境界部分を保護でき、表示パネル100におけるTFT基板110bと異方性導電膜130との接続の劣化を抑制できる。また、第1実施形態の製造方法によれば、COF124をTFT基板110bに圧着する際、TFT基板110bの端子112の露出部分112bを覆うことができる。このため、工程を格別に増加することなくTFT基板110bの端子112を保護できる。
なお、図1から図3に示した表示パネル100では、緩衝部材140は、端子112の露出部分112bの全体を覆ったが、本発明はこれに限定されない。緩衝部材140は、端子112の露出部分112bの一部のみを覆ってもよい。
また、図1~図3では、緩衝部材140を単層構造に示したが、本発明はこれに限定されない。緩衝部材140は積層構造であってもよい。
次に、図4を参照して第2実施形態の表示パネル100を説明する。図4(a)~図4(d)は、第2実施形態の表示パネル100の製造方法を説明するための模式図である。なお、第2実施形態の製造方法は、緩衝部材140が積層構造である点を除いて、図3を参照して上述した表示パネル100の製造方法と同様である。このため、冗長な説明を避ける目的で重複する記載を省略する。
図4(a)に示すように、COF124に貼り付けられた異方性導電膜130をTFT基板110bの張出領域111に配置する。COF124の配線124bは、異方性導電膜130を介してTFT基板110bの端子112に対向する。
COF124において絶縁層124cは配線124bの一部を覆う。なお、配線124bの別の一部は絶縁層124cから露出されるが、露出した配線124bは異方性導電膜130に覆われる。異方性導電膜130は、COF124の絶縁層124cと重なるように配置される。異方性導電膜130がTFT基板110bの張出領域111に配置されることにより、端子112の一部は、異方性導電膜130に覆われた被覆部分112aとなり、端子112の残りは異方性導電膜130に覆われずに露出された露出部分112bとなる。COF124の配線124bは、異方性導電膜130を介して端子112の被覆部分112aと対向する。
図4(b)に示すように、COF124の上に緩衝部材140を配置する。ここでは、緩衝部材140は、緩衝層140aと、樹脂層140bとを有する。緩衝層140aは、樹脂層140bの上に配置される。樹脂層140bは、COF124(基材124a)と接触する。
例えば、緩衝層140aは、高弾性を示すことが好ましい。一例として、緩衝層140aは、シリコーンゴムまたはフッ素樹脂を含むことが好ましい。
樹脂層140bは、室温よりも高い温度下で変形する樹脂を有する。例えば、樹脂層140bは、熱可塑性樹脂を含んでもよい。あるいは、樹脂層140bは、熱硬化性樹脂を含んでもよい。
図4(c)に示すように、加圧部材Pが緩衝部材140を加圧する。また、加圧部材Pが緩衝部材140を加圧するとき、加圧部材Pは加熱される。
加熱した加圧部材Pで緩衝部材140を加圧することにより、加圧部材Pの熱は緩衝部材140およびCOF124を介して異方性導電膜130に伝達される。加圧部材Pの熱により、異方性導電膜130は、TFT基板110bの端子112とCOF124の配線124bとを電気的に接続した上で、TFT基板110bとCOF124とを接合する。これにより、COF124は、TFT基板110bに圧着される。
また、加圧部材Pによって緩衝部材140が加熱されると、緩衝部材140は変形する。具体的には、緩衝部材140の緩衝層140aは変形しない一方で、緩衝部材140の樹脂層140bはTFT基板110bの端子112を覆うように変形する。本実施形態では、樹脂層140bの樹脂が、端子112の露出部分112bのうちの少なくとも異方性導電膜130との境界部分を覆う。ここでは、樹脂層140bの樹脂が、TFT基板110bの張出領域111を覆うように流動する。このため、樹脂層140bの樹脂により、端子112の露出部分112bのうちの異方性導電膜130との境界部分だけでなく端子112の露出部分112bの全体が覆われる。
上述したように、樹脂層140bは、熱可塑性樹脂を含んでもよい。この場合、樹脂層140bの熱可塑性樹脂は、緩衝部材140が加熱されて温度が上昇すると、溶解する。その後、加熱が終了して温度が低下すると、熱可塑性樹脂は再び固化する。
あるいは、樹脂層140bは、熱硬化性樹脂を含んでもよい。この場合、樹脂層140bの熱硬化性樹脂は、緩衝部材140が加熱されて温度が上昇すると、一旦軟化する。さらに温度が上昇すると、樹脂層140bの熱硬化性樹脂は硬化する。
図4(d)に示すように、緩衝部材140から加圧部材Pを外して加圧および加熱を終了する。このとき、緩衝部材140の樹脂層140bが、パネル本体部110(TFT基板110b)の端子112を覆う。図4(a)~図4(d)を参照して上述したようにしてCOF124をTFT基板110bに圧着できる。
なお、図4を参照した上述の製造方法では、緩衝部材140は、緩衝層140aおよび樹脂層140bの2層の積層構造を有していたが、本発明はこれに限定されない。緩衝部材140は、3層以上の積層構造を有してもよい。例えば、緩衝部材140は、緩衝層140aと樹脂層140bに加えて、緩衝層140aと樹脂層140bとの間に接着層をさらに備えてもよい。
また、図3および図4を参照した上述の製造方法では、緩衝部材140を加圧する加圧部材Pが加熱されることによってCOF124がTFT基板110bに圧着されたが、本発明はこれに限定されない。COF124をTFT基板110bに圧着する際に緩衝部材140を加圧する加圧部材Pは加熱されなくてもよい。
次に、図5を参照して第3実施形態の表示パネル100を説明する。図5(a)~図5(d)は、第3実施形態の表示パネル100の製造方法を説明するための模式図である。第3実施形態の製造方法は、加圧部材とは別に加熱部材を用いる点を除いて、図3および図4を参照して上述した製造方法と同様である。このため、冗長な説明を避ける目的で重複する記載を省略する。
図5(a)に示すように、COF124に貼り付けられた異方性導電膜130をTFT基板110bの張出領域111に配置する。COF124の配線124bは、異方性導電膜130を介してTFT基板110bの端子112に対向する。
COF124において絶縁層124cは配線124bの一部を覆う。なお、配線124bの別の一部は絶縁層124cから露出されるが、露出した配線124bは異方性導電膜130に覆われる。異方性導電膜130は、COF124の絶縁層124cと重なるように配置される。異方性導電膜130がTFT基板110bの張出領域111に配置されることにより、端子112の一部は、異方性導電膜130に覆われた被覆部分112aとなり、端子112の残りは異方性導電膜130に覆われずに露出された露出部分112bとなる。
図5(b)に示すように、COF124の上に緩衝部材140を配置する。ここで、COF124の絶縁層124cと異方性導電膜130との境界は、基材124aを介して緩衝部材140と対向する。
図5(c)に示すように、加圧部材Paが緩衝部材140を加圧する。加圧部材Paは、上方から緩衝部材140を加圧する。なお、ここでは、加圧部材Paは、室温のまま緩衝部材140を加圧する。また、ここでは、加熱部材Pbが下方(COF124の一方面の側)から異方性導電膜130を加熱する。例えば、加熱部材Pbは、異方性導電膜130だけでなくCOF124と接触してもよい。
加圧部材Paが緩衝部材140を加圧することにより、COF124とTFT基板110bとの間に位置する異方性導電膜130に圧力が付与される。また、加熱部材Pbが異方性導電膜130を加熱することにより、異方性導電膜130は、TFT基板110bの端子112とCOF124の配線124bとを電気的に接続した上で、TFT基板110bとCOF124とを接合する。これにより、COF124は、TFT基板110bに圧着される。
また、加熱部材Pbによって緩衝部材140が加熱されると、緩衝部材140は変形する。緩衝部材140の樹脂がTFT基板110bの端子112を覆うように流動する。本実施形態では、緩衝部材140の樹脂は、端子112の露出部分112bのうちの少なくとも異方性導電膜130との境界部分を覆う。具体的には、ここでは、緩衝部材140の樹脂がTFT基板110bの張出領域111を覆うように流動する。このため、緩衝部材140の樹脂により、端子112の露出部分112bのうちの異方性導電膜130との境界部分だけでなく端子112の露出部分112bの全体が覆われる。
図5(d)に示すように、緩衝部材140から加圧部材Paおよび加熱部材Pbを外して加圧および加熱を終了する。このとき、緩衝部材140の樹脂は、パネル本体部110(TFT基板110b)の端子112を覆っている。図5(a)~図5(d)を参照して説明したようにしてCOF124をTFT基板110bに圧着できる。
以上、図面を参照して本発明の実施形態について説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施形態として実施することが可能である。また、上記の実施形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の個数等は、図面作成の都合から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素は一例であって、特に限定されるものではなく、本発明の効果を実質的に逸脱しない範囲で種々の変更が可能である。
例えば、図1~図5を参照して上述した説明、パネル本体部110として液晶表示パネルを例示したが、本発明はこれに限定されない。パネル本体部110は、有機EL表示パネルであってもよい。
本発明は、表示パネルおよび表示パネルの製造方法の分野に有用である。
100 表示パネル
110 パネル本体部
120 駆動回路部
124 COF
130 異方性導電膜
140 緩衝部材
110 パネル本体部
120 駆動回路部
124 COF
130 異方性導電膜
140 緩衝部材
Claims (12)
- 第1パネル基板と、前記第1パネル基板に対向するとともに前記第1パネル基板から張り出した張出領域を有する第2パネル基板と、前記第2パネル基板の前記張出領域に接続される配線基板とを備える表示パネルの製造方法であって、
前記張出領域に設けられた端子と前記配線基板の一方面に設けられた配線とを異方性導電膜を介して対向させて重ね合わせるステップと、
樹脂を含有する緩衝部材を前記配線基板の他方面上に配置するステップと、
前記端子と前記配線とを前記異方性導電膜を介して重ね合わせた状態で、加圧部材が前記緩衝部材を介して前記配線基板を前記第2パネル基板側に向けて加圧するステップと、
前記加圧部材が前記緩衝部材を介して前記配線基板を前記第2パネル基板側に向けて加圧している状態で、前記異方性導電膜を加熱するステップと
を包含し、
前記加熱するステップにおいて、前記緩衝部材の前記樹脂は、前記端子における前記異方性導電膜に覆われていない露出部分のうちの少なくとも前記異方性導電膜との境界部分を覆う、表示パネルの製造方法。 - 前記加熱するステップにおいて、前記緩衝部材の前記樹脂は、前記端子における前記露出部分の全体を覆う、請求項1に記載の表示パネルの製造方法。
- 前記加熱するステップにおいて、前記加圧部材が前記異方性導電膜を加熱する、請求項1または2に記載の表示パネルの製造方法。
- 前記加熱するステップにおいて、前記加圧部材とは異なる加熱部材が前記一方面の側から前記異方性導電膜を加熱する、請求項1または2に記載の表示パネルの製造方法。
- 前記緩衝部材の前記樹脂は、前記緩衝部材の全体にわたって前記緩衝部材に含有される、請求項1から4のいずれかに記載の表示パネルの製造方法。
- 前記緩衝部材は、緩衝層と、前記樹脂を含む樹脂層とを有する、請求項1から4のいずれかに記載の表示パネルの製造方法。
- 前記配線基板は、
基材と、
前記基材の前記一方面に設けられた前記配線と、
絶縁層と
を有し、
前記絶縁層は、前記配線のうち前記端子と重なる部分を覆うことなく前記配線の少なくとも一部を覆い、
前記配線における前記絶縁層に覆われている部分と前記絶縁層に覆われていない部分との境界は、前記基材を介して前記緩衝部材と対向する、請求項1から6のいずれかに記載の表示パネルの製造方法。 - 第1パネル基板と、
前記第1パネル基板に対向する第2パネル基板と、
配線基板と、
異方性導電膜と、
樹脂を含有する緩衝部材と
を備え、
前記第2パネル基板は、前記第1パネル基板から張り出した張出領域を有し、
前記配線基板は、前記第2パネル基板の前記張出領域に接続され、
前記張出領域には端子が設けられ、
前記配線基板は、配線の設けられた一方面と、他方面とを有し、
前記第2パネル基板における前記張出領域の前記端子と前記配線基板における前記一方面の前記配線とは、前記異方性導電膜を介して対向して重ね合わされており、
前記緩衝部材は前記配線基板の前記他方面上に配置されており、
前記緩衝部材の前記樹脂は、前記端子における前記異方性導電膜に覆われていない露出部分のうちの少なくとも前記異方性導電膜との境界部分を覆う、表示パネル。 - 前記緩衝部材の前記樹脂は、前記端子における前記露出部分の全体を覆う、請求項8に記載の表示パネル。
- 前記緩衝部材の前記樹脂は、前記緩衝部材の全体にわたって前記緩衝部材に含有される、請求項8または9に記載の表示パネル。
- 前記緩衝部材は、緩衝層と、前記樹脂を含む樹脂層とを有する、請求項8または9に記載の表示パネル。
- 前記配線基板は、
基材と、
前記基材の前記一方面に設けられた前記配線と、
絶縁層と
を有し、
前記絶縁層は、前記配線のうち前記端子と重なる部分を覆うことなく前記配線の少なくとも一部を覆い、
前記配線における前記絶縁層に覆われている部分と前記絶縁層に覆われていない部分との境界は、前記基材を介して前記緩衝部材と対向する、請求項8から11のいずれかに記載の表示パネル。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/040478 WO2020090026A1 (ja) | 2018-10-31 | 2018-10-31 | 表示パネルおよび表示パネルの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/040478 WO2020090026A1 (ja) | 2018-10-31 | 2018-10-31 | 表示パネルおよび表示パネルの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090026A1 true WO2020090026A1 (ja) | 2020-05-07 |
Family
ID=70462027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040478 WO2020090026A1 (ja) | 2018-10-31 | 2018-10-31 | 表示パネルおよび表示パネルの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020090026A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10206873A (ja) * | 1997-01-28 | 1998-08-07 | Nec Corp | 液晶表示装置およびその製造方法 |
JP2005136257A (ja) * | 2003-10-31 | 2005-05-26 | Casio Comput Co Ltd | 実装部品の導通接合方法 |
JP2009016392A (ja) * | 2007-06-29 | 2009-01-22 | Optrex Corp | 電気光学的表示装置の製造方法およびフレキシブル基板 |
JP2009086120A (ja) * | 2007-09-28 | 2009-04-23 | Epson Imaging Devices Corp | 電気光学装置及び電子機器並びにインターフェース基板 |
JP2016200728A (ja) * | 2015-04-10 | 2016-12-01 | 三菱電機株式会社 | 電気光学表示装置 |
-
2018
- 2018-10-31 WO PCT/JP2018/040478 patent/WO2020090026A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10206873A (ja) * | 1997-01-28 | 1998-08-07 | Nec Corp | 液晶表示装置およびその製造方法 |
JP2005136257A (ja) * | 2003-10-31 | 2005-05-26 | Casio Comput Co Ltd | 実装部品の導通接合方法 |
JP2009016392A (ja) * | 2007-06-29 | 2009-01-22 | Optrex Corp | 電気光学的表示装置の製造方法およびフレキシブル基板 |
JP2009086120A (ja) * | 2007-09-28 | 2009-04-23 | Epson Imaging Devices Corp | 電気光学装置及び電子機器並びにインターフェース基板 |
JP2016200728A (ja) * | 2015-04-10 | 2016-12-01 | 三菱電機株式会社 | 電気光学表示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102325189B1 (ko) | 표시 장치 | |
US10178769B2 (en) | Bonded assembly and display device including the same | |
US7139060B2 (en) | Method for mounting a driver IC chip and a FPC board/TCP/COF device using a single anisotropic conductive film | |
JP3690378B2 (ja) | 表示装置 | |
WO2010010743A1 (ja) | 電子回路装置、その製造方法及び表示装置 | |
JP2000002882A (ja) | 液晶表示装置及びその製造方法 | |
WO2007063667A1 (ja) | 回路部材、電極接続構造及びそれを備えた表示装置 | |
CN107768415B (zh) | 柔性显示器件、显示装置以及制造方法 | |
JP2012227480A (ja) | 表示装置及び半導体集積回路装置 | |
JP5608545B2 (ja) | 熱圧着ヘッド、実装装置及び実装方法 | |
JP5125314B2 (ja) | 電子装置 | |
US8692968B2 (en) | Chip component mounting structure, chip component mounting method and liquid crystal display device | |
JP5550430B2 (ja) | ディスプレイ装置の実装方法 | |
JP2000068633A (ja) | 圧着方法および圧着装置 | |
JP2013030789A (ja) | 実装構造体及び実装構造体の製造方法 | |
JP4675178B2 (ja) | 圧着方法 | |
WO2020090026A1 (ja) | 表示パネルおよび表示パネルの製造方法 | |
US9477123B2 (en) | Liquid crystal display device and production method thereof | |
JP4113767B2 (ja) | 配線基板およびこれを有する電子回路素子、並びに表示装置 | |
JP2004029576A (ja) | 平面表示装置の製造方法、及びこれに用いる異方性導電膜の貼り付け用熱圧着装置 | |
US20060007381A1 (en) | Organic electroluminescent display device | |
JP4602150B2 (ja) | 駆動回路基板と表示パネルの接続方法 | |
JP2005167274A (ja) | 半導体装置、半導体装置の製造方法並びに液晶表示装置 | |
US20210013169A1 (en) | Display panel and manufacturing method of the display panel | |
JP4484750B2 (ja) | 配線基板およびそれを備えた電子回路素子ならびに表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18938753 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18938753 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |