WO2020088474A1 - 多孔进样细胞计数仪及计数方法 - Google Patents

多孔进样细胞计数仪及计数方法 Download PDF

Info

Publication number
WO2020088474A1
WO2020088474A1 PCT/CN2019/114119 CN2019114119W WO2020088474A1 WO 2020088474 A1 WO2020088474 A1 WO 2020088474A1 CN 2019114119 W CN2019114119 W CN 2019114119W WO 2020088474 A1 WO2020088474 A1 WO 2020088474A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
sample
hole
porous
counting
Prior art date
Application number
PCT/CN2019/114119
Other languages
English (en)
French (fr)
Inventor
吴旭东
刘鹏
张羽
李会娟
帅宇
Original Assignee
江苏卓微生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏卓微生物科技有限公司 filed Critical 江苏卓微生物科技有限公司
Priority to EP19879953.8A priority Critical patent/EP3875942A4/en
Publication of WO2020088474A1 publication Critical patent/WO2020088474A1/zh

Links

Images

Classifications

    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N2001/002Devices for supplying or distributing samples to an analysing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • G01N2001/1418Depression, aspiration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00306Housings, cabinets, control panels (details)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0475Details of actuating means for conveyors or pipettes electric, e.g. stepper motor, solenoid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control

Definitions

  • the present disclosure relates to the technical field of cell counting devices, and in particular, to a porous sampling cell counter and a counting method.
  • the concentration detection (quantitative counting) of cells or other biological particles is required.
  • the cell suspension concentration (or quantity) is not only a monitoring parameter of cell culture, but also a necessary parameter in many experimental projects. Completing the experiment is a very basic but important process condition.
  • the related counting methods mainly use the manual counting method of the cell counting plate, and there are the following deficiencies in operation and use:
  • the objective of the present disclosure includes, for example, to provide a multi-hole sampling cell counter, which can facilitate an operator to add a plurality of samples to be tested at one time, and save the operation time of the sample addition required for the detection of cell samples.
  • the object of the present disclosure also includes providing a counting method by which the operation time for adding a sample when detecting a cell sample can be saved.
  • An embodiment of the present disclosure provides a porous sampling cell counter, including:
  • An outer shell the inner part of the outer shell has a containing space, and the outer shell has a sample inlet;
  • a porous sampling device the porous sampling device is disposed in the receiving space, the porous sampling device includes a porous sampling tray, the porous sampling tray includes a plurality of sampling holes, the sampling hole can Hold the sample;
  • a counting module the counting module is detachably installed in the accommodating space, the counting module is configured to detect a sample, and the counting module includes a counting chip;
  • control system can control the rotation of the multi-hole sampling tray and make at least one of the sampling holes correspond to the position of the sampling port, and also can make at least one of the sampling holes and the counting chip The position of the injection hole corresponds.
  • porous sampling cell counter provided by the embodiments of the present disclosure may also have the following additional technical features:
  • the porous sampling device further includes a mounting rack, a motor set, and a vacuum chuck mechanism, and the mounting rack is erected in the accommodation space;
  • the motor group includes a first linear stepper motor, a second linear stepper motor, and a rotary stepper motor;
  • the core portion of the porous sample loading tray is connected to the output end of the rotary stepping motor, the first linear stepping motor is mounted on the mounting frame, and the rotary stepping motor is connected to the first straight
  • the output end of the linear stepping motor is connected and can move up and down under the drive of the first linear stepping motor, and a plurality of sampling holes opened in the axial direction are arranged near the edge of the porous sampling plate;
  • the vacuum chuck mechanism includes a chuck bracket and a vacuum chuck, the chuck bracket is connected to the output end of the second linear stepper motor, the vacuum chuck is mounted on the chuck bracket and is located above the porous loading tray , The position of the vacuum chuck corresponds to at least one of the sampling holes, the position of at least one of the vacuum chucks corresponds to the position of the sampling hole of the counting chip, and the porous sampling disk is located in the vacuum Between suction cup and counting chip;
  • the control system controls the operation of the rotary stepper motor, the porous sampling plate rotates and the next sampling hole is in the sampling position position;
  • the porous sample loading tray rotates under the drive of the rotary stepping motor, so that the sample loading hole moves below the vacuum chuck and stops, and the control system controls the
  • the operation of the first linear stepper motor causes the rotary stepper motor to descend and causes the porous sampling plate to descend to fit the counting chip, the sampling hole communicates with the sampling hole, and the control system controls the
  • the second linear stepper motor works so that the vacuum chuck is lowered and fits with the porous sampling plate, the sample hole, the vacuum chuck and the sampling hole of the counting chip form a sealed pipeline, and the sample The sample in the well can enter the sampling hole of the counting chip under the action of the pressure source connected to the counting chip.
  • the motor set further includes a third linear stepper motor
  • the porous sampling cell counter further includes a trypan blue discharge mechanism
  • the trypan blue discharge mechanism includes A liquid port member
  • the third linear stepper motor is mounted on the mounting frame, and the output end of the third linear stepper motor is drivingly connected to the liquid outlet port member and enables the liquid outlet port member to move up and down ;
  • the control system controls the operation of the third linear stepper motor so that the liquid outlet part rises, the first linear stepper motor works and causes the porous sample
  • the second linear stepper motor works and causes the vacuum chuck to descend, and the liquid outlet part, the sampling hole, and the vacuum chuck form a sealed pipeline.
  • the trypan blue liquid discharge mechanism further includes a trypan blue liquid storage bottle, and the trypan blue liquid storage bottle communicates with the liquid outlet part through a pipeline.
  • the number of the vacuum chucks is two, one position of the vacuum chuck corresponds to the liquid outlet part, and another position of the vacuum chuck corresponds to the inlet of the counting chip Sample hole.
  • the sampling hole has a sampling section and a sampling section, the sampling section and the sampling section are in communication, and the sampling section and the sampling section are not Straight through layout.
  • the inner wall of the sample loading section is divided into a straight barrel portion and a cone barrel portion, the straight barrel portion and the cone barrel portion are connected, and the diameter dimension of the cross-sectional profile of the cone barrel portion, From the end close to the straight barrel part toward the other end, the sampling section is contiguous with the side wall of the cone barrel part.
  • the upper and lower ends of the sampling hole are provided with sealing gaskets.
  • the porous sample loading tray has 25 sample loading holes, one of which is the initial calibration hole.
  • the multi-hole sampling device further includes a sampling hole cover, and the sampling hole cover is configured to open or close the sampling port, so that the sampling hole is blocked or Exposed.
  • the motor group further includes a dual-motion motor, the dual-motion motor is mounted on the mounting frame, and the output end of the dual-motion motor is connected to the sample hole cover.
  • the sampling hole cover is located above the sampling position, and the control system can control the operation of the dual-motion motor so that the sampling hole cover and the housing block the sampling hole at the sampling position or cause the The sample hole cover moves and exposes the sample hole at the sample addition position.
  • the porous sampling device further includes a magnetic position sensor and a photoelectric encoder
  • the magnetic position sensor is mounted on the mounting frame and is configured to position the initial rotation of the porous loading tray Position
  • the photoelectric encoder is mounted on the rotary stepper motor and is configured to feed back the rotation angle signal of the porous sample tray to the control system
  • the control system is configured to respond to the rotation of the porous sample tray The initial position and the rotation angle signal control the rotary stepper motor to work or stop, so that the sampling hole can move to the working position.
  • the porous sampling device further includes a photoelectric sensor, which can detect the position of the porous sampling tray in the up-down direction and can feed back the porous sampling to the control system
  • the control system is configured to control the operation of the first linear stepping motor according to the position of the porous sample tray in the up-down direction, so that the porous sample tray is raised or lowered.
  • the number of the photosensors is two, and they are distributed at intervals in the vertical direction.
  • the multi-hole sampling cell counter further includes an image acquisition module installed in the receiving space and electrically connected to the counting module.
  • the image acquisition module includes a light source, a camera, and an optical lens
  • the light source and the camera are electrically connected to a control system, and the optical lens is connected to the camera; wherein,
  • the light source is disposed on one side of the counting chip and faces the image collection area of the counting chip, the camera is disposed on the other side of the counting chip, and the optical lens faces the image collection area.
  • the light source can transmit light to the image acquisition area under the control of the control system, and the camera can collect multiple images of the sample flowing through the image acquisition area under the control of the control system and send to The control system performs the processing.
  • An embodiment of the present disclosure also provides a counting method, which uses the above-mentioned porous sampling cell counter, and the method includes:
  • the sample well after the sample is controlled to run to the sample inlet of the counting chip, and the counting chip counts the cells in the sample.
  • the beneficial effects of the present disclosure include, for example:
  • the multi-hole sampling cell counter uses the multi-hole sampling tray of the multi-hole sampling device under the control of the control system.
  • the operator can load multiple samples during the sample loading, and then combine the counting module to each sample hole.
  • the samples must be tested separately. It is not necessary to test samples one by one like the existing cell counters. Therefore, the operation time of the sample addition required for the detection of the cell sample is saved, the workload of the operator is reduced, and the efficiency of the entire detection process is improved. And there is no need to keep the instrument all the time, which is convenient for the operator to handle other affairs during the detection process.
  • FIG. 1 is a schematic diagram from a perspective of a porous sampling cell counter provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic view of FIG. 1 with a part of the housing cut away;
  • FIG. 3 is a schematic diagram of FIG. 2 after hiding parts of the casing and the display screen;
  • FIG. 4 is a partial enlarged view of part A of FIG. 3;
  • FIG. 5 is a schematic diagram of another perspective of FIG. 3;
  • Figure 6 is a schematic diagram of a porous sample loading tray
  • Figure 8 is a schematic diagram of the counting module
  • FIG. 9 is a control block diagram of the control system and its related components.
  • Pictogram 1000-porous sampling cell counter; 100-porous sampling device; 10-mounting frame; 30-motor set; 31-first linear stepping motor; 33-second linear stepping motor; 35-th Three linear stepper motors; 37-rotation stepper motors; 39-dual motion motors; 50-multi-hole sample tray; 51-sample hole; 510-sample section; 512-sample injection section; 5121-straight section; 5123 -Cone part; 53-seal washer; 55-sample hole cover; 56-position detection assembly; 57-magnetic position sensor; 59-photoelectric sensor; 61-photoelectric encoder; 70-vacuum suction cup mechanism; 71-suction cup bracket ; 73-vacuum suction cup; 200-housing; 201-accommodating space; 202-sample inlet; 300-counting module; 301-counting chip; 3010-injection hole; 400-trypan blue discharge mechanism; 401-discharge Mouth
  • orientation or positional relationship indicated by the terms “upper” and “lower” is based on the orientation or positional relationship shown in the drawings, or is usually placed when the product of the invention is used
  • the orientation or positional relationship is only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present disclosure.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the communication between two components.
  • setup and “connection” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the communication between two components.
  • the first feature may include direct contact of the first and second features above or below the second feature, or may include the first and second features not directly contacting It is through the contact of other features between them.
  • the first feature above, above and above the second feature includes the first feature directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is below, below, and below the second feature, including that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • Related counting methods are generally manual counting methods using cell counting plates; or, automated counting instruments based on image analysis technology; or, automated counting instruments using electrical resistance method (Coulter principle).
  • the manual counting method is the most common.
  • the experimenter injects the suspended cell sample into the counting cell of the cell counting plate, observes with the naked eye under the microscope and performs manual counting according to the rules.
  • the main disadvantages of this method are:
  • the sample injected into the cell counting plate according to the rule is 10uL, but the amount of sample in the microscope observation area is only a small part, less than 1uL. In this way, whether the cell sample is evenly distributed in the counting cell will greatly affect the result.
  • the counting is done manually according to certain rules.
  • the difference in the level of the operator and the fatigue caused by the naked eye introduce a large human error.
  • the counting piece is similar in structure to the cell counting plate, so there is also the problem of inaccurate results and misjudgment of activity due to the layered suspension of cells on the counting plate.
  • the porous sampling cell counter 1000 and counting method provided in this embodiment can alleviate the technical defects. Specifically, the structure of the porous sampling cell counter 1000 will be described in detail below.
  • this embodiment provides a multi-hole sampling cell counter 1000, including:
  • the housing 200 has an accommodating space 201 inside, and the housing 200 has a sample inlet 202.
  • the porous sampling device 100 is provided in the accommodating space 201.
  • the porous sampling device 100 includes a porous sampling tray 50, and the porous sampling tray 50 includes a plurality of sampling holes 51, and the sampling holes 51 can accommodate Sample (not shown).
  • the counting module 300 is detachably installed in the accommodating space 201, the counting module 300 is configured to detect a sample, and the counting module 300 includes a counting chip 301.
  • Control system 700 which can control the rotation of the multi-hole sample tray 50 and make at least one sample hole 51 correspond to the position of the sample port 202, and also enable at least one sample hole 51 to correspond to the sample hole 3010 of the counter chip 301 correspond.
  • the architecture of the control system 700 and the hardware used can refer to the control system of the existing cell counter.
  • it may be a general term for a series of control and processing components.
  • it may include controllers for electromechanical components such as control valves, electrical pulse signal and / or image signal acquisition and processing memory, and screen displays configured to complete screen display and interactive operations.
  • the control system 700 is configured with a display screen 500 for display and touch operation.
  • the display screen 500 is disposed on the casing 200.
  • the counting chip 301 and the trypan blue dispensing mechanism 400 and the pressure source described below can also refer to the existing cell counter.
  • the counting chip 301 can refer to the existing microfluidic chip
  • the pressure source can refer to the positive pressure air pump. Or a liquid pump, etc.
  • the above devices are not improved, and will not be repeated here.
  • the counting module 300 has not only a counting function, but also other signal detection functions.
  • the counting module 300 is configured to implement flow and signal detection of the cell sample in the chip.
  • the porous sampling device 100 further includes a mounting frame 10, a motor unit 30, and a vacuum chuck mechanism 70.
  • the mounting frame 10 is erected in the accommodation space 201.
  • the motor group 30 includes a first linear stepping motor 31, a second linear stepping motor 33, and a rotary stepping motor 37.
  • the core portion of the porous sample loading tray 50 is connected to the output end of the rotary stepper motor 37, the first linear stepper motor 31 is mounted on the mounting frame 10, and the output of the rotary stepper motor 37 and the first linear stepper motor 31 The ends are connected and can be moved up and down under the drive of the first linear stepping motor 31.
  • the porous sample loading plate 50 is provided with a plurality of sample loading holes 51 opened in the axial direction near the edge.
  • the vacuum chuck mechanism 70 includes a chuck holder 71 and a vacuum chuck 73.
  • the chuck holder 71 is connected to the output end of the second linear stepper motor 33.
  • the vacuum chuck 73 is mounted on the chuck holder 71 and is located above the porous loading tray 50.
  • the vacuum chuck 73 The position of at least corresponds to the position of one sampling hole 51, the position of at least one vacuum chuck 73 corresponds to the position of the sampling hole 3010 of the counting chip 301, and the porous sampling plate 50 is located between the vacuum chuck 73 and the counting chip 301.
  • the sample is added to a sample hole 51 at the sample loading position.
  • the control system 700 controls the rotary stepper motor 37 to work, the porous sample loading tray 50 rotates and the next sample hole 51 is at the sample loading position.
  • the porous sample loading tray 50 rotates under the drive of a rotary stepping motor 37, so that the sample loading hole 51 after loading moves to below the vacuum suction cup 73 and stops, and the control system 700 controls the first linear stepping motor 31, the rotary stepper motor 37 is lowered, and the porous sample tray 50 is lowered to fit the counter chip 301, the sample hole 51 is connected to the sample hole 3010, and the control system 700 controls the second linear stepper motor 33 to work so that the vacuum The suction cup 73 descends and is attached to the porous sample tray 50.
  • the sample hole 51, the vacuum suction cup 73 and the sampling hole 3010 of the counting chip 301 form a sealed pipeline.
  • the sample in the sample hole 51 can be connected to the counting chip 301.
  • the pressure source enters the injection hole 3010 of the counting chip 301.
  • the sample loading position refers to an opening (sample loading port 202) configured on the housing 200 during sample loading.
  • sample loading port 202 configured on the housing 200 during sample loading.
  • the rotary stepper motor 37 is configured to drive the porous sample tray 50 to rotate around its own axis.
  • the first linear stepper motor 31 is configured to drive the rotary stepper motor 37 and the porous sample tray 50 as a whole to move up and down.
  • the second linear stepping motor 33 is configured to drive the suction cup holder 71 and the vacuum suction cup 73 as a whole to move up and down.
  • the rotary stepper motor 37, the first linear stepper motor 31 and the second linear stepper motor 33 all operate under the control of the control system 700.
  • the motor group 30 further includes a third linear stepper motor 35
  • the multi-hole sampling cell counter 1000 further includes a trypan blue discharge mechanism 400
  • the trypan blue discharge mechanism 400 includes a discharge port member 401, a third straight line
  • the stepping motor 35 is mounted on the mounting frame 10, and the output end of the third linear stepping motor 35 is drivingly connected to the liquid outlet member 401 and can move the liquid outlet member 401 up and down.
  • the trypan blue liquid discharge mechanism 400 further includes a trypan blue liquid storage bottle 402, and the trypan blue liquid storage bottle 402 communicates with the liquid outlet part 401 through a pipeline.
  • the trypan blue liquid discharge mechanism 400 may not be included, and other structures are unchanged and unaffected.
  • the control system 700 controls the third linear stepper motor 35 to work, so that the liquid outlet part 401 rises, the first linear stepper motor 31 works and causes the porous sample tray 50 to fall, and the second The linear stepping motor 33 works and causes the vacuum chuck 73 to descend, and the liquid outlet part 401, the sample hole 51 and the vacuum chuck 73 form a sealed pipeline.
  • the liquid outlet part 401 has a trypan blue liquid outlet.
  • the third linear stepper motor 35 is configured to drive the liquid outlet member 401 to move up and down. And, referring to FIG. 9, the third linear stepping motor 35 operates under the control of the control system 700.
  • the number of vacuum chucks 73 is two, one vacuum chuck 73 corresponds to the liquid outlet part 401, and the other vacuum chuck 73 corresponds to the injection hole 3010 of the counting chip 301.
  • a sample hole 51 first moves to the liquid outlet part 401 after sample injection and corresponds to the position of the trypan blue liquid outlet, and then forms a sealed pipeline through the work of the motor unit 30 , And rely on the pressure source for sample mixing, and then by rotating the stepper motor 37, the porous sample loading plate 50 is rotated, so that the sample loading hole 51 after mixing runs to the sampling hole 3010 corresponding to the counting chip 301 Position for subsequent sampling operations.
  • the porous sample tray 50 is rotated directly by rotating the stepper motor 37, so that the sample hole 51 runs to the position corresponding to the sample hole 3010 of the counting chip 301 for subsequent sample feeding ⁇ ⁇ Sample operations.
  • the sampling hole 51 has a sampling section 510 and a sampling section 512, the sampling section 510 and the sampling section 512 are connected, and the sampling section 510 and the sampling section 512 are not straight-through.
  • the sample loading section 510 is configured to accommodate the sample, and the sample loading section 512 is configured to allow the sample to flow out to the counting chip 301 or the trypan blue for the trypan blue discharge mechanism 400 to enter the sample loading hole 51.
  • non-through layout here can be understood as that the sample addition section 510 and the injection section 512 are interconnected, but the sample addition section 510 and the injection section 512 are misaligned, for example, the sample addition section 510 and the injection section
  • the segments 512 are all round hole (cone) segments, but the axis lines of the sample addition segment 510 and the injection segment 512 are misaligned, for example, parallel.
  • the outlet diameter of the lower sampling section 512 is smaller than the inlet diameter of the upper sampling section 510.
  • the inner wall of the sample loading section 510 is divided into a straight barrel portion 5121 and a cone barrel portion 5123, the straight barrel portion 5121 and the cone barrel portion 5123 are connected, and the diameter dimension of the cross-sectional profile of the cone barrel portion 5123 is from One end near the straight barrel portion 5121 gradually decreases toward the other end, and the injection section 512 is connected to the side wall of the cone barrel portion 5123. Therefore, a non-straight-through structure is formed, and the sample can be kept in the middle position during the sample addition, so as to avoid the sample leaking from the bottom of the sample addition hole 51 due to the excessive force of the sample addition operation.
  • a sealing gasket 53 is provided on both the upper and lower ends of the sample loading hole 51.
  • the sampling hole 3010 of the counter chip 301 and the liquid outlet part 401 also have a gasket structure, so as to form a corresponding sealed pipeline under different working situations.
  • the porous sample loading tray 50 has 25 sample loading holes 51, one of which is the initial adjustment hole.
  • the initial calibration hole is the hole used by the cell counter during initialization.
  • the cell counter Before performing the sample addition test, the cell counter first runs the motor unit 30 according to a sample hole 51 to ensure that the position of the sample hole 51 can be counted according to the cell
  • the state of the instrument during operation corresponds to the sampling position, the counting chip 301, the trypan blue liquid outlet, etc., which need to use the device or position of the sampling hole 51.
  • Any one of the loading holes 51 can be used as the initial adjustment hole, and as the 0th hole when the cell counter starts to work, and the remaining 24 loading holes 51 are used as the sample holes during the actual work, configured to put the sample in Follow up work.
  • the multi-hole sampling device 100 further includes a sampling hole cover 55 configured to open or close the sampling port 202, so as to block or expose the sampling hole 51.
  • the sample port 202 can be opened or closed by controlling the sample hole cover 55 manually or by other mechanical equipment.
  • the motor group 30 further includes a dual-motion motor 39.
  • the dual-motion motor 39 is mounted on the mounting frame 10.
  • the output end of the dual-motion motor 39 is connected to the sample hole cover 55, which is located above the sample loading position.
  • the control system 700 can control the dual-motion motor 39 to work, so that the sample hole cover 55 and the housing 200 block the sample hole 51 at the sample position or the sample hole cover 55 is moved to expose the sample at the sample position ⁇ 51.
  • closing the sample hole cover 55 can avoid external pollution.
  • the dual motion motor 39 is configured to drive the sample hole cover 55 to move. And, referring to FIG. 9, the dual-motion motor 39 operates under the control of the control system 700.
  • the multi-hole sampling device 100 further includes a position detection assembly 56, for example, including a magnetic position sensor 57 (Hall switch device) and a photoelectric encoder 61, the magnetic position sensor 57 is mounted on the mounting frame 10 and is configured to position the multi-hole In the initial rotation position of the sample tray 50, the photoelectric encoder 61 is mounted on the rotary stepper motor 37 and is configured to feed back the rotation angle signal of the porous sample tray 50 to the control system 700.
  • the control system 700 is configured to respond to the rotation of the porous sample tray 50 The initial position and the rotation angle signal control the rotary stepper motor 37 to work or stop, so that the sample hole 51 can move to the working position.
  • the photoelectric encoder 61 reads the rotation angle of the rotary stepping motor 37 to feed back the rotation angle signal of the porous sample loading plate 50. This is because the output axis of the porous sample loading plate 50 and the rotary stepping motor 37 are coaxial Therefore, by reading the rotation angle of the output shaft of the rotary stepping motor 37, the rotation angle of the porous sample loading plate 50 can be known. By rotating the initial position and the rotation angle signal, the control system 700 can locate the position of each sampling hole 51 and enable it to accurately operate to the desired working position.
  • the multi-hole sampling device 100 further includes other position detection components 56, for example, a photoelectric sensor 59, which can detect the up-down position of the multi-hole sampling tray 50 and can feed back the multi-hole sampling tray 50 to the control system 700.
  • the control system 700 is configured to control the operation of the first linear stepper motor 31 according to the position in the up-down direction of the porous sample tray 50 so that the porous sample tray 50 is raised or lowered.
  • the photoelectric sensor 59 is divided into an upper position sensor and a lower position sensor to facilitate detection of the upper and lower positions. That is, the number of the photosensors 59 is two, and they are distributed at intervals in the vertical direction.
  • control system 700 is configured to receive the initial rotational position of the porous sample tray 50 detected by the magnetic position sensor 57 and the rotational angle signal of the porous sample tray 50 detected by the photoelectric encoder 61, and control the rotary stepper motor 37 action. At the same time, the control system 700 is also configured to receive the vertical position of the porous sample tray 50 detected by the photoelectric sensor 59 and control the operation of the first linear stepper motor 31.
  • the control system 700 can better control the operation of the first linear stepper motor 31 and the rotary stepper motor 37 by providing a position detection assembly 56 such as a magnetic position sensor 57, a photoelectric sensor 59, and a photoelectric encoder 61, so as to achieve The precise control of the up and down positions of the porous sample tray 50 and the liquid outlet part 401, as well as the precise control of the rotation angle of the porous sample tray 50 itself.
  • a position detection assembly 56 such as a magnetic position sensor 57, a photoelectric sensor 59, and a photoelectric encoder 61
  • the multi-hole sampling cell counter 1000 further includes an image acquisition module 600.
  • the image acquisition module 600 is installed in the accommodating space 201 and electrically connected to the counting module 300.
  • the image acquisition module 600 can be implemented by using existing image acquisition means, which is not specifically limited here.
  • the image acquisition module 600 may include a light source 601, a camera 602, and an optical lens 603.
  • the light source 601 and the camera 602 are electrically connected to the control system 700, respectively, and the optical lens 603 is connected to the camera 602 through a standard lens interface.
  • the optical lens 603 may be a single lens or a combination of multiple lenses.
  • the light source 601 is disposed on one side of the counter chip 301 and faces the image collection area of the counter chip 301
  • the camera 602 is disposed on the other side of the counter chip 301
  • the optical lens 603 faces the image collection area.
  • the light source 601 can transmit light to the image acquisition area under the control of the control system 700
  • the camera 602 can collect multiple images of the sample flowing through the image acquisition area under the control of the control system 700 and send to The control system 700 performs processing.
  • the principle of the multi-hole sampling cell counter 1000 provided in this embodiment is:
  • the position is initialized first, and each component moves to the initial position.
  • the third linear stepping motor 35 makes the liquid outlet part 401 at the lowest position
  • the second linear stepping motor 33 drives the suction cup holder 71 to be at the highest position, and also makes the vacuum suction cup 73 at the highest position
  • the first linear step
  • the feed motor 31 drives the porous sample tray 50 at the highest position
  • the rotary stepper motor 37 drives the porous sample tray 50 to rotate to the number 0 sample hole 51 according to the zero position determined by the 0 sample hole 51
  • the sample hole 51 (which can be understood as the sample hole 51 with the number 1) is aligned with the sample port 202.
  • the above-mentioned lowest position, highest position, etc. are the limit positions that each component can reach, and the high and low positions of each component are not compared with each other.
  • the initialization method can refer to the initialization method used by a general cell counter that can only be detected by single sample addition.
  • the difference between this embodiment and a general cell counter is that the sample loading hole of the cell counter for single sample detection is initialized independently with each liquid channel or sealed pipeline of the instrument.
  • it is possible to pre-set A sample-filling hole 51 is selected as the initial calibration hole to perform the initialization operation, and the operation mode is similar to the operation mode of the cell counter for single sample-feeding detection.
  • the trypan blue tube is filled with trypan blue, and all the channels on the counting chip 301 are filled with sheath liquid.
  • sheath fluid can also refer to the prior art, and will not be repeated here.
  • the sample hole cover 55 can be opened by the dual motion motor 39 to expose the sample port 202 on the housing 200 and expose a sample hole 51. After adding the sample, rotate the step The feeding motor 37 works to expose the next sample hole 51, so that the next sample can be loaded. The other loading holes 51 can be deduced by analogy. After the samples are added, the dual-motion motor 39 works, so that the loading hole cover 55 closes the loading port 202 formed on the casing 200.
  • next step of function selection can be performed according to requirements. For example, to perform cell counting and viability detection, firstly, a sample adding hole 51 after sample addition is operated to the liquid outlet part 401 of the trypan blue liquid outlet mechanism 400 And mix samples, and then run to the sampling hole 3010 of the counting chip 301 to perform subsequent sampling operations.
  • the realization of trypan blue mixing, cell counting, etc. can refer to the implementation of existing cell counters.
  • a counting mode of absolute counting of the entire sample can be used to make the sample flow through the counting chip 301 to perform cell counting of the entire sample volume. All of these can refer to the prior art, and will not be repeated in this embodiment.
  • the porous sampling cell counter 1000 of this embodiment can complete the detection of up to 24 samples, saving time and effort in operation.
  • the porous loading tray 50 used by the porous sampling cell counter 1000 with different specifications is different, the number of samples to be detected is correspondingly different.
  • the counting module 300 since the counting module 300 is detachably installed, it can be designed for counting objects of different sizes (such as bacteria as small as hundreds of nanometers to several micrometers, and common cell sizes are several micrometers to tens of micrometers.)
  • the chip 301 is adapted to different detection objects.
  • the design of the multi-hole sampling cell counter 1000 as a replaceable counting module 300 increases the flexibility of the system and can be adapted to different detection needs of users.
  • the multi-hole sampling cell counter 1000 uses the multi-hole sampling tray 50 of the multi-hole sampling device 100 in conjunction with the motor unit 30 and the position detection assembly 56 etc.
  • the operator can load samples When multiple samples are added, and then combined with the counting module 300 and so on, each sample in each sample hole 51 is subjected to subsequent detection. It is not necessary to perform testing one sample and one sample like the existing cell counter. . Therefore, the operation time of the sample addition required for the detection of the cell sample is saved, the workload of the operator is reduced, and the efficiency of the entire detection process is improved. And there is no need to keep the instrument all the time, which is convenient for the operator to handle other affairs during the detection process.
  • This embodiment also provides a counting method, which uses the above-mentioned porous sampling cell counter 1000, and the method includes:
  • the sample addition hole 51 runs to the injection hole 3010 of the counting chip 301, and the counting chip 301 counts the cells in the sample.
  • the structure of the multi-hole sampling cell counter 1000 can refer to the above description, therefore, the specific method can also be combined with the above description.
  • the present disclosure provides a multi-hole sampling cell counter and counting method.
  • the multi-hole sampling cell counter is simple in structure and easy to operate, which can save the operation time of sample addition and reduce the operation required for detecting cell samples.
  • the workload of the personnel has further improved the efficiency of the entire inspection process.

Abstract

一种多孔进样细胞计数仪(1000)及计数方法,涉及细胞计数装置技术领域。多孔进样细胞计数仪(1000)包括:外壳(200),外壳(200)的内部具有容纳空间(201),外壳(200)具有加样口(202);多孔进样装置(100),多孔进样装置(100)设置于容纳空间(201)内,多孔进样装置(100)包括多孔加样盘(50),多孔加样盘(50)包括多个加样孔(51),加样孔(51)能够容置样品;计数模块(300),计数模块(300)可拆卸地安装于容纳空间(201)内,计数模块(300)配置成检测样品,计数模块(300)包括计数芯片(301);控制系统(700),控制系统(700)能够控制多孔加样盘(50)转动且使得至少一个加样孔(51)与加样口(202)位置对应,还能够使得至少一个加样孔(51)与计数芯片(301)的进样孔(3010)位置对应。多孔进样细胞计数仪(1000)能够便于操作人员一次加入多个待测样品,节省检测细胞样品时所需的加样操作时间。

Description

多孔进样细胞计数仪及计数方法
相关申请的交叉引用
本公开要求于2018年10月31日提交中国专利局的申请号为201811291162.X、名称为“多孔进样细胞计数仪”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及细胞计数装置技术领域,具体而言,涉及一种多孔进样细胞计数仪及计数方法。
背景技术
在大量的细胞生物研究实验中,需要对细胞或其他生物微粒进行浓度检测(定量计数),细胞悬液浓度(或数量)既是细胞培养的监测参数,也是很多实验项目中的必要参数,对于成功完成实验是非常基础但却很重要的过程条件。相关的计数手段,主要采用细胞计数板的人工计数方法,在操作及使用上存在有以下不足:
在需要检测多个细胞样本时,操作人员需要加样然后等待结果再加入下一样本检测,无法一次性加入多个待测样品。
发明内容
本公开的目的包括,例如,提供一种多孔进样细胞计数仪,其能够便于操作人员一次加入多个待测样品,节省检测细胞样品时所需的加样操作时间。
本公开的目的还包括,提供一种计数方法,通过该方法可以节省检测细胞样品时所需的加样操作时间。
本公开的实施例是这样实现的:
本公开的实施例提供了一种多孔进样细胞计数仪,包括:
外壳,所述外壳的内部具有容纳空间,所述外壳具有加样口;
多孔进样装置,所述多孔进样装置设置于所述容纳空间内,所述多孔进样装置包括多孔加样盘,所述多孔加样盘包括多个加样孔,所述加样孔能够容置样品;
计数模块,所述计数模块可拆卸地安装于所述容纳空间内,所述计数模块配置成检测样品,所述计数模块包括计数芯片;
控制系统,所述控制系统能够控制所述多孔加样盘转动且使得至少一个所述加样孔与所述加样口位置对应,还能够使得至少一个所述加样孔与所述计数芯片的进样孔位置对应。
另外,根据本公开的实施例提供的多孔进样细胞计数仪,还可以具有如下附加的技术特征:
在本公开的可选实施例中,所述多孔进样装置还包括安装架、电机组、真空吸盘机构,所述安装架架设于所述容纳空间内;
所述电机组包括第一直线步进电机、第二直线步进电机和旋转步进电机;
所述多孔加样盘的盘心部分与所述旋转步进电机的输出端连接,所述第一直线步进电机安装于所述安装架,所述旋转步进电机与所述第一直线步进电机的输出端连接且能够在所述第一直线步进电机的驱动下进行上下运动,多孔加样盘靠近边缘的位置布设有沿轴向开设的多个所述加样孔;
所述真空吸盘机构包括吸盘支架和真空吸盘,所述吸盘支架和所述第二直线步进电机的输出端连接,所述真空吸盘安装于所述吸盘支架且位于所述多孔加样盘的上方,所述真空吸盘的位置至少与一个所述加样孔的位置对应,至少一个所述真空吸盘的位置与所述计数芯片的进样孔的位置对应,所述多孔加样盘位于所述真空吸盘与计数芯片之间;
加样时,在加样位置向一个所述加样孔加入样品,所述控制系统控制所述旋转步进电机工作,所述多孔加样盘转动且使得下一个所述加样孔处于加样位置;
进样时,所述多孔加样盘在所述旋转步进电机的驱动下转动,使得加样后的所述加样孔移动至所述真空吸盘的下方并停止,所述控制系统控制所述第一直线步进电机工作使得所述旋转步进电机下降且使得所述多孔加样盘下降至与计数芯片贴合,所述加样孔与进样孔连通,所述控制系统控制所述第二直线步进电机工作使得所述真空吸盘下降且与所述多孔加样盘贴合,所述加样孔、所述真空吸盘与计数芯片的进样孔形成密封管路,所述加样孔内的样品能够在与计数芯片连接的压力源的作用下进入到计数芯片进样孔内。
在本公开的可选实施例中,所述电机组还包括第三直线步进电机,所述多孔进样细胞计数仪还包括台盼蓝出液机构,所述台盼蓝出液机构包括出液口部件,所述第三直线步进电机安装于所述安装架,所述第三直线步进电机的输出端与所述出液口部件传动连接且能够使得所述出液口部件上下运动;
需要进行台盼蓝混样时,所述控制系统控制所述第三直线步进电机工作,使得所述出液口部件上升,所述第一直线步进电机工作且使得所述多孔加样盘下降,所述第二直线步进电机工作且使得所述真空吸盘下降,所述出液口部件、所述加样孔和所述真空吸盘形成密封管路。
在本公开的可选实施例中,述台盼蓝出液机构还包括台盼蓝储液瓶,所述台盼蓝储液瓶与所述出液口部件通过管路连通。
在本公开的可选实施例中,所述真空吸盘的数量为两个,一个所述真空吸盘的位置对应所述出液口部件,另外一个所述真空吸盘的位置对应所述计数芯片的进样孔。
在本公开的可选实施例中,所述加样孔具有加样段和进样段,所述加样段和所述进样段连通且所述加样段和所述进样段为非直通布设。
在本公开的可选实施例中,所述加样段的内壁分为直筒部分和锥筒部分,所述直筒部分和所述锥筒部分衔接,所述锥筒部分的截面轮廓的直径尺寸,从靠近所述直筒部分一端向着另外一端逐渐减小,所述进样段与所述锥筒部分的侧壁衔接。
在本公开的可选实施例中,所述加样孔的上下两端均设有密封垫圈。
在本公开的可选实施例中,所述多孔加样盘具有25个所述加样孔,其中一个所述加样孔为初始调校孔。
在本公开的可选实施例中,所述多孔进样装置还包括加样孔盖,所述加样孔盖配置成打开或关闭所述加样口,以使所述加样孔封挡或露出。
在本公开的可选实施例中,所述电机组还包括双运动电机,所述双运动电机安装于所述安装架,所述双运动电机的输出端与所述加样孔盖连接,所述加样孔盖位于加样位置上方,所述控制系统能够控制所述双运动电机工作,使得所述加样孔盖与外壳将加样位置处的所述加样孔封挡或者使得所述加样孔盖挪移并露出加样位置处的所述加样孔。
在本公开的可选实施例中,所述多孔进样装置还包括磁性位置传感器和光电编码器,所述磁性位置传感器安装于所述安装架且配置成定位所述多孔加样盘的转动初始位置,所述光电编码器安装于所述旋转步进电机且配置成向所述控制系统反馈所述多孔加样盘的转动角度信号,所述控制系统配置成根据所述多孔加样盘的转动初始位置和转动角度信号控制所述旋转步进电机工作或停止,使得所述加样孔能够运动至工作位置。
在本公开的可选实施例中,所述多孔进样装置还包括光电传感器,所述光电传感器能够检测所述多孔加样盘的上下方向的位置且能够向所述控制系统反馈所述多孔加样盘的上下方向的位置,所述控制系统配置成根据所述多孔加样盘的上下方向的位置,控制所述第一直线步进电机工作,使得所述多孔加样盘上升或者下降。
在本公开的可选实施例中,所述光电传感器的数量为两个,且呈上下方向间隔分布。
在本公开的可选实施例中,所述多孔进样细胞计数仪还包括图像采集模块,所述图像采集模块安装于所述容纳空间内且与所述计数模块电连接。
在本公开的可选实施例中,所述图像采集模块包括光源、相机和光学镜头,所述光源 和所述相机分别与控制系统电性连接,所述光学镜头与所述相机连接;其中,所述光源设置于计数芯片的一侧,且朝向所述计数芯片的图像采集区,所述相机设置于所述计数芯片的另一侧,且所述光学镜头面对所述图像采集区,所述光源能够在所述控制系统的控制下向所述图像采集区透射光线,所述相机能够在所述控制系统的控制下采集流经所述图像采集区的样品的多张图像,并发送到所述控制系统进行处理。
本公开的实施例还提供了一种计数方法,其使用上述的多孔进样细胞计数仪,所述方法包括:
通过所述外壳的加样口向与所述加样口对应的所述加样孔中添加样品,通过控制系统控制所述多孔加样盘转动,使得所述多孔加样盘上的另一个所述加样孔与所述加样口对应,并向所述加样孔中添加样品,以此类推重复多次;
控制加样后的所述加样孔运行至所述计数芯片的所述进样孔处,所述计数芯片对所述样品中的细胞进行计数。
与现有的技术相比,本公开的有益效果包括,例如:
多孔进样细胞计数仪通过多孔进样装置的多孔加样盘在控制系统的控制下,操作人员能够在加样时进行多个样品的加样,然后结合计数模块等对每个加样孔内的样品分别进行后续的检测,无需像现有的细胞计数仪一般,必须一个样品、一个样品地进行检测。从而节省检测细胞样品时所需的加样操作时间,减少操作人员的工作量,进而提升了整个检测过程的效率。并且无需一直守着仪器,方便操作人员在检测过程中处理另外的事务。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开的实施例提供的多孔进样细胞计数仪的一个视角下的示意图;
图2为图1剖去部分外壳的示意图;
图3为图2隐去部分外壳以及显示屏等部件后的示意图;
图4为图3的A部分的局部放大图;
图5为图3的另一个视角的示意图;
图6为多孔加样盘的示意图;
图7为加样孔的剖视图;
图8为计数模块的示意图;
图9为控制系统及其相关部件的控制框图。
图标:1000-多孔进样细胞计数仪;100-多孔进样装置;10-安装架;30-电机组;31-第一直线步进电机;33-第二直线步进电机;35-第三直线步进电机;37-旋转步进电机;39-双运动电机;50-多孔加样盘;51-加样孔;510-加样段;512-进样段;5121-直筒部分;5123-锥筒部分;53-密封垫圈;55-加样孔盖;56-位置检测组件;57-磁性位置传感器;59-光电传感器;61-光电编码器;70-真空吸盘机构;71-吸盘支架;73-真空吸盘;200-外壳;201-容纳空间;202-加样口;300-计数模块;301-计数芯片;3010-进样孔;400-台盼蓝出液机构;401-出液口部件;402-台盼蓝储液瓶;500-显示屏;600-图像采集模块;601-光源;602-相机;603-光学镜头;700-控制系统。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之上或之下可以包括 第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,在不冲突的情况下,本公开的实施例中的特征可以相互结合。
相关的计数手段,一般是采用细胞计数板的人工计数方法;或者,利用基于图像分析技术的自动化计数仪器;或者,利用电阻法(库尔特原理)的自动化计数仪器。其中人工计数方法最为普遍,实验人员将悬浮细胞样品注入细胞计数板计数池,在显微镜下以肉眼观察并按规则进行人工计数。此方法的主要缺点是:
1.由于计数池本身的深度数倍于细胞尺度,这样就会造成细胞样品注入后在其中分层悬浮。从而观察到的细胞形态会有所差别,造成计数结果的不准确和细胞活性判断错误。
2.按规则注入细胞计数板的样品为10uL,但是在显微镜观察区域内的样品量仅仅是一小部分,不足1uL。这样细胞样品在计数池内分布是否均匀就会对结果造成很大的影响。
3.计数时是按照一定规则来人工计数的,操作人员水平的差异以及肉眼观察导致的疲劳度就引入很大的人为误差。
基于图像分析技术的自动化仪器虽避免了肉眼观察的困难,但是仍然存在以下不足:
1.引入了一次性计数片耗材的使用,增加了用户检测成本。
2.计数片在结构上与细胞计数板类似,所以也存在计数板上细胞分层悬浮导致结果不准确和活性误判的问题。
3.同人工计数一样,大部分基于图像法的仪器存在检测样品量少导致的结果偏差大的问题。
利用电阻法(库尔特原理)的自动化计数仪器(细胞计数仪)虽然可以避免以上2种计数方法的缺点与不足,但是还是存在以下不足:在需要检测多个细胞样本时,操作人员需要加样然后等待结果再加入下一样本检测,无法一次性加入多个待测样品。
本实施例提供的一种多孔进样细胞计数仪1000及计数方法可以缓解该技术缺陷,具体的,该多孔进样细胞计数仪1000的结构将在下文进行详细的介绍。
请参照图1至图9,本实施例提供了一种多孔进样细胞计数仪1000,包括:
外壳200,外壳200的内部具有容纳空间201,外壳200具有加样口202。
多孔进样装置100,多孔进样装置100设置于容纳空间201内,多孔进样装置100包括多孔加样盘50,多孔加样盘50包括多个加样孔51,加样孔51能够容置样品(图未示)。
计数模块300,计数模块300可拆卸地安装于容纳空间201内,计数模块300配置成检测样品,计数模块300包括计数芯片301。
控制系统700,控制系统700能够控制多孔加样盘50转动且使得至少一个加样孔51与加样口202位置对应,还能够使得至少一个加样孔51与计数芯片301的进样孔3010位置对应。
其中,控制系统700的架构以及使用的硬件等等均可以参照现有的细胞计数仪的控制系统。比如可以是一系列控制和处理部件的总称,例如,可以包括控制阀等机电部件的控制器、电脉冲信号和/或图像信号的采集处理存储器、配置成完成屏幕显示和交互操作的屏幕显示器等。比如本实施例中,控制系统700配置有显示屏500进行显示以及进行触控操作。该显示屏500设置于外壳200上。
计数芯片301以及下文所述的台盼蓝出液机构400、压力源等同样可以参照现有的细胞计数仪,例如计数芯片301可以参照现有的微流控芯片,压力源可以参照正压气泵或者液泵等,本实施例未对上述器件做改进,此处不再进行赘述。同时,计数模块300不仅具有计数功能,还可以具有其它的信号检测功能。本实施例的一种实现方式,该计数模块300配置成用以实现细胞样品在芯片内的流动以及信号检测。
具体的,多孔进样装置100还包括安装架10、电机组30、真空吸盘机构70,安装架10架设于容纳空间201内。
电机组30包括第一直线步进电机31、第二直线步进电机33和旋转步进电机37。
多孔加样盘50的盘心部分与旋转步进电机37的输出端连接,第一直线步进电机31安装于安装架10,旋转步进电机37与第一直线步进电机31的输出端连接且能够在第一直线步进电机31的驱动下进行上下运动,多孔加样盘50靠近边缘的位置布设有沿轴向开设的多个加样孔51。
真空吸盘机构70包括吸盘支架71和真空吸盘73,吸盘支架71和第二直线步进电机33的输出端连接,真空吸盘73安装于吸盘支架71且位于多孔加样盘50的上方,真空吸盘73的位置至少与一个加样孔51的位置对应,至少一个真空吸盘73的位置与计数芯片301的进样孔3010的位置对应,多孔加样盘50位于真空吸盘73与计数芯片301之间。
加样时,在加样位置向一个加样孔51加入样品,控制系统700控制旋转步进电机37工作,多孔加样盘50转动且使得下一个加样孔51处于加样位置。
进样时,多孔加样盘50在旋转步进电机37的驱动下转动,使得加样后的加样孔51移动至真空吸盘73的下方并停止,控制系统700控制第一直线步进电机31工作使得旋转步进电机37下降且使得多孔加样盘50下降至与计数芯片301贴合,加样孔51与进样孔3010 连通,控制系统700控制第二直线步进电机33工作使得真空吸盘73下降且与多孔加样盘50贴合,加样孔51、真空吸盘73与计数芯片301的进样孔3010形成密封管路,加样孔51内的样品能够在与计数芯片301连接的压力源的作用下进入到计数芯片301进样孔3010内。
其中,加样位置是指外壳200上配置成加样时的开口处(加样口202),加样孔51转动至此处时可从外壳200的外部向加样孔51内添加样品。
由上述可知,旋转步进电机37配置成带动多孔加样盘50绕自身的轴线转动。第一直线步进电机31配置成带动旋转步进电机37以及多孔加样盘50作为一个整体进行上下运动。第二直线步进电机33配置成带动吸盘支架71和真空吸盘73作为一个整体进行上下运动。且,结合图9,旋转步进电机37、第一直线步进电机31以及第二直线步进电机33均在控制系统700的控制下进行动作。
具体的,电机组30还包括第三直线步进电机35,多孔进样细胞计数仪1000还包括台盼蓝出液机构400,台盼蓝出液机构400包括出液口部件401,第三直线步进电机35安装于安装架10,第三直线步进电机35的输出端与出液口部件401传动连接且能够使得出液口部件401上下运动。
当然,台盼蓝出液机构400还包括台盼蓝储液瓶402,台盼蓝储液瓶402与出液口部件401通过管路连通。其中,若是无需进行活率检测,则可以不包括台盼蓝出液机构400,其他结构不变且不受影响。
需要进行台盼蓝混样时,控制系统700控制第三直线步进电机35工作,使得出液口部件401上升,第一直线步进电机31工作且使得多孔加样盘50下降,第二直线步进电机33工作且使得真空吸盘73下降,出液口部件401、加样孔51和真空吸盘73形成密封管路。出液口部件401具有台盼蓝出液口。
由上述可知,第三直线步进电机35配置成带动出液口部件401进行上下运动。且,结合图9,第三直线步进电机35在控制系统700的控制下进行动作。
在本实施中,真空吸盘73的数量为两个,一个真空吸盘73的位置对应出液口部件401,另外一个真空吸盘73的位置对应计数芯片301的进样孔3010。
若要进行台盼蓝混样,则一个加样孔51在加样后首先运动至出液口部件401处并与台盼蓝出液口位置对应,然后通过电机组30的工作形成密封管路,并依靠压力源进行混样,然后再通过旋转步进电机37的工作,使得多孔加样盘50转动,使得进行混样后的加样孔51运行至与计数芯片301的进样孔3010对应的位置,以便进行后续的进样操作。
若无需进行混样,则直接通过旋转步进电机37的工作,使得多孔加样盘50转动,使 得加样孔51运行至与计数芯片301的进样孔3010对应的位置,以便进行后续的进样操作。
具体的,结合图6和图7,加样孔51具有加样段510和进样段512,加样段510和进样段512连通且加样段510和进样段512为非直通布设。加样段510配置成容置样品,进样段512配置成供样品流出至计数芯片301或者供台盼蓝出液机构400的台盼蓝进入到加样孔51内。需要说明的是,这里的“非直通布设”,可以理解为加样段510和进样段512相互连通,但是加样段510和进样段512错位设置,例如,加样段510和进样段512均是圆孔(圆锥)段,但是加样段510和进样段512的轴心线错位,例如平行。同时,结合图7中,下端的进样段512的出口口径小于上端的加样段510的入口口径。
更为具体的,在本实施例中,加样段510的内壁分为直筒部分5121和锥筒部分5123,直筒部分5121和锥筒部分5123衔接,锥筒部分5123的截面轮廓的直径尺寸,从靠近直筒部分5121一端向着另外一端逐渐减小,进样段512与锥筒部分5123的侧壁衔接。从而形成一个非直通结构,加样时可以让样品保持在中间位置,避免因加样操作力度过大导致样品从加样孔51底部漏出。
在本实施例中,加样孔51的上下两端均设有密封垫圈53。计数芯片301的进样孔3010处、出液口部件401处同样有垫圈结构,以便在不同工作情境下形成相应的密封管路。
多孔加样盘50具有25个加样孔51,其中一个加样孔51为初始调校孔。初始调校孔是细胞计数仪在初始化时所用的孔,在进行加样检测前,细胞计数仪先根据一个加样孔51试运行电机组30,确保该加样孔51的位置能够按照细胞计数仪工作时的状态,与加样位置、计数芯片301、台盼蓝出液口等等需要用到加样孔51的器件或位置进行对应。任意一个加样孔51均可以作为初始调校孔,并作为细胞计数仪开始工作时的0号孔,其余24个加样孔51则作为实际工作时的样品孔,配置成放入样品,以便进行后续工作。
除了25个加样孔51的方案,可以预测的是,还可以是其他数量的方案,以满足使用需求的操作人员进行不同规格的仪器选择,提升样品检测的效率。
具体的,结合图1-图3,多孔进样装置100还包括加样孔盖55,加样孔盖55配置成打开或关闭加样口202,以使加样孔51封挡或露出。可以通过人工或其他机械设备控制加样孔盖55来打开或关闭加样口202。本实施例中,电机组30还包括双运动电机39,双运动电机39安装于安装架10,双运动电机39的输出端与加样孔盖55连接,加样孔盖55位于加样位置上方,控制系统700能够控制双运动电机39工作,使得加样孔盖55与外壳200将加样位置处的加样孔51封挡或者使得加样孔盖55挪移并露出加样位置处的加样孔51。当运行检测过程时,关闭加样孔盖55可以避免外界污染。
由上述可知,双运动电机39配置成带动加样孔盖55进行运动。且,结合图9,双运 动电机39在控制系统700的控制下进行动作。
结合图9,多孔进样装置100还包括位置检测组件56,例如,包括磁性位置传感器57(霍尔开关器件)和光电编码器61,磁性位置传感器57安装于安装架10且配置成定位多孔加样盘50的转动初始位置,光电编码器61安装于旋转步进电机37且配置成向控制系统700反馈多孔加样盘50的转动角度信号,控制系统700配置成根据多孔加样盘50的转动初始位置和转动角度信号控制旋转步进电机37工作或停止,使得加样孔51能够运动至工作位置。光电编码器61是通过读取旋转步进电机37的旋转角度来反馈多孔加样盘50的转动角度信号,这是由于多孔加样盘50与旋转步进电机37的输出轴是同轴心设置,所以读取旋转步进电机37的输出轴的转动角度,即可获知多孔加样盘50的转动角度。通过转动初始位置和转动角度信号,控制系统700能够定位每个加样孔51的位置,并使之能够精确运转至所需的工作位置。
多孔进样装置100还包括其他的位置检测组件56,例如,还包括光电传感器59,光电传感器59能够检测多孔加样盘50的上下方向的位置且能够向控制系统700反馈多孔加样盘50的上下方向的位置,控制系统700配置成根据多孔加样盘50的上下方向的位置,控制第一直线步进电机31工作,使得多孔加样盘50上升或者下降。进一步的,结合图2,光电传感器59分为了上位置传感器和下位置传感器,以方便检测上下位置。即,光电传感器59的数量为两个,且呈上下方向间隔分布。
由上述可知,控制系统700配置成接收磁性位置传感器57检测的多孔加样盘50的转动初始位置以及接收光电编码器61检测的多孔加样盘50的转动角度信号,并控制旋转步进电机37动作。同时,控制系统700还配置成接收光电传感器59检测的多孔加样盘50的上下方向的位置,并控制第一直线步进电机31动作。
通过设置磁性位置传感器57、光电传感器59和光电编码器61这样的位置检测组件56,控制系统700能够更好地控制第一直线步进电机31以及旋转步进电机37的工作,以实现对于多孔加样盘50以及出液口部件401的上下位置的精确控制,还有多孔加样盘50自身的旋转角度的精确控制。
结合图9,多孔进样细胞计数仪1000还包括图像采集模块600,图像采集模块600安装于容纳空间201内且与计数模块300电连接。图像采集模块600可采用现有的图像采集手段即可实现,此处不作具体限定。例如,图像采集模块600可以包括光源601、相机602和光学镜头603。光源601和相机602分别与控制系统700电性连接,光学镜头603通过一标准镜头接口与相机602连接。其中,光学镜头603可以是单一镜头或者多个镜头的组合。其中,光源601设置于计数芯片301的一侧,且朝向计数芯片301的图像采集区,相 机602设置于计数芯片301的另一侧,且光学镜头603面对上述图像采集区。通过上述设计,使得光源601能够在控制系统700的控制下向上述图像采集区透射光线,相机602能够在控制系统700的控制下采集流经上述图像采集区的样品的多张图像,并发送到控制系统700进行处理。
本实施例提供的多孔进样细胞计数仪1000的原理是:
使用时,先进行位置初始化,各个部件运行至初始位置。第三直线步进电机35使得出液口部件401处于最低位置,第二直线步进电机33驱动吸盘支架71,使之处于最高位置,同时也使得真空吸盘73处于最高位置,第一直线步进电机31驱动多孔加样盘50处于最高位置,旋转步进电机37根据已经设置好的0号加样孔51所确定的零点位置来驱动多孔加样盘50转动至0号加样孔51之后的那个加样孔51(可以理解为编号为1号的加样孔51)对准加样口202。上述的最低位置、最高位置等均是各个部件自身所能达到的极限位置,各个部件相互间的高低位置不作比较。
位置初始化之后再进行计数芯片301、台盼蓝液路的初始化,初始化方式可以参照一般的只能单次加样检测的细胞计数仪所用的初始化方式。本实施例与一般的细胞计数仪的差别在于,单次加样检测的细胞计数仪的加样品孔是独自与仪器的各个液路或者密封管路等进行初始化动作,本实施例则是可以预先选定一个加样孔51作为初始调校孔来进行初始化操作,操作方式则是与单次加样检测的细胞计数仪的操作方式类似。
初始化完成后,台盼蓝管路中充满台盼蓝,计数芯片301上的所有沟道则充满鞘液。需要说明的是,鞘液也可以参照现有技术,此处不再赘述。
需要进行多个样品的检测时,可以先通过双运动电机39开启加样孔盖55,使得外壳200上开设的加样口202露出,并且露出一个加样孔51,在添加样品后,旋转步进电机37工作,使得下一个加样孔51露出,以便于进行下一个样品的加样工作。其他加样孔51以此类推,在添加完样品后,双运动电机39工作,使得加样孔盖55将外壳200上开设的加样口202封闭。
进一步的,可以根据需求进行下一步的功能选择,比如要进行细胞计数和活率检测,则先控制一个加样后的加样孔51运行至台盼蓝出液机构400的出液口部件401的上方,并进行混样,然后再运行至计数芯片301的进样孔3010处,进行后续的进样作业。
如果只需要计数,则直接控制加样后的加样孔51运行至计数芯片301的进样孔3010处,并进行后续的操作。
其中,台盼蓝混样、细胞计数等等的实现,均可参照现有的细胞计数仪的实现方式。以细胞计数为例,比如可以采用全样品绝对计数的计数模式使得样品全部流过计数芯片 301,来进行全样品量的细胞计数。这些都能参照现有技术,本实施例不再赘述。
按照上述操作,本实施例的多孔进样细胞计数仪1000可以完成多至24个样品的检测,操作省时省力。当不同规格的多孔进样细胞计数仪1000使用的多孔加样盘50不同时,检测的样品数也相应不同。
此外,由于计数模块300是可拆卸安装,可以针对不同大小的检测对象(比如细菌小到数百纳米到数微米,而常见的细胞大小则是数微米到数十微米。)设计不同结构的计数芯片301来适配不同的检测对象。而多孔进样细胞计数仪1000设计为可更换计数模块300的形式则增加了系统的灵活性,可以适配用户不同的检测需求。
综上所述,该多孔进样细胞计数仪1000通过多孔进样装置100的多孔加样盘50配合电机组30以及位置检测组件56等,在控制系统700的控制下,操作人员能够在加样时进行多个样品的加样,然后结合计数模块300等对每个加样孔51内的样品分别进行后续的检测,无需像现有的细胞计数仪一般,必须一个样品、一个样品地进行检测。从而节省检测细胞样品时所需的加样操作时间,减少操作人员的工作量,进而提升了整个检测过程的效率。并且无需一直守着仪器,方便操作人员在检测过程中处理另外的事务。
本实施例还提供了一种计数方法,其使用上述的多孔进样细胞计数仪1000,方法包括:
通过外壳200的加样口202向与加样口202对应的加样孔51中添加样品,通过控制系统700控制多孔加样盘50转动,使得多孔加样盘50上的另一个加样孔51与加样口202对应,并向该加样孔51中添加样品,以此类推重复多次;
控制加样后的加样孔51运行至计数芯片301的进样孔3010处,计数芯片301对样品中的细胞进行计数。
重复多次,可以实现所有的加样孔51中均添加样品。多孔进样细胞计数仪1000的结构可以参考上述的描述,因此,其具体的方法也可以结合上述的描述。
以上所述,仅为本公开的具体实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
综上所述,本公开提供了一种多孔进样细胞计数仪及计数方法,该多孔进样细胞计数仪结构简单,操作方便,可以节省检测细胞样品时所需的加样操作时间,减少操作人员的工作量,进而提升了整个检测过程的效率。

Claims (17)

  1. 一种多孔进样细胞计数仪,其特征在于,包括:
    外壳,所述外壳的内部具有容纳空间,所述外壳具有加样口;
    多孔进样装置,所述多孔进样装置设置于所述容纳空间内,所述多孔进样装置包括多孔加样盘,所述多孔加样盘包括多个加样孔,所述加样孔能够容置样品;
    计数模块,所述计数模块可拆卸地安装于所述容纳空间内,所述计数模块配置成检测样品,所述计数模块包括计数芯片;
    控制系统,所述控制系统能够控制所述多孔加样盘转动且使得至少一个所述加样孔与所述加样口位置对应,还能够使得至少一个所述加样孔与所述计数芯片的进样孔位置对应。
  2. 根据权利要求1所述的多孔进样细胞计数仪,其特征在于,所述多孔进样装置还包括安装架、电机组、真空吸盘机构,所述安装架架设于所述容纳空间内;
    所述电机组包括第一直线步进电机、第二直线步进电机和旋转步进电机;
    所述多孔加样盘的盘心部分与所述旋转步进电机的输出端连接,所述第一直线步进电机安装于所述安装架,所述旋转步进电机与所述第一直线步进电机的输出端连接且能够在所述第一直线步进电机的驱动下进行上下运动,多孔加样盘靠近边缘的位置布设有沿轴向开设的多个所述加样孔;
    所述真空吸盘机构包括吸盘支架和真空吸盘,所述吸盘支架和所述第二直线步进电机的输出端连接,所述真空吸盘安装于所述吸盘支架且位于所述多孔加样盘的上方,所述真空吸盘的位置至少与一个所述加样孔的位置对应,至少一个所述真空吸盘的位置与所述计数芯片的进样孔的位置对应,所述多孔加样盘位于所述真空吸盘与计数芯片之间;
    加样时,在加样位置向一个所述加样孔加入样品,所述控制系统控制所述旋转步进电机工作,所述多孔加样盘转动且使得下一个所述加样孔处于加样位置;
    进样时,所述多孔加样盘在所述旋转步进电机的驱动下转动,使得加样后的所述加样孔移动至所述真空吸盘的下方并停止,所述控制系统控制所述第一直线步进电机工作使得所述旋转步进电机下降且使得所述多孔加样盘下降至与计数芯片贴合,所述加样孔与进样孔连通,所述控制系统控制所述第二直线步进电机工作使得所述真空吸盘下降且与所述多孔加样盘贴合,所述加样孔、所述真空吸盘与计数芯片的进样孔形成密封管路,所述加样孔内的样品能够在与计数芯片连接的压力源的作用下进入到计数芯片进样孔内。
  3. 根据权利要求2所述的多孔进样细胞计数仪,其特征在于,所述电机组还包括第三直线步进电机,所述多孔进样细胞计数仪还包括台盼蓝出液机构,所述台盼蓝出液机构包 括出液口部件,所述第三直线步进电机安装于所述安装架,所述第三直线步进电机的输出端与所述出液口部件传动连接且能够使得所述出液口部件上下运动;
    需要进行台盼蓝混样时,所述控制系统控制所述第三直线步进电机工作,使得所述出液口部件上升,所述第一直线步进电机工作且使得所述多孔加样盘下降,所述第二直线步进电机工作且使得所述真空吸盘下降,所述出液口部件、所述加样孔和所述真空吸盘形成密封管路。
  4. 根据权利要求3所述的多孔进样细胞计数仪,其特征在于,所述台盼蓝出液机构还包括台盼蓝储液瓶,所述台盼蓝储液瓶与所述出液口部件通过管路连通。
  5. 根据权利要求3或4所述的多孔进样细胞计数仪,其特征在于,所述真空吸盘的数量为两个,一个所述真空吸盘的位置对应所述出液口部件,另外一个所述真空吸盘的位置对应所述计数芯片的进样孔。
  6. 根据权利要求1-5任一项所述的多孔进样细胞计数仪,其特征在于,所述加样孔具有加样段和进样段,所述加样段和所述进样段连通且所述加样段和所述进样段为非直通布设。
  7. 根据权利要求6所述的多孔进样细胞计数仪,其特征在于,所述加样段的内壁分为直筒部分和锥筒部分,所述直筒部分和所述锥筒部分衔接,所述锥筒部分的截面轮廓的直径尺寸,从靠近所述直筒部分一端向着另外一端逐渐减小,所述进样段与所述锥筒部分的侧壁衔接。
  8. 根据权利要求1-7任一项所述的多孔进样细胞计数仪,其特征在于,所述加样孔的上下两端均设有密封垫圈。
  9. 根据权利要求1-8任一项所述的多孔进样细胞计数仪,其特征在于,所述多孔加样盘具有25个所述加样孔,其中一个所述加样孔为初始调校孔。
  10. 根据权利要求2-5任一项所述的多孔进样细胞计数仪,其特征在于,所述多孔进样装置还包括加样孔盖,所述加样孔盖配置成打开或关闭所述加样口,以使所述加样孔封挡或露出。
  11. 根据权利要求10所述的多孔进样细胞计数仪,其特征在于,所述电机组还包括双运动电机,所述双运动电机安装于所述安装架,所述双运动电机的输出端与所述加样孔盖连接,所述加样孔盖位于加样位置上方,所述控制系统能够控制所述双运动电机工作,使得所述加样孔盖与外壳将加样位置处的所述加样孔封挡或者使得所述加样孔盖挪移并露出加样位置处的所述加样孔。
  12. 根据权利要求2-5任一项所述的多孔进样细胞计数仪,其特征在于,所述多孔进样装置还包括磁性位置传感器和光电编码器,所述磁性位置传感器安装于所述安装架且配置 成定位所述多孔加样盘的转动初始位置,所述光电编码器安装于所述旋转步进电机且配置成向所述控制系统反馈所述多孔加样盘的转动角度信号,所述控制系统配置成根据所述多孔加样盘的转动初始位置和转动角度信号控制所述旋转步进电机工作或停止,使得所述加样孔能够运动至工作位置。
  13. 根据权利要求12或2-5任一项所述的多孔进样细胞计数仪,其特征在于,所述多孔进样装置还包括光电传感器,所述光电传感器能够检测所述多孔加样盘的上下方向的位置且能够向所述控制系统反馈所述多孔加样盘的上下方向的位置,所述控制系统配置成根据所述多孔加样盘的上下方向的位置,控制所述第一直线步进电机工作,使得所述多孔加样盘上升或者下降。
  14. 根据权利要求13所述的多孔进样细胞计数仪,其特征在于,所述光电传感器的数量为两个,且呈上下方向间隔分布。
  15. 根据权利要求1-14任一项所述的多孔进样细胞计数仪,其特征在于,所述多孔进样细胞计数仪还包括图像采集模块,所述图像采集模块安装于所述容纳空间内且与所述计数模块电连接。
  16. 根据权利要求15所述的多孔进样细胞计数仪,其特征在于,所述图像采集模块包括光源、相机和光学镜头,所述光源和所述相机分别与控制系统电性连接,所述光学镜头与所述相机连接;其中,所述光源设置于计数芯片的一侧,且朝向所述计数芯片的图像采集区,所述相机设置于所述计数芯片的另一侧,且所述光学镜头面对所述图像采集区,所述光源能够在所述控制系统的控制下向所述图像采集区透射光线,所述相机能够在所述控制系统的控制下采集流经所述图像采集区的样品的多张图像,并发送到所述控制系统进行处理。
  17. 一种计数方法,其特征在于,使用权利要求1-16任一项所述的多孔进样细胞计数仪,所述方法包括:
    通过所述外壳的加样口向与所述加样口对应的所述加样孔中添加样品,通过控制系统控制所述多孔加样盘转动,使得所述多孔加样盘上的另一个所述加样孔与所述加样口对应,并向所述加样孔中添加样品,以此类推重复多次;
    控制加样后的所述加样孔运行至所述计数芯片的所述进样孔处,所述计数芯片对所述样品中的细胞进行计数。
PCT/CN2019/114119 2018-10-31 2019-10-29 多孔进样细胞计数仪及计数方法 WO2020088474A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19879953.8A EP3875942A4 (en) 2018-10-31 2019-10-29 Porous sample feeding cell counter and counting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811291162.X 2018-10-31
CN201811291162.XA CN109060641A (zh) 2018-10-31 2018-10-31 多孔进样细胞计数仪

Publications (1)

Publication Number Publication Date
WO2020088474A1 true WO2020088474A1 (zh) 2020-05-07

Family

ID=64767936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114119 WO2020088474A1 (zh) 2018-10-31 2019-10-29 多孔进样细胞计数仪及计数方法

Country Status (3)

Country Link
EP (1) EP3875942A4 (zh)
CN (1) CN109060641A (zh)
WO (1) WO2020088474A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505318A (zh) * 2020-05-15 2020-08-07 刘大基 输血相容性检测一揽子分析仪
CN116852396A (zh) * 2023-08-22 2023-10-10 济宁获客商务有限公司 一种用于统计作业的机器人

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061214B (zh) * 2018-10-31 2023-12-19 江苏卓微生物科技有限公司 多孔进样装置
CN109060641A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN111380284A (zh) * 2020-03-23 2020-07-07 珠海丽珠试剂股份有限公司 试剂冷藏装置及检测设备
CN111979112A (zh) * 2020-08-25 2020-11-24 郑州金域临床检验中心有限公司 一种细胞计数装置及其使用方法
CN115386476B (zh) * 2022-10-11 2023-03-10 天津海河标测技术检测有限公司 一种微生物菌落计数仪

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351940A (ja) * 1991-05-29 1992-12-07 Shimadzu Corp 表面積測定装置
CN101013079A (zh) * 2007-02-07 2007-08-08 浙江大学 小型物料数字化检测和分级装置
CN203249850U (zh) * 2013-04-03 2013-10-23 上海睿珉机电科技有限公司 细胞分析仪中新型圆盘式细胞样品测量盘
WO2017151978A1 (en) * 2016-03-02 2017-09-08 Arizona Boad Of Regents On Behalf Of Arizona State University Live-cell computed tomography
CN107389537A (zh) * 2017-08-31 2017-11-24 许金泉 一种新型多通道细胞计数仪及多通道细胞计数系统
CN207650062U (zh) * 2018-02-28 2018-07-24 深圳赛斯鹏芯生物技术有限公司 清洗系统及细胞分析仪
CN207816777U (zh) * 2017-08-11 2018-09-04 米克乔尼克有限公司 用于对生物液体中的微粒进行计数以及分类计数的设备
CN108593953A (zh) * 2018-04-13 2018-09-28 中生(苏州)医疗科技有限公司 一种转盘式自动上样装置
CN109060641A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN109061214A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样装置
CN209148708U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样装置
CN209148506U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样细胞计数仪

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932081B2 (en) * 2005-03-10 2011-04-26 Gen-Probe Incorporated Signal measuring system for conducting real-time amplification assays
CN104272083B (zh) * 2012-02-24 2018-01-02 英士查诺尔有限公司 用于预处理细胞的系统、设备和装置
CN104745452B (zh) * 2015-04-20 2017-06-16 南京康芯微健康科技有限公司 稀有细胞自动化捕获设备
JP2017049034A (ja) * 2015-08-31 2017-03-09 テック・ワーク株式会社 試験容器のキャップ開閉補助装置
CN206975047U (zh) * 2017-06-28 2018-02-06 苏州长光华医生物医学工程有限公司 一种血型分析仪
CN107290562B (zh) * 2017-08-22 2019-09-06 重庆博奥新景医学科技有限公司 一种用于样品管高通量检测的自动进样系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351940A (ja) * 1991-05-29 1992-12-07 Shimadzu Corp 表面積測定装置
CN101013079A (zh) * 2007-02-07 2007-08-08 浙江大学 小型物料数字化检测和分级装置
CN203249850U (zh) * 2013-04-03 2013-10-23 上海睿珉机电科技有限公司 细胞分析仪中新型圆盘式细胞样品测量盘
WO2017151978A1 (en) * 2016-03-02 2017-09-08 Arizona Boad Of Regents On Behalf Of Arizona State University Live-cell computed tomography
CN207816777U (zh) * 2017-08-11 2018-09-04 米克乔尼克有限公司 用于对生物液体中的微粒进行计数以及分类计数的设备
CN107389537A (zh) * 2017-08-31 2017-11-24 许金泉 一种新型多通道细胞计数仪及多通道细胞计数系统
CN207650062U (zh) * 2018-02-28 2018-07-24 深圳赛斯鹏芯生物技术有限公司 清洗系统及细胞分析仪
CN108593953A (zh) * 2018-04-13 2018-09-28 中生(苏州)医疗科技有限公司 一种转盘式自动上样装置
CN109060641A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN109061214A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样装置
CN209148708U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样装置
CN209148506U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样细胞计数仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875942A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505318A (zh) * 2020-05-15 2020-08-07 刘大基 输血相容性检测一揽子分析仪
CN116852396A (zh) * 2023-08-22 2023-10-10 济宁获客商务有限公司 一种用于统计作业的机器人
CN116852396B (zh) * 2023-08-22 2024-02-09 济宁获客商务有限公司 一种用于统计作业的机器人

Also Published As

Publication number Publication date
EP3875942A1 (en) 2021-09-08
CN109060641A (zh) 2018-12-21
EP3875942A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2020088474A1 (zh) 多孔进样细胞计数仪及计数方法
JP4570120B2 (ja) 液体を吸引及び分配するための改良された方法及び装置
US20040096368A1 (en) Assay systems and components
CN101377520B (zh) 自动分析装置
WO2020088476A1 (zh) 多孔进样装置及多孔进样方法
JP2005506531A (ja) 複数の液体ベース検体を処理するための自動式システムおよび方法
WO2008043281A1 (fr) Échantillonneur de gaz automatique
JP3024375B2 (ja) 自動前処理装置
CN209148506U (zh) 多孔进样细胞计数仪
JPH04115136A (ja) 粒子計測装置
US3537794A (en) Apparatus for the automatic analysis of a plurality of blood samples with means for agitation of each sample
CN209148708U (zh) 多孔进样装置
WO2016017291A1 (ja) 自動分析装置
US10227973B2 (en) Method for checking the functionality of a metering pump
CN108728345A (zh) 一种水中微生物计量装置
US20220203352A1 (en) Reaction vessel and automatic analyzing device
US6989272B1 (en) Apparatus and method for processing and testing a biological specimen
JP2016176777A (ja) 自動分析装置及び自動分析方法並びに自動分析システム
JP2016540995A (ja) 流体を撹拌および分注するためのカートリッジ、自動分析器ならびに生体試料を分析する方法
JP2014157073A (ja) 自動分析装置
JP2012063179A (ja) 自動分析装置
CN216144749U (zh) 一种用于炭黑吸碘值测定的滴定装置
EP2354241A1 (en) Mechanism and method of preventing suction air from leaking during filtration of a capturing carrier solution
CN220064066U (zh) 一种生化分析仪
WO2022226746A1 (zh) Poct血细胞分析仪及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879953

Country of ref document: EP

Effective date: 20210531