WO2020088476A1 - 多孔进样装置及多孔进样方法 - Google Patents

多孔进样装置及多孔进样方法 Download PDF

Info

Publication number
WO2020088476A1
WO2020088476A1 PCT/CN2019/114124 CN2019114124W WO2020088476A1 WO 2020088476 A1 WO2020088476 A1 WO 2020088476A1 CN 2019114124 W CN2019114124 W CN 2019114124W WO 2020088476 A1 WO2020088476 A1 WO 2020088476A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
hole
sampling
porous
motor
Prior art date
Application number
PCT/CN2019/114124
Other languages
English (en)
French (fr)
Inventor
吴旭东
刘鹏
张羽
李会娟
帅宇
Original Assignee
江苏卓微生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏卓微生物科技有限公司 filed Critical 江苏卓微生物科技有限公司
Publication of WO2020088476A1 publication Critical patent/WO2020088476A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1067Multiple transfer devices for transfer to or from containers having different spacing

Definitions

  • the present application relates to the technical field of cell counting devices, and in particular, to a porous sampling device and a porous sampling method.
  • the concentration detection (quantitative counting) of cells or other biological particles is required.
  • the cell suspension concentration (or quantity) is not only a monitoring parameter of cell culture, but also a necessary parameter in many experimental projects. Completing the experiment is a very basic but important process condition.
  • Existing counting methods mainly include manual counting methods using cell counting plates, automated counting instruments based on image analysis technology, and automated counting instruments using the resistance method (Coulter principle).
  • the manual counting method is the most common.
  • the experimenter injects the suspended cell sample into the counting cell of the cell counting plate, observes with the naked eye under the microscope and performs manual counting according to the rules.
  • the main disadvantages of this method are:
  • the sample injected into the cell counting plate according to the rule is 10uL, but the amount of sample in the microscope observation area is only a small part, less than 1uL. In this way, whether the cell sample is evenly distributed in the counting cell will greatly affect the result.
  • the counting is done manually according to certain rules.
  • the difference in the level of the operator and the fatigue caused by the naked eye introduce a large human error.
  • the counting piece is similar in structure to the cell counting plate, so there is also the problem of inaccurate results and misjudgment of activity due to the layered suspension of cells on the counting plate.
  • the present application provides a multi-hole sampling device, which can achieve at least one of the technical effects of facilitating the operator to add a plurality of samples to be tested at one time and saving the operation time of the sample addition required for the detection of cell samples.
  • the embodiment of the present application provides a porous sampling device configured to inject a sample by a cell counter.
  • the cell counter includes a housing, a counting chip, and a trypan blue dispensing mechanism. Both the counting chip and the trypan blue dispensing mechanism are provided.
  • the housing including:
  • a mounting rack which is configured to be erected in the housing of the cell counter
  • the motor group includes a first linear stepper motor, a second linear stepper motor and a rotary stepper motor;
  • a porous sample loading disc the core portion of the porous sample loading disc is connected to the output end of the rotary stepping motor, the first linear stepping motor is mounted on the mounting frame, and the rotary stepping motor is The output end of the first linear stepping motor is connected and can be moved up and down under the drive of the first linear stepping motor, and a plurality of porous sample trays are arranged near the edge in the axial direction Sample hole;
  • the vacuum chuck mechanism includes a chuck bracket and a vacuum chuck, the chuck bracket is connected to the output end of the second linear stepper motor, the vacuum chuck is mounted on the chuck bracket and is located in the porous Above the sample tray, the position of the vacuum chuck corresponds to at least one of the sampling holes, the position of at least one vacuum chuck corresponds to the position of the sampling hole of the counting chip, and the porous sample tray is located at the Between vacuum suction cup and counting chip;
  • control system can control the motor unit to work or stop
  • the control system controls the operation of the rotary stepper motor, the porous sampling plate rotates and the next sampling hole is in the sampling position position;
  • the porous sample loading tray rotates under the drive of the rotary stepping motor, so that the sample loading hole moves below the vacuum chuck and stops, and the control system controls the
  • the operation of the first linear stepper motor causes the rotary stepper motor to descend and causes the porous sampling plate to descend to fit the counting chip, the sampling hole communicates with the sampling hole, and the control system controls the
  • the second linear stepper motor works so that the vacuum chuck is lowered and fits with the porous sampling plate, the sample hole, the vacuum chuck and the counting chip sample hole form a sealed pipeline, and the sample hole The sample inside can enter the sampling hole of the counting chip under the action of the pressure source connected to the counting chip.
  • porous sampling device provided by the embodiments of the present application may also have the following additional technical features:
  • the motor group further includes a third linear stepper motor, the third linear stepper motor is mounted on the mounting frame, and the output end of the third linear stepper motor and the trypan blue liquid discharge mechanism
  • the liquid outlet part of the drive transmission is connected and can make the liquid outlet part move up and down;
  • the control system controls the operation of the third linear stepper motor so that the liquid outlet part rises, the first linear stepper motor works and causes the porous sample tray to descend , The second linear stepper motor works and causes the vacuum chuck to descend, and the liquid outlet part, the sampling hole and the vacuum chuck form a sealed pipeline.
  • the number of the vacuum chucks is two, one position of the vacuum chuck corresponds to the liquid outlet part of the trypan blue liquid discharge mechanism, and the other position of the vacuum chuck corresponds to the counting chip injection hole.
  • the porous sample loading tray has 25 sample loading holes, one of which is the initial adjustment hole.
  • the sampling hole has a sampling section and a sampling section, the sampling section and the sampling section are connected, and the sampling section and the sampling section are arranged in a non-straight-through manner.
  • the sample section is configured to accommodate the sample
  • the sample introduction section is configured to allow the sample to flow out to the counting chip or for trypan blue of the trypan blue discharge mechanism to enter the sample loading hole.
  • the inner wall of the sample adding section is divided into a straight barrel part and a cone barrel part, the straight barrel part and the cone barrel part are connected, and the diameter dimension of the cross-sectional profile of the cone barrel part is from near to the straight barrel part One end gradually decreases toward the other end, and the sampling section is contiguous with the side wall of the cone part.
  • the upper and lower ends of the sample loading hole are provided with sealing gaskets.
  • the porous sampling device further includes a sample hole cover
  • the motor set further includes a dual-motion motor
  • the dual-motion motor is mounted on the mounting frame, and the output end of the dual-motion motor is connected to the A sample hole cover is connected, the sample hole cover is located above the sample loading position, and the control system can control the operation of the dual-motion motor so that the sample hole cover and the housing will The sample hole blocks or causes the sample hole cover to move and expose the sample hole at the sample addition position.
  • the cross-sectional area of the sample hole cover is greater than or equal to the cross-sectional area of the sample hole.
  • the multi-hole sampling device further includes a magnetic position sensor and a photoelectric encoder
  • the magnetic position sensor is mounted on the mounting frame and configured to position the initial rotation position of the multi-hole sample tray
  • the photoelectric coding Is installed on the rotary stepper motor and feeds back the rotation angle signal of the porous sample tray to the control system.
  • the control system controls the rotation according to the rotation initial position and the rotation angle signal of the porous sample tray
  • the stepping motor works or stops, so that the sampling hole can move to the working position.
  • the porous sampling plate is coaxially arranged with the output shaft of the rotary stepping motor, and is configured to read the rotation angle information of the rotary stepping motor to feed back the rotation of the porous sampling plate Angle signal.
  • the magnetic position sensor includes a Hall switch device.
  • the porous sampling device further includes a photoelectric sensor, which can detect the position of the porous loading tray in the up-down direction and can feed back the vertical loading position of the porous loading tray to the control system
  • the control system controls the operation of the first linear stepper motor according to the position of the porous sampling plate in the up-down direction, so that the porous sampling plate is raised or lowered.
  • the photoelectric sensor includes an upper position sensor and a lower position sensor, the upper position sensor is configured to detect position information of the porous loading tray in an upward direction, and the lower position sensor is configured to detect the porous position The position information of the sample plate in the downward direction.
  • the present application provides a porous sampling method, which includes the following steps: opening a sample hole cover, configured to expose a sample opening opened on the housing; sequentially adding samples to a plurality of sample holes; after the addition is complete, sample addition
  • the hole cover closes the position of the sample opening opened on the shell.
  • the following steps are also included: when adding a sample, add a sample to a sample hole at the sample loading position, the control system controls the rotary stepper motor to work, the porous sample tray rotates and the next sample hole is at the sample loading position .
  • the sample hole opening is opened to expose a sample hole on the housing, and a sample hole is exposed.
  • the stepper motor is rotated to work so that The next sample hole is exposed to facilitate the sample addition of the next sample;
  • a sample hole first moves to the liquid outlet part and corresponds to the position of the liquid outlet of trypan blue after the sample is added, and a sealed pipeline is formed by the work of the motor unit , Rely on pressure sources for sample mixing;
  • the work of rotating the stepping motor drives the porous sample loading plate to rotate, and the sample loading hole configured for mixing is moved to a position corresponding to the sample injection hole of the counting chip.
  • the beneficial effects of the present application include at least: the multi-hole sampling device cooperates with the motor set and the position detection component through the multi-hole sampling tray, and the operator can load multiple samples during the sample loading, and then sample the samples in each sampling hole Performing subsequent tests separately does not need to be performed on a sample-by-sample basis as with existing cell counters. Therefore, the operation time of the sample addition required for the detection of the cell sample is saved, the workload of the operator is reduced, and the efficiency of the entire detection process is improved. And there is no need to keep the instrument all the time, which is convenient for the operator to handle other affairs during the detection process.
  • FIG. 1 is a schematic structural view of a porous sampling device provided in an embodiment of the present application after being installed inside a cell counter with a part of its casing cut away;
  • FIG. 2 is a schematic diagram of another perspective of the porous sampling device in the cell counter with a part of the casing hidden in FIG. 1;
  • FIG. 3 is a partially enlarged view of part A of FIG. 2;
  • FIG. 4 is a schematic diagram of another perspective of FIG. 2;
  • Figure 5 is a schematic diagram of a porous sample loading tray
  • FIG. 6 is a cross-sectional view of the sample hole.
  • Icon 100-porous sampling device; 10-mounting frame; 31-first linear stepper motor; 33-second linear stepper motor; 35-third linear stepper motor; 37-rotating stepper motor; 39 -Dual motion motor; 50-porous sampling tray; 51-sampling hole; 510-sampling section; 512-sampling section; 5121-straight cylinder part; 5123-conical cylinder part; 53-seal washer; 55-sampling Well cover; 57-magnetic position sensor; 59-photoelectric sensor; 61-photoelectric encoder; 71-suction cup holder; 73-vacuum suction cup; 200-housing; 301-injection hole; 401-outlet part.
  • this embodiment provides a porous sampling device 100 configured as a cell counter for sampling.
  • the cell counter includes a casing 200, a counting chip, and a trypan blue discharge mechanism. Both the counting chip and the trypan blue discharge mechanism are provided in the casing 200.
  • the porous sampling device 100 includes:
  • the mounting frame 10 is configured to be mounted in the housing 200 of the cell counter;
  • the motor group includes a first linear stepper motor 31, a second linear stepper motor 33 and a rotating stepper motor 37;
  • Porous sample loading tray 50 the core portion of the porous sample loading tray 50 is connected to the output end of the rotary stepping motor 37, the first linear stepping motor 31 is mounted on the mounting frame 10, and the rotary stepping motor 37 is connected to the first straight line
  • the output end of the stepping motor 31 is connected and can move up and down under the drive of the first linear stepping motor 31, and a plurality of sample holes 51 opened in the axial direction are arranged near the edge of the porous sample tray 50;
  • the vacuum chuck mechanism includes a chuck bracket 71 and a vacuum chuck 73.
  • the chuck bracket 71 is connected to the output end of the second linear stepping motor 33.
  • the vacuum chuck 73 is mounted on the chuck bracket 71 and is located above the porous sample tray 50.
  • the position of the vacuum chuck 73 corresponds to at least one sample hole 51
  • the position of at least one vacuum chuck 73 corresponds to the position of the counting chip inlet hole 301
  • the porous sample plate 50 is located between the vacuum chuck 73 and the counting chip;
  • control system can control the motor unit to work or stop;
  • the control system controls the rotary stepping motor 37 to work, the porous sample loading tray 50 rotates and the next sample loading hole 51 is at the sample loading position;
  • the porous sample loading tray 50 rotates under the drive of the rotary stepping motor 37, so that the sample loading hole 51 after the sample movement is moved below the vacuum chuck 73 and stops, and the control system controls the first linear stepping motor 31
  • the work causes the rotary stepping motor 37 to drop and the porous sample tray 50 to drop to fit the counting chip
  • the sample hole 51 communicates with the sample hole 301
  • the control system controls the second linear stepper motor 33 to work so that the vacuum suction cup 73 descends
  • the sample hole 51, the vacuum suction cup 73 and the counting chip inlet hole 301 form a sealed pipeline, and the sample in the sampling hole 51 can enter under the action of the pressure source connected to the counting chip Into the injection hole 301 of the counting chip.
  • control system can refer to the control system of the existing cell counter.
  • the counting chip, the trypan blue liquid discharge mechanism, and the pressure source can also refer to the existing cell counter. This embodiment does not improve the above devices, and will not be repeated here.
  • the sample loading position refers to the opening of the casing 200 configured to load the sample.
  • the sample can be added into the sample loading hole 51 from the outside.
  • the cell counter may not include the trypan blue liquid discharge mechanism, and other structures remain unchanged and unaffected.
  • the motor group further includes a third linear stepper motor 35, the third linear stepper motor 35 is mounted on the mounting frame 10, the output end of the third linear stepper motor 35 and the outlet part of the trypan blue outlet mechanism 401 drive connection and can make the liquid outlet part 401 move up and down;
  • the control system controls the operation of the third linear stepper motor 35 so that the liquid outlet part 401 rises, the first linear stepper motor 31 works and causes the porous sample tray 50 to descend, and the second straight line
  • the stepping motor 33 works and causes the vacuum chuck 73 to descend, and the liquid outlet part 401, the sample hole 51 and the vacuum chuck 73 form a sealed pipeline.
  • the liquid outlet part 401 has a trypan blue liquid outlet.
  • the number of vacuum chucks 73 is two, one vacuum chuck 73 corresponds to the outlet part 401 of the trypan blue liquid discharge mechanism, and the other vacuum chuck 73 corresponds to the counter chip injection hole 301.
  • a sample hole 51 To mix trypan blue, a sample hole 51 first moves to the liquid outlet part 401 after sample injection and corresponds to the position of the liquid outlet of trypan blue, and then forms a sealed pipeline through the work of the motor unit. And rely on the pressure source for sample mixing, and then by rotating the stepper motor 37, the porous sample loading plate 50 is rotated, so that the sample loading hole 51 after the mixing operation runs to the position corresponding to the sample chip injection hole 301 For subsequent sampling operations.
  • the porous sample tray 50 is rotated directly by rotating the stepping motor 37, so that the sample hole 51 is run to the position corresponding to the sample hole 301 of the counting chip for subsequent sample injection operating.
  • the porous sample loading tray 50 has 25 sample loading holes 51, one of which is the initial adjustment hole.
  • the initial calibration hole is the hole used by the cell counter during initialization.
  • the cell counter Before performing the sample addition test, the cell counter first runs the motor unit according to a sample hole 51 to ensure that the position of the sample hole 51 can be in accordance with the cell counter
  • the state at work corresponds to the device or position where the sample-filling hole 51 is needed, such as the sample-filling position, counting chip, trypan blue liquid outlet, etc.
  • Any one of the loading holes 51 can be used as the initial adjustment hole, and as the 0th hole when the cell counter starts to work, and the remaining 24 loading holes 51 are used as the sample holes during the actual work, configured to put the sample in Follow up work.
  • the sampling hole 51 has a sampling section 510 and a sampling section 512, the sampling section 510 and the sampling section 512 are connected, and the sampling section 510 and the sampling section 512 are not straight-through layout, and the sampling section 510 is configured to accommodate The sample is set, and the sampling section 512 is configured for the sample to flow out to the counting chip or for trypan blue for the trypan blue discharge mechanism to enter the sampling hole 51.
  • the inner wall of the sample loading section 510 is divided into a straight barrel portion 5121 and a cone barrel portion 5123, the straight barrel portion 5121 and the cone barrel portion 5123 are connected, and the diameter dimension of the cross-sectional profile of the cone barrel portion 5123 is from One end near the straight barrel portion 5121 gradually decreases toward the other end, and the injection section 512 is connected to the side wall of the cone barrel portion 5123. Therefore, a non-straight-through structure is formed, and the sample can be kept in the middle position during the sample addition, so as to avoid the sample leaking from the bottom of the sample addition hole 51 due to the excessive force of the sample addition operation.
  • the sampling section 510 and the injection section 512 are connected and arranged, wherein the hole pattern of the cone section 5123 of the sampling section 510 and the injection section 512 are in a different axial position relationship, so that The sample section 510 and the sample injection section 512 are arranged in a staggered manner, and the outlet diameter of the sample injection section 512 at the lower end is smaller than the diameter of the inlet of the sample addition section 510.
  • a sealing gasket 53 is provided on both the upper and lower ends of the sample loading hole 51.
  • the multi-hole sampling device 100 further includes a sample hole cover 55
  • the motor group further includes a dual motion motor 39
  • the dual motion motor 39 is mounted on the mounting frame 10
  • the output end of the dual motion motor 39 is connected to the sample hole cover 55
  • the sample hole cover 55 is located above the sample loading position
  • the control system can control the dual motion motor 39 to work, so that the sample hole cover 55 and the housing 200 block the sample hole 51 at the sample loading position or make the sample hole cover 55 Move and expose the loading hole 51 at the loading position.
  • closing the sample hole cover 55 can avoid external pollution.
  • the cross-sectional area of the sample hole cover 55 is greater than or equal to the cross-sectional area of the sample hole 51.
  • the multi-hole sampling device 100 further includes a magnetic position sensor 57 (Hall switch device) and a photoelectric encoder 61.
  • the magnetic position sensor 57 is mounted on the mounting frame 10 and is configured to position the rotational initial position of the multi-hole sample tray 50.
  • the encoder 61 is installed on the rotary stepper motor 37 and feeds back the rotation angle signal of the porous sample tray 50 to the control system.
  • the control system controls the rotary stepper motor 37 to work or stop according to the rotation initial position and the rotation angle signal of the porous sample tray 50 , So that the sample hole 51 can be moved to the working position.
  • the photoelectric encoder 61 reads the rotation angle of the rotary stepping motor 37 to feed back the rotation angle signal of the porous sample loading plate 50.
  • the control system can locate the position of each sampling hole 51 and enable it to operate accurately to the desired working position.
  • the porous sampling device 100 further includes a photoelectric sensor 59, which can detect the vertical position of the porous loading tray 50 and can feed back the vertical position of the porous loading tray 50 to the control system.
  • the position of the sample tray 50 in the up-down direction controls the operation of the first linear stepping motor 31 so that the porous sample tray 50 rises or falls.
  • the photoelectric sensor 59 is divided into an upper position sensor and a lower position sensor to conveniently detect the upper and lower positions.
  • the photoelectric sensor 59 includes an upper position sensor and a lower position sensor.
  • the upper position sensor is configured to detect position information of the porous loading tray 50 in the upward direction
  • the lower position sensor is configured to detect position information of the porous loading tray 50 in the downward direction.
  • the control system can better control the operation of the first linear stepping motor 31 and the rotating stepping motor 37 to achieve The precise control of the up and down positions of the sample tray 50 and the liquid outlet part 401, as well as the precise control of the rotation angle of the porous sample loading tray 50 itself.
  • the sample hole cover 55 can be opened to expose the sample port on the housing 200 and a sample hole 51 is exposed.
  • the stepping motor 37 is rotated to work.
  • the next loading hole 51 is exposed to facilitate the loading of the next sample.
  • the other sampling holes 51 can be deduced by analogy.
  • the dual-motion motor 39 works, so that the sampling hole cover 55 closes the position of the sampling port opened on the housing 200.
  • next step of function selection can be performed according to the requirements. For example, to perform cell counting and viability detection, firstly, a sample adding hole 51 after sampling is operated to the outlet part 401 of the trypan blue outlet mechanism Above, and mix the sample, and then run to the sampling hole 301 of the counting chip to perform the subsequent sampling operation.
  • the implementation of trypan blue sample mixing, cell counting, etc. can refer to the implementation of the existing cell counter, which will not be described in detail in this embodiment.
  • This embodiment provides a multi-hole sampling method, including the following steps: opening the sample hole cover 55, configured to expose the sample port opened on the housing 200; adding samples to the plurality of sample holes 51 in sequence; the addition is completed After that, the sample hole cover 55 closes the position of the sample port opened on the housing 200.
  • the control system controls the rotary stepper motor 37 to work, the porous sample tray 50 rotates and makes the next sample hole 51 In the loading position.
  • the sample hole opening 55 is opened to expose a sample hole 51 when the sample port opened on the housing 200 is exposed, and after the sample is added, the stepping motor 37 is rotated to work , Configured so that the next sample hole 51 is exposed to facilitate the sample addition of the next sample; when other sample holes 51 are added, the above steps are repeated in sequence. After all samples are added, the dual-motion motor works.
  • the sampling hole cover 55 is configured to close the position of the sampling hole opened on the casing 200.
  • a sample hole 51 first moves to the liquid outlet part 401 after sample addition and corresponds to the position of the trypan blue liquid outlet, and a seal is formed by the work of the motor group
  • the pipeline relies on the pressure source for sample mixing; the porous sample loading tray 50 is driven to rotate by rotating the stepper motor 37, and the sample loading hole 51 configured for sample mixing is run to a position corresponding to the sample injection hole 301 of the counting chip .
  • the technical effect of the porous sampling method provided in this embodiment is the same as the technical effect of the porous sampling device 100 provided in the above embodiment.
  • the porous sampling device 100 and the porous sampling method of the present application pass The multi-hole sample tray 50 cooperates with the motor unit and the position detection component.
  • the operator can add multiple samples during sample addition, and then perform subsequent detection on the samples in each sample hole 51 separately, without the need of the existing
  • cell counters must be tested sample by sample. Therefore, the operation time of the sample addition required for the detection of the cell sample is saved, the workload of the operator is reduced, and the efficiency of the entire detection process is improved. And there is no need to keep the instrument all the time, which is convenient for the operator to handle other affairs during the detection process.
  • the porous sampling device provided by the embodiment of the present application, through the porous sample loading disc, in conjunction with the motor set and the position detection component, can facilitate the operator to add a plurality of samples to be tested at one time, and save the sample adding operation time required for detecting the cell sample.

Abstract

一种多孔进样装置及多孔进样方法,其中多孔进样装置(100)包括:安装架(10)、电机组、多孔加样盘(50)、真空吸盘机构和控制系统。电机组包括第一直线步进电机(31)、第二直线步进电机(33)和旋转步进电机(37);多孔加样盘(50)与旋转步进电机(37)连接,第一直线步进电机(31)安装于安装架(10),旋转步进电机(37)与第一直线步进电机(31)连接,多孔加样盘(50)布设有多个加样孔(51);真空吸盘机构包括吸盘支架(71)和真空吸盘(73),吸盘支架(71)和第二直线步进电机(33)连接,真空吸盘(73)安装于吸盘支架(71),真空吸盘(73)的位置、加样孔(51)的位置和计数芯片进样孔(301)的位置对应;控制系统能够控制电机组工作或停止。该多孔进样装置能够便于操作人员一次加入多个待测样品,节省检测细胞样品时所需的加样操作时间。

Description

多孔进样装置及多孔进样方法
相关申请的交叉引用
本申请要求于2018年10月31日提交中国专利局的申请号为201811291134.8、名称为“多孔进样装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及细胞计数装置技术领域,具体而言,涉及一种多孔进样装置及多孔进样方法。
背景技术
在大量的细胞生物研究实验中,需要对细胞或其他生物微粒进行浓度检测(定量计数),细胞悬液浓度(或数量)既是细胞培养的监测参数,也是很多实验项目中的必要参数,对于成功完成实验是非常基础但却很重要的过程条件。现有的计数手段,主要包括采用细胞计数板的人工计数方法,基于图像分析技术的自动化计数仪器,以及利用电阻法(库尔特原理)的自动化计数仪器。
其中人工计数方法最为普遍,实验人员将悬浮细胞样品注入细胞计数板计数池,在显微镜下以肉眼观察并按规则进行人工计数。此方法的主要缺点是:
1.由于计数池本身的深度数倍于细胞尺度,这样就会造成细胞样品注入后在其中分层悬浮。从而观察到的细胞形态会有所差别,造成计数结果的不准确和细胞活性判断错误。
2.按规则注入细胞计数板的样品为10uL,但是在显微镜观察区域内的样品量仅仅是一小部分,不足1uL。这样细胞样品在计数池内分布是否均匀 就会对结果造成很大的影响。
3.计数时是按照一定规则来人工计数的,操作人员水平的差异以及肉眼观察导致的疲劳度就引入很大的人为误差。
基于图像分析技术的自动化仪器虽避免了肉眼观察的困难,但是仍然存在以下不足:
1.引入了一次性计数片耗材的使用,增加了用户检测成本。
2.计数片在结构上与细胞计数板类似,所以也存在计数板上细胞分层悬浮导致结果不准确和活性误判的问题。
3.同人工计数一样,大部分基于图像法的仪器存在检测样品量少导致的结果偏差大的问题。
利用电阻法(库尔特原理)的自动化计数仪器(细胞计数仪)虽然可以避免以上2种计数方法的缺点与不足,但在操作及使用上仍然存在有以下不足:
在需要检测多个细胞样本时,操作人员需要加样然后等待结果再加入下一样本检测,无法一次性加入多个待测样品。
申请内容
本申请提供一种多孔进样装置,其能够实现便于操作人员一次加入多个待测样品,节省检测细胞样品时所需的加样操作时间的技术效果中的至少一个。
本申请的实施例是这样实现的:
本申请的实施例提供了一种多孔进样装置,配置成细胞计数仪进样,细胞计数仪包括壳体、计数芯片、台盼蓝出液机构,计数芯片和台盼蓝出液机构均设置于壳体内,包括:
安装架,所述安装架配置成架设于细胞计数仪的壳体内;
电机组,所述电机组包括第一直线步进电机、第二直线步进电机和旋转步进电机;
多孔加样盘,所述多孔加样盘的盘心部分与所述旋转步进电机的输出端连接,所述第一直线步进电机安装于所述安装架,所述旋转步进电机与所述第一直线步进电机的输出端连接且能够在所述第一直线步进电机的驱动下进行上下运动,多孔加样盘的靠近边缘的位置布设有沿轴向开设的多个加样孔;
真空吸盘机构,所述真空吸盘机构包括吸盘支架和真空吸盘,所述吸盘支架和所述第二直线步进电机的输出端连接,所述真空吸盘安装于所述吸盘支架且位于所述多孔加样盘的上方,所述真空吸盘的位置至少与一个所述加样孔的位置对应,至少一个所述真空吸盘的位置与计数芯片进样孔的位置对应,所述多孔加样盘位于所述真空吸盘与计数芯片之间;
控制系统,所述控制系统能够控制所述电机组工作或停止;
加样时,在加样位置向一个所述加样孔加入样品,所述控制系统控制所述旋转步进电机工作,所述多孔加样盘转动且使得下一个所述加样孔处于加样位置;
进样时,所述多孔加样盘在所述旋转步进电机的驱动下转动,使得加样后的所述加样孔移动至所述真空吸盘的下方并停止,所述控制系统控制所述第一直线步进电机工作使得所述旋转步进电机下降且使得所述多孔加样盘下降至与计数芯片贴合,所述加样孔与进样孔连通,所述控制系统控制所述第二直线步进电机工作使得所述真空吸盘下降且与所述多孔加样盘贴合,所述加样孔、所述真空吸盘与计数芯片进样孔形成密封管路,所述加样孔内的样品能够在与计数芯片连接的压力源的作用下进入到计数芯片进样孔内。
另外,根据本申请的实施例提供的多孔进样装置,还可以具有如下附加的技术特征:
可选地,所述电机组还包括第三直线步进电机,所述第三直线步进电机安装于所述安装架,所述第三直线步进电机的输出端与台盼蓝出液机构的出液口部件传动连接且能够使得出液口部件上下运动;
需要进行台盼蓝混样时,所述控制系统控制所述第三直线步进电机工作,使得出液口部件上升,所述第一直线步进电机工作且使得所述多孔加样盘下降,所述第二直线步进电机工作且使得所述真空吸盘下降,出液口部件、所述加样孔和所述真空吸盘形成密封管路。
可选地,所述真空吸盘的数量为两个,一个所述真空吸盘的位置对应台盼蓝出液机构的出液口部件,另外一个所述真空吸盘的位置对应计数芯片进样孔。
可选地,所述多孔加样盘具有25个所述加样孔,其中一个所述加样孔为初始调校孔。
可选地,所述加样孔具有加样段和进样段,所述加样段和所述进样段连通且所述加样段和所述进样段为非直通布设,所述加样段配置成容置样品,所述进样段配置成供样品流出至计数芯片或者供台盼蓝出液机构的台盼蓝进入到所述加样孔内。
可选地,所述加样段的内壁分为直筒部分和锥筒部分,所述直筒部分和所述锥筒部分衔接,所述锥筒部分的截面轮廓的直径尺寸,从靠近所述直筒部分一端向着另外一端逐渐减小,所述进样段与所述锥筒部分的侧壁衔接。
可选地,所述加样孔的上下两端均设有密封垫圈。
可选地,所述多孔进样装置还包括加样孔盖,所述电机组还包括双运 动电机,所述双运动电机安装于所述安装架,所述双运动电机的输出端与所述加样孔盖连接,所述加样孔盖位于加样位置上方,所述控制系统能够控制所述双运动电机工作,使得所述加样孔盖与壳体将加样位置处的所述加样孔封挡或者使得所述加样孔盖挪移并露出加样位置处的所述加样孔。
可选地,所述加样孔盖的横截面面积大于或者等于所述加样孔的横截面面积。
可选地,所述多孔进样装置还包括磁性位置传感器和光电编码器,所述磁性位置传感器安装于所述安装架且配置成定位所述多孔加样盘的转动初始位置,所述光电编码器安装于所述旋转步进电机且向所述控制系统反馈所述多孔加样盘的转动角度信号,所述控制系统根据所述多孔加样盘的转动初始位置和转动角度信号控制所述旋转步进电机工作或停止,使得所述加样孔能够运动至工作位置。
可选地,所述多孔加样盘与所述旋转步进电机的输出轴呈同轴心设置,配置成读取所述旋转步进电机的旋转角度信息以反馈所述多孔加样盘的转动角度信号。
可选地,所述磁性位置传感器包括霍尔开关器件。
可选地,所述多孔进样装置还包括光电传感器,所述光电传感器能够检测所述多孔加样盘的上下方向的位置且能够向所述控制系统反馈所述多孔加样盘的上下方向的位置,所述控制系统根据所述多孔加样盘的上下方向的位置,控制所述第一直线步进电机工作,使得所述多孔加样盘上升或者下降。
可选地,所述光电传感器包括上位置传感器和下位置传感器,所述上位置传感器配置成检测所述多孔加样盘的上方向的位置信息,所述下位置传感器配置成检测所述多孔加样盘的下方向的位置信息。
本申请提供一种多孔进样方法,包括以下步骤:开启加样孔盖,配置成使得壳体上开设的加样口露出;依次向多个加样孔内添加样品;添加完成后,加样孔盖封闭壳体上开设的加样口位置。
可选地,还包括以下步骤:加样时,在加样位置向一个加样孔加入样品,控制系统控制旋转步进电机工作,多孔加样盘转动且使得下一个加样孔处于加样位置。
可选地,需要进行多个样品的检测时,开启加样孔盖使得壳体上开设的加样口露出时,露出一个加样孔,在添加样品后,旋转步进电机工作,配置成使得下一个加样孔露出,以便于进行下一个样品的加样工作;
在其他加样孔进行加样时,依次重复上述步骤,全部样品添加完成后,双运动电机工作,配置成加样孔盖将壳体上开设的加样口位置封闭。
可选地,当需要进行台盼蓝混样时,一个加样孔在加样后首先运动至出液口部件处并与台盼蓝出液口位置对应,通过电机组的工作形成密封管路,依靠压力源进行混样;
通过旋转步进电机的工作带动多孔加样盘转动,配置成进行混样后的加样孔运行至与计数芯片的进样孔对应的位置。
本申请的有益效果至少包括:多孔进样装置通过多孔加样盘配合电机组以及位置检测组件,操作人员能够在加样时进行多个样品的加样,然后对每个加样孔内的样品分别进行后续的检测,无需像现有的细胞计数仪一般,必须一个样品、一个样品地进行检测。从而节省检测细胞样品时所需的加样操作时间,减少操作人员的工作量,进而提升了整个检测过程的效率。并且无需一直守着仪器,方便操作人员在检测过程中处理另外的事务。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需 要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请的实施例提供的多孔进样装置设置于剖去了部分壳体的细胞计数仪内部后的结构示意图;
图2为图1隐去部分壳体后的细胞计数仪内的多孔进样装置的另一个视角的示意图;
图3为图2的A部分的局部放大图;
图4为图2的另一个视角的示意图;
图5为多孔加样盘的示意图;
图6为加样孔的剖视图。
图标:100-多孔进样装置;10-安装架;31-第一直线步进电机;33-第二直线步进电机;35-第三直线步进电机;37-旋转步进电机;39-双运动电机;50-多孔加样盘;51-加样孔;510-加样段;512-进样段;5121-直筒部分;5123-锥筒部分;53-密封垫圈;55-加样孔盖;57-磁性位置传感器;59-光电传感器;61-光电编码器;71-吸盘支架;73-真空吸盘;200-壳体;301-进样孔;401-出液口部件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限 制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
请参照图1至图6,本实施例提供了一种多孔进样装置100,配置成细胞计数仪进样。细胞计数仪包括壳体200、计数芯片、台盼蓝出液机构,计数芯片和台盼蓝出液机构均设置于壳体200内。多孔进样装置100包括:
安装架10,安装架10配置成架设于细胞计数仪的壳体200内;
电机组,电机组包括第一直线步进电机31、第二直线步进电机33和旋转步进电机37;
多孔加样盘50,多孔加样盘50的盘心部分与旋转步进电机37的输出端连接,第一直线步进电机31安装于安装架10,旋转步进电机37与第一直线步进电机31的输出端连接且能够在第一直线步进电机31的驱动下进行上下运动,多孔加样盘50的靠近边缘的位置布设有沿轴向开设的多个加样孔51;
真空吸盘机构,真空吸盘机构包括吸盘支架71和真空吸盘73,吸盘支架71和第二直线步进电机33的输出端连接,真空吸盘73安装于吸盘支架71且位于多孔加样盘50的上方,真空吸盘73的位置至少与一个加样孔51的位置对应,至少一个真空吸盘73的位置与计数芯片进样孔301的位置对应,多孔加样盘50位于真空吸盘73与计数芯片之间;
控制系统,控制系统能够控制电机组工作或停止;
加样时,在加样位置向一个加样孔51加入样品,控制系统控制旋转步 进电机37工作,多孔加样盘50转动且使得下一个加样孔51处于加样位置;
进样时,多孔加样盘50在旋转步进电机37的驱动下转动,使得加样后的加样孔51移动至真空吸盘73的下方并停止,控制系统控制第一直线步进电机31工作使得旋转步进电机37下降且使得多孔加样盘50下降至与计数芯片贴合,加样孔51与进样孔301连通,控制系统控制第二直线步进电机33工作使得真空吸盘73下降且与多孔加样盘50贴合,加样孔51、真空吸盘73与计数芯片进样孔301形成密封管路,加样孔51内的样品能够在与计数芯片连接的压力源的作用下进入到计数芯片进样孔301内。
其中,控制系统的架构以及使用的硬件等等均可以参照现有的细胞计数仪的控制系统。计数芯片、台盼蓝出液机构、压力源(如正压气泵或者液泵)等同样可以参照现有的细胞计数仪,本实施例未对上述器件做改进,此处不再进行赘述。
其中,加样位置是指壳体200的配置成加样时的开口处,加样孔51转动至此处时可从外部向加样孔51内添加样品。
其中,若是无需进行活率检测,则细胞计数仪可以不包括台盼蓝出液机构,其他结构不变且不受影响。
具体的,电机组还包括第三直线步进电机35,第三直线步进电机35安装于安装架10,第三直线步进电机35的输出端与台盼蓝出液机构的出液口部件401传动连接且能够使得出液口部件401上下运动;
需要进行台盼蓝混样时,控制系统控制第三直线步进电机35工作,使得出液口部件401上升,第一直线步进电机31工作且使得多孔加样盘50下降,第二直线步进电机33工作且使得真空吸盘73下降,出液口部件401、加样孔51和真空吸盘73形成密封管路。出液口部件401具有台盼蓝出液口。
在本实施中,真空吸盘73的数量为两个,一个真空吸盘73的位置对应台盼蓝出液机构的出液口部件401,另外一个真空吸盘73的位置对应计数芯片进样孔301。
若要进行台盼蓝混样,则一个加样孔51在加样后首先运动至出液口部件401处并与台盼蓝出液口位置对应,然后通过电机组的工作形成密封管路,并依靠压力源进行混样,然后再通过旋转步进电机37的工作,使得多孔加样盘50转动,使得进行混样后的加样孔51运行至与计数芯片的进样孔301对应的位置,以便进行后续的进样操作。
若无需进行混样,则直接通过旋转步进电机37的工作,使得多孔加样盘50转动,使得加样孔51运行至与计数芯片的进样孔301对应的位置,以便进行后续的进样操作。
在本实施例中,多孔加样盘50具有25个加样孔51,其中一个加样孔51为初始调校孔。初始调校孔是细胞计数仪在初始化时所用的孔,在进行加样检测前,细胞计数仪先根据一个加样孔51试运行电机组,确保该加样孔51的位置能够按照细胞计数仪工作时的状态,与加样位置、计数芯片、台盼蓝出液口等等需要用到加样孔51的器件或位置进行对应。任意一个加样孔51均可以作为初始调校孔,并作为细胞计数仪开始工作时的0号孔,其余24个加样孔51则作为实际工作时的样品孔,配置成放入样品,以便进行后续工作。
除了25个加样孔51的方案,可以想见的是,还可以是其他数量的方案,以满足使用需求的操作人员进行不同规格的仪器选择,提升样品检测的效率。
详细的,加样孔51具有加样段510和进样段512,加样段510和进样段512连通且加样段510和进样段512为非直通布设,加样段510配置成 容置样品,进样段512配置成供样品流出至计数芯片或者供台盼蓝出液机构的台盼蓝进入到加样孔51内。
更为详细的,在本实施例中,加样段510的内壁分为直筒部分5121和锥筒部分5123,直筒部分5121和锥筒部分5123衔接,锥筒部分5123的截面轮廓的直径尺寸,从靠近直筒部分5121一端向着另外一端逐渐减小,进样段512与锥筒部分5123的侧壁衔接。从而形成一个非直通结构,加样时可以让样品保持在中间位置,避免因加样操作力度过大导致样品从加样孔51底部漏出。
换句话说,加样段510和进样段512是连通布置的,其中,加样段510锥筒部分5123的孔型与进样段512的孔型是不同轴心的位置关系,以使加样段510和进样段512是错位布置,而且处于下端的进样段512出口口径小于加样段510入口的口径。
在本实施例中,加样孔51的上下两端均设有密封垫圈53。计数芯片的进样孔301处、出液口部件401处同样有垫圈结构,以便在不同工作情境下形成相应的密封管路。
具体的,多孔进样装置100还包括加样孔盖55,电机组还包括双运动电机39,双运动电机39安装于安装架10,双运动电机39的输出端与加样孔盖55连接,加样孔盖55位于加样位置上方,控制系统能够控制双运动电机39工作,使得加样孔盖55与壳体200将加样位置处的加样孔51封挡或者使得加样孔盖55挪移并露出加样位置处的加样孔51。当运行检测过程时,关闭加样孔盖55可以避免外界污染。
为了保证加样孔盖55能够完全将加样位置处的加样孔51封挡,加样孔盖55的横截面面积大于或者等于加样孔51的横截面面积。
具体的,多孔进样装置100还包括磁性位置传感器57(霍尔开关器件) 和光电编码器61,磁性位置传感器57安装于安装架10且配置成定位多孔加样盘50的转动初始位置,光电编码器61安装于旋转步进电机37且向控制系统反馈多孔加样盘50的转动角度信号,控制系统根据多孔加样盘50的转动初始位置和转动角度信号控制旋转步进电机37工作或停止,使得加样孔51能够运动至工作位置。光电编码器61是通过读取旋转步进电机37的旋转角度来反馈多孔加样盘50的转动角度信号,这是由于多孔加样盘50与旋转步进电机37的输出轴是同轴心设置,所以读取旋转步进电机37的输出轴的转动角度,即可获知多孔加样盘50的转动角度。通过转动初始位置和转动角度信号,控制系统能够定位每个加样孔51的位置,并使之能够精确运转至所需的工作位置。
具体的,多孔进样装置100还包括光电传感器59,光电传感器59能够检测多孔加样盘50的上下方向的位置且能够向控制系统反馈多孔加样盘50的上下方向的位置,控制系统根据多孔加样盘50的上下方向的位置,控制第一直线步进电机31工作,使得多孔加样盘50上升或者下降。进一步的,光电传感器59分为了上位置传感器和下位置传感器,以方便检测上下位置。
其中,光电传感器59包括上位置传感器和下位置传感器,上位置传感器配置成检测多孔加样盘50的上方向的位置信息,下位置传感器配置成检测多孔加样盘50的下方向的位置信息。
通过设置磁性位置传感器57、光电传感器59和光电编码器61这样的位置检测组件,控制系统能够更好地控制第一直线步进电机31以及旋转步进电机37的工作,以实现对于多孔加样盘50以及出液口部件401的上下位置的精确控制,还有多孔加样盘50自身的旋转角度的精确控制。
本实施例的原理是:
需要进行多个样品的检测时,可以先开启加样孔盖55,使得壳体200 上开设的加样口露出,并且露出一个加样孔51,在添加样品后,旋转步进电机37工作,使得下一个加样孔51露出,以便于进行下一个样品的加样工作。其他加样孔51以此类推,在添加完样品后,双运动电机39工作,使得加样孔盖55将壳体200上开设的加样口位置封闭。
进一步的,可以根据需求进行下一步的功能选择,比如要进行细胞计数和活率检测,则先控制一个加样后的加样孔51运行至台盼蓝出液机构的出液口部件401的上方,并进行混样,然后再运行至计数芯片的进样孔301处,进行后续的进样作业。
如果只需要计数,则直接控制加样后的加样孔51运行至计数芯片的进样孔301处,并进行后续的操作。
其中,台盼蓝混样、细胞计数等等的实现,均可参照现有的细胞计数仪的实现方式,本实施例不再赘述。
本实施例提供一种多孔进样方法,包括以下步骤:开启加样孔盖55,配置成使得壳体200上开设的加样口露出;依次向多个加样孔51内添加样品;添加完成后,加样孔盖55封闭壳体200上开设的加样口位置。
可选地,还包括以下步骤:加样时,在加样位置向一个加样孔51加入样品,控制系统控制旋转步进电机37工作,多孔加样盘50转动且使得下一个加样孔51处于加样位置。
可选地,需要进行多个样品的检测时,开启加样孔盖55使得壳体200上开设的加样口露出时,露出一个加样孔51,在添加样品后,旋转步进电机37工作,配置成使得下一个加样孔51露出,以便于进行下一个样品的加样工作;在其他加样孔51进行加样时,依次重复上述步骤,全部样品添加完成后,双运动电机工作,配置成加样孔盖55将壳体200上开设的加样口位置封闭。
可选地,当需要进行台盼蓝混样时,一个加样孔51在加样后首先运动至出液口部件401处并与台盼蓝出液口位置对应,通过电机组的工作形成密封管路,依靠压力源进行混样;通过旋转步进电机37的工作带动多孔加样盘50转动,配置成进行混样后的加样孔51运行至与计数芯片的进样孔301对应的位置。
本实施例提供的多孔进样方法的技术效果与上述实施例提供的多孔进样装置100的技术效果相同,具体地,综上所述,本申请的多孔进样装置100以及多孔进样方法通过多孔加样盘50配合电机组以及位置检测组件,操作人员能够在加样时进行多个样品的加样,然后对每个加样孔51内的样品分别进行后续的检测,无需像现有的细胞计数仪一般,必须一个样品、一个样品地进行检测。从而节省检测细胞样品时所需的加样操作时间,减少操作人员的工作量,进而提升了整个检测过程的效率。并且无需一直守着仪器,方便操作人员在检测过程中处理另外的事务。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例提供的多孔进样装置,通过多孔加样盘配合电机组以及位置检测组件,能够便于操作人员一次加入多个待测样品,节省检测细胞样品时所需的加样操作时间。

Claims (18)

  1. 一种多孔进样装置,配置成细胞计数仪进样,细胞计数仪包括壳体、计数芯片、台盼蓝出液机构,计数芯片和台盼蓝出液机构均设置于壳体内,其特征在于,包括:
    安装架,所述安装架配置成架设于细胞计数仪的壳体内;
    电机组,所述电机组包括第一直线步进电机、第二直线步进电机和旋转步进电机;
    多孔加样盘,所述多孔加样盘的盘心部分与所述旋转步进电机的输出端连接,所述第一直线步进电机安装于所述安装架,所述旋转步进电机与所述第一直线步进电机的输出端连接且能够在所述第一直线步进电机的驱动下进行上下运动,多孔加样盘的靠近边缘的位置布设有沿轴向开设的多个加样孔;
    真空吸盘机构,所述真空吸盘机构包括吸盘支架和真空吸盘,所述吸盘支架和所述第二直线步进电机的输出端连接,所述真空吸盘安装于所述吸盘支架且位于所述多孔加样盘的上方,所述真空吸盘的位置至少与一个所述加样孔的位置对应,至少一个所述真空吸盘的位置与计数芯片进样孔的位置对应,所述多孔加样盘位于所述真空吸盘与计数芯片之间;
    控制系统,所述控制系统能够控制所述电机组工作或停止;
    加样时,在加样位置向一个所述加样孔加入样品,所述控制系统控制所述旋转步进电机工作,所述多孔加样盘转动且使得下一个所述加样孔处于加样位置;
    进样时,所述多孔加样盘在所述旋转步进电机的驱动下转动,使得加样后的所述加样孔移动至所述真空吸盘的下方并停止,所述控制系统控制所述第一直线步进电机工作使得所述旋转步进电机下降且使得所述多孔加 样盘下降至与计数芯片贴合,所述加样孔与进样孔连通,所述控制系统控制所述第二直线步进电机工作使得所述真空吸盘下降且与所述多孔加样盘贴合,所述加样孔、所述真空吸盘与计数芯片进样孔形成密封管路,所述加样孔内的样品能够在与计数芯片连接的压力源的作用下进入到计数芯片进样孔内。
  2. 根据权利要求1所述的多孔进样装置,其特征在于,所述电机组还包括第三直线步进电机,所述第三直线步进电机安装于所述安装架,所述第三直线步进电机的输出端与台盼蓝出液机构的出液口部件传动连接且能够使得出液口部件上下运动;
    需要进行台盼蓝混样时,所述控制系统控制所述第三直线步进电机工作,使得出液口部件上升,所述第一直线步进电机工作且使得所述多孔加样盘下降,所述第二直线步进电机工作且使得所述真空吸盘下降,出液口部件、所述加样孔和所述真空吸盘形成密封管路。
  3. 根据权利要求2所述的多孔进样装置,其特征在于,所述真空吸盘的数量为两个,一个所述真空吸盘的位置对应台盼蓝出液机构的出液口部件,另外一个所述真空吸盘的位置对应计数芯片进样孔。
  4. 根据权利要求1-3任一项所述的多孔进样装置,其特征在于,所述多孔加样盘具有25个所述加样孔,其中一个所述加样孔为初始调校孔。
  5. 根据权利要求1或4所述的多孔进样装置,其特征在于,所述加样孔具有加样段和进样段,所述加样段和所述进样段连通且所述加样段和所述进样段为非直通布设,所述加样段配置成容置样品,所述进样段配置成供样品流出至计数芯片或者供台盼蓝出液机构的台盼蓝进入到所述加样孔内。
  6. 根据权利要求5所述的多孔进样装置,其特征在于,所述加样段的 内壁分为直筒部分和锥筒部分,所述直筒部分和所述锥筒部分衔接,所述锥筒部分的截面轮廓的直径尺寸,从靠近所述直筒部分一端向着另外一端逐渐减小,所述进样段与所述锥筒部分的侧壁衔接。
  7. 根据权利要求1或4所述的多孔进样装置,其特征在于,所述加样孔的上下两端均设有密封垫圈。
  8. 根据权利要求1-7任一项所述的多孔进样装置,其特征在于,所述多孔进样装置还包括加样孔盖,所述电机组还包括双运动电机,所述双运动电机安装于所述安装架,所述双运动电机的输出端与所述加样孔盖连接,所述加样孔盖位于加样位置上方,所述控制系统能够控制所述双运动电机工作,使得所述加样孔盖与壳体将加样位置处的所述加样孔封挡或者使得所述加样孔盖挪移并露出加样位置处的所述加样孔。
  9. 根据权利要求8所述的多孔进样装置,其特征在于,所述加样孔盖的横截面面积大于或者等于所述加样孔的横截面面积。
  10. 根据权利要求1-9任一项所述的多孔进样装置,其特征在于,所述多孔进样装置还包括磁性位置传感器和光电编码器,所述磁性位置传感器安装于所述安装架且配置成定位所述多孔加样盘的转动初始位置,所述光电编码器安装于所述旋转步进电机且向所述控制系统反馈所述多孔加样盘的转动角度信号,所述控制系统根据所述多孔加样盘的转动初始位置和转动角度信号控制所述旋转步进电机工作或停止,使得所述加样孔能够运动至工作位置。
  11. 根据权利要求10所述的多孔进样装置,其特征在于,所述多孔加样盘与所述旋转步进电机的输出轴呈同轴心设置,配置成读取所述旋转步进电机的旋转角度信息以反馈所述多孔加样盘的转动角度信号。
  12. 根据权利要求10或11所述的多孔进样装置,其特征在于,所述磁 性位置传感器包括霍尔开关器件。
  13. 根据权利要求1-12任一项所述的多孔进样装置,其特征在于,所述多孔进样装置还包括光电传感器,所述光电传感器能够检测所述多孔加样盘的上下方向的位置且能够向所述控制系统反馈所述多孔加样盘的上下方向的位置,所述控制系统根据所述多孔加样盘的上下方向的位置,控制所述第一直线步进电机工作,使得所述多孔加样盘上升或者下降。
  14. 根据权利要求13所述的多孔进样装置,其特征在于,所述光电传感器包括上位置传感器和下位置传感器,所述上位置传感器配置成检测所述多孔加样盘的上方向的位置信息,所述下位置传感器配置成检测所述多孔加样盘的下方向的位置信息。
  15. 一种多孔进样方法,其特征在于,包括以下步骤:
    开启加样孔盖,配置成使得壳体上开设的加样口露出;
    依次向多个加样孔内添加样品;
    添加完成后,加样孔盖封闭壳体上开设的加样口位置。
  16. 根据权利要求15所述的多孔进样方法,其特征在于,还包括以下步骤:加样时,在加样位置向一个加样孔加入样品,控制系统控制旋转步进电机工作,多孔加样盘转动且使得下一个加样孔处于加样位置。
  17. 根据权利要求16所述的多孔进样方法,其特征在于,还包括以下步骤:需要进行多个样品的检测时,开启加样孔盖使得壳体上开设的加样口露出时,露出一个加样孔,在添加样品后,旋转步进电机工作,配置成使得下一个加样孔露出,以便于进行下一个样品的加样工作;
    在其他加样孔进行加样时,依次重复上述步骤,全部样品添加完成后,双运动电机工作,配置成加样孔盖将壳体上开设的加样口位置封闭。
  18. 根据权利要求17所述的多孔进样方法,其特征在于,还包括以下 步骤:当需要进行台盼蓝混样时,一个加样孔在加样后首先运动至出液口部件处并与台盼蓝出液口位置对应,通过电机组的工作形成密封管路,依靠压力源进行混样;
    通过旋转步进电机的工作带动多孔加样盘转动,配置成进行混样后的加样孔运行至与计数芯片的进样孔对应的位置。
PCT/CN2019/114124 2018-10-31 2019-10-29 多孔进样装置及多孔进样方法 WO2020088476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811291134.8 2018-10-31
CN201811291134.8A CN109061214B (zh) 2018-10-31 2018-10-31 多孔进样装置

Publications (1)

Publication Number Publication Date
WO2020088476A1 true WO2020088476A1 (zh) 2020-05-07

Family

ID=64767983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114124 WO2020088476A1 (zh) 2018-10-31 2019-10-29 多孔进样装置及多孔进样方法

Country Status (2)

Country Link
CN (1) CN109061214B (zh)
WO (1) WO2020088476A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060641A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN109061214B (zh) * 2018-10-31 2023-12-19 江苏卓微生物科技有限公司 多孔进样装置
CN114832875A (zh) * 2022-05-28 2022-08-02 深圳市宝鼎丰科技有限公司 一种集成化微流控芯片设备

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537794A (en) * 1968-08-14 1970-11-03 Fisher Scientific Co Apparatus for the automatic analysis of a plurality of blood samples with means for agitation of each sample
US4452899A (en) * 1982-06-10 1984-06-05 Eastman Kodak Company Method for metering biological fluids
EP1460432A1 (en) * 2003-03-19 2004-09-22 Hitachi High-Technologies Corporation Sample dispensing apparatus and automatic analyzer including the same
EP1764410A1 (en) * 2005-09-16 2007-03-21 Effector Cell Institute, Inc. Disk and cell counting and observation apparatus
JP2011209204A (ja) * 2010-03-30 2011-10-20 Toshiba Corp 自動分析装置
JP2012032310A (ja) * 2010-07-30 2012-02-16 Sysmex Corp 検体処理装置
CN204461973U (zh) * 2015-04-03 2015-07-08 舟山医院 自动化流式细胞仪
CN104777321A (zh) * 2015-04-16 2015-07-15 清华大学 化学发光免疫分析装置
CN105388314A (zh) * 2015-12-17 2016-03-09 嘉兴凯实生物科技有限公司 一种全自动加样仪
CN106153964A (zh) * 2016-08-26 2016-11-23 梅州康立高科技有限公司 一种电解质分析仪及自动采样方法
CN207133167U (zh) * 2017-08-31 2018-03-23 许金泉 一种新型多通道细胞计数仪及多通道细胞计数系统
CN108226550A (zh) * 2018-01-22 2018-06-29 上海默礼生物医药科技有限公司 一种微型多仓室控制的化学发光试剂盒及其检测方法
CN108459172A (zh) * 2018-06-05 2018-08-28 江苏卓微生物科技有限公司 微流控芯片加样密封系统及包含其的细胞分析仪
EP3367104A1 (en) * 2017-02-22 2018-08-29 JVC KENWOOD Corporation Analysis device and analysis method
CN109061214A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样装置
CN109060641A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN209148506U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN209148708U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085006A (en) * 1974-11-06 1978-04-18 Isomedics, Incorporated Automatic cell analyzer method
US5395588A (en) * 1992-12-14 1995-03-07 Becton Dickinson And Company Control of flow cytometer having vacuum fluidics
US5439645A (en) * 1993-01-25 1995-08-08 Coulter Corporation Apparatus for automatically, selectively handling multiple, randomly associated hematological samples
US8570370B2 (en) * 2009-08-31 2013-10-29 Bio-Rad Laboratories, Inc. Compact automated cell counter
JP6333584B2 (ja) * 2014-03-11 2018-05-30 キヤノンメディカルシステムズ株式会社 臨床検査装置
CN204874484U (zh) * 2015-04-20 2015-12-16 南京康芯微健康科技有限公司 稀有细胞自动化捕获设备
CN108627448A (zh) * 2018-06-05 2018-10-09 江苏卓微生物科技有限公司 微粒计数的方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537794A (en) * 1968-08-14 1970-11-03 Fisher Scientific Co Apparatus for the automatic analysis of a plurality of blood samples with means for agitation of each sample
US4452899A (en) * 1982-06-10 1984-06-05 Eastman Kodak Company Method for metering biological fluids
EP1460432A1 (en) * 2003-03-19 2004-09-22 Hitachi High-Technologies Corporation Sample dispensing apparatus and automatic analyzer including the same
EP1764410A1 (en) * 2005-09-16 2007-03-21 Effector Cell Institute, Inc. Disk and cell counting and observation apparatus
JP2011209204A (ja) * 2010-03-30 2011-10-20 Toshiba Corp 自動分析装置
JP2012032310A (ja) * 2010-07-30 2012-02-16 Sysmex Corp 検体処理装置
CN204461973U (zh) * 2015-04-03 2015-07-08 舟山医院 自动化流式细胞仪
CN104777321A (zh) * 2015-04-16 2015-07-15 清华大学 化学发光免疫分析装置
CN105388314A (zh) * 2015-12-17 2016-03-09 嘉兴凯实生物科技有限公司 一种全自动加样仪
CN106153964A (zh) * 2016-08-26 2016-11-23 梅州康立高科技有限公司 一种电解质分析仪及自动采样方法
EP3367104A1 (en) * 2017-02-22 2018-08-29 JVC KENWOOD Corporation Analysis device and analysis method
CN207133167U (zh) * 2017-08-31 2018-03-23 许金泉 一种新型多通道细胞计数仪及多通道细胞计数系统
CN108226550A (zh) * 2018-01-22 2018-06-29 上海默礼生物医药科技有限公司 一种微型多仓室控制的化学发光试剂盒及其检测方法
CN108459172A (zh) * 2018-06-05 2018-08-28 江苏卓微生物科技有限公司 微流控芯片加样密封系统及包含其的细胞分析仪
CN109061214A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样装置
CN109060641A (zh) * 2018-10-31 2018-12-21 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN209148506U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样细胞计数仪
CN209148708U (zh) * 2018-10-31 2019-07-23 江苏卓微生物科技有限公司 多孔进样装置

Also Published As

Publication number Publication date
CN109061214A (zh) 2018-12-21
CN109061214B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
WO2020088474A1 (zh) 多孔进样细胞计数仪及计数方法
WO2020088476A1 (zh) 多孔进样装置及多孔进样方法
CN103983470B (zh) 一种多功能标本盒
JP4570120B2 (ja) 液体を吸引及び分配するための改良された方法及び装置
US20040096368A1 (en) Assay systems and components
EP3629027B1 (en) Chemiluminescence detection equipment and its operation method
US20240036013A1 (en) Automated solution-phase synthesizer
CN109541244A (zh) 一种碘元素自动检测仪及其控制方法
WO2018173636A1 (ja) 自動分析装置
WO2008043281A1 (fr) Échantillonneur de gaz automatique
JP4755927B2 (ja) 血液試料中の血球測定方法及び装置
CN106442493A (zh) 集聚氨气的低浓度氨氮检测方法与装置
CN209148708U (zh) 多孔进样装置
JPH04115136A (ja) 粒子計測装置
CN109765144B (zh) 粘度计测量机构以及钻井液综合性能智能检测分析系统
CN209148506U (zh) 多孔进样细胞计数仪
JP2011106828A (ja) 分注装置、自動分析装置及び分注方法
CN209745975U (zh) 一种高效的全自动尿液检测仪
JP6355960B2 (ja) 臨床検査装置及び容器の洗浄方法
CN209205967U (zh) 用于体外诊断设备的洗头组件
WO2022226746A1 (zh) Poct血细胞分析仪及其使用方法
CN207366412U (zh) 一种带有卸料对接功能的分离式样本前处理装置
CN220690956U (zh) 全自动液体稀释工作站
CN110261595A (zh) 适于化学发光免疫分析仪的样本液稀释混匀方法
CN220626398U (zh) 一种全自动特定蛋白分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877577

Country of ref document: EP

Kind code of ref document: A1