WO2020088140A1 - 消融针组件及消融系统 - Google Patents

消融针组件及消融系统 Download PDF

Info

Publication number
WO2020088140A1
WO2020088140A1 PCT/CN2019/106747 CN2019106747W WO2020088140A1 WO 2020088140 A1 WO2020088140 A1 WO 2020088140A1 CN 2019106747 W CN2019106747 W CN 2019106747W WO 2020088140 A1 WO2020088140 A1 WO 2020088140A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
outer sleeve
needle
proximal end
distal end
Prior art date
Application number
PCT/CN2019/106747
Other languages
English (en)
French (fr)
Inventor
李阳
张庭超
彭波波
丘信炯
刘丽文
胡芮
Original Assignee
杭州诺诚医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州诺诚医疗器械有限公司 filed Critical 杭州诺诚医疗器械有限公司
Publication of WO2020088140A1 publication Critical patent/WO2020088140A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1487Trocar-like, i.e. devices producing an enlarged transcutaneous opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle

Definitions

  • This application relates to the technical field of medical devices, in particular to an ablation needle assembly and ablation system.
  • biopsy needles can be used to puncture to the location of the lesion, and a small amount of tissue at the location of the lesion can be obtained for pathological analysis.
  • the radiofrequency ablation needle or microwave ablation needle can be inserted into the lesion, and the local tissue of the lesion is generated high temperature by radio frequency energy or microwave energy, so that the tissue of the lesion is coagulated and necrotic for the purpose of treatment.
  • Hypertrophic cardiomyopathy is a common autosomal dominant cardiovascular disease with an incidence of about 1: 500 in the general population and a mortality rate of about 1.4% -2.2%.
  • the main manifestation of HCM is left ventricular (Left Ventricle, LV) one or more segments of hypertrophy, the general diagnostic criteria is a thickness greater than or equal to 15mm.
  • the left ventricular outflow tract narrows or even obstructs, that is, when the LVOT pressure difference is too large, it is called obstructive hypertrophic myocardium Disease (Hypertrophic Obstructive Cardiomyopathy, HOCM), HOCM accounts for about 70% of HCM patients.
  • HOCM obstructive hypertrophic myocardium Disease
  • the main methods include drug therapy, ventricular septal surgery (Surgical septalmyectomy), and septal alcohol ablation (Alcohol Septal Ablation).
  • ventricular septal rotation that is, modified Morrow surgery is a surgical operation to open the chest to remove the hypertrophic myocardium and remove the site It is mainly anterior of the ventricular septum and concentrated on the left ventricular surface. The thickness of the interventricular septum can be reduced by 50% after resection.
  • Alcohol ablation is an interventional treatment method, which mainly uses percutaneous transluminal coronary angioplasty technique to send the balloon into the septal branch to be eliminated, and slowly inject alcohol into the septal branch to cause chemical occlusion, thereby Hypertrophic ventricular septal myocardial ischemia, necrosis, thinning, decreased contractility, and reduced LVOT. Although this method avoids the pain of surgery, in clinical applications, alcohol may cause myocardial infarction through branch vessels, and there are still certain risks. . Therefore, there is a need for a less invasive, safer and more effective treatment for HCM. In addition, in order to know the degree of hypertrophic myocardial lesions and the effect of HCM after ablation treatment, it is extremely necessary to perform a biopsy before and / or after ablation.
  • radiofrequency ablation needles or microwave ablation needles are used as a minimally invasive interventional treatment device. They are currently mainly used to treat tumors in the liver, kidneys, and soft tissues. On the other hand, if biopsy and other operations are required before and / or after ablation, multiple punctures are required. The puncture is difficult and exacerbates the damage to the myocardial tissue; on the other hand, different lesions or different patient sites The required ablation range is different, and the existing integrated ablation needle cannot adjust the effective ablation length of the ablation needle.
  • the present application provides an ablation needle assembly and an ablation system with less tissue damage and capable of adjusting the effective ablation length of the ablation needle in real time.
  • the ablation needle assembly includes a hollow outer sleeve and an ablation needle;
  • the ablation needle includes an electrode needle body and an ablation handle connected to the proximal end of the electrode needle body, the outer sleeve is at least partially insulated, and the electrode needle body is movable Wear inside the outer sleeve;
  • the ablation handle includes a casing, a connecting member fixed to the distal end of the casing, and a driving part moving along the axial direction of the casing; the outer sleeve and the connecting member are detachably connected,
  • the proximal end of the electrode needle body is fixed to the driving portion, and the driving portion drives the electrode needle body to move relative to the overtube to adjust in real time the distal end of the electrode needle body to extend out of the overtube length.
  • the ablation system includes the ablation needle assembly and an energy generating device electrically connected to the electrode needle body of the ablation needle.
  • the ablation needle assembly includes the outer sleeve and the ablation needle.
  • the outer sleeve is movably sleeved outside the electrode needle body of the ablation needle and is detachably connected to the shell of the ablation handle through a connecting member, that is to say After the ablation operation is completed, the outer sleeve can be removed from the connecting piece, so that the ablation needle is detached from the outer sleeve, leaving the outer sleeve in the tissue, providing a channel for other operations such as biopsy, avoiding repeated punctures , Reduces the damage to the tissue, and can make the biopsy operation more convenient and efficient.
  • the electrode needle main body is connected to the driving part in the ablation handle, and the electrode part main body is driven relative to the outer sleeve by the driving part while keeping the ablation needle assembly punctured into the lesion
  • the length of the distal end of the electrode needle body extending out of the outer sleeve can be adjusted in real time in the body, that is, the effective ablation length can be adjusted in real time in the body to meet the ablation needs of different diseased parts or different patients.
  • the ablation needle assembly and ablation system of the present application are particularly suitable for radiofrequency ablation treatment of HCM.
  • FIG. 1 is a schematic structural view of the ablation needle assembly of the present application after the ablation needle and the outer sleeve are split;
  • FIG. 2 is a schematic diagram of the structure of the ablation needle shown in FIG. 1 after being assembled with the outer sleeve;
  • FIG. 3 is a front view of the ablation needle shown in FIG. 1 after being assembled with the outer sleeve;
  • FIG. 4 is a three-dimensional exploded schematic view of the ablation needle assembly shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an outer sleeve according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an outer sleeve according to an embodiment of the present application.
  • FIG. 7 is a schematic structural view of an electrode needle body according to an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of the ablation needle assembly shown in FIG. 3 along the B-B position;
  • FIG. 9 is a three-dimensional schematic diagram of the base shaft of an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view of a connector according to an embodiment of the present application.
  • FIG. 11 is a schematic cross-sectional view of the ablation needle assembly shown in FIG. 3 along the C-C position;
  • FIG. 12 is an exploded perspective view of the ablation handle of the ablation needle shown in FIG. 4 after removing the housing;
  • FIG. 13 is a schematic perspective structural view of the slider in FIG. 12 at an angle
  • FIG. 14 is a schematic perspective structural view of the slider of FIG. 12 at another angle;
  • FIG. 15 is a schematic perspective structural view of the slider of FIG. 12 at another angle;
  • FIG. 16 is a schematic perspective structural view of another angle of the sliding member in FIG. 12;
  • 18a is a perspective enlarged schematic view of the electrode needle body in this application.
  • FIG. 18b is a schematic cross-sectional view of the electrode needle body shown in FIG. 18a along the A-A position;
  • FIG. 19 is a schematic cross-sectional view along the axial direction of other structures of the ablation needle in the present application except the housing;
  • 20 is a three-dimensional schematic structural view of the piston member in the ablation handle in this application in one direction;
  • 21 is a schematic perspective structural view of another direction of the piston member in the ablation handle in this application.
  • 22 is a three-dimensional structural schematic diagram of one direction of the inner and outer sleeves of the ablation handle in this application;
  • 23 is a schematic structural view of another direction of the inner and outer sleeves of the ablation handle in this application.
  • 24 and 25 are schematic diagrams of the process of adjusting the length of the distal end of the electrode needle body extending out of the outer sleeve after the ablation needle and the outer sleeve are assembled in this application;
  • 26 is a schematic structural view of the combination of a biopsy needle and an outer sleeve according to an embodiment of the present application
  • FIG. 27 is a schematic diagram of the splitting of the puncture needle core and the outer sleeve of the embodiment of the present application.
  • FIG. 28 is a schematic diagram of the combination of the puncture needle core and the outer sleeve shown in FIG. 27;
  • 29 is a schematic block diagram of an ablation system according to an embodiment of the present application.
  • FIGS. 30a to 30c are schematic diagrams of the use process of the ablation needle assembly according to an embodiment of the present application.
  • 31a to 31e are schematic diagrams of the use process of the ablation needle assembly according to another embodiment of the present application.
  • proximal and distal are defined herein as common terms in the field of interventional medicine. Specifically, “distal” means the end far away from the operator during the surgical operation, and “proximal” means the end close to the operator during the surgical operation.
  • the present application provides an ablation needle assembly 100 for performing an ablation operation.
  • the ablation needle assembly 100 includes an outer sleeve 30 and an ablation needle 10.
  • the ablation needle 10 includes an electrode needle body 11 and an ablation handle 12 connected to the proximal end of the electrode needle body 11.
  • the electrode needle body 11 is movably installed in the outer sleeve 30, that is, the distal end of the electrode needle body 11 can extend out of the outer sleeve 30 and the distal end of the electrode needle body 11 can be adjusted The length of the outer sleeve 30.
  • the ablation handle 12 includes a housing 121, a connecting member 122 connected to a distal end of the housing 121, and a driving portion 123 provided in the housing 121 and movable along the axial direction of the housing 121.
  • the axial direction of the housing 121 is the same as the axial direction of the electrode needle body 11.
  • the outer sleeve 30 is detachably connected to the connecting member 122, and the proximal end of the electrode needle body 11 and the driving part 123 are fixed to the ablation needle assembly 100 after puncturing the lesion in the patient's body, and then driven by the driving part 123
  • the electrode needle body 11 moves axially relative to the outer sleeve 30, so that the length of the outer end of the outer sleeve 30 can be adjusted in real time in the body to adapt to the ablation needs of different lesions or different patients without having to
  • the ablation needle assembly 100 is withdrawn from the patient's body to adjust the effective ablation length, and then punctured again, which greatly improves the surgical efficiency and reduces the damage to human tissue, and because most of the axial length of the electrode needle body 11 is accommodated in the outer sleeve 30 Instead of being directly covered by human tissue, the resistance received when adjusting the distal end of the electrode needle body 11 to extend the length of the outer sleeve 30 in vivo is less,
  • the outer sleeve 30 is detachably connected to the connecting piece 122, which means that the outer sleeve 30 is connected to the connecting piece 122 by a detachable connection method such as screw connection, snap connection, etc., so that the ablation operation is completed Afterwards, the ablation needle 10 and the outer sleeve 30 can be easily disassembled, leaving the outer sleeve 30 in the tissue, providing a channel for other operations (such as biopsy), avoiding repeated punctures, reducing damage to the tissue, and simplifying Surgery process.
  • a detachable connection method such as screw connection, snap connection, etc.
  • the outer sleeve 30 is rotatably connected to the connecting member 122, that is, after the outer sleeve 30 is connected to the connecting member 122, it can be rotated about the axis of the connecting member 122 as an axis.
  • the electrode needle main body 11 can keep the outer sleeve 30 stationary, and the ablation handle 12 is rotated to drive the electrode needle main body 11 to rotate, so as to avoid damage to the tissue caused by the rotation of the outer sleeve 30, and the resistance to the rotation is small.
  • the outer sleeve 30 is at least partially insulated, in other words, the outer sleeve 30 may be fully insulated or partially insulated. Preferably, the outer sleeve 30 is fully insulated. The distal end of the electrode needle body 11 extends out of the outer sleeve 30.
  • the portion of the electrode needle body 11 extending out of the outer sleeve 30 performs an ablation operation, and the electrode needle
  • the length of the portion of the main body 11 that protrudes from the outer sleeve 30 is the effective ablation length; when the outer sleeve 30 is partially insulated, the portion of the electrode needle main body 11 that protrudes from the outer sleeve 30 and the outer sleeve 30
  • the non-insulated portion performs the ablation operation, and the sum of the lengths of the portion of the electrode needle body 11 extending out of the outer sleeve 30 and the non-insulated portion of the outer sleeve 30 is the effective ablation length. As shown in FIG.
  • the partial insulation of the outer sleeve 30 is specifically that the first tube 30a near the proximal end of the outer sleeve 30 is an insulating structure, and the second tube 30b near the distal end of the outer sleeve 30 is a non-insulating structure, so that the outer sleeve
  • the non-insulated portion of the tube 30 can also transmit high-frequency current or microwaves to increase the ablation area.
  • the outer sleeve 30 may be at least partially made of an insulating material, or the outer sleeve 30 may be entirely made of a non-insulating material, and then the outer surface of the outer sleeve 30 is at least partially covered with an insulating coating to perform an ablation operation At this time, the portion of the outer sleeve 30 covering the insulating layer serves as the insulating tube of the ablation needle 10.
  • the outer sleeve 30 is made of a metal material, and the outer surface of the tube body is coated with an insulating coating.
  • the metal material includes but is not limited to 304 Stainless steel, 321 stainless steel, or 631 stainless steel
  • the insulating coating includes but is not limited to PTFE coating, titanium nitride coating, parylene coating, and the like.
  • the metal material for manufacturing the outer sleeve 30 should have sufficient hardness to penetrate into human tissues, and at the same time need to have excellent biocompatibility, the insulating coating must have reliable insulation, excellent biocompatibility and comparative Low coefficient of friction, and requires an intimate bond between the insulating coating and the outer surface of the outer tube 30, the insulating coating is not easy to fall off, for example, you can choose 304 stainless steel tube with PTFE coating, 304 stainless steel tube with parylene coating, 321 stainless steel tube with titanium nitride coating, or 631 stainless steel tube with parylene coating, etc.
  • the thickness of various insulation coatings should be ⁇ 3 ⁇ m. It can be understood that, in other embodiments, the outer sleeve 30 may also be entirely made of insulating materials, such as PEEK, PI, or PA, which can meet the hardness requirements of plastic pipes, such as high-alumina porcelain, talc porcelain, or nitride Ceramic tubes such as boron.
  • insulating materials such as PEEK, PI, or PA, which can meet the hardness requirements of plastic pipes, such as high-alumina porcelain, talc porcelain, or nitride Ceramic tubes such as boron.
  • the distal end of the outer sleeve 30 may be straight or may be a chamfered tip.
  • the distal end of the outer sleeve 30 is a tip, so that various positions of the outer sleeve 30 can be easily inserted into the tissue, and the contact area of the tissue surrounding the different positions of the outer sleeve 30 and the electrode needle body 11 is different, thereby According to the anatomical structure of the tissue to be treated, the required ablation area is determined, and orientation and positioning ablation are achieved by adjusting the insertion direction of the outer sleeve 30.
  • a scale mark 31 is provided on the outer sleeve 30 to indicate the depth of insertion of the outer sleeve 30 into the tissue.
  • the scale mark 31 includes a series of scale values, and the scale value gradually increases from the distal end to the proximal end .
  • the depth of the outer sleeve 30 inserted into the tissue can be known by observing the scale value on the outer sleeve 30, so as to know the approximate position of the outer sleeve 30 inserted into the tissue. Further, as shown in FIG.
  • the distal end of the outer sleeve 30 has a first guide portion 34 that can be developed under a medical imaging device, and the length of the first guide portion 34 needs to be ⁇ 5 mm to ensure the accuracy of position guidance
  • the first guide portion 34 can help the doctor determine whether the distal end of the overtube 30 travels along the desired puncture path and is close to the predetermined ablation position.
  • the first guide portion 34 may be a part of the structure added at the distal end of the outer sleeve 30, or may be obtained by performing certain processing on the distal end of the outer sleeve 30. Compared with other imaging modes (such as X-ray fluoroscopy), ultrasound imaging causes less damage to the human body and is more economical.
  • the guide portion 34 is adapted to the needs of ultrasound imaging.
  • the surface of the second tube body 30b near the distal end of the outer sleeve 30 may be roughened by sandblasting or perforation to form the first guide portion 34.
  • the surface roughness of the first guide portion 34 should not be too high, while achieving the ultrasound imaging requirements, it will not affect the advancement of the outer sleeve 30 in the tissue.
  • the electrode needle body 11 of the ablation needle 10 can be made of biocompatible metal with excellent electrical conductivity such as stainless steel. Because at least a partially insulated outer sleeve 30 is provided, the surface of the electrode needle body 11 of the ablation needle 10 does not need to be coated with an insulating material, which simplifies the manufacturing process of the electrode needle body 11 of the ablation needle 10, and the outer sleeve 30 can be an ablation needle.
  • the electrode needle body 11 of 10 provides support and protection, thereby allowing the diameter of the electrode needle body 11 to be reduced, for example, the diameter of the electrode needle body 11 can be selected from 20G to 16G, which helps to further reduce tissue damage and the other If the structure of the tissue to be ablated, such as the interventricular septum, is relatively flat, the smaller the diameter of the electrode needle body 11 is, the more suitable it is for ablating flat tissue, and it can prevent pneumothorax and pericardial effusion when ablating the hypertrophic myocardium in the interventricular septum The occurrence of problems
  • the electrode needle body 11 can be electrically connected to an energy generating device such as a radio frequency generator or a microwave generator to perform an ablation operation. Specifically, when the electrode needle body 11 is electrically connected to the radio frequency generator, the electrode needle body 11 transmits a high-frequency current so that the charged positive and negative ions in the diseased tissue around the distal end of the electrode needle body 11 oscillate at high speed.
  • an energy generating device such as a radio frequency generator or a microwave generator
  • the ions generate a lot of heat due to friction, which raises the temperature in the diseased tissue, eventually denatures the protein in the diseased cell, loses water inside and outside the cell, and causes coagulative necrosis in the diseased tissue, thereby achieving radiofrequency ablation;
  • the electrode needle body 11 is electrically When a microwave generator is connected, a microwave field is formed at the distal end of the electrode needle body 11, and dipole molecules such as water molecules in the diseased tissue generate heat due to motion friction and violent collision under the action of the microwave field, causing the temperature in the diseased tissue to rise.
  • the protein in the diseased cell is denatured, the water inside and outside the cell is lost, and coagulative necrosis of the diseased tissue appears, thereby achieving microwave ablation.
  • the distal end of the electrode needle body 11 of the ablation needle 10 may have a sharp triangular pyramid shape or a needle shape, which is conducive to the combination of the electrode needle body 11 of the ablation needle 10 and the outer sleeve 30 to puncture, of course
  • the distal end of the electrode needle body 11 of the ablation needle 10 may also be provided in other shapes, such as a spherical shape, an umbrella shape, or the like.
  • the distal end of the electrode needle body 11 has a second guide 13 that can be developed under a medical imaging device.
  • the length of the second guide 13 needs to be ⁇ 5 mm.
  • the second guide 13 can It is developed under a medical imaging device to help the doctor determine whether the distal end of the electrode needle body 11 has reached or is at a predetermined ablation position.
  • the second guide portion 13 may be a part of the structure added at the distal end of the electrode needle body 11 or obtained by performing certain processing on the distal end of the electrode needle body 11.
  • the surface of the distal end of the electrode needle body 11 is processed into an uneven rough surface to form the second guide portion 13 to meet the needs of ultrasonic imaging, for example, the surface of the distal end of the electrode needle body 11 may be sandblasted or Punching and other processing.
  • the surface roughness of the second guide portion 13 should not be too high, while achieving the ultrasound imaging requirements, it will not affect the advancement of the electrode needle body 11 in the tissue.
  • the ablation needle assembly of this embodiment is particularly suitable for ultrasound-guided ablation treatment. Under ultrasound guidance, the operator can puncture the distal end of the ablation needle assembly into the patient's body and extend from the ablation needle 10 The portion of the outer sleeve 30 performs an ablation operation on the diseased tissue.
  • the housing 121 includes a first housing 121 a and a second housing 121 b that are oppositely arranged. Close together.
  • the first housing 121a and the second housing 121b are provided with a card board 1212.
  • the connecting member 122 includes a base shaft 122a and a collar 122b rotatably connected to the base shaft 122a.
  • the proximal end of the base shaft 122a is fixedly connected to the housing 121.
  • the base shaft 122a is disposed along the axial direction of the electrode needle body 11, and the electrode needle body 11 extends into the housing 121 through the axis of the base shaft 122a.
  • the proximal ring of the base shaft 122a is provided with a first clamping groove 1221, the proximal end of the base shaft 122a extends into the housing 121, and the first housing 121a and the second The card board 1212 on the housing 121b snaps into the first card slot 1221.
  • the bottom wall of the first clamping slot 1221 has a rectangular outline, and the inner surface of the clamping board 1212 that is caught in the first clamping slot 1221 abuts the bottom wall of the first clamping slot 1221, thereby making the base
  • the shaft 122 a is fixed to the housing 121 and the base shaft 122 a cannot rotate relative to the housing 121.
  • the housing 121 is obtained by connecting the first housing 121a and the second housing 121b in a mating manner, which facilitates the clamping of the card board 1212 into the first card slot 1221 to achieve the fixation of the base shaft 122a and the housing 121 . Further, the distal end of the first clamping slot 1221 is provided with a second clamping slot 1222, and the proximal end of the clamping ring 122b is snapped into the second clamping slot 1222.
  • the outline of the bottom wall of the second clamping groove 1222 is circular, and the proximal end of the collar 122b can be rotated around the axial direction of the base shaft 122a after being inserted into the second clamping groove 1222, but cannot be along the shaft Moving, that is, the collar 122b can rotate in situ.
  • the outer sleeve 30 is detachably connected to the collar 122b.
  • the proximal end of the outer sleeve 30 is provided with an external thread
  • the collar 122b is provided with an internal thread adapted to the external thread
  • the proximal end of the outer sleeve 30 is threaded with the collar 122b connection.
  • the proximal end of the outer sleeve 30 and the collar 122b may also be connected by other detachable methods such as snaps.
  • the operator needs to rotate the ablation handle 12 or / and the ablation needle 10, the operator can hold the collar 122b by hand to keep the outer sleeve 30 from rotating, and rotate the ablation handle 12 of the ablation needle 10 to drive the electrode through the ablation handle 12
  • the rotation of the needle body 11 can prevent friction damage to the tissue caused by the rotation of the outer sleeve 30, and the resistance of the rotation of the electrode needle body 11 within the outer sleeve 30 is small.
  • a portion 33 of the outer sleeve 30 provided with the external thread is provided with a grip portion 33 toward the distal end side thereof, so as to facilitate rotation relative to the ablation needle 10 or to interact with the ablation needle 10. Disassembly and assembly.
  • a plurality of protrusions are provided on the outer wall of the outer sleeve 30 to form the grip portion 33.
  • the distal end of the base shaft 122a is a truncated cone structure, so that the clamping ring 122b is inserted into the second clamping groove 1222. Moreover, the distal end portion of the base shaft 122a is inserted into the outer sleeve 30 to support the distal end of the outer sleeve 30, so that the connection between the outer sleeve 30 and the connecting member 122 is more stable .
  • the driving part 123 includes a sliding member 1231 and an adjusting member 1232 connected to the sliding member 1231.
  • the proximal end of the electrode needle body 11 is fixed to the slider 1231.
  • the sliding member 1231 is accommodated in the housing 121, and the adjusting member 1232 controls the sliding member 1231 to move along the axial direction of the housing 121 to drive the electrode needle body 11 to move relative to the outer sleeve 30.
  • the sliding member 1231 includes a cylindrical first part 1231a and a square second part 1231b connected to the first part 1231a.
  • the central axis of the first part 1231a is coaxial with the central axis of the second part 1231b
  • the first part 1231a has a first cavity 12311
  • the second part 1231b is provided with a first central hole 12312
  • the electrode needle The main body 11 cuts through the first central hole 12312 or partially extends into the first cavity 12311.
  • the proximal end of the electrode needle body 11 is fixed to the inner wall of the first central hole 12312 to fix the electrode needle body 11 and the slider 1231.
  • the electrode needle body 11 and the slider 1231 are fixed. Further, the inner surface of the housing 121 is provided with a first guide 1213 provided along the extending direction of the electrode needle body 11, and the surface of the slider 1231 is provided with a second guide 12313 adapted to the first guide 1213 Through the cooperation of the second guide 12313 and the first guide 1213, the slider 1231 is moved along the axial direction of the electrode needle body 11, and the movement of the slider 1231 drives the electrode needle body 11 to move relative to the outer sleeve 30 to adjust The distal end of the electrode needle body 11 extends beyond the length of the outer sleeve 30.
  • the first guide member 1213 is a slide groove
  • the second guide member 12313 is a protrusion.
  • the protrusion is embedded in the slide groove and moves along the slide groove. It can be understood that in other embodiments of the present application, the first guide 1213 may also be a protrusion, and the second guide 12313 may be a chute.
  • the adjusting member 1232 includes a key 12321 and a connecting portion 12322, and the housing 121 is provided with a control slot 1211 along the axial direction.
  • the first housing 121a and the second housing 121b are respectively provided with grooves at positions where the two are engaged, the grooves on the first housing 121a and the recesses on the second housing 121b After the groove is engaged, the control groove 1211 is formed. It can be understood that, in other implementations of the present application, the control groove 1211 may also be formed only on the first housing 121a or the second housing 121b.
  • One end of the connecting portion 12322 is connected to the second portion 1231b of the slider 1321, and the other end extends from the control slot 1211 to the housing 121 and connects to the key 12321, pushing the key 12321 along the control
  • the movement of the groove 1211 can control the sliding member 1231 to move along the axial direction of the housing 121, thereby driving the electrode needle body 11 fixed with the sliding member 1231 to move relative to the outer sleeve 30 to adjust the distal end of the electrode needle body 11 to extend out of the outer sleeve The length of 30.
  • the length of the outer sleeve 30 extending from the distal end of the electrode needle body 11 can be conveniently adjusted in real time by actuating the key 12321, that is, the effective ablation length can be adjusted to Adapt to the ablation needs of different lesions or different patients.
  • the connecting portion 12322 includes a limiter 12322a and a post 12322b.
  • the post 12322b is fixedly connected to the limiter 12322a at one end and connected to the second part 1231b of the slider 1231 at the other end.
  • the body 12322a is connected to the key 12321.
  • the upright 12322b is arranged along the axial direction perpendicular to the sliding member 1231 and can move along its own axial direction.
  • the two uprights 12323b are arranged in parallel, and each end of the uprights 12323b away from the limiting body 12322a is provided with an annular groove in which the E-type snap ring 12324 can be detachably held.
  • the second part 1231b of the sliding member 1231 is provided with a first plane 12314 and a second plane 12315 opposite to the first plane 12314, and the second part 1231b is provided with a penetration from the first plane 12314 to Two openings 12316 of the second plane 12315, ends of the two uprights 12322b facing away from the limiting body 12322a extend into the openings 12316 from the first plane 12314 side, and the E-shaped snap ring 12324 is located on the side of the second plane 12315.
  • an elastic body 1322 is provided between the limiting body 12322a and the slider 1321.
  • the elastic body 1322 may be, but not limited to, a spring, an elastic piece, an elastic washer, or the like.
  • the elastic body 1322 is a spring, and the spring is wound around the periphery of the upright 12323b and is located between the limiting body 12322a and the first plane 12314. It can be understood that, in some embodiments of the present application, the post 12323b may not be provided, and the two ends of the elastic body 1322 are directly fixed to the limiting body 12322a and the sliding member 1231 to connect the limiting position.
  • the inner wall of the housing 121 is provided with a plurality of spaced locking grooves 1214 on at least one side of the control groove 1211, and at least one locking position 123221 is provided on the limiting body 12322a.
  • the elastic body 1322 stretch naturally, the elastic body 1322 pushes the limiting body 12322a so that the locking position 12321 is locked into the locking slot 1214, and at the same time, the limiting body 12322a drives the The post 12322b moves in the axial direction of the post 12322b until the E-shaped snap ring 12324 abuts the second plane 12315. At this time, the adjusting member 1232 cannot be moved, that is, the sliding member 1231 remains stationary, and the length of the electrode needle body 11 protruding from the outer sleeve 30 is prevented from changing.
  • the operator manually presses the key 12321 downward, the limiter 12322a and the post 12322b move down, the elastic body 1322 is compressed and contracted, and the limiter 12322a
  • the locking position 123221 is separated and released from the locking slot 1214.
  • pushing and pulling the key 12321 in the axial direction can drive the slider 1231 and the electrode needle body 11 to move in the axial direction, thereby adjusting the length of the electrode needle body 11 extending out of the outer sleeve 30.
  • the effective ablation length when the key 12321 reaches a certain position to obtain the desired effective ablation length, the operator releases the key 12321, the elastic body 1322 elastically resets itself, and pushes the locking position 123221 on the limiting body 12322a into the position In the card slot 1214, the adjusting member 1232 and the sliding member 1231 are positioned at this position and remain stationary.
  • the outer surface of the housing 121 is provided with a plurality of scale marks 1215, and the plurality of scale marks 1215 correspond to the plurality of clamping slots 1214 in one-to-one correspondence.
  • the adjustable range of the effective ablation length of the electrode needle body 11 is also different according to the anatomical structure of different tissues. For example, when applied to the ablation treatment of HCM, the adjustable range of the effective ablation length of the electrode needle body 11 is 5 mm ⁇ 35mm.
  • the portion of the electrode needle body 11 of the ablation needle 10 contacting the tissue will transmit radio frequency energy or microwave energy to cause high temperature of the tissue, causing tissue coagulation necrosis to achieve the purpose of treatment, but the local temperature is too high It will affect the normal tissue that does not need to be ablated, so the electrode needle body 11 of the ablation needle 10 is a hollow inner cavity 111 except for the needle tip part, and the inner cavity 111 is provided with an inner wall of the inner cavity 111 Spaced and coaxial cooling channels 113, the inner cavity 111 and the cooling channels 113 are used to transport gaseous or liquid cooling medium (such as cooling water) for cooling to control the temperature during the ablation operation.
  • gaseous or liquid cooling medium such as cooling water
  • a thin tube is used as the cooling channel 113.
  • the inner cavity 111 is also provided with a thermocouple 112 to measure the temperature of the tissue around the electrode needle body 11 in real time.
  • the thermocouple 112 penetrates the cooling channel 113 and is spaced from the inner wall of the cooling channel 113.
  • the proximal end of the ablation handle 12 is provided with an inflow port 114 and an outflow port 115, the inflow port 114 communicates with the proximal end of the cooling channel 113, the cooling channel 113 and the inner wall of the inner cavity 111
  • the first gap communicates with the outflow port 115, and the cooling medium flows into the cooling channel 113 through the inflow port 114, flows from the distal end of the cooling channel 113 to the first gap, and then flows out through the outflow port 115, thereby forming
  • the circulation of the cooling water realizes the cooling of the electrode needle body 11 and the surrounding tissues.
  • the ablation handle 12 further includes a piston 1233 disposed in the housing 121.
  • the piston 1233 is coaxially disposed with the slider 1231.
  • the distal end of the piston member 1233 and the proximal end of the sliding member 1231 are sealed and fixed, and a water outlet storage cavity C1 is formed between the sliding member and the piston member 1233, the outlet 115 and the cooling channel 113 and the inner wall of the inner cavity 111
  • the first gap communicates with the outlet water storage cavity C1, and the cooling medium flows into the outlet water storage cavity C1 through the first gap between the cooling channel 113 and the inner wall of the inner cavity 111, and then flows out through the outlet 115.
  • the piston 1233 is basically a cylindrical structure, the diameter of the distal end is smaller than the diameter of the proximal end, and the distal end is fitted into the proximal end of the first cavity 12311 of the sliding member 1231.
  • the glue seals and fixes the distal end of the piston 1233 and the inner wall of the first cavity 12311.
  • a second cavity 12332 extends from the proximal end of the piston member 1233 to the distal end.
  • a second central hole 12333 is provided on the bottom wall of the second cavity 12332, and the second central hole 12333 is coaxial with the first central hole 12312 of the slider 1231.
  • the proximal end of the cooling channel 113 passes through the second central hole 12333 to be blocked or extends into the second cavity 12332 and then ends, and the proximal end of the cooling channel 113 is fixed to the inner wall of the second central hole 12333.
  • the ablation handle 12 further includes a sleeve member 1234 disposed in the housing 121 and fixed to the housing 121, the sleeve member 1234 It is coaxial with the piston 1233.
  • the distal end of the sleeve member 1234 is sleeved outside the proximal end of the piston member 1233 and is movably and sealingly connected with the piston member 1233.
  • an inlet water storage chamber C2 is formed between the piston member 1233 and the sleeve member 1234, the inflow port 114 and the cooling channel 113 communicate with the inlet water storage chamber C2, and the cooling medium passes through the inlet port 114 Enter the inlet water storage chamber C2, and then enter the cooling channel 113.
  • the sleeve member 1234 is also substantially cylindrical, and includes a third cavity 12341 extending from the distal end to the proximal end. The proximal end of the piston member 1233 is fitted into the third cavity 12341 of the sleeve member 1234 and sealed with the inner wall of the third cavity 12341 and movably connected.
  • the sliding member 1231 drives the piston member 1233 to move, and the proximal end of the piston member 1233 moves in the axial direction in the third cavity 12341 and does not escape from the position ⁇ ⁇ ⁇ ⁇ 12341 ⁇ Said third cavity 12341.
  • the second cavity 12332 communicates with the third cavity 12341 to form the inlet water storage cavity C2.
  • the inflow port 114 and the outflow port 115 are provided on the bottom wall 12342 of the third cavity 12341, and the center of the bottom wall 12342 is further provided with a third central hole 123421.
  • the thermocouple 112 is The three central holes 123421 pass through.
  • the sliding member 1231 When the sliding member 1231 is driven to move in the axial direction by the adjusting member 1232, the sliding member 1231 drives the piston member 1233 to move relative to the sleeve member 1234, so that the space of the inlet water storage chamber C2 is variable.
  • the sliding member 1231 drives the piston member 1233 to move within the sleeve member 1234.
  • the piston member 1233 and the sleeve member 1234 always share a part of the axial space, which helps to reduce the axial length of the ablation handle 12.
  • a plurality of sealing rings 12337 are sleeved on the outer wall of the proximal end of the piston member 1233, and the sealing ring 12337 seals the gap between the proximal end of the piston member 1233 and the sleeve member 1234 to avoid The cooling medium in the inlet water storage chamber C2 flows out from the gap between the sleeve member 1234 and the piston member 1233.
  • the ablation handle 12 further includes an end cap 124 detachably connected to the proximal end of the housing 121, for sealing the proximal end of the housing 121.
  • the end cover 124 is provided with spaced-apart water inlet pipeline penetration holes, water outlet pipeline penetration holes, and wire harness penetration holes.
  • the water inlet pipe perforating hole can allow the water inlet pipe 116 connected to the inlet 114 to pass through, the water outlet pipe perforating hole can allow the water outlet pipe 117 connected to the outlet 115 to pass through, the wire harness
  • the through hole can allow the wire bundle 118 formed by the wire electrically connected to the thermocouple 112 and the wire electrically connected to the electrode needle body 11 to pass through.
  • an outlet adapter tube 1235 is provided in the inlet water storage cavity C2, and the distal end of the outlet adapter tube 1235 passes through the piston member 1233 and the outlet water storage cavity C1 Connected, the proximal end of the water outlet adaptor 1235 is connected to the outlet 115 and connected to the water outlet pipe 117.
  • the outlet water transfer pipe 1235 includes a spiral section 1235a that can expand and contract in the axial direction of the sleeve member 1234.
  • the spiral section 1235a of the outlet adapter 1235 will follow the piston member 1233 to expand or contract in the inlet water storage chamber C2 without affecting the piston
  • the axial movement of the piece 1233 can also avoid pulling the water outlet pipe 117 frequently into and out of the housing 121, thereby avoiding friction and damage to the water outlet pipe 117.
  • the arrow in FIG. 19 illustrates the flow path of the cooling medium.
  • the cooling medium enters the inlet water storage chamber C2 from the inlet pipe 116 through the inlet 114, and then flows from the inlet water storage chamber C2 to the cooling channel 113, and then from the cooling channel 113 and the electrode needle body 11
  • the first gap between the inner walls of the inner cavity 111 flows out into the outlet water storage chamber C1, flows out through the outlet adapter 1235 to the outlet 115, and finally flows out through the outlet pipe 117 to realize the cooling cycle of the cooling medium in the electrode needle body 11 .
  • the ablation needle assembly 100 further includes a biopsy needle 20, and the ablation needle 10 and the biopsy needle 20 are alternately worn in the outer sleeve 30.
  • the biopsy needle 20 includes a biopsy needle body and a biopsy handle connected to the proximal end of the biopsy needle body; after the ablation needle 10 is separated from the overtube 30, the biopsy needle body of the biopsy needle 20 is worn It is inserted into the outer sleeve 30 and extends into the biopsy position along the outer sleeve 30 to perform the biopsy operation.
  • the biopsy handle of the biopsy needle 20 can also be detachably connected to the outer sleeve 30.
  • the ablation needle 10 and the outer sleeve 30 can be detachably connected, and the biopsy needle 20 can also be detachably connected to the outer sleeve 30 to connect the ablation needle 10 and the outer sleeve 30 After splitting, the biopsy needle 20 can be connected to the outer sleeve 30.
  • the connection between the ablation needle 10 and the outer sleeve 30 is released, leaving the outer sleeve 30 in the tissue to provide a channel for the biopsy operation, so that the biopsy needle 20 quickly reaches the desired biopsy position, avoiding duplication Puncture to reduce damage to the tissue; or, in some surgical procedures, the biopsy needle 20 and the outer sleeve 30 can be disconnected after the biopsy operation is completed, leaving the outer sleeve 30 in the tissue to provide a channel for the ablation operation , So that the ablation needle 10 quickly reaches the desired ablation position, can also avoid repeated puncture, and reduce damage to the tissue.
  • the ablation needle assembly 100 further includes a puncture needle core 40, the diameter of the puncture needle core 40 is greater than the diameter of the ablation needle 10 or biopsy needle 20,
  • the diameter range of the puncture needle core 40 is preferably 19G to 16G.
  • the puncture needle core 40 is preferably made of a hard material, such as stainless steel.
  • the puncture needle core 40 and the ablation needle 10 or biopsy needle 20 are alternately installed in the outer sleeve 30 and detachably connected to the outer sleeve 30, and the distal end of the puncture needle core 40 extends out of the Narration tube 30.
  • the distal end of the puncture needle core 40 has a sharp needle shape or a triangular pyramid shape, and a proximal end may be fixed with a joint 41 having an internal thread, the internal thread of the joint 41 and the proximal end of the outer sleeve 30 The external thread fits.
  • the puncture core 40 and the outer sleeve 30 can be combined to puncture the tissue before ablation or biopsy, and then the connection between the puncture core 40 and the outer sleeve 30 is released, and the puncture needle core 40 is withdrawn. Then, the ablation needle 10 or the biopsy needle 20 is inserted into the outer sleeve 30.
  • the larger diameter and harder puncture core 40 can provide better support for the outer sleeve 30, so the combination of the puncture core 40 and the outer sleeve 30 is more convenient for puncture, and can prevent the direct use of the ablation needle 10 or biopsy needle When performing the puncture, the ablation needle 10 or the biopsy needle 20 is damaged.
  • the present application also provides an ablation system 200 including the ablation needle assembly 100 and the energy generating device 110.
  • the energy generating device 110 is electrically connected to the electrode needle body 11 through the wire harness 118 to perform an ablation operation.
  • the ablation system 200 further includes a medical imaging device 120 and / or a cooling device 130.
  • the energy generating device 110 is electrically connected to the ablation needle 10, and the energy generating device 110 may be, but not limited to, a radio frequency generator or a microwave generator.
  • the cooling device 130 is connected to the ablation needle assembly 100 through a water inlet pipe 116 and a water outlet pipe 117 to provide a gaseous or liquid cooling medium for circulation in the electrode needle body 11.
  • the medical imaging device 120 is used to display the distal positions of the outer sleeve 30 and the electrode needle body 11 in real time, and may be selected from at least one of ultrasound, CT, nuclear magnetic, and X-ray fluoroscopy, preferably ultrasound.
  • the ablation needle assembly 100 and the ablation system 200 of the present application can be, but not limited to, applied in the treatment of HCM, and the treatment and biopsy of kidney, liver, or soft tissue tumors.
  • this embodiment takes the treatment of HCM as an example to illustrate the use process of the ablation needle assembly 100:
  • Step 1 First, the ablation needle 10 is put into the outer sleeve 30, and the outer sleeve 30 is connected to the ablation handle 12 through the connecting member 122 to obtain the ablation needle assembly 100 shown in FIG. 2. Actuating the adjusting member 1232 to drive the sliding member 1231 and the electrode needle body 11 to move axially relative to the outer sleeve 30 to obtain a desired length of the electrode needle body 11 extending beyond the outer sleeve 30, that is, to obtain preliminary effective ablation length.
  • Step 2 As shown in FIG. 30a, under the guidance of the ultrasound device, the outer sleeve 30 and the electrode needle body 11 are punctured from the ribs through the apex to the ventricular septum, and the radio frequency generator is turned on. 11 The portion protruding from the outer sleeve 30 is subjected to radiofrequency ablation of the hypertrophic septal myocardium.
  • the key 12321 is moved in the axial direction to actuate the adjustment member 1232 and the sliding member 1231, which drives the electrode needle body 11 to move relative to the outer sleeve 30 in real time in the body to adjust to the The required effective ablation length.
  • Radiofrequency ablation can destroy the activity of the ventricular septal myocardium at the corresponding site, atrophy and thinning myocardial necrosis, thereby widening the left ventricular outflow tract and removing the obstruction.
  • the application of the ablation needle assembly 100 in the treatment of HCM not only avoids the risk and pain of surgical rotation and thoracotomy and extracorporeal circulation, but also does not have the risk of chemical alcohol ablation or alcohol overflow caused by a large area of myocardial infarction. It is simple and easy to trauma to patients It is extremely small, with a small surgical risk and a significant effect; and it can adjust the effective ablation length in real time in the body, greatly improving the surgical efficiency and reducing the damage to human tissue.
  • Step 3 As shown in FIGS. 30b and 30c, after the ablation is performed, the connection between the outer sleeve 30 and the connector 122 is released, the ablation needle 10 is withdrawn and the outer sleeve 30 is left, and then the biopsy needle 20 is inserted into the outer sleeve 30 for extraction Tissue samples are used for biopsy.
  • the outer sleeve 30 provides a channel for the biopsy operation, can avoid repeated punctures, reduces damage to the tissue, and enables the biopsy needle 20 to quickly reach the desired biopsy position.
  • the outer sleeve 30 and the biopsy needle 20 may be combined for puncture and biopsy before performing ablation, and then the biopsy needle 20 is withdrawn and the outer sleeve 30 is left, and finally the ablation needle 10 is worn Into the outer sleeve 30, the connection between the outer sleeve 30 and the ablation needle 10 is established through the connecting member 122, which can also avoid repeated puncture and reduce damage to the tissue.
  • the puncture needle core 40 and the outer sleeve 30 may be combined before ablation or before biopsy.
  • the connection between the puncture core 40 and the outer sleeve 30 is released, the puncture core 40 is removed, the outer sleeve 30 is left in the patient, and then the ablation needle 10 or the biopsy needle 20 is inserted into the outer sleeve 30 for ablation or biopsy Operation to increase the puncture strength and prevent damage to the ablation needle 10 or biopsy needle 20 during the puncture process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

提供一种消融针组件(100)及消融系统(200)。该消融针组件(100)包括中空的外套管(30)以及消融针(10)。外套管(30)活动套设于消融针(10)的电极针主体(11)外并与消融手柄(12)可拆卸连接,在完成消融操作后,能够将消融针(10)与外套管(30)拆开,将外套管(30)仍然留在组织内,为其它操作如活检提供通道,避免了重复穿刺,减小了对组织的损伤。电极针主体(11)连接至消融手柄(12)内的驱动部(123),在保持消融针组件(100)穿刺入病变部位的情况下,通过驱动部(123)驱动电极针主体(11)相对外套管(30)移动,便能够在体内实时地调节电极针主体(11)的远端伸出外套管(30)的长度,即在体内实时地调节有效消融长度,以适应不同病变部位或不同患者的消融需求。本申请的消融针组件(100)及消融系统(200)尤其适用于HCM的射频消融治疗。

Description

消融针组件及消融系统 技术领域
本申请涉及医疗器械技术领域,尤其涉及一种消融针组件及消融系统。
背景技术
现有技术中,对于肝脏、肾脏、软组织等部位的肿瘤诊断,可以通过活检针穿刺至病变位置,并获取部分病变位置的少量组织,再进行病理学分析。对于这类病变部位的治疗,则可以通过射频消融针或者微波消融针插入病灶,通过射频能量或微波能量导致病灶局部组织产生高温,使得病灶组织凝固性坏死而达到治疗目的。
肥厚型心肌病(Hypertrophic cardiomyopathy,简称:HCM),是一种常见的常染色体显性遗传心血管疾病,在普通人群中的发病率约1:500,病死率约1.4%-2.2%。HCM的主要表现为左心室(Left Ventricle,LV)一个或多个节段肥厚,一般诊断标准为厚度大于等于15mm。当出现二尖瓣前叶收缩期前向运动贴靠室间隔,造成左室流出道(Left Ventricular Outflow Tract,LVOT)狭窄甚至梗阻,即LVOT压差过大时,便称为梗阻性肥厚型心肌病(Hypertrophic Obstructive Cardiomyopathy,HOCM),HOCM约占HCM患者的70%。目前,对HCM的治疗策略是扩大LVOT以降低压差并减轻其梗阻,方法主要有药物治疗、室间隔旋切术(Surgical septalmyectomy)、室间隔酒精消融术(Alcohol Septal Ablation)。药物治疗相对来说简单易行,患者没有手术的痛苦,但部分患者药物治疗效果不佳或不耐受;室间隔旋切术,即改良Morrow术是通过外科手术开胸切除肥厚心肌,切除部位主要为室间隔前部并集中在左室面,切除后室间隔厚度可以降低50%,术后LVOT明显降低,但改良Morrow术存在一定的风险,而且患者的术后恢复也比较痛苦;室间隔酒精消融术是一种介入治疗手段,其主要是应用经皮腔内冠状动脉成形术技术,将球囊送入拟消除的间隔支内,对间隔支缓慢注入酒精使其产生化学性闭塞,从而使肥厚室间隔心肌缺血、坏死、变薄、收缩力下降,降低LVOT,此种方法虽然避免了手术的痛苦,但在临床应用中,酒精通过支血管可能造成心肌梗死,仍然存在一定的风险。因此,针对HCM需要有一种创伤小且更加安全、有效的治疗方式。此外,为了获知肥厚心肌的病变程度以及HCM经消融治疗后的效果,在消融前和\或消融后进行活检是极其必要的。
如前所述,射频消融针或微波消融针作为一种微创介入治疗器械,目前主要被应用于治疗肝脏、肾脏、软组织等部位的肿瘤,并且现有的消融针大多是一体式的,一方面,若消融前和\或消融后还需要进行活检等其它操作,则需要进行多次穿刺,穿刺难度大,加剧了对心肌组织的损伤;另一方面,不同的病变部位或不同的患者所需要的消融范围是不同的,而现有的一体式的消融针不能调节消融针的有效消融长度。
发明内容
本申请提供一种对组织损伤较小并能够实时调节消融针有效消融长度的消融针组件及消融系统。
所述消融针组件包括中空的外套管以及消融针;所述消融针包括电极针主体及与所述 电极针主体近端连接的消融手柄,所述外套管至少部分绝缘,所述电极针主体活动穿装于所述外套管内;所述消融手柄包括外壳、与所述外壳远端固定的连接件及沿所述外壳轴向移动的驱动部;所述外套管与所述连接件可拆卸连接,所述电极针主体的近端与所述驱动部固定,所述驱动部驱动所述电极针主体相对所述外套管移动,以实时调节所述电极针主体的远端伸出所述外套管的长度。
所述消融系统包括所述消融针组件以及与所述消融针的电极针主体之间电性连接的能量发生装置。
本申请中,所述消融针组件包括所述外套管以及消融针,所述外套管活动套设于所述消融针的电极针主体外并通过连接件与消融手柄的外壳可拆卸连接,即使得在完成消融操作后,能够将外套管从连接件上拆下,以使得消融针与所述外套管拆开,将外套管仍然留在组织内,为其它操作如活检提供通道,避免了重复穿刺,减小了对组织的损伤,并能够使得活检操作更加的方便高效。进一步地,本申请中,电极针主体连接至消融手柄内的驱动部,在保持所述消融针组件穿刺入病变部位的情况下,通过所述驱动部驱动所述电极针主体相对所述外套管移动,便能够在体内实时地调节所述电极针主体的远端伸出所述外套管的长度,即在体内实时地调节有效消融长度,以适应不同病变部位或不同患者的消融需求。本申请的消融针组件及消融系统尤其适用于HCM的射频消融治疗。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的消融针组件的消融针与外套管拆分后的结构示意图;
图2是图1所示消融针与外套管装配后的结构示意图;
图3是图1所示消融针与外套管装配后的主视图;
图4是图1所示消融针组件的立体爆炸示意图;
图5是本申请一实施例的外套管结构示意图;
图6是本申请一实施例的外套管结构示意图;
图7是本申请一实施例的电极针主体的结构示意图;
图8是图3所示消融针组件沿B-B位置的剖面示意图;
图9是本申请一实施例的基轴的立体结构示意图;
图10是本申请一实施例的连接件的剖面示意图;
图11是图3所示消融针组件沿C-C位置的剖面示意图;
图12是图4所示消融针的消融手柄除去外壳之后的立体分解示意图;
图13是图12中的滑动件的一个角度的立体结构示意图;
图14是图12中的滑动件的另一个角度的立体结构示意图;
图15是图12中的滑动件的另一个角度的立体结构示意图;
图16是图12中的滑动件的另一个角度的立体结构示意图;
图17是本申请中消融针组件的外壳的控制槽处的放大示意图;
图18a是本申请中电极针主体的透视放大示意图;
图18b是图18a所示的电极针主体沿A-A位置的剖面示意图;
图19是本申请中的消融针除外壳外的其它结构沿轴向的剖面示意图;
图20是本申请中消融手柄内活塞件的一个方向的立体结构示意图;
图21是本申请中消融手柄内活塞件的另一个方向的立体结构示意图;
图22是本申请中消融手柄内外套筒的一个方向的立体结构示意图;
图23是本申请中消融手柄内外套筒的另一个方向的结构示意图;
图24及图25为本申请中消融针与外套管装配后调整电极针主体远端伸出外套管长度的过程示意图;
图26是本申请实施例的活检针与外套管组合的结构示意图;
图27是本申请实施例的穿刺针芯与外套管的拆分示意图;
图28是图27所示穿刺针芯与外套管的组合示意图;
图29是本申请实施例的消融系统的示意框图;
图30a至图30c是本申请一实施例的消融针组件的使用过程示意图;
图31a至图31e是本申请另一实施例的消融针组件的使用过程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
为了更加清楚地描述消融针组件及消融系统的结构,此处限定术语“近端”及“远端”为介入医疗领域惯用术语。具体而言,“远端”表示手术操作过程中远离操作人员的一端,“近端”表示手术操作过程中靠近操作人员的一端。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施例的目的,不是旨在限制本申请。
请一并参阅图1至图4,本申请提供一种消融针组件100,用于进行消融操作。所述消融针组件100包括外套管30以及消融针10。所述消融针10包括电极针主体11及与所述电极针主体11近端连接的消融手柄12。所述电极针主体11活动穿装于所述外套管30内,即使得所述电极针主体11的远端能够伸出所述外套管30并能够调节所述电极针主体11的远端能够伸出所述外套管30的长度。具体地,本申请中,所述消融手柄12包括外壳121、与所述外壳121远端连接的连接件122及设于所述外壳121内可沿所述外壳121轴向移动的驱动部123。所述外壳121的轴向与所述电极针主体11的轴向相同。所述外套管30与所述连接件122可拆卸连接,所述电极针主体11的近端与所述驱动部123固定在消融针组件100穿刺入患者体内的病变部位后,通过驱动部123驱动电极针主体11相对外套管30沿轴向移动,便能够于体内实时调节电极针主体11的远端伸出所述外套管30的长度,以适应不同病变部位或不同患者的消融需求,而不必将消融针组件100撤出患者体外调节有效消融长度后再次穿刺,极大地提高了手术效率,减少了对人体组织的损伤,并且由于电极针主体11的大部分轴向长度收容在 外套管30内,而非直接被人体组织包覆,在体内调节电极针主体11的远端伸出所述外套管30的长度时受到的阻力较小,更容易调节。其中,所述外套管30与所述连接件122可拆卸连接,是指所述外套管30通过螺纹连接、卡合连接等可拆卸连接方式与所述连接件122连接,从而使得在完成消融操作后,能够方便地将消融针10与外套管30拆开,将外套管30仍然留在组织内,为其它操作(如活检)提供通道,避免了重复穿刺,减小了对组织的损伤,简化手术过程。进一步地,所述外套管30与所述连接件122可旋转连接,即外套管30连接于连接件122上后,能够以连接件122的轴线为轴进行旋转,在消融过程中,如果需要旋转电极针主体11,可以保持外套管30不动,转动消融手柄12来带动电极针主体11转动,避免外套管30旋转对组织造成损伤,而且旋转时受到的阻力较小。
本申请中,所述外套管30至少部分绝缘,换句话说,所述外套管30可以全部绝缘或者部分绝缘。优选的,所述外套管30全部绝缘。所述电极针主体11的远端伸出所述外套管30,当所述外套管30全部绝缘时,所述电极针主体11伸出所述外套管30的部分执行消融操作,所述电极针主体11伸出所述外套管30的部分的长度即为有效消融长度;当所述外套管30部分绝缘时,所述电极针主体11伸出所述外套管30的部分以及所述外套管30非绝缘的部分执行消融操作,所述电极针主体11伸出所述外套管30的部分以及所述外套管30非绝缘的部分的长度之和即为有效消融长度。如图5所示,所述外套管30部分绝缘具体为外套管30靠近近端的第一管体30a为绝缘结构,外套管30靠近远端的第二管体30b为非绝缘结构,从而外套管30的非绝缘的部分也可以传递高频电流或微波,增大消融区域。
所述外套管30可以至少部分由绝缘材料制成,或者所述外套管30可以全部由非绝缘材料制成,然后在所述外套管30的外表面至少部分覆盖绝缘涂层,在执行消融操作时,所述外套管30覆盖绝缘层的部分作为消融针10的绝缘管。为了提高外套管30的支撑性,且便于刺入人体组织,优选地,所述外套管30由金属材料制成,管体的外表面涂覆绝缘涂层,所述金属材料包括但不限于304不锈钢、321不锈钢或631不锈钢,所述绝缘涂层包括但不限于PTFE涂层、氮化钛涂层、派瑞林涂层等。制作所述外套管30的金属材料应具备足够的硬度以刺入人体组织,同时需要具有优良的生物相容性,所述绝缘涂层需具有可靠的绝缘性、优良的生物相容性及较小的摩擦系数,并且要求绝缘涂层与外套管30的管体外表面之间紧密结合,绝缘涂层不易脱落,例如可以选择304不锈钢管加PTFE涂层、304不锈钢管加派瑞林涂层、321不锈钢管加氮化钛涂层、或631不锈钢管加派瑞林涂层等。考虑到绝缘可靠性及工艺可行性,各种绝缘涂层的厚度均应≥3μm。可以理解的是,在其他实施例中,所述外套管30也可以完全由绝缘材料制作,比如PEEK、PI或者PA等能够满足硬度要求的塑料管,再比如高铝瓷、滑石瓷或氮化硼等陶瓷管。
外套管30的远端可以是平直的,也可以是斜切的尖端。优选的,外套管30的远端为尖端,使得外套管30的各个位置能够较容易地插入组织内,并使得围绕所述外套管30各个位置的组织与电极针主体11的接触面积不同,从而根据待治疗组织的解剖结构,确定需要的消融区域,并通过调整所述外套管30的插入方向实现定向、定位消融。
进一步地,请参阅图5,外套管30上设有刻度标识31以指示外套管30插入组织的深度,所述刻度标识31包括一系列刻度值,且刻度值自远端向近端逐渐增大。当外套管30插入组织内时,通过观察外套管30上的刻度值能够获知外套管30插入组织的深度,从而获知所述 外套管30插入组织中的大致位置。进一步地,如图6所示,所述外套管30远端具有能够在医学影像装置下显影的第一引导部34,该第一引导部34的长度需≥5mm,以保证位置引导的准确性,第一引导部34可帮助医生判断外套管30远端是否沿着期望的穿刺路径行进及是否接近预定的消融位置。具体地,所述第一引导部34可以为在所述外套管30远端增加的一部分结构,或者将所述外套管30的远端进行一定处理得到。由于超声显影相较其他显影模式(如X光透视)对人体的损害较小,也比较经济,优选将所述外套管30靠近远端的管体表面处理成凹凸不平的粗糙面以形成第一引导部34,适应超声显影的需求。比如可以对外套管30靠近远端的第二管体30b的表面做喷砂或打孔等表面粗糙化处理形成第一引导部34。并且,本申请中,所述第一引导部34的表面粗糙度不应过高,在实现超声显影需求的同时,并不会影响所述外套管30在组织中的推进。
所述消融针10的电极针主体11可选用不锈钢等具有优良导电性能的生物相容性金属来制作。由于设置了至少部分绝缘的外套管30,该消融针10的电极针主体11表面不必再涂覆绝缘材料,简化了消融针10的电极针主体11的制作工艺,且外套管30可以为消融针10的电极针主体11提供支撑与保护,从而允许减小电极针主体11的直径,例如所述电极针主体11的直径可选择20G~16G,一方面有助于进一步减小组织损伤,另一方面若待消融组织如室间隔的结构较为扁平,电极针主体11的直径越小,越适于对扁平的组织进行消融,并且在消融室间隔内的肥厚心肌时能够防止气胸、心包积液等问题的发生,减少出血。由此,本实施例的消融针组件尤其适用于HCM的消融治疗术。
所述电极针主体11可以电性连接射频发生器或者微波发生器等能量发生装置,以进行消融操作。具体地,所述电极针主体11电性连接射频发生器时,电极针主体11传递高频电流使得电极针主体11远端周围的病变组织中带电荷的正负离子发生高速振荡运动,高速振荡的离子因摩擦产生大量的热量,使病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外水分丧失,病变组织出现凝固性坏死,从而实现射频消融;所述电极针主体11电性连接微波发生器时,电极针主体11远端形成微波场,病变组织内的水分子等偶极分子在微波场的作用下因运动摩擦、剧烈碰撞而产热使得病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外水分丧失,病变组织出现凝固性坏死,从而实现微波消融。
请参阅图7,所述消融针10的电极针主体11的远端可以呈尖锐的三棱锥状或针状等形状,利于消融针10的电极针主体11与外套管30组合后实施穿刺,当然消融针10的电极针主体11的远端也可以设置成其他形状,比如球状、伞状等。
进一步地,请参阅图7,所述电极针主体11的远端具有能够在医学影像装置下显影的第二引导部13,该第二引导部13的长度需≥5mm,第二引导部13能够在医学影像装置下显影,帮助医生判断电极针主体11远端是否到达或处于预定的消融位置。具体地,所述第二引导部13可以为在所述电极针主体11的远端增加的一部分结构,或者将所述电极针主体11的远端进行一定处理得到。优选的,将所述电极针主体11远端的表面处理成凹凸不平的粗糙面以形成第二引导部13,适应超声显影的需求,比如可以对电极针主体11远端的表面做喷砂或打孔等处理。并且,本申请中,所述第二引导部13的表面粗糙度不应过高,在实现超声显影需求的同时,并不会影响所述电极针主体11在组织中的推进。由此,本实施例的消融 针组件尤其适用于超声引导下的消融术治疗,操作者可在超声引导下,经穿刺,将消融针组件的远端送入患者体内,由消融针10伸出外套管30的部分对病变组织进行消融操作。
请参阅图4及图8,本申请一实施例中,所述外壳121包括相对设置的第一外壳121a和第二外壳121b,二者之间可通过卡扣、粘结、螺钉固定等方式对合连接在一起。所述第一外壳121a及所述第二外壳121b上均设有卡板1212。
所述连接件122包括基轴122a及与所述基轴122a旋转连接的卡圈122b,所述基轴122a的近端与所述外壳121固定连接。基轴122a沿电极针主体11的轴向设置,电极针主体11穿过基轴122a的轴心伸入外壳121内。
具体地,请参阅图8至图10,所述基轴122a的近端环设有第一卡槽1221,基轴122a的近端伸入所述外壳121内,且第一外壳121a及第二外壳121b上的卡板1212对合卡入所述第一卡槽1221内。本实施例中,所述第一卡槽1221的底壁轮廓为矩形,卡板1212的卡入所述第一卡槽1221内的内表面贴靠第一卡槽1221的底壁,从而使得基轴122a与外壳121固定且基轴122a不能够相对外壳121进行旋转。并且,本实施例中,所述外壳121通过第一外壳121a和第二外壳121b对合连接得到,便于将卡板1212卡入第一卡槽1221内,以实现基轴122a与外壳121的固定。进一步地,所述第一卡槽1221的远端侧设有第二卡槽1222,所述卡圈122b的近端卡入所述第二卡槽1222内。具体地,所述第二卡槽1222的底壁的轮廓为圆形,所述卡圈122b的近端卡入第二卡槽1222内后能够绕基轴122a的轴向旋转,但不能沿轴向移动,即卡圈122b能够原位旋转。
进一步地,所述外套管30与所述卡圈122b可拆卸连接。本实施例中,所述外套管30的近端设有外螺纹,所述卡圈122b内设有与所述外螺纹适配的内螺纹,外套管30的近端与所述卡圈122b螺纹连接。可以理解的是,在本申请的其它实施例中,所述外套管30的近端与所述卡圈122b也可以通过卡扣等其它可拆卸方式连接。在消融过程中,当需要理顺消融手柄12外部的导线与冷却管路,防止导线与冷却管路过度弯折、扭转缠绕,并方便查看消融手柄12上的刻度值,操作者需要旋转消融手柄12或/和消融针10时,操作者可以用手握住所述卡圈122b保持外套管30不转,转动所述消融针10的消融手柄12,以通过所述消融手柄12带动所述电极针主体11旋转,能够避免外套管30旋转对组织造成摩擦损伤,而且电极针主体11在外套管30内旋转的阻力较小。进一步地,本申请一些实施例中,所述外套管30设有外螺纹的部位朝向其远端一侧设有握持部33,以便于相对所述消融针10进行旋转或者与所述消融针10的拆装。本实施例中,在所述外套管30的外壁设置多圈凸起,以形成所述握持部33。
进一步地,所述基轴122a的远端为锥台结构,以便于卡圈122b装入第二卡槽1222内。并且,所述基轴122a的远端部分穿设于所述外套管30内,以支承所述外套管30的远端,使得所述外套管30与所述连接件122之间的连接更加稳定。
请一并参阅图4及图11、图12,所述驱动部123包括滑动件1231及与所述滑动件1231连接的调节件1232。电极针主体11的近端与滑动件1231固定。滑动件1231收容于外壳121内,调节件1232控制滑动件1231沿外壳121的轴向移动,以带动电极针主体11相对所述外套管30移动。
请参阅图13至图16,本实施中,所述滑动件1231包括圆筒状的第一部分1231a以及与所 述第一部分1231a连接的方块状的第二部分1231b。所述第一部分1231a的中心轴与第二部分1231b的中心轴同轴,所述第一部分1231a具有第一腔体12311,所述第二部分1231b上设有第一中心孔12312,所述电极针主体11穿过所述第一中心孔12312截止或者部分伸入所述第一腔体12311内。并且,所述电极针主体11的近端与第一中心孔12312的内壁固定,以实现电极针主体11与滑动件1231固定。本实施例中,通过往所述第一中心孔12312内注胶并使胶固化,以使电极针主体11与滑动件1231固定。进一步地,外壳121的内表面设有沿电极针主体11延伸方向设置的第一导向件1213,所述滑动件1231的表面设有与所述第一导向件1213适配的第二导向件12313,通过所述第二导向件12313与所述第一导向件1213的配合保证滑动件1231沿电极针主体11轴向移动,滑动件1231移动便带动电极针主体11相对外套管30移动,以调节电极针主体11远端伸出外套管30的长度。本实施例中,第一导向件1213为滑槽,第二导向件12313为凸起,所述凸起嵌入所述滑槽内并沿所述滑槽移动。可以理解的是,在本申请的其它实施例中,所述第一导向件1213也可以为凸起,第二导向件12313可以为滑槽。
请参阅图2、图11至图17,本实施例中,所述调节件1232包括按键12321及连接部12322,所述外壳121上沿轴向开设有控制槽1211。本实施例中,所述第一外壳121a及所述第二外壳121b在二者相扣合的位置分别设有凹槽,第一外壳121a上的凹槽及所述第二外壳121b上的凹槽扣合后形成所述控制槽1211。可以理解的是,在本申请的其它实施中,控制槽1211也可以仅形成于第一外壳121a上或所述第二外壳121b上。所述连接部12322的一端与所述滑动件1321的第二部分1231b连接,另一端从所述控制槽1211伸出所述外壳121并连接所述按键12321,推动所述按键12321沿所述控制槽1211移动便能够控制滑动件1231沿外壳121的轴向移动,从而带动与滑动件1231固定的电极针主体11相对外套管30移动,以调节电极针主体11的远端伸出所述外套管30的长度。在消融针组件100穿刺入患者体内的病变部位后,通过作动所按键12321便能够方便地于体内实时调节电极针主体11的远端伸出外套管30的长度,即调节有效消融长度,以适应不同病变部位或不同患者的消融需求。本实施例中,所述连接部12322包括限位体12322a及立柱12322b,所述立柱12322b一端固定连接所述限位体12322a,另一端连接所述滑动件1231的第二部分1231b,所述限位体12322a与所述按键12321连接。其中,所述立柱12322b沿垂直于滑动件1231的轴向方向设置并能够沿其自身轴向运动。
本实施例中,两个立柱12323b平行设置,且每一立柱12323b远离限位体12322a的一端环设有环形凹槽,所述环形凹槽内可拆卸卡持有E型卡环12324。滑动件1231的第二部分1231b上设有第一平面12314以及与所述第一平面12314相对的第二平面12315,且所述第二部分1231b上设有从所述第一平面12314穿透至所述第二平面12315的两个开孔12316,两个立柱12322b背离所述限位体12322a的一端分别从第一平面12314侧伸入一个所述开孔12316内,且所述E型卡环12324位于所述第二平面12315一侧。进一步地,本实施例中,所述限位体12322a与所述滑动件1321之间设有弹性体1322。所述弹性体1322可以但不限于为弹簧、弹片或弹性垫圈等。本实施例中,所述弹性体1322为弹簧,所述弹簧绕设于所述立柱12323b外围,并位于所述限位体12322a与所述第一平面12314之间。可以理解的是,本申请一些实施例也可以不设置立柱12323b,而直接将所述弹性体1322两端分别固定于所述限位体12322a与所述滑动件1231上,以连接所述限位体12322a与所述滑动件1231。外壳121的内壁 在所述控制槽1211的至少一侧设有多个间隔设置的卡槽1214,所述限位体12322a上设有至少一个卡位123221。所述弹性体1322自然伸长时,所述弹性体1322顶推所述限位体12322a以使所述卡位123221卡入所述卡槽1214中,同时,所述限位体12322a带动所述立柱12322b沿立柱12322b的轴向方向移动,直至E型卡环12324抵靠第二平面12315。此时,不能够移动所述调节件1232,即使得所述滑动件1231保持不动,避免所述电极针主体11伸出外套管30的长度发生变化。当需要改变电极针主体11伸出外套管30的长度时,操作者手动向下按压按键12321,限位体12322a及立柱12322b下移,所述弹性体1322受压收缩,限位体12322a上的卡位123221从卡槽1214中分离解脱出来,此时沿轴向推拉按键12321便可以带动滑动件1231及电极针主体11沿轴向移动,从而调节电极针主体11伸出外套管30的长度,即有效消融长度;当按键12321到达某一位置获得期望的有效消融长度后,操作者松开按键12321,所述弹性体1322自身弹性复位,推顶限位体12322a上的卡位123221卡入所述卡槽1214中,使得调节件1232及滑动件1231定位在该位置保持不动。
请重新参阅图2及图17,所述外壳121的外表面设有多个刻度标识1215,多个所述刻度标识1215与多个所述卡槽1214一一对应。作动调节件1232至控制槽1211的某一位置后观测调节件1232所对应的刻度值能够获知所述电极针主体11远端伸出外套管30的长度,在外套管30全部绝缘的情况下,电极针主体11远端伸出外套管30的长度即消融针10能够执行消融的有效消融长度。如图24及图25所示,作动调节件1232使其处于控制槽1211最远端时,调节件1232对应的刻度值最大,所述电极针主体11远端伸出所述外套管30的长度最长,其长度为L max;作动调节件1232使其处于控制槽1211最近端时,调节件1232对应的刻度值最小,所述电极针主体11远端伸出外套管30的长度最短,其长度为L min。根据不同组织的解剖结构差异,电极针主体11的有效消融长度的可调范围也是不同的,例如,在应用于HCM的消融治疗时,电极针主体11的有效消融长度的可调范围为5mm~35mm。
请参阅图18a、图18b及图19,消融针10的电极针主体11接触组织的部分会传递射频能量或微波能量导致组织产生高温,使得组织凝固性坏死而达到治疗目的,但局部温度过高会影响不需要进行消融的正常组织,因此所述消融针10的电极针主体11除针尖部分为实体外,其他部分为中空的内腔111,且所内腔111内设有与内腔111的内壁间隔并同轴的冷却通道113,所述内腔111及冷却通道113用于输送气态或液态的冷却介质(如冷却水)进行降温,以控制消融操作时的温度。本实施例中,采用一根细管作为冷却通道113。本申请中,所述内腔111内还穿设有热电偶112,以实时测量电极针主体11周围组织的温度。本实施例中,所述热电偶112穿设于冷却通道113内并与冷却通道113的内壁间隔。所述消融手柄12的近端设有流入口114及流出口115,所述流入口114与所述冷却通道113的近端连通,所述冷却通道113和所述内腔111内壁之间的所述第一间隙与所述流出口115连通,冷却介质经流入口114流通至冷却通道113中,并从冷却通道113的远端流至所述第一间隙,再经流出口115流出,从而形成冷却水的循环,实现对电极针主体11及其周围组织的降温。
具体地,请参阅图12及图19至图21,所述消融手柄12还包括设于所述外壳121内的活塞件1233,所述活塞件1233与所述滑动件1231同轴设置。所述活塞件1233的远端与滑动件1231的近端密封固定,且滑动件与活塞件1233之间形成出水存储腔C1,所述流出口115及冷却通 道113与内腔111内壁之间的第一间隙与出水存储腔C1连通,冷却介质经冷却通道113与内腔111内壁之间的第一间隙流至出水存储腔C1内,再通过流出口115流出。本实施例中,所述活塞件1233基本呈圆筒状结构,其远端的直径小于近端的直径,且其远端配装入滑动件1231的第一腔体12311近端内,通过防水胶对活塞件1233的远端与第一腔体12311的内壁之间进行密封固定。并且,所述活塞件1233的远端端面12331与第一腔体12311的底壁之间具有第二间隙,所述第二间隙构成所述出水存储腔C1。进一步地,所述活塞件1233的近端向远端延伸有第二腔体12332。所述第二腔体12332的底壁上设有第二中心孔12333,所述第二中心孔12333与滑动件1231的第一中心孔12312同轴。所述冷却通道113的近端穿过所述第二中心孔12333即截止或者伸入第二腔体12332后截止,且所述冷却通道113的近端与第二中心孔12333的内壁固定。
进一步地,请参阅图12、图19及图22、图23,所述消融手柄12还包括设于所述外壳121内并与所述外壳121固定的套筒件1234,所述套筒件1234与所述活塞件1233同轴设置。所述套筒件1234的远端套设于所述活塞件1233的近端外并与所述活塞件1233可活动并密封连接。并且,所述活塞件1233与所述套筒件1234之间形成进水存储腔C2,所述流入口114及所述冷却通道113与所述进水存储腔C2连通,冷却介质经流入口114进入进水存储腔C2内,再进入冷却通道113内。具体地,所述套筒件1234也基本呈圆筒状,包括一从远端至近端延伸的第三腔体12341。所述活塞件1233的近端配装入所述套筒件1234的第三腔体12341内并与第三腔体12341内壁密封并可活动连接。当调节件1232带动滑动件1231沿轴向进行滑动时,所述滑动件1231带动活塞件1233移动,活塞件1233的近端便在第三腔体12341内沿轴向移动且不会脱离出所述第三腔体12341。并且,所述第二腔体12332与所述第三腔体12341连通形成所述进水存储腔C2。所述流入口114及流出口115设于所述第三腔体12341的底壁12342上,且所述底壁12342的中心还设有第三中心孔123421,所述热电偶112从所述第三中心孔123421穿过。当通过调节件1232带动滑动件1231沿轴向移动时,滑动件1231带动活塞件1233相对套筒件1234移动,使得所述进水存储腔C2的空间是可变的。滑动件1231带动活塞件1233在套筒件1234内移动,活塞件1233与套筒件1234二者始终共用一部分轴向空间,有助于减小消融手柄12的轴向长度。
本实施中,所述活塞件1233的近端的外壁上套设有数个密封圈12337,所述密封圈12337密封所述活塞件1233的近端与所述套筒件1234之间的间隙,避免进水存储腔C2中的冷却介质从套筒件1234与所述活塞件1233之间的缝隙流出。
进一步地,请参阅图4,所述消融手柄12还包括可拆卸连接于所述外壳121近端的端盖124,用于密封所述外壳121的近端。所述端盖124上设有间隔设置的进水管路穿设孔、出水管路穿设孔以及导线束穿设孔。所述进水管路穿设孔能够允许与流入口114连接的进水管路116穿过,所述出水管路穿设孔能够允许与流出口115连接的出水管路117穿过,所述导线束穿设孔能够允许与热电偶112电连接的导线以及与电极针主体11电连接的导线形成的导线束118穿过。
进一步地,请同时参阅图12与图19,所述进水存储腔C2内设有出水转接管1235,所述出水转接管1235的远端穿过所述活塞件1233与所述出水存储腔C1连通,所述出水转接管1235的近端连接至所述流出口115,并与所述出水管路117连接。本实施例中,所述出水转 接管1235包括可沿所述套筒件1234轴向方向伸缩的螺旋段1235a。当作动调节件1232带动滑动件1231与活塞件1233沿轴向移动时,出水转接管1235的螺旋段1235a在进水储存腔C2内会跟随活塞件1233发生拉伸或收缩,而不影响活塞件1233的轴向运动,也能够避免拉扯出水管路117频繁进出外壳121,从而避免对出水管路117的摩擦与损伤。
图19中的箭头示意出了冷却介质的流动路径。具体地,冷却介质从进水管路116经流入口114进入所述进水存储腔C2内,再从所述进水存储腔C2流至冷却通道113中,然后从冷却通道113与电极针主体11的内腔111内壁之间的第一间隙流出至出水存储腔C1内,经出水转接管1235流至流出口115,最后经出水管路117流出,实现冷却介质在电极针主体11内的冷却循环。
请参阅图26,在本申请的一些实施例中,所述消融针组件100还包括活检针20,所述消融针10与所述活检针20更替地穿装在所述外套管30内。具体地,所述活检针20包括活检针主体及与所述活检针主体近端连接的活检手柄;所述消融针10与所述外套管30分离后,所述活检针20的活检针主体穿装入所述外套管30中,并沿所述外套管30伸入至活检位置,以进行活检操作。进一步地,所述活检针20的活检手柄也能够与所述外套管30可拆卸连接。换句话说,所述消融针10与所述外套管30能够可拆卸连接,所述活检针20也可以与所述外套管30进行可拆卸连接,将所述消融针10与所述外套管30拆分后,可以将所述活检针20与所述外套管30连接。因此,在完成消融操作后,解除消融针10与所述外套管30的连接,将外套管30留在组织内,为活检操作提供通道,使得活检针20快速到达期望的活检位置,避免了重复穿刺,减小对组织的损伤;或者,在有些手术过程中,可以在先完成活检操作后,解除活检针20与外套管30的连接,将外套管30留在组织内,为消融操作提供通道,使得消融针10快速到达期望的消融位置,同样能够避免重复穿刺,减小对组织的损伤。
请结合图27及图28,进一步地,本申请一些实施例中,所述消融针组件100还包括穿刺针芯40,穿刺针芯40的直径大于所述消融针10或活检针20的直径,穿刺针芯40的直径范围优选为19G~16G。且穿刺针芯40优选为较硬质的材料制成,如:不锈钢。所述穿刺针芯40与所述消融针10或活检针20更替地穿装在所述外套管30内并与所述外套管30可拆卸连接,所述穿刺针芯40的远端伸出所述外套管30。本实施例中,所述穿刺针芯40的远端呈尖锐的针状或三棱锥状,近端可以固定一具有内螺纹的接头41,所述接头41的内螺纹与外套管30近端的外螺纹相适配。增加了穿刺针芯40后,可在消融前或活检前将穿刺针芯40与外套管30组合对组织进行穿刺,之后解除穿刺针芯40与外套管30的连接,撤出穿刺针芯40,再向外套管30内穿入消融针10或活检针20。直径较大、较硬质的穿刺针芯40可以为外套管30提供较好的支撑性,因此穿刺针芯40与外套管30的组合更便于穿刺,并且可以防止直接利用消融针10或活检针20进行穿刺时,消融针10或活检针20受到损伤。
进一步地,请参阅图4、图19及图29,本申请还提供一种消融系统200,包括所述消融针组件100及能量发生装置110。所述能量发生装置110通过所述导线束118与电极针主体11进行电连接,以进行消融操作。本申请一些实施例中,所述消融系统200还包括医学影像装置120和/或冷却装置130。其中,所述能量发生装置110电性连接所述消融针10, 所述能量发生装置110可以但不限于为射频发生器或微波发生器。所述冷却装置130通过进水管路116及出水管路117与消融针组件100连接,以为所述电极针主体11内循环提供气态或液态冷却介质。所述医学影像装置120用于实时显示所述外套管30及电极针主体11的远端位置,可选自超声、CT、核磁、X光透视中的至少一种,优选超声。
本申请的所述消融针组件100及消融系统200能够但不限于应用在HCM的治疗,以及肾脏、肝脏或软组织肿瘤的治疗以及活检。
如图4及图30a至图30c所示,本实施例以治疗HCM为例,说明所述消融针组件100的使用过程:
第一步:首先将消融针10穿装在外套管30内,通过连接件122将外套管30与消融手柄12连接,得到如图2所示的消融针组件100。作动调节件1232以带动所述滑动件1231及电极针主体11相对外套管30沿轴向移动,获得一预期的电极针主体11远端伸出外套管30的长度,即获得初步的有效消融长度。
第二步:如图30a所示,在超声装置的引导下将外套管30与电极针主体11由肋骨间经心尖穿刺由心外膜进入室间隔壁内,开启射频发生器,由电极针主体11伸出外套管30的部分对肥厚的室间隔心肌进行射频消融。在消融过程中,若需调节有效消融长度,则沿轴向移动所述按键12321以作动调节件1232与滑动件1231,带动电极针主体11在体内实时地相对外套管30移动以调节至所需的有效消融长度。
射频消融能够破坏相应部位室间隔心肌的活性,使心肌坏死萎缩、变薄,从而使左室流出道增宽,解除梗阻。应用该消融针组件100治疗HCM,既避免了外科旋切手术开胸和体外循环的风险和痛苦,也没有化学酒精消融无效或酒精外溢造成大面积心梗的风险,简单易行,对患者创伤极其微小,手术风险小,且疗效显著;并且,能够在体内实时的调节有效消融长度,极大地提高了手术效率,减少了对人体组织的损伤。
第三步:如图30b及图30c所示,在执行完消融后解除外套管30与连接件122的连接,撤出消融针10而留置外套管30,然后活检针20穿入外套管30提取组织样本用于活检。所述外套管30为活检操作提供了通道,能够避免重复穿刺,减小了对组织的损伤,并能够使得活检针20快速到达期望的活检位置。
可以理解的是,在某些情况下,亦可以在执行消融前先将外套管30与活检针20组合进行穿刺、活检,然后撤出活检针20而留置外套管30,最后将消融针10穿入外套管30,通过连接件122建立起外套管30与消融针10的连接,同样能够避免重复穿刺,减小对组织的损伤。
如图31a至图31e所示,在本申请的一些实施例中,所述消融针组件100增加了穿刺针芯40后,可在消融前或活检前将穿刺针芯40与外套管30组合进行穿刺,之后解除穿刺针芯40与外套管30的连接,撤出穿刺针芯40,留置外套管30在患者体内,再向外套管30内穿入消融针10或活检针20,进行消融或活检操作,以增加穿刺强度,并防止穿刺过程损伤消融针10或者活检针20。
以上所揭露的仅为本申请一种较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (23)

  1. 一种消融针组件,其特征在于,包括中空的外套管以及消融针;所述消融针包括电极针主体及与所述电极针主体近端连接的消融手柄,所述外套管至少部分绝缘,所述电极针主体活动穿装于所述外套管内;所述消融手柄包括外壳、与所述外壳远端固定的连接件及沿所述外壳轴向移动的驱动部;所述外套管与所述连接件可拆卸连接,所述电极针主体的近端与所述驱动部固定,所述驱动部驱动所述电极针主体相对所述外套管移动,以实时调节所述电极针主体的远端伸出所述外套管的长度。
  2. 如权利要求1所述的消融针组件,其特征在于,所述驱动部包括滑动件及与所述滑动件连接的调节件,所述电极针主体的近端与所述滑动件固定,所述滑动件收容于所述外壳内,所述调节件控制所述滑动件在所述外壳内移动,以带动所述电极针主体相对所述外套管轴向移动。
  3. 如权利要求2所述的消融针组件,其特征在于,所述调节件包括按键和限位体,所述外壳上开设有控制槽,所述限位体一端与所述滑动件连接,另一端从所述控制槽伸出所述外壳并连接所述按键,推动所述按键沿所述控制槽移动以控制所述滑动件沿所述外壳的轴向移动。
  4. 如权利要求3所述的消融针组件,其特征在于,所述限位体与所述滑动件之间设有弹性体,所述外壳的内壁位于所述控制槽的至少一侧设有多个卡槽,所述限位体上设有至少一个卡位,所述弹性体自然伸长时,所述弹性体顶推所述限位体以使所述卡位卡入所述卡槽中。
  5. 如权利要求2所述的消融针组件,其特征在于,所述外壳的内表面设有沿所述电极针主体轴向设置的第一导向体,所述滑动件的表面设有与所述第一导向体适配的第二导向体,通过所述第二导向体与所述第一导向体的配合使得所述滑动件沿所述电极针主体轴向移动。
  6. 如权利要求1所述的消融针组件,其特征在于,所述连接件包括基轴及与所述基轴旋转连接的卡圈,所述基轴的远端与所述外壳固定连接,所述外套管与所述卡圈可拆卸连接。
  7. 如权利要求6所述的消融针组件,其特征在于,所述基轴的近端设有第一卡槽,所述外壳的远端卡持固定于所述第一卡槽内;所述基轴上位于所述第一卡槽的远端侧设有第二卡槽,所述卡圈的近端旋转卡持于所述第二卡槽内。
  8. 如权利要求1所述的消融针组件,其特征在于,所述外套管的远端具有第一引导部,所述第一引导部在医学影像装置下显影。
  9. 如权利要求1或8所述的消融针组件,其特征在于,所述电极针主体的远端具有第二引导部,所述第二引导部在医学影像装置下显影。
  10. 如权利要求2所述的消融针组件,其特征在于,所述电极针主体内设有从近端延伸至远端的内腔,且所述内腔近端开放,远端封闭,所述内腔内设有冷却通道,且所述冷却通道与所述内腔的内壁之间具有第一间隙。
  11. 如权利要求10所述的消融针组件,其特征在于,所述消融手柄的近端设有流入口 及流出口,所述流入口与所述冷却通道的近端连通,所述流出口与所述第一间隙连通。
  12. 如权利要求11所述的消融针组件,其特征在于,所述消融手柄还包括设于所述外壳内的活塞件,所述活塞件与所述滑动件同轴设置,所述活塞件的远端与所述滑动件的近端密封固定,且所述滑动件与所述活塞件之间形成出水存储腔,所述流出口及所述第一间隙均与所述出水存储腔连通。
  13. 如权利要求12所述的消融针组件,其特征在于,所述滑动件的近端设有第一腔体,所述活塞件的远端伸入所述第一腔体内并与所述第一腔体的内壁密封固定,所述活塞件的远端端面与所述第一腔体的底壁之间具有第二间隙,所述第二间隙形成所述出水存储腔。
  14. 如权利要求12或13所述的消融针组件,其特征在于,所述消融手柄还包括设于所述外壳内并与所述外壳固定连接的套筒件,所述套筒件与所述活塞件同轴设置,所述套筒件的远端套设于所述活塞件的近端外并与所述活塞件可活动并密封连接,所述活塞件与所述套筒件之间形成进水存储腔,所述流入口及所述冷却通道均与所述进水存储腔连通。
  15. 如权利要求14所述的消融针组件,其特征在于,所述活塞件的近端设有第二腔体,所述套筒件的远端设有第三腔体,所述活塞件的近端插入所述第三腔体内并与所述第三腔体内壁密封连接,所述第二腔体与所述第三腔体连通形成所述进水存储腔。
  16. 如权利要求14所述的消融针组件,其特征在于,所述活塞件的近端的外壁上套设有密封圈,所述密封圈密封所述活塞件的近端与所述套筒件之间的间隙。
  17. 如权利要求15所述的消融针组件,其特征在于,所述进水存储腔内设有出水转接管,所述出水转接管的远端穿过所述活塞件与所述出水存储腔连通,所述出水转接管的近端连接至所述流出口。
  18. 如权利要求17所述的消融针组件,其特征在于,所述出水转接管包括可沿所述套筒件轴向伸缩的螺旋段。
  19. 如权利要求1所述的消融针组件,其特征在于,所述消融针组件还包括活检针,所述活检针与所述消融针更替地穿装于所述外套管内并与所述外套管可拆卸连接。
  20. 如权利要求1或19所述的消融针组件,其特征在于,还包括穿刺针芯,所述穿刺针芯与所述消融针更替地穿装于所述外套管内并与所述外套管可拆卸连接,所述穿刺针芯的远端伸出所述外套管。
  21. 一种消融系统,其特征在于,包括如权利要求1至20任一项所述的消融针组件以及与所述消融针的电极针主体之间电性连接的能量发生装置。
  22. 如权利要求21所述的消融系统,其特征在于,所述能量发生装置为射频发生器或微波发生器。
  23. 如权利要求21或22所述的消融系统,其特征在于,还包括与所述电极针主体的近端相连通的冷却装置。
PCT/CN2019/106747 2017-11-28 2019-09-19 消融针组件及消融系统 WO2020088140A1 (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201711213683 2017-11-28
CN201811293109.3 2018-10-31
CN201821789289.XU CN210301204U (zh) 2017-11-28 2018-10-31 消融针组件及消融系统
CN201811293109.3A CN109350234A (zh) 2017-11-28 2018-10-31 消融针组件及消融系统
CN201821789289.X 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020088140A1 true WO2020088140A1 (zh) 2020-05-07

Family

ID=65343651

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/090923 WO2020052302A1 (zh) 2017-11-28 2019-06-12 适于治疗肥厚型心肌病的消融针组件及消融系统
PCT/CN2019/106745 WO2020088139A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统
PCT/CN2019/106747 WO2020088140A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/090923 WO2020052302A1 (zh) 2017-11-28 2019-06-12 适于治疗肥厚型心肌病的消融针组件及消融系统
PCT/CN2019/106745 WO2020088139A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统

Country Status (2)

Country Link
CN (7) CN109833091A (zh)
WO (3) WO2020052302A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116942301A (zh) * 2023-07-26 2023-10-27 南京先欧生物科技有限公司 高压陡脉冲用肿瘤消融针

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013553B2 (en) 2017-11-28 2021-05-25 Hangzhou Nuo Cheng Medical Instrument Co., Ltd. Treatment method for hypertrophic cardiomyopathy
CN109833091A (zh) * 2017-11-28 2019-06-04 杭州诺诚医疗器械有限公司 消融针组件及消融系统
CN209713127U (zh) * 2018-08-24 2019-12-03 杭州诺诚医疗器械有限公司 消融针组件及消融系统
CN110051430A (zh) * 2019-05-27 2019-07-26 海南省妇幼保健院 一种带有水循环的微波消融针
CN110179539B (zh) * 2019-05-30 2024-03-01 江苏省肿瘤医院 一种用于消融术中消融针的密封定位装置
CN110169819A (zh) * 2019-05-31 2019-08-27 江苏美安医药股份有限公司 射频导管转动式出针系统
CN110179534A (zh) * 2019-06-27 2019-08-30 安徽邵氏华艾生物医疗电子科技有限公司 一种纳米刀消融电极
CN112294431A (zh) * 2019-07-30 2021-02-02 上海睿刀医疗科技有限公司 用于不可逆电穿孔设备的超声可显影电极针
CN110338903A (zh) * 2019-08-07 2019-10-18 杭州睿笛生物科技有限公司 一种用于引导电极的穿刺针及电极输送装置
CN110327108A (zh) * 2019-08-13 2019-10-15 上海导向医疗系统有限公司 可调节冷冻消融针
CN110876649A (zh) * 2019-10-25 2020-03-13 苏州达能激光科技有限公司 一种通水气的铒激光牙科治疗仪手柄
CN110870783A (zh) * 2019-12-06 2020-03-10 吕敬群 分体组件及手术附件
CN113116512B (zh) * 2019-12-31 2022-12-16 上海微创电生理医疗科技股份有限公司 消融电极组件及消融导管
CN112741682B (zh) * 2020-12-31 2022-04-01 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN112741683A (zh) * 2020-12-31 2021-05-04 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN113693716A (zh) * 2020-05-22 2021-11-26 Tau-Pnu医疗有限公司 具有冷却功能的用于室间隔治疗法的射频电极消融导管
CN111772817A (zh) * 2020-06-22 2020-10-16 厦门大学附属翔安医院 肿瘤消融针精准定位套管
CN113842201A (zh) * 2020-06-26 2021-12-28 天津美电医疗科技有限公司 一种带有冷冻功能的分体式外套管消融探针及方法
CN114098945A (zh) * 2020-08-28 2022-03-01 深圳钮迈科技有限公司 双极气冷探针
CN112220556B (zh) * 2020-12-14 2021-03-12 上海微创电生理医疗科技股份有限公司 一种医用导管及医疗设备
CN112741681B (zh) * 2020-12-31 2022-07-12 杭州堃博生物科技有限公司 电子装置、射频操作提示系统及存储介质
CN112998845B (zh) * 2021-02-08 2021-12-21 上海睿刀医疗科技有限公司 一种多电极消融针以及多电极消融针电极间距的确定方法
CN113113125A (zh) * 2021-03-23 2021-07-13 上海导向医疗系统有限公司 消融针的验证方法、装置、消融针及设备、存储介质
CN113907869A (zh) * 2021-10-08 2022-01-11 杭州维纳安可医疗科技有限责任公司 电极针组件和消融设备
CN113796954B (zh) * 2021-10-11 2023-03-28 杭州市第一人民医院 一种可改变加热角度的消融针
CN113974698B (zh) * 2021-10-29 2022-10-28 上海美微达医疗科技有限公司 一种带针道消融功能的有源活检装置及其系统和方法
CN114129256B (zh) * 2021-11-10 2023-06-30 中国人民解放军空军军医大学 一种射频消融电极针的消融方法
CN114424970B (zh) * 2022-01-20 2024-02-02 中国人民解放军空军军医大学 一种心肌消融组件
CN117653324A (zh) * 2022-08-31 2024-03-08 杭州诺沁医疗器械有限公司 消融针、消融装置及消融系统
CN116138870A (zh) * 2023-02-28 2023-05-23 上海澍能医疗科技有限公司 活检及消融装置、活检及消融系统
CN116327350B (zh) * 2023-05-24 2023-08-22 浙江伽奈维医疗科技有限公司 一种消融针组件及消融系统
CN116350337B (zh) * 2023-05-30 2023-09-12 海杰亚(北京)医疗器械有限公司 冷热消融针及消融系统
CN117159128B (zh) * 2023-11-03 2024-01-30 浙江伽奈维医疗科技有限公司 可用于陡脉冲消融和/或射频消融的消融装置及消融电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140121658A1 (en) * 2011-06-06 2014-05-01 Chenes Llc Cool RF Electrode
US20150126922A1 (en) * 2011-06-01 2015-05-07 Angiodynamics, Inc. Coaxial dual function probe and method of use
CN104688333A (zh) * 2014-12-17 2015-06-10 珠海和佳医疗设备股份有限公司 一种单针双极性射频消融电极针及其射频电极裸露面积调节方法
CN106618727A (zh) * 2016-12-14 2017-05-10 汤敬东 一种具有爪状分支导管的血管射频消融电极导管
CN206390989U (zh) * 2016-08-31 2017-08-11 迈德医疗科技(上海)有限公司 射频消融电极装置
CN208435787U (zh) * 2017-08-08 2019-01-29 中国人民解放军第三军医大学第一附属医院 双组子针射频消融装置
CN109350234A (zh) * 2017-11-28 2019-02-19 杭州诺诚医疗器械有限公司 消融针组件及消融系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331166B1 (en) * 1998-03-03 2001-12-18 Senorx, Inc. Breast biopsy system and method
US6770070B1 (en) * 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
EP1839581A1 (en) * 2006-03-28 2007-10-03 VibraTech AB Anti-seeding arrangement
KR101168711B1 (ko) * 2010-01-26 2012-07-30 (주) 태웅메디칼 생체검사 후 조직 적출부위나 신체 내 장기의 출혈부위의 지혈을 위한 전극침
JP6267332B2 (ja) * 2013-10-28 2018-01-24 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド カテーテルの先端電極とセグメント化リング電極
EP3340915A1 (en) * 2015-08-27 2018-07-04 Boston Scientific Scimed, Inc. Tissue resecting device
CN105943159B (zh) * 2016-05-16 2019-07-23 安隽医疗科技(南京)有限公司 一种可调式注水消融电极针
CN207253372U (zh) * 2017-03-07 2018-04-20 深圳市宝安区妇幼保健院 一种消融范围可控的消融针

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150126922A1 (en) * 2011-06-01 2015-05-07 Angiodynamics, Inc. Coaxial dual function probe and method of use
US20140121658A1 (en) * 2011-06-06 2014-05-01 Chenes Llc Cool RF Electrode
CN104688333A (zh) * 2014-12-17 2015-06-10 珠海和佳医疗设备股份有限公司 一种单针双极性射频消融电极针及其射频电极裸露面积调节方法
CN206390989U (zh) * 2016-08-31 2017-08-11 迈德医疗科技(上海)有限公司 射频消融电极装置
CN106618727A (zh) * 2016-12-14 2017-05-10 汤敬东 一种具有爪状分支导管的血管射频消融电极导管
CN208435787U (zh) * 2017-08-08 2019-01-29 中国人民解放军第三军医大学第一附属医院 双组子针射频消融装置
CN109350234A (zh) * 2017-11-28 2019-02-19 杭州诺诚医疗器械有限公司 消融针组件及消融系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116942301A (zh) * 2023-07-26 2023-10-27 南京先欧生物科技有限公司 高压陡脉冲用肿瘤消融针
CN116942301B (zh) * 2023-07-26 2024-05-10 杭州先欧生物科技有限公司 高压陡脉冲用肿瘤消融针

Also Published As

Publication number Publication date
CN109350234A (zh) 2019-02-19
CN109350233A (zh) 2019-02-19
CN210301204U (zh) 2020-04-14
CN209826963U (zh) 2019-12-24
WO2020088139A1 (zh) 2020-05-07
CN109833089A (zh) 2019-06-04
CN210301203U (zh) 2020-04-14
WO2020052302A1 (zh) 2020-03-19
CN109833091A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2020088140A1 (zh) 消融针组件及消融系统
US7632266B2 (en) Endoscopic devices and related methods of use
US20060271032A1 (en) Ablation instruments and methods for performing abalation
US20170105607A1 (en) Surgical device and method of use
AU2019260152B2 (en) Multifunctional high-frequency electric knife
US11950805B2 (en) Sharp turning steerable needle
KR20220092512A (ko) 전기 수술 기구용 도입기
US20220338919A1 (en) Integrated ablation needle and ablation system
US20090163906A1 (en) Flexible endoscope for endo luminal access radio frequency tumor ablation
US11013553B2 (en) Treatment method for hypertrophic cardiomyopathy
WO2020038216A1 (zh) 消融针组件及消融系统
CN113116503A (zh) 集成式消融针及消融系统
CN211674522U (zh) 电刀装置
CN211934274U (zh) 基于消融锚定的可调弯的电刀装置
AU2021350113A1 (en) Systems, devices and methods for treating lung tumors with a robotically delivered catheter
CN220293651U (zh) 一种消融针组件及消融系统
CN216823636U (zh) 一种射频消融电极针系统
JP2019505268A (ja) 医療装置および使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880787

Country of ref document: EP

Kind code of ref document: A1