WO2020052302A1 - 适于治疗肥厚型心肌病的消融针组件及消融系统 - Google Patents

适于治疗肥厚型心肌病的消融针组件及消融系统 Download PDF

Info

Publication number
WO2020052302A1
WO2020052302A1 PCT/CN2019/090923 CN2019090923W WO2020052302A1 WO 2020052302 A1 WO2020052302 A1 WO 2020052302A1 CN 2019090923 W CN2019090923 W CN 2019090923W WO 2020052302 A1 WO2020052302 A1 WO 2020052302A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
needle
electrode needle
distal end
main body
Prior art date
Application number
PCT/CN2019/090923
Other languages
English (en)
French (fr)
Inventor
丘信炯
李阳
李雯雯
彭波波
张庭超
Original Assignee
杭州诺诚医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州诺诚医疗器械有限公司 filed Critical 杭州诺诚医疗器械有限公司
Publication of WO2020052302A1 publication Critical patent/WO2020052302A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1487Trocar-like, i.e. devices producing an enlarged transcutaneous opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle

Definitions

  • the invention relates to the technical field of medical instruments, and in particular to an ablation needle assembly and an ablation system suitable for treating hypertrophic cardiomyopathy.
  • Hypertrophic cardiomyopathy is a common autosomal dominant cardiovascular disease, which is mainly manifested by left ventricular (Left, Ventricle, LV) hypertrophy in one or more segments.
  • the general diagnostic standard is The thickness is 15 mm or more.
  • SAM systolic anterior motion
  • LVOT left ventricular outflow tract
  • HOCM obstructive hypertrophic cardiomyopathy
  • the treatment strategy for HCM is to expand LVOT to reduce the pressure difference and reduce its obstruction.
  • the main methods are drug therapy, ventricular septal resection, and ventricular septal alcohol ablation.
  • Drug treatment is relatively simple and easy, but some patients have poor or intolerable drug treatment.
  • Ventricular septal resection the modified Morrow procedure, removes hypertrophic myocardium through surgical thoracotomy.
  • the resection site is mainly in front of the ventricular septum.
  • ventricular septal alcohol ablation is a Interventional treatment methods, which mainly use percutaneous transluminal coronary angioplasty, send the balloon into the septal branch to be eliminated, and slowly inject alcohol into the septal branch to produce chemical occlusion, thereby making the hypertrophic ventricular septal myocardium Ischemia, necrosis, thinning, decreased contractility, and reduced LVOT. Although this method avoids the pain of surgery, in clinical applications, alcohol may cause myocardial infarction through branch vessels, and there is still a certain risk. Therefore, there is a need for a safer and more effective treatment for hypertrophic cardiomyopathy.
  • Radiofrequency ablation needle or microwave ablation needle is a minimally invasive interventional treatment device, currently mainly used to treat tumors in the liver, kidney, soft tissue and other parts.
  • the distal end P of the existing radio frequency ablation needle or microwave ablation needle is usually designed as a regular triangular pyramid, cone, spherical or umbrella-shaped electrode, which aims to increase the contact with the tumor tissue T.
  • Area when ablation is performed, a large-area, spherical or near-spherical ablation area A can be formed.
  • the invention provides an ablation needle assembly and an ablation system suitable for treating hypertrophic cardiomyopathy.
  • the ablation needle assembly includes a hollow insulating sleeve and an ablation needle; the ablation needle includes an electrode needle main body movably inserted in the insulating sleeve, and a distal end of the electrode needle main body extends out of the insulating sleeve;
  • the distal end portion of the electrode needle main body has a first main inclined surface, and the proximal end of the first main inclined surface and the distal end of the first main inclined surface are respectively located on opposite sides of the electrode needle main body axis, and the first main inclined surface is near
  • the distance between the end and the axis of the electrode needle main body is greater than or equal to the distance between the distal end of the first main inclined surface and the axis of the electrode needle main body, and the angle range between the first main inclined surface and the axis of the electrode needle main body is 15 ° ⁇ 60 °.
  • the arrangement of the first main inclined surface makes the ablation region of the distal end of the electrode needle main body no longer spherical or nearly spherical, but presents an irregular shape that is inclined toward the opposite side of the first main inclined surface, thereby reducing the maximum of the ablation region. Width to fit the flat heart ventricular septum structure, to prevent the ablation from penetrating the endocardium, and to prevent damage to the conductive beam. It is particularly suitable for radiofrequency ablation treatment of hypertrophic cardiomyopathy.
  • the distal end portion of the electrode needle main body further has a second main inclined surface, the second main inclined surface is opposite to the first main inclined surface, and the second main inclined surface and the axis of the electrode needle main body are The included angle is smaller than the included angle between the first main inclined surface and the axis of the electrode needle main body.
  • an included angle between the second main inclined surface and an axis of the electrode needle main body ranges from 5 ° to 30 °.
  • the distal end of the first main bevel and the distal end of the electrode needle body intersect in a straight line, and the distal end of the second main bevel and the distal portion of the electrode needle body Intersect on the same said straight line.
  • the ablation needle assembly further includes a plurality of auxiliary puncture surfaces, the plurality of auxiliary puncture surfaces are respectively located on both sides of the first main inclined surface and obliquely cut a distal end portion of the electrode needle main body.
  • the plurality of auxiliary puncturing surfaces intersect with the first main inclined surface at a point to form a distal end of the electrode needle main body, and the distal ends are offset from the axis center of the electrode needle main body.
  • the number of the auxiliary puncturing surfaces is two, and the two auxiliary puncturing surfaces are symmetrical with respect to the axis of the electrode needle main body, and each of the auxiliary puncturing surfaces and the electrode needle main body are symmetrical.
  • the included angle between the axes ranges from 30 ° to 60 °.
  • the distal end of the insulating sleeve is straight.
  • the distal end of the insulating sleeve is a beveled tip, and when performing ablation, the inclination direction of the beveled tip is inconsistent with the inclination direction of the first main bevel.
  • the ablation needle further includes an ablation handle connected to the proximal end of the electrode needle body, and the absorptive handle is detachably and rotationally connected between the proximal end of the insulating sleeve and the ablation handle. Rotating relative to the insulating sleeve to drive the electrode needle body to rotate relative to the insulating sleeve.
  • the ablation needle assembly further includes a biopsy needle, and the biopsy needle and the ablation needle are alternately inserted into the insulating sleeve.
  • the ablation needle assembly further includes a puncture needle core, and the puncture needle core and the ablation needle or the biopsy needle are alternately inserted in the insulation sleeve and are connected with the insulation sleeve. Removable connection, the distal end of the puncture needle core extends out of the insulating sleeve.
  • the ablation handle includes a housing, a driving component housed in the housing, and a connecting member rotatably connected to the driving component, and the insulating sleeve is detachably connected to the connecting member;
  • the driving component drives the relative movement between the insulating sleeve and the electrode needle main body in the axial direction to adjust the length of the distal end of the electrode needle main body protruding from the insulating sleeve.
  • the driving assembly includes a sliding member and an adjusting member connected to the sliding member.
  • the connecting member is coaxially disposed with the sliding member and is rotationally connected.
  • the adjusting member controls the sliding member. Moving along its axial direction to drive the insulating sleeve connected to the connecting member to move relative to the electrode needle body.
  • the casing is provided with a control groove along the axial direction of the sliding member, and one end of the adjustment member protrudes from the control groove; by moving the adjustment member in the casing, The position of the control groove controls the slide member to move in its axial direction.
  • a scale mark is provided on at least one side of the control slot.
  • an elastic member is provided between the adjusting member and the sliding member, and an extending direction of the elastic member faces the control slot; an inner wall of the housing is provided corresponding to the scale mark. At least one protrusion is provided on the adjusting member, and when the elastic member is naturally extended, the elastic member pushes the protrusion to be locked into the locking seat.
  • a distal end ring of the sliding member is provided with a clamping slot
  • a proximal end of the connecting member is provided with a clamping ring
  • the clamping ring is inserted into the clamping slot so that the sliding member and the The connecting member is connected in rotation.
  • a distal end of the insulating sleeve has a first guide portion, and the first guide portion is developed under a medical imaging device.
  • a distal end of the electrode needle body has a second guide portion, and the second guide portion is developed under a medical imaging device.
  • a cooling channel is provided in the electrode needle body.
  • the ablation system includes an ablation needle assembly and an energy generating device electrically connected to an electrode needle body of the ablation needle.
  • the energy generating device is a radio frequency generator or a microwave generator.
  • the ablation system further includes a cooling device in communication with the proximal end of the electrode needle body.
  • the ablation needle assembly and the ablation system of the present invention have at least the following beneficial effects:
  • the distal end of the electrode needle main body is provided with a first main inclined surface, and the proximal end and the distal end of the first main inclined surface are respectively located on opposite sides of the electrode needle main body axis, and the proximal end of the first main inclined surface and the electrode needle main body axis The distance between them is greater than or equal to the distance between the distal end of the first main inclined surface and the axis of the electrode needle main body, and the angle between the first main inclined surface and the axis of the electrode needle main body ranges from 15 ° to 60 °, so that the electrode
  • the ablation region at the distal end of the needle body is no longer spherical or nearly spherical, but presents an irregular shape that is skewed toward the opposite side of the first main slope, thereby reducing the maximum width of the ablation region and being able to adapt to a flat heart ventricular septum structure
  • radiofrequency radiofrequency
  • FIG. 1 is a schematic diagram of a conventional umbrella-shaped ablation needle when ablating tumor tissue
  • FIG. 2 is a schematic diagram of a spherical ablation region formed by a conventional ablation needle
  • FIG. 3 is a schematic diagram of ablation of a cardiac ventricular septum using an existing ablation needle
  • FIG. 5 is a schematic structural diagram of an ablation needle assembly according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of an ablation needle and an insulating sleeve after being assembled according to an embodiment of the present invention
  • FIG. 7 is a front view of the ablation needle and the insulating sleeve shown in FIG. 5 after being assembled;
  • FIG. 8 is a schematic structural diagram of an insulating sleeve according to an embodiment of the present invention.
  • FIG. 9 is an enlarged schematic view of a distal end of an electrode needle body according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of the electrode needle body shown in FIG. 9 at the A-A position;
  • FIG. 11 is a schematic structural diagram of an electrode needle main body according to an embodiment of the present invention.
  • FIG. 12a is a schematic perspective view of a first embodiment of a distal end portion of an electrode needle body according to the present invention.
  • 12b is a schematic front view of the first embodiment of the distal end portion of the electrode needle main body in the present invention.
  • FIG. 12c is a schematic diagram of the first embodiment of the distal end of the electrode needle main body in accordance with the present invention, with the distal straight insulation sleeve performing ablation within the interventricular septum;
  • FIG. 12d is a schematic diagram of ablation of a first embodiment of a distal end portion of an electrode needle main body in accordance with the present invention in a ventricular septum with an insulating sleeve with a beveled distal end;
  • FIG. 13a and 13b are perspective views of a second embodiment of the distal end portion of the electrode needle main body in different perspectives according to the present invention.
  • 13c, 13d, and 13e are a front view, a right side view, and a top view, respectively, of a second embodiment of the distal end portion of the electrode needle body in the present invention
  • 13f is a schematic diagram of a second embodiment of the distal end portion of the electrode needle main body in accordance with the present invention for performing ablation within the interventricular septum with a straight distal insulating sleeve;
  • 13g is a schematic diagram of ablation of a distal end portion of an electrode needle main body in accordance with the present invention with an insulating sleeve with a beveled distal end in the ventricular septum;
  • 14a and 14b are perspective views of a third embodiment of the distal end of the electrode needle main body in different perspectives of the present invention, respectively;
  • 14c, 14d, and 14e are a schematic right side view, a front view, and a top view of the third embodiment of the distal end portion of the electrode needle body in the present invention, respectively;
  • 14f is a schematic diagram of a third embodiment of the distal end portion of the electrode needle main body in accordance with the present invention in conjunction with a straight distal insulation sleeve for ablation in the interventricular space;
  • 14g is a schematic view of ablation of a third embodiment of the distal end portion of the electrode needle main body in the present invention with an insulating sleeve with a beveled distal end in the ventricular septum;
  • 15a and 15b are perspective views of a fourth embodiment of a distal end portion of an electrode needle main body in different perspectives of the present invention, respectively;
  • 15c, 15d, 15e, and 15f are a front view, a rear view, a right view, and a top view of a fourth embodiment of the distal end portion of the electrode needle body in the present invention, respectively;
  • 15g is a schematic view of a fourth embodiment of the distal end portion of the electrode needle main body in accordance with the present invention to perform ablation in the interventricular septum with a straight distal insulating sleeve;
  • 15h is a schematic view of ablation of a fourth embodiment of the distal end portion of the electrode needle main body in accordance with the present invention with an insulating sleeve with a chamfered distal end in the ventricular septum;
  • 16 is an anatomical picture after performing ablation experiments on porcine ventricular septum using the ablation of the present invention
  • FIG. 17 is a schematic cross-sectional view of the ablation needle and the insulating sleeve shown in FIG. 7 after assembly;
  • FIG. 18 is a schematic structural diagram of a driving assembly of the ablation needle according to an embodiment of the present invention.
  • FIG. 19 is a schematic exploded view of a biopsy needle and an insulating sleeve according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a combination of the biopsy needle and the insulating sleeve shown in FIG. 18;
  • 21 is a schematic exploded view of a puncture needle core and an insulating sleeve according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a combination of the puncture needle core and the insulating sleeve shown in FIG. 20;
  • 23a to 23c are schematic diagrams of a process of using an ablation needle assembly according to an embodiment of the present invention.
  • FIG. 24a to FIG. 24e are schematic diagrams of a process of using an ablation needle assembly according to another embodiment of the present invention.
  • FIG. 25 is a schematic structural diagram of an ablation system according to an embodiment of the present invention.
  • proximal and distal are defined herein as common terms in the field of interventional medicine. Specifically, the “distal end” indicates the end far from the operator during the surgical operation, and the “proximal end” indicates the end near the operator during the surgical operation.
  • the present invention provides an ablation needle assembly 100 for inserting a patient's heart through a transapical approach to perform ablation of hypertrophic ventricular septal myocardium to treat hypertrophic cardiomyopathy.
  • the ablation needle assembly 100 includes an insulating cannula 30 and an ablation needle 10.
  • the ablation needle 10 includes an electrode needle main body 11 and an ablation handle 12 connected to a proximal end of the electrode needle main body 11.
  • the insulating sleeve 30 is movably sleeved outside the electrode needle main body 11 and is detachably and rotationally connected with the ablation handle 12.
  • the distal end of the electrode needle body 11 protrudes from the insulating sleeve 30.
  • the insulating sleeve 30 Since the insulating sleeve 30 is completely insulated, a part of the electrode needle body 11 protruding from the insulating sleeve 30 performs an ablation operation. Specifically, when the electrode needle main body 11 is electrically connected to a radio frequency generator, the electrode needle main body 11 transmits a high-frequency current so that the charged positive and negative ions in the diseased tissue around the distal end of the electrode needle main body 11 undergo high-speed oscillating motion.
  • the ions generate a large amount of heat due to friction, which causes the temperature in the diseased tissue to rise, eventually denature protein in the diseased cells, loss of water inside and outside the cell, and coagulation necrosis of the diseased tissue, thereby achieving radiofrequency ablation;
  • the electrode needle body 11 is electrically When a microwave generator is connected, a microwave field is formed at the distal end of the electrode needle main body 11.
  • the dipole molecules such as water molecules in the diseased tissue are heated by friction and severe collision under the action of the microwave field, which causes the temperature in the diseased tissue to rise.
  • the protein in the diseased cell is denatured, the water inside and outside the cell is lost, and the coagulated necrosis of the diseased tissue occurs, thereby achieving microwave ablation.
  • the insulating sleeve 30 is detachably connected to the ablation handle 12, so that after the ablation operation is completed, the ablation needle 10 can be detached from the insulating sleeve 30, and the insulating sleeve 30 remains in the tissue.
  • the ablation handle 12 can be rotated relative to the insulating sleeve 30 to drive the electrode needle main body 11 to rotate relative to the insulating sleeve 30, that is, the insulating sleeve 30 and the electrode needle main body 11 of the ablation needle 10 are not integrated.
  • the insulating sleeve 30 can be kept from rotating, thereby reducing the damage to the tissue, and the resistance to rotation is small.
  • the insulating sleeve 30 serves as an insulating tube for the ablation needle 10.
  • the insulating sleeve 30 is made of a metal material and then coated with an insulating coating on the outer surface of the tube.
  • the metal material includes, but is not limited to, 304 stainless steel, 321 stainless steel, or 631 stainless steel pipe
  • the insulating coating includes, but is not limited to, a PTFE coating, a titanium nitride coating, a Parylene coating, and the like.
  • the metal material used to make the insulating sleeve 30 should have sufficient hardness to penetrate human tissues, and at the same time, it must have excellent biocompatibility.
  • the insulating coating must have reliable insulation, excellent biocompatibility, and Small friction coefficient, and requires close bonding between the insulating coating and the outer surface of the tube of the insulating sleeve 30, and the insulating coating is not easy to fall off.
  • the thickness of various insulation coatings should be ⁇ 3 ⁇ m.
  • the insulating sleeve 30 can also be made entirely of insulating materials, such as PEEK, PI, or PA plastic pipes that can meet the hardness requirements, such as high alumina porcelain, talc porcelain, or nitrogen. Boron and other ceramic tubes.
  • insulating materials such as PEEK, PI, or PA plastic pipes that can meet the hardness requirements, such as high alumina porcelain, talc porcelain, or nitrogen. Boron and other ceramic tubes.
  • the distal end of the insulating sleeve 30 may be straight or a chamfered tip.
  • the distal end of the insulating sleeve 30 is a tip, so that various positions of the insulating sleeve 30 can be easily inserted into the tissue, and the contact area of the tissue surrounding the various positions of the insulating sleeve 30 with the electrode needle main body 11 is made. Different, so that the required ablation area is determined according to the anatomical structure of the tissue to be treated, and orientation and positioning ablation are achieved by adjusting the insertion direction of the insulating sleeve 30.
  • a scale mark 31 is provided on the insulation sleeve 30 to indicate the depth of the insulation sleeve 30 inserted into the tissue.
  • the scale mark 31 includes a series of scale values, and the scale values gradually increase from the distal end to the proximal end.
  • the distal end of the insulating sleeve 30 has a first guide portion 34 capable of developing under a medical imaging device, and the length of the first guide portion 34 needs to be ⁇ 5 mm to ensure accurate position guidance.
  • the first guide portion 34 can help a doctor determine whether the distal end of the insulating sleeve 30 is traveling along a desired puncture path and whether it is approaching a predetermined ablation position.
  • the first guide portion 34 may be a part of a structure added at the distal end of the insulating sleeve 30, or may be obtained by performing a certain treatment on the distal end of the insulating sleeve 30.
  • the first guide portion 34 may be formed by roughening the surface of the insulating sleeve 30 near the distal end by sandblasting or punching.
  • the surface roughness of the first guide portion 34 should not be too high, and at the same time as the requirement for ultrasonic development is achieved, it will not affect the advancement of the insulating sleeve 30 in the tissue.
  • the electrode needle main body 11 of the ablation needle 10 may be made of a biocompatible metal with excellent conductivity such as stainless steel. Because the insulating sleeve 30 is provided, the electrode needle main body 11 surface of the ablation needle 10 does not need to be coated with an insulating material, which simplifies the manufacturing process of the electrode needle main body 11 of the ablation needle 10, and the insulating sleeve 30 can be an ablation needle.
  • the electrode needle body 11 of 10 provides support and protection, thereby allowing the diameter of the electrode needle body 11 to be reduced.
  • the diameter of the electrode needle body 11 can be selected from 20G to 16G. On the one hand, it helps to further reduce tissue damage.
  • the diameter of the electrode needle body 11 is smaller, which is more suitable for ablating flat tissue, and can prevent pneumothorax and pericardial effusion when ablating the thick myocardium in the interventricular space Fluid and other problems to reduce bleeding.
  • the electrode needle body 11 of the ablation needle 10 is electrically connected to an energy generating device, wherein the energy generating device may be a microwave generator or a radio frequency generator.
  • the energy generating device may be a microwave generator or a radio frequency generator.
  • the portion of the electrode needle body 11 of the ablation needle 10 that exposes the insulating sleeve 30 transmits microwave energy or radio frequency energy to the tissue to perform the ablation operation.
  • a cooling channel 16 is provided in the electrode needle body 11 of the ablation needle 10, and the cooling channel 16 is used to transport a gaseous or liquid cooling medium (such as Cooling water) cools the high-temperature area to control the local temperature during the ablation operation.
  • a gaseous or liquid cooling medium such as Cooling water
  • the distal end of the electrode needle body 11 has a second guide portion 17 capable of developing under a medical imaging device.
  • the length of the second guide portion 17 is ⁇ 5 mm, and the second guide portion 17 can The imaging under the medical imaging device helps the doctor determine whether the distal end of the electrode needle body 11 has reached or is at a predetermined ablation position.
  • the second guide portion 17 may be a part of a structure added to the distal end of the electrode needle body 11, or may be obtained by performing a certain treatment on the distal end of the electrode needle body 11.
  • the surface of the distal end of the electrode needle main body 11 is processed into an uneven rough surface to form a second guide portion 17 to meet the needs of ultrasonic development.
  • the surface of the distal end of the electrode needle main body 11 may be sandblasted or Punching and other processing.
  • the surface roughness of the second guide portion 17 should not be too high, and it will not affect the advancement of the electrode needle main body 11 in the tissue while fulfilling the requirements of ultrasonic development. Therefore, the ablation needle assembly of this embodiment is particularly suitable for ultrasound-guided ablation treatment. The operator can send the distal end of the ablation needle assembly into the patient through puncture under ultrasound guidance, and the electrode needle body 11 An ablation operation is performed on a part of the diseased tissue where the insulating sleeve 30 is exposed.
  • the structure of the cardiac ventricular septum is relatively flat, it is necessary to avoid the formation of large-area, spherical or near-spherical ablation regions when ablating the hypertrophic myocardium in the ventricular septum to prevent the ablation from penetrating the endocardium.
  • the distal end portion of the needle body 11, that is, the portion of the electrode needle body 11 that approaches the distal top end of the electrode needle body 11 is different from the structure of the prior art.
  • FIG. 12 a to FIG. 12 d is a first embodiment of the distal end portion of the electrode needle body 11.
  • the distal end portion of the electrode needle main body 11 has a first main inclined surface 112 that intersects with the outer surface of the distal end portion of the electrode needle main body 11 to obliquely cut the electrode needle main body 11.
  • the proximal end of the first main inclined surface 112 and the distal end of the first main inclined surface 112 are located on opposite sides of the electrode needle main body 11 axis, respectively.
  • the first main inclined surface 112 intersects with the outer surface of the distal end portion of the electrode needle main body 11.
  • the outer peripheral surface of the distal end portion intersects, or a part of the outer contour of the first main inclined surface 112 may intersect the outer peripheral surface of the distal end portion of the electrode needle main body 11, and the other outer contours may intersect the top surface of the distal end portion of the electrode needle main body 11. Intersect so that the distance between the proximal end of the first main inclined surface 112 and the axis of the electrode needle body 11 is greater than or equal to the distance between the distal end of the first main inclined surface 112 and the axis of the electrode needle body 11. Further, the smaller the angle ⁇ 1 between the first main inclined surface 112 and the axis of the electrode needle main body, the sharper the distal end of the electrode needle main body 11 is.
  • the angle ⁇ 1 between the first main inclined surface 112 and the axis of the electrode needle body 11 ranges from 15 ° to 60 °.
  • the puncture needle core 40 is inserted into the insulating sleeve 30 movably, that is, the puncture needle core 40 and the electrode needle main body 11 are alternately inserted into the insulation sleeve 30 so as to pass the puncture needle core. 40 is combined with the insulating sleeve 30 to perform puncture.
  • the electrode needle body 11 only needs to be inserted into the insulating sleeve 30 to perform ablation, and no puncture is required.
  • the distal end of the insulating sleeve 30 may be straight.
  • the distal end portion of the electrode needle main body 11 protrudes from the insulating sleeve 30.
  • the ablation site on the electrode needle main body 11 includes the first main inclined surface 112 and the electrode needle main body. 11 exposes the outer surface of the insulating sleeve 30.
  • the outer surface of the electrode needle main body 11 located above the first main inclined surface 112 is equivalent to the first main inclined surface 112.
  • the first ablation region A1 formed by the outer surface of the electrode needle main body 11 extends outward from the outer surface of the electrode needle body 11 on the opposite side of the first main inclined surface 112, and the second ablation region A2 formed by the first main inclined surface 112. Expanding outward from the first main slope 112, the shapes of the two ablation regions are different, and the second ablation region A2 is closer to the axis of the electrode needle body 11 than the first ablation region A1, so the first ablation region A1 and
  • the overall ablation region A which is a combination of the second ablation region A2, is no longer spherical or nearly spherical, but has an irregular shape inclined toward the opposite side of the first main slope 112 as shown in FIG. 12c, thereby ablating the region.
  • the maximum width of A is reduced, which can adapt to the flat structure of the cardiac ventricular septum S, avoid ablation to penetrate the endocardium E, and prevent damage to the conduction beam. It is especially suitable for treating hypertrophic cardiomyopathy by transapical ventricular septal ablation.
  • the distal end of the insulating sleeve 30 may also be a beveled tip, and when performing ablation, the inclined direction of the beveled tip of the insulating sleeve 30 is inconsistent with the inclination direction of the first main inclined surface 112 ( This can be achieved by rotating the ablation handle 12 to drive the electrode needle body 11 to rotate).
  • the area of the outer surface of the electrode needle body 11 on the opposite side of the first main bevel 112 is larger.
  • the overall ablation area A which is a combination of the first ablation area A1 and the second ablation area A2, more clearly shows an irregular shape that is skewed toward the opposite side of the first main inclined surface 112, and is more suitable for the flatness of the cardiac ventricular septum S.
  • the structure avoids the ablation penetrating to the endocardium E, and is especially suitable for treating hypertrophic cardiomyopathy by transapical ventricular septal ablation.
  • FIGS. 13 a to 13 g is a second embodiment of the distal end portion of the electrode needle main body 11.
  • the second embodiment of the distal end portion of the electrode needle main body 11 is different from the above-mentioned first embodiment in that the distal end portion of the electrode needle main body 11 further includes two auxiliary puncturing surfaces 116 that obliquely cut the electrode needle main body 11.
  • the two auxiliary puncture surfaces 116 are respectively located on two sides of the first main inclined surface 112.
  • the two auxiliary puncturing surfaces 116 intersect the outer surfaces of the first main inclined surface 112 and the electrode needle body 11, and the outer surfaces of the two auxiliary puncturing surfaces 116, the first main inclined surface 112 and the electrode needle body 11 intersect at a point to form
  • the sharp end of the electrode needle main body 11 is offset from the axis of the electrode needle main body 11.
  • the sharp tip can make puncturing easier and smoother.
  • the two auxiliary puncturing surfaces 116 are symmetrical with respect to the axis of the electrode needle main body 11, and an angle ⁇ between each of the auxiliary puncturing surfaces 116 and the axis of the electrode needle main body 11 ranges from 30 ° to 60.
  • the number of auxiliary puncturing surfaces located on both sides of the first main inclined surface 112 may be greater, as long as the adjacent auxiliary puncturing surfaces are connected to each other, all the auxiliary puncturing surfaces and all
  • the first main inclined surface 112 intersects at a point to form a sharp end of the electrode needle body 11, and the end may be offset from the axis of the electrode needle body 11; in other embodiments, the auxiliary puncture surface may also be a cone surface.
  • the ablation mechanism of the distal end portion of the electrode needle body 11 is the same as that of the first embodiment, and will not be repeated here.
  • the overall ablation area A is no longer spherical or near-spherical, but presents an irregular shape that is skewed toward the opposite side of the first main slope 112, so that the maximum width of the ablation area A is reduced and can be adapted to the heart chamber.
  • the flat structure of the interval S prevents the ablation from penetrating to the endocardium E and prevents damage to the conduction beam. It is particularly suitable for the treatment of hypertrophic cardiomyopathy by transapical ventricular septal ablation.
  • FIGS. 14 a to 14 g is a third embodiment of the distal end portion of the electrode needle body 11.
  • the third embodiment of the distal end portion of the electrode needle main body 11 is different from the above-mentioned first embodiment in that the distal end of the electrode needle main body 11 further includes a second main inclined surface 114, and the second main inclined surface 114 and the first main inclined surface 112 is oppositely disposed, the second main inclined surface 114 intersects the outer surface of the electrode needle main body 11 to obliquely cut the electrode needle main body 11, and the angle ⁇ 2 between the second main inclined surface 114 and the axis of the electrode needle main body 11 is less than The angle ⁇ 1 between the first main inclined surface 112 and the axis of the electrode needle main body 11.
  • the range of the angle ⁇ 2 between the second main inclined surface 114 and the axis of the electrode needle body 11 is preferably 5 ° to 30 °.
  • the distal end of the first main inclined surface 112 intersects with the distal end portion of the electrode needle main body 11 on a straight line
  • the distal end of the second main inclined surface 114 intersects with the distal end portion of the electrode needle main body 11 on the same straight line.
  • the electrode needle body 11 of this structure usually needs to be punctured in combination with the puncture needle core 40 and the insulation sleeve 30 shown in FIG. 21 described later, and then inserted into the insulation sleeve 30.
  • the distal end portion of the electrode needle body 11 To perform ablation.
  • the distal end of the insulating sleeve 30 may be straight.
  • the distal end portion of the electrode needle main body 11 protrudes from the insulating sleeve 30, and the ablation site on the electrode needle main body 11 includes the first main inclined surface 112 and the second main Bevel 114.
  • the second main beveled surface 114 is formed by cutting out the outer surface of the electrode needle main body 11 located on the second main beveled surface 114, and the first main beveled surface 112 is removed by cutting out more of the electrode needle main body 11 located above the first main beveled surface 112. The surface is formed.
  • a first ablation region A1 formed under the action of the second main slope 114 opposite to the first main slope 112 extends outward from the second main slope 114, and a second ablation region A1 formed under the action of the first main slope 112
  • the ablation area A2 extends outward from the first main inclined surface 112.
  • the shapes of the two ablation areas are different, and the second ablation area A2 is closer to the axis of the electrode needle body 11 than the first ablation area A1, so the first ablation area
  • the overall ablation region A which is a combination of A1 and the second ablation region A2, is no longer spherical or nearly spherical, but presents an irregular shape that is skewed toward the opposite side of the first main slope 112, so that the maximum width of the ablation region A It can be reduced, can adapt to the flat structure of the cardiac ventricular septum S, avoid ablation to penetrate the endocardium E, and prevent damage to the conduction beam, and is especially suitable for treating hypertrophic cardiomyopathy by transapical ventricular septal ablation.
  • the distal end of the insulating sleeve 30 may also be a beveled tip, and when performing ablation, the inclined direction of the beveled tip of the insulating sleeve 30 is inconsistent with the inclination direction of the first main inclined surface 112 ( This can be achieved by rotating the ablation handle 12 to drive the electrode needle body 11 to rotate). Compared with the case where the distal end of the insulating sleeve 30 is straight as shown in FIG.
  • the opposite side of the first main inclined surface 112 is not only the second main inclined surface 114, but also There is an outer surface of the electrode needle main body 11 located between the second main inclined surface 114 and the insulating sleeve.
  • the area on the opposite side of the first main inclined surface 112 to perform ablation is larger.
  • the first ablation area A1 and the second ablation area A2 are combined.
  • the overall ablation region A more clearly shows an irregular shape that is skewed toward the opposite side of the first main slope 112, and is more suitable for the flat structure of the cardiac ventricular septum S, avoiding the penetration of the ablation into the endocardium E, and is particularly suitable for passing through the Apical ventricular septal ablation for hypertrophic cardiomyopathy.
  • FIGS. 15a to 15h is a fourth embodiment of the distal end portion of the electrode needle body 11.
  • the fourth embodiment of the distal end portion of the electrode needle main body 11 is different from the third embodiment described above in that the distal end portion of the electrode needle main body 11 further includes two auxiliary puncturing surfaces 116 that obliquely cut the electrode needle main body 11.
  • the two auxiliary puncturing surfaces 116 are respectively located on two sides of the first main inclined surface 112 and the second main inclined surface 114.
  • the two auxiliary puncturing surfaces 116, the first main inclined surface 112 and the second main inclined surface 114 intersect at a point to form a sharp end of the electrode needle main body 11, and the ends are offset from the axis of the electrode needle main body 11.
  • the sharp tip can make puncturing easier and smoother.
  • the two auxiliary puncturing surfaces 116 are symmetrical with respect to the axis of the electrode needle main body 11, and an angle ⁇ between each of the auxiliary puncturing surfaces 116 and the axis of the electrode needle main body 11 ranges from 30 ° to 60. °. It can be understood that, in other embodiments, the number of auxiliary puncturing surfaces located on both sides of the first main inclined surface 112 and the second main inclined surface 114 may be greater, as long as the adjacent auxiliary puncturing surfaces are connected to each other.
  • All the auxiliary puncturing surfaces intersect with the first main inclined surface 112 and the second main inclined surface 114 at a point to form a sharp end of the electrode needle main body 11, and the ends deviate from the axis of the electrode needle main body 11;
  • the auxiliary puncture surface may be a tapered surface.
  • the ablation mechanism of the distal end portion of the electrode needle body 11 is the same as that in the third embodiment, and is not repeated here.
  • the overall ablation area A is no longer spherical or near-spherical, but presents an irregular shape that is skewed toward the opposite side of the first main slope 112, so that the maximum width of the ablation area A is reduced and can be adapted to the heart chamber.
  • the flat structure of the interval S prevents the ablation from penetrating to the endocardium E and prevents damage to the conduction beam. It is especially suitable for the treatment of hypertrophic cardiomyopathy.
  • the ablation handle 12 includes a driving assembly 120 and a connecting member 121 rotatably connected to the driving assembly 120.
  • the proximal end of the insulating sleeve 30 is connected to the connection.
  • the pieces 121 are detachably connected.
  • the insulating sleeve 30 is connected to the driving assembly 120 through the connecting member 121, and the insulating sleeve 30 is driven to move relative to the electrode needle main body 11 along the extending direction of the electrode needle main body 11 by the driving component 120, according to
  • the actual ablation range requires adjusting the length of the distal end of the electrode needle body 11 of the ablation needle 10 protruding from the insulating sleeve 30.
  • the proximal end of the insulating sleeve 30 is provided with an external thread
  • the distal end of the connecting member 121 is provided with an internal thread that is compatible with the external thread of the insulating sleeve 30.
  • a position of the insulating sleeve 30 provided with an external thread is provided with a holding portion 33 toward a distal side thereof, so as to facilitate rotation with respect to the ablation needle 10 or with the ablation needle. Removal of the needle 10.
  • a plurality of protrusions are provided on the outer wall of the insulating sleeve 30 to form the holding portion 33.
  • the driving assembly 120 includes a sliding member 122 disposed along the axial direction and an adjusting member 123 connected to the sliding member 122.
  • the connecting member 121 is coaxially disposed with the sliding member 122 and is rotationally connected, that is, the connecting member 121 can rotate relative to the sliding member 122 with its axis as an axis, so that the insulating sleeve 30 connected to the connecting member 121 can be rotated.
  • the slider 122 is rotated relative to the electrode needle body 11 and the ablation handle 12 is connected, that is, the insulating sleeve 30 can be rotated relative to the electrode needle body 11.
  • the position of the insulating cannula 30 can be maintained, and only the ablation needle 10 inserted in the insulating cannula 30 can be rotated, which can not only reduce friction or damage to the tissue, but also rotate The resistance is small and easy to operate.
  • the distal end ring of the sliding member 122 is provided with a clamping groove 1221, and the proximal end of the connecting member 121 is provided with a retaining ring 1211 adapted to the retaining groove 1221, and the retaining ring 1211 is exactly stuck.
  • the connecting member 121 can rotate around the axial direction, but cannot move in the axial direction, so that the connecting member 121 and the sliding member 122 are rotationally connected.
  • the connecting member 121 and the sliding member 122 are rotationally connected.
  • the operator can hold the connecting piece 121 with his hand to keep the insulating sleeve 30 from rotating, and rotate the ablation needle 10.
  • the ablation handle 12 is used to drive the electrode needle main body 11 to rotate through the ablation handle 12, thereby reducing friction damage to the tissue when the insulating sleeve 30 rotates, and the resistance to rotation is small.
  • the sliding member 122 is provided with a through hole penetrating in the axial direction, and the proximal end of the electrode needle body 11 of the ablation needle 10 passes through the through hole to ensure the coaxiality of the insulating sleeve 30 and the ablation needle 10.
  • the proximal end of the electrode needle body 11 of the ablation needle 10 and the ablation handle 12 are fixedly connected by means of bonding, snapping, pinning and the like commonly used in the art.
  • the axial direction of the connecting member 121 and the sliding member 122 is the same as the extending direction of the electrode needle body 11 of the ablation needle, and the adjusting member 123 controls the sliding member 122 to move in the axial direction to drive the connecting member 121.
  • the connected insulating cannula 30 is moved relative to the electrode needle main body 11 to adjust the length of the distal end of the electrode needle main body 11 protruding from the insulating cannula 30, so that it can be adjusted according to the needs of the anatomical structure of the lesion and the actual ablation area.
  • the distal end of the electrode needle body 11 protrudes from the length of the insulating sleeve 30.
  • the adjusting member 123 is disposed on the sliding member 122, and the extending direction is perpendicular to the extending direction of the sliding member 122.
  • the sliding member 122 By pushing the adjusting member 123 to move in the axial direction, the sliding member 122 is moved in the axial direction.
  • the distal end of the sliding member 122 is inserted into the proximal end of the insulating sleeve 30, so that the sliding member 122 is coaxial with the insulating sleeve 30.
  • the insulating sleeve 30 is moved in the axial direction.
  • the distal end of the sliding member 122 is tapered, and the inner wall of the proximal end of the insulating sleeve 30 is set to be tapered corresponding to the sliding member 122, so that the distal end of the sliding member 122 can be easily inserted.
  • the insulation sleeve 30 can be positioned axially, and the assembly of the clamping ring 1211 and the clamping slot 1221 can be facilitated.
  • the ablation handle 12 of the ablation needle 10 includes a housing 124, and the driving assembly 120 is housed in the housing 124.
  • the casing 124 includes a first casing and a second casing opposite to each other, and the two are fixedly connected together by means of snapping, bonding, etc., so as to facilitate the assembly of the driving assembly 120 to the casing 124.
  • a control slot 1222 is defined in the casing 124 along the axial direction of the sliding member 122.
  • the control groove 1222 may be directly opened on the first shell or the second shell, or a groove may be formed on each of the first shell and the second shell and then fastened together to form the control groove 1222.
  • An end of the adjusting member 123 facing away from the sliding member 122 protrudes from the housing 124 from the control groove 1222; the position of the adjusting member 123 in the control groove 1222 is moved to control the movement of the sliding member 122 along its axial direction.
  • a scale mark 1225 is provided on one or both sides of the control slot 1222. Actuating the adjustment member 123 to a certain position of the control groove 1222 and observing the scale value corresponding to the adjustment member 123 can know the length of the ablation needle 10 exposing the insulating sleeve 30, that is, the ablation needle 10 can perform effective ablation of the ablation length.
  • the scale value corresponding to the adjusting member 123 is the largest, and the length of the ablation needle 10 exposing the insulating sleeve 30 is the longest;
  • the control groove 1222 is at the farthest end, the scale corresponding to the adjusting member 123 is the smallest, and the length of the ablation needle 10 exposing the insulating sleeve 30 is the shortest.
  • the adjustable range of the effective ablation length of the ablation needle 10 is also different.
  • the inner surface of the casing 124 is provided with a first guide member (not shown in the figure) disposed along the axial direction of the sliding member 122.
  • a second guide member 1223 is provided to cooperate with the first guide member, and the slide member 122 can be smoothly moved along its axial direction through the cooperation of the second guide member 1223 and the first guide member.
  • the first guide member may be a groove
  • the second guide member 1223 may be a convex rib provided on the sliding member 122 to fit the groove
  • the first guide member may also be provided as a convex rib
  • the two guide members 1223 may be grooves provided on the sliding member 122 and adapted to the convex ribs.
  • An elastic member 125 is further provided between the adjusting member 123 and the sliding member 122, and an extending direction of the elastic member 125 faces the control groove 1222.
  • the inner wall of the casing 124 is provided with a plurality of latching positions 1226 at positions corresponding to the scale marks 1225 on one or both sides of the control slot 1222.
  • the adjusting member 123 is provided with at least one protrusion 1231.
  • the elastic member 125 may be, but is not limited to, a spring, a spring sheet, or an elastic washer. In a natural state, the elastic member 125 pushes the protrusion 1231 of the adjusting member 123 and snaps into the locking position 1226 to realize the positioning of the adjusting member 123 and the sliding member 122.
  • the operator manually presses the adjusting member 123 downward, and the elasticity The piece 125 is contracted under pressure, and the protrusion 1231 of the adjusting piece 123 is separated from the latch 1226. At this time, the adjusting piece 123 can be pushed and pulled in the axial direction to drive the slider 122 and the insulating sleeve 30 to move in the axial direction, thereby adjusting the ablation.
  • the electrode needle main body 11 and the driving assembly in the ablation handle 12 may be fixed, and the insulating sleeve 30 is only detachably and rotationally connected with the ablation handle 12 and cannot be used as a shaft. To move. In this case, when the actuating and driving component moves in the axial direction, the electrode needle main body 11 is moved in the axial direction to adjust the length of the electrode needle main body 11 protruding from the insulating sleeve 30, that is, the effective ablation length, and the closer the driving component is to the ablation At the distal end of the handle 12, the length of the electrode needle body 11 protruding from the insulating sleeve 30 is longer.
  • the ablation needle assembly 100 further includes a biopsy needle 20, and the ablation needle 10 and the biopsy needle 20 are alternately worn on the insulation sleeve.
  • the biopsy needle 20 may be detachably and rotationally connected with the insulating sleeve 30.
  • the biopsy needle 20 includes a biopsy needle body 21 and a biopsy handle 22 connected to the proximal end of the biopsy needle body 21; after the ablation needle 10 is separated from the insulating sleeve 30, the biopsy needle body 21 of the biopsy needle 20 is worn Into the insulating sleeve 30, and the insulating sleeve 30 and the biopsy handle 22 of the biopsy needle 20 are detachably and rotatably connected.
  • the ablation needle 10 and the insulating sleeve 30 can be detachably connected, and the biopsy needle 20 can also be detachably connected to the insulating sleeve 30. After the ablation needle 10 and the insulating sleeve 30 are separated, the biopsy needle 20 can be detached.
  • the biopsy needle 20 is disconnected from the insulating sleeve 30, and the insulating sleeve 30 is left in the tissue for ablation.
  • the operation provides a channel so that the ablation needle 10 quickly reaches the desired ablation position.
  • the insulating sleeve 30 and the biopsy needle main body 21 of the biopsy needle 20 are detachably and rotatably connected, if the biopsy needle 20 needs to be rotated during the biopsy operation, the insulating sleeve 30 can be kept still, thereby reducing tissue damage. Damage, and less resistance to rotation.
  • the ablation needle assembly 100 further includes a puncture needle core 40, and the diameter of the puncture needle core 40 is larger than that of the ablation needle 10 or
  • the diameter of the biopsy needle 20 and the diameter of the puncture needle core 40 are preferably 19G to 16G.
  • the puncture needle core 40 is preferably made of a harder material, such as stainless steel.
  • the puncture needle core 40 and the ablation needle 10 or the biopsy needle 20 are alternately installed in the insulation sleeve 30 and detachably connected to the insulation sleeve 30, and the distal end of the puncture needle core 40 protrudes from the insulation sleeve. 30.
  • the distal end of the puncture needle core 40 has a sharp needle shape or a triangular pyramid shape, and a proximal end can be fixed with a connector 41 having an internal thread, and the internal thread of the connector 41 and the outer end of the proximal end of the insulating sleeve 30 Thread fit.
  • the tissue can be punctured by combining the puncture core 40 and the insulating sleeve 30 before ablation or before biopsy, and then the connection between the puncture core 40 and the insulation sleeve 30 is released, and the puncture core is withdrawn. 40. Then, an ablation needle 10 or a biopsy needle 20 is inserted into the insulating sleeve 30.
  • the larger diameter and harder puncture needle core 40 can provide better support for the insulating sleeve 30, so the combination of the puncture needle core 40 and the insulating sleeve 30 is more convenient for puncture, and can prevent the direct use of the ablation needle 10 or When the biopsy needle 20 is punctured, the ablation needle 10 or the biopsy needle 20 is damaged.
  • the present invention also provides an ablation system including the ablation needle assembly 100 and the energy generating device 110.
  • the ablation system 200 further includes a medical imaging device 120 and / or a cold source supply device 130.
  • the energy generating device 110 is electrically connected to the ablation needle 10, and the energy generating device 110 may be, but is not limited to, a radio frequency generator or a microwave generator.
  • the cold source supply device 130 communicates with the cooling channel 16 through a cooling pipe 160 and provides a gaseous or liquid cooling medium into the cooling channel 16.
  • the medical imaging device 120 is used to display the distal positions of the insulating cannula 30 and the ablation needle 10 in real time, and may be selected from at least one of ultrasound, CT, nuclear magnetic resonance, and X-ray fluoroscopy, preferably ultrasound.
  • the ablation needle assembly 100 and the ablation system of the present invention are suitable for the treatment of hypertrophic cardiomyopathy, and specifically refer to the insertion of the ablation needle assembly 100 into the ventricular septum of a patient's heart through ultrasound apical puncture under ultrasound guidance. Radiofrequency or microwave ablation is performed at intervals. As shown in FIG. 16, the ablation needle assembly 11 and the ablation system of the present invention are used for radiofrequency ablation of the ventricular septal tissue of a fresh pig heart. After 12 minutes of ablation using the power used in the ablation experiment shown in FIG. 4, the ablation area A appears The irregular shape inclined towards the opposite side of the first main inclined surface 112 of the electrode needle main body 11 is not damaged, and the endocardium E is not damaged.
  • the ablation needle assembly 100 and the ablation system of the present invention are suitable for flat structure of ventricular septal tissue.
  • Ablation is especially suitable for transapical ventricular septal ablation for the treatment of hypertrophic cardiomyopathy.
  • the use process of the ablation needle assembly 100 is:
  • Step 1 First, the ablation needle 10 is inserted into the insulating sleeve 30, and the insulating sleeve 30 is connected with the ablation handle 12 of the ablation needle 10 through the connecting member 121 to obtain an ablation needle assembly as shown in FIG. Actuate the adjustment member 123 to drive the driving assembly 120 and the insulating sleeve 30 to move relative to the ablation needle 10 in the axial direction, and use the insulating sleeve 30 as the insulating tube of the ablation needle 10 to obtain the desired ablation needle 10 to expose the insulating sleeve 30 The length is the effective ablation length.
  • Step 2 As shown in FIG. 23a, under the guidance of the ultrasound device, the insulating sleeve 30 and the ablation needle 10 are punctured through the apex of the patient's ribs from the epicardium into the compartment wall, and the radio frequency generator is turned on. The part of the needle 10 exposing the insulating sleeve 30 performs radiofrequency ablation of the hypertrophic ventricular septal myocardium, destroying the activity of the corresponding ventricular septal myocardium, shrinking and thinning myocardial necrosis, thereby widening the left ventricular outflow tract and removing obstruction.
  • the application of the ablation needle assembly 10 in the treatment of hypertrophic cardiomyopathy not only avoids the risks and pain of surgical thoracotomy and extracorporeal circulation, but also does not have the risk of large-scale myocardial infarction caused by ineffective chemical alcohol ablation or alcohol spillage.
  • the trauma to the patient is extremely small, the risk of surgery is small, and the effect is significant.
  • Step 3 As shown in FIG. 23b and FIG. 23c, when an ablation operation is required and a biopsy operation is required, after the ablation is performed, the insulation sleeve 30 is disconnected from the connecting member 121, and the ablation needle 10 is withdrawn and left in place The insulating cannula 30 is then passed through the insulating cannula 30 to extract a tissue sample for biopsy.
  • the insulating sleeve 30 provides a channel for biopsy operation, can avoid repeated puncture, reduces tissue damage, and enables the biopsy needle 20 to quickly reach a desired biopsy position.
  • the insulating cannula 30 and the biopsy needle 20 can be combined for puncture and biopsy, and then the biopsy needle 20 is withdrawn and the insulating cannula 30 is left, and then the adjustment is performed.
  • the piece 123 enables the driving assembly 120 to reach and position at the desired scale position.
  • the ablation needle 10 is inserted into the insulating sleeve 30, and the connection between the insulating sleeve 30 and the connecting piece 121 is established by rotating the connecting piece 121.
  • Performing ablation at an effective ablation length can also avoid repeated puncture and reduce tissue damage.
  • the puncture needle core 40 and the insulating sleeve 30 can be combined before ablation or before biopsy. Perform the puncture, and then disconnect the puncture needle core and the insulating sleeve 30, withdraw the puncture needle core 40, leave the insulating sleeve 30 in the patient, and then insert the ablation needle 10 or the biopsy needle 20 into the insulating sleeve 30. Ablation or biopsy operation to increase the puncture intensity and prevent the ablation needle 10 or biopsy needle 20 from being damaged during the puncture process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本发明提供一种消融针组件及消融系统。该消融针组件包括中空的绝缘套管以及消融针,消融针的电极针主体活动穿装在绝缘套管内。电极针主体的远端部具有第一主斜面,第一主斜面的近端与远端分别位于电极针主体轴线的相对两侧,且第一主斜面的近端与电极针主体轴线之间的距离大于或等于第一主斜面的远端与电极针主体轴线之间的距离,第一主斜面与电极针主体轴线之间的夹角范围为15°~60°,使得电极针主体远端部的消融区域不再是球形或接近球形,而是呈现出朝向第一主斜面的对侧偏斜的不规则形状,从而减小消融区域的最大宽度,以适应扁平的心脏室间隔结构,避免消融穿透至心内膜,特别适用于肥厚型心肌病的射频消融治疗。

Description

适于治疗肥厚型心肌病的消融针组件及消融系统
相关申请的交叉引用
本发明要求于2018年9月15日提交至中国国家知识产权局、申请号为201811079426.5及201821512454.7、发明名称为“适于治疗肥厚型心肌病的消融针组件及消融系统”的中国专利申请的优先权,上述专利申请的全部内容以引入的方式并入本文本中。
技术领域
本发明涉及医疗器械技术领域,尤其涉及一种适于治疗肥厚型心肌病的消融针组件及消融系统。
背景技术
肥厚型心肌病(Hypertrophic cardiomyopathy,简称:HCM),是一种常见的常染色体显性遗传心血管疾病,主要表现为左心室(Left Ventricle,LV)一个或多个节段肥厚,一般诊断标准为厚度大于等于15mm。当出现二尖瓣前叶收缩期前向运动(Systolic Anterior Motion,SAM)贴靠室间隔,造成左室流出道(Left Ventricular Outflow Tract,LVOT)狭窄甚至梗阻,即LVOT压差过大时,便称为梗阻性肥厚型心肌病(Hypertrophic Obstructive Cardiomyopathy,HOCM),HOCM约占HCM患者的70%。对HCM的治疗策略是扩大LVOT以降低压差并减轻其梗阻,方法主要有药物治疗、室间隔旋切术、室间隔酒精消融术。药物治疗相对来说简单易行,但部分患者药物治疗效果不佳或不耐受;室间隔旋切术,即改良Morrow术是通过外科手术开胸切除肥厚心肌,切除部位主要为室间隔前部并集中在左室面,切除后室间隔厚度可以降低50%,术后LVOT明显降低,但改良Morrow术存在一定的风险,而且患者的术后恢复也比较痛苦;室间隔酒精消融术是一种介入治疗手段,其主要是应用经皮腔内冠状动脉成形术技术,将球囊送入拟消除的间隔支内,对间隔支缓慢注入酒精使其产生化学性闭塞,从而使肥厚的室间隔心肌缺血、坏死、变薄、收缩力下降,降低LVOT,此种方法虽然避免了手术的痛苦,但在临床应用中,酒精通过支血管可能造成心肌梗死,仍然存在一定的风险。因此,针对肥厚型心肌病需要有一种创伤小且更加安全、有效的治疗方式。
射频消融针或微波消融针是一种微创介入治疗器械,目前主要被应用于治疗肝脏、肾脏、软组织等部位的肿瘤。如图1与图2所示,现有的射频消融针或微波消融针的远端P通常设计成正三棱锥状、圆锥状、球状或伞状的电极,旨在增大与肿瘤组织T的接触面积,执行消融时便可以形成大面积、球形或接近球形的消融区域A。如图3与图4所示,因为心脏室间隔S的结构较为扁平,球形或接近球形的消融区A容易穿透至心内膜E(图4所示为使用现有的远端为正三棱锥状的消融针对新鲜猪心的室间隔组织进行射频消融,在消融12分钟后,可见发白的消融区域A接近球形,且已穿透至心内膜E),造成传导束损伤及心律失常,所以前述现有的射频消融针或微波消融针并不适用于治疗肥厚型心肌病。
发明内容
本发明提供一种适于治疗肥厚型心肌病的消融针组件及消融系统。
所述消融针组件包括中空的绝缘套管以及消融针;所述消融针包括活动穿装在所述绝缘套管内的电极针主体,所述电极针主体的远端伸出所述绝缘套管;所述电极针主体的远端部具有第一 主斜面,所述第一主斜面的近端与第一主斜面的远端分别位于电极针主体轴线的相对两侧,且第一主斜面的近端与电极针主体轴线之间的距离大于或等于第一主斜面的远端与电极针主体轴线之间的距离,所述第一主斜面与电极针主体轴线之间的夹角范围为15°~60°。第一主斜面的设置使得电极针主体远端部的消融区域不再是球形或接近球形,而是呈现出朝向第一主斜面的对侧偏斜的不规则形状,从而减小消融区域的最大宽度,以适应扁平的心脏室间隔结构,避免消融穿透至心内膜,防止损伤传导束,特别适用于肥厚型心肌病的射频消融治疗。
在其中一个实施例中,所述电极针主体的远端部还具有第二主斜面,所述第二主斜面与第一主斜面相对设置,且所述第二主斜面与电极针主体轴线之间的夹角小于第一主斜面与电极针主体轴线之间的夹角。
在其中一个实施例中,所述第二主斜面与电极针主体轴线之间的夹角范围为5°~30°。
在其中一个实施例中,所述第一主斜面的远端与所述电极针主体的远端部相交于一直线,所述第二主斜面的远端与所述电极针主体的远端部相交于同一所述直线。
在其中一个实施例中,所述消融针组件还包括数个辅助穿刺面,所述数个辅助穿刺面分别位于所述第一主斜面的两侧并斜切所述电极针主体的远端部,所述数个辅助穿刺面与所述第一主斜面相交于一点形成所述电极针主体的末端,且所述末端偏离所述电极针主体的轴心。
在其中一个实施例中,所述辅助穿刺面的数量为两个,且所述两个辅助穿刺面关于所述电极针主体的轴线对称,每一所述辅助穿刺面与所述电极针主体的轴线之间的夹角范围为30°~60°。
在其中一个实施例中,所述绝缘套管的远端平直。
在其中一个实施例中,所述绝缘套管的远端为斜切的尖端,且在执行消融时,所述斜切的尖端的倾斜方向与所述第一主斜面的倾斜方向相悖。
在其中一个实施例中,所述消融针还包括与所述电极针主体近端连接的消融手柄,所述绝缘套管近端与所述消融手柄之间可拆卸并旋转连接,所述消融手柄相对所述绝缘套管旋转以带动所述电极针主体相对所述绝缘套管旋转。
在其中一个实施例中,所述消融针组件还包括活检针,所述活检针与所述消融针更替地穿装在所述绝缘套管内。
在其中一个实施例中,所述消融针组件还包括穿刺针芯,所述穿刺针芯与所述消融针或所述活检针更替地穿装在所述绝缘套管内并与所述绝缘套管可拆卸连接,所述穿刺针芯的远端伸出所述绝缘套管。
在其中一个实施例中,所述消融手柄包括外壳、收容于所述外壳内的驱动组件及与所述驱动组件旋转连接的连接件,所述绝缘套管与所述连接件可拆卸连接;所述驱动组件驱动所述绝缘套管与所述电极针主体之间沿轴向相对移动,以调节所述电极针主体的远端伸出所述绝缘套管的长度。
在其中一个实施例中,所述驱动组件包括滑动件及与所述滑动件连接的调节件,所述连接件与所述滑动件同轴设置并旋转连接,所述调节件控制所述滑动件沿其轴向移动,以带动与所述连接件连接的所述绝缘套管相对所述电极针主体移动。
在其中一个实施例中,所述外壳上沿所述滑动件的轴向开设有控制槽,所述调节件的一端从所述控制槽伸出所述外壳;通过移动所述调节件在所述控制槽的位置控制所述滑动件沿其轴向移动。
在其中一个实施例中,所述控制槽的至少一侧设有刻度标识。
在其中一个实施例中,所述调节件与所述滑动件之间设有弹性件,所述弹性件的延伸方向朝向所述控制槽;所述外壳的内壁设有与所述刻度标识相对应的多个卡位,所述调节件上设有至少一个凸起;所述弹性件自然伸长时,所述弹性件顶推所述凸起卡入所述卡位中。
在其中一个实施例中,所述滑动件的远端环设有卡槽,所述连接件的近端设有卡圈,所述卡圈卡入所述卡槽内以使所述滑动件与所述连接件旋转连接。
在其中一个实施例中,所述绝缘套管的远端具有第一引导部,所述第一引导部在医学影像装置下显影。
在其中一个实施例中,所述电极针主体的远端具有第二引导部,所述第二引导部在医学影像装置下显影。
在其中一个实施例中,所述电极针主体内设有冷却通道。
所述消融系统包括消融针组件以及与所述消融针的电极针主体之间电性连接的能量发生装置。
在其中一个实施例中,所述能量发生装置为射频发生器或微波发生器。
在其中一个实施例中,所述消融系统还包括与所述电极针主体的近端相连通的冷却装置。
本发明的消融针组件及消融系统与现有技术相比,至少具有以下有益效果:
电极针主体的远端部设有第一主斜面,所述第一主斜面的近端与远端分别位于电极针主体轴线的相对两侧,且第一主斜面的近端与电极针主体轴线之间的距离大于或等于第一主斜面的远端与电极针主体轴线之间的距离,所述第一主斜面与电极针主体轴线之间的夹角范围为15°~60°,使得电极针主体远端的消融区域不再是球形或接近球形,而是呈现朝向第一主斜面的对侧偏斜的不规则形状,从而减小消融区域的最大宽度,能够适应扁平的心脏室间隔结构,避免消融穿透至心内膜,防止损伤传导束,特别适用于肥厚型心肌病的射频消融治疗。
附图说明
为更清楚地阐述本发明的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1是现有的伞状消融针消融肿瘤组织时的示意图;
图2是现有的消融针所形成的球形消融区域的示意图;
图3是使用现有的消融针消融心脏室间隔的示意图;
图4为使用现有的消融针对猪心室间隔进行消融实验后的解剖图片;
图5是本发明实施例的消融针组件的结构示意图;
图6是本发明实施例的消融针与绝缘套管装配后的结构示意图;
图7是图5所示消融针与绝缘套管装配后的主视图;
图8是本发明一实施例的绝缘套管结构示意图;
图9是本发明一实施例的电极针主体的远端的放大示意图;
图10是图9所示电极针主体在A-A位置的截面示意图;
图11是本发明一实施例的电极针主体结构示意图;
图12a是本发明中电极针主体远端部的第一实施例的立体示意图;
图12b是本发明中电极针主体远端部的第一实施例的主视示意图;
图12c是本发明中电极针主体远端部的第一实施例配合远端平直的绝缘套管在室间隔内进行消融的示意图;
图12d是本发明中电极针主体远端部的第一实施例配合远端为斜切尖端的绝缘套管在室间隔内进行消融的示意图;
图13a、图13b分别是本发明中电极针主体远端部的第二实施例在不同视角下的立体示意图;
图13c、图13d与图13e分别是本发明中电极针主体远端部的第二实施例的主视示意图、右视示意图与俯视示意图;
图13f是本发明中电极针主体远端部的第二实施例配合远端平直的绝缘套管在室间隔内进行消融的示意图;
图13g是本发明中电极针主体远端部的第二实施例配合远端为斜切尖端的绝缘套管在室间隔内进行消融的示意图;
图14a、图14b分别是本发明中电极针主体远端部的第三实施例在不同视角下的立体示意图;
图14c、图14d与图14e分别是本发明中电极针主体远端部的第三实施例的右视示意图、主视示意图与俯视示意图;
图14f是本发明中电极针主体远端部的第三实施例配合远端平直的绝缘套管在室间隔内进行消融的示意图;
图14g是本发明中电极针主体远端部的第三实施例配合远端为斜切尖端的绝缘套管在室间隔内进行消融的示意图;
图15a、图15b分别是本发明中电极针主体远端部的第四实施例在不同视角下的立体示意图;
图15c、图15d、图15e与图15f分别是本发明中电极针主体远端部的第四实施例的主视示意图、后视示意图、右视示意图与俯视示意图;
图15g是本发明中电极针主体远端部的第四实施例配合远端平直的绝缘套管在室间隔内进行消融的示意图;
图15h是本发明中电极针主体远端部的第四实施例配合远端为斜切尖端的绝缘套管在室间隔内进行消融的示意图;
图16是使用本发明的消融针对猪心室间隔进行消融实验后的解剖图片;
图17是图7所示消融针与绝缘套管装配后的截面示意图;
图18是本发明实施例的所述消融针的驱动组件结构示意图;
图19是本发明实施例的活检针与绝缘套管的拆分示意图;
图20是图18所示活检针与绝缘套管的组合示意图;
图21是本发明实施例的穿刺针芯与绝缘套管的拆分示意图;
图22是图20所示穿刺针芯与绝缘套管的组合示意图;
图23a至图23c是本发明一实施例的消融针组件的使用过程示意图;
图24a至图24e是本发明另一实施例的消融针组件的使用过程示意图;
图25是本发明实施例的消融系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本发明的限制。
为了更加清楚地描述本发明的适于治疗肥厚型心肌病的消融针组件及消融系统的结构,此处限定术语“近端”及“远端”为介入医疗领域惯用术语。具体而言,“远端”表示手术操作过程中远离操作人员的一端,“近端”表示手术操作过程中靠近操作人员的一端。
除非另有定义,本发明所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本发明在说明书中所使用的术语只是为了描述具体实施例的目的,不是旨在限制本发明。
请一并参阅图5至图7,本发明提供一种消融针组件100,用于通过经心尖途径,插入患者心脏,对肥厚的室间隔心肌进行消融操作,以治疗肥厚型心肌病。所述消融针组件100包括绝缘套管30以及消融针10。所述消融针10包括电极针主体11及与电极针主体11近端连接的消融手柄12。所述绝缘套管30活动套设于所述电极针主体11外并与所述消融手柄12可拆卸并旋转连接。所述电极针主体11的远端伸出绝缘套管30,由于绝缘套管30全部绝缘,电极针主体11伸出绝缘套管30的部分执行消融操作。具体地,所述电极针主体11电性连接射频发生器时,电极针主体11传递高频电流使得电极针主体11远端周围的病变组织中带电荷的正负离子发生高速振荡运动,高速振荡的离子因摩擦产生大量的热量,使病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外水分丧失,病变组织出现凝固性坏死,从而实现射频消融;所述电极针主体11电性连接微波发生器时,电极针主体11远端形成微波场,病变组织内的水分子等偶极分子在微波场的作用下因运动摩擦、剧烈碰撞而产热使得病变组织内温度升高,最终使得病变细胞内的蛋白质变性,细胞内外水分丧失,病变组织出现凝固性坏死,从而实现微波消融。并且,所述绝缘套管30与所述消融手柄12可拆卸连接,从而使得在完成消融操作后,能够将消融针10与绝缘套管30拆开,将绝缘套管30仍然留在组织内,为其它操作如活检提供通道,避免了重复穿刺,减小了对组织的损伤,并能够使得其它操作更加地方便高效。进一步地,所述消融手柄12能够相对所述绝缘套管30旋转以带动所述电极针主体11相对所述绝缘套管30旋转,即绝缘套管30与消融针10的电极针主体11并非一体式结构,需要旋转消融针10时,可以保持绝缘套管30不转,从而减小对组织的损伤,而且旋转的阻力较小。
在执行消融操作时,所述绝缘套管30作为消融针10的绝缘管。为了提高绝缘套管30的支撑性,且便于刺入人体组织,优选地,所述绝缘套管30由金属材料制作管体,再在该管体的外表面涂覆绝缘涂层制得,所述金属材料包括但不限于304不锈钢、321不锈钢或631不锈钢管,所述绝缘涂层包括但不限于PTFE涂层、氮化钛涂层、派瑞林涂层等。制作所述绝缘套管30的金属材料应具备足够的硬度以刺入人体组织,同时需要具有优良的生物相容性,所述绝缘涂层需具有可靠的绝缘性、优良的生物相容性及较小的摩擦系数,并且要求绝缘涂层与绝缘套管30的管体外表面之间紧密结合,绝缘涂层不易脱落,例如可以选择304不锈钢管加PTFE涂层、304不锈钢管加派瑞林涂层、321不锈钢管加氮化钛涂层、或631不锈钢管加派瑞林涂层等。考虑到绝缘可靠性及工艺可行性,各种绝缘涂层的厚度均应≥3μm。可以理解的是,在其他实施例中,所述绝缘套管30也可以完全由绝缘材料制作,比如PEEK、PI或者PA等能够满足硬度要求的塑料管,再比如高铝瓷、滑石瓷或氮化硼等陶瓷管。
绝缘套管30的远端可以是平直的,也可以是斜切的尖端。优选的,绝缘套管30的远端为尖端,使得绝缘套管30的各个位置能够较容易地插入组织内,并使得围绕所述绝缘套管30各个位置的组织与电极针主体11的接触面积不同,从而根据待治疗组织的解剖结构,确定需要的消融区域,并通过调整所述绝缘套管30的插入方向实现定向、定位消融。
进一步地,绝缘套管30上设有刻度标识31以指示绝缘套管30插入组织的深度,所述刻度标识31包括一系列刻度值,且刻度值自远端向近端逐渐增大。当绝缘套管30插入组织内时,通过观察绝缘套管30上的刻度值能够获知绝缘套管30插入组织的深度,从而获知所述绝缘套管30插入组织中的大致位置。进一步地,如图8所示,所述绝缘套管30远端具有能够在医学影像装置下显影的第一引导部34,该第一引导部34的长度需≥5mm,以保证位置引导的准确性,第 一引导部34可帮助医生判断绝缘套管30远端是否沿着期望的穿刺路径行进及是否接近预定的消融位置。具体地,所述第一引导部34可以为在所述绝缘套管30远端增加的一部分结构,或者将所述绝缘套管30的远端进行一定的处理得到。由于超声显影相较其他显影模式(如X光透视)对人体的损害较小,优选将所述绝缘套管30靠近远端的管体表面处理成凹凸不平的粗糙面以形成第一引导部34,适应超声显影的需求。比如可以对绝缘套管30靠近远端的部分做喷砂或打孔等表面粗糙化处理形成第一引导部34。并且,本发明中,所述第一引导部34的表面粗糙度不应过高,在实现超声显影需求的同时,并不会影响所述绝缘套管30在组织中的推进。
所述消融针10的电极针主体11可选用不锈钢等具有优良导电性能的生物相容性金属来制作。由于设置了所述绝缘套管30,该消融针10的电极针主体11表面不必再涂覆绝缘材料,简化了消融针10的电极针主体11的制作工艺,且绝缘套管30可以为消融针10的电极针主体11提供支撑与保护,从而允许减小所述电极针主体11的直径,例如所述电极针主体11的直径可选择20G~16G,一方面有助于进一步减小组织损伤,另一方面由于待消融的室间隔组织的结构较为扁平,电极针主体11的直径较小,更适于对扁平的组织进行消融,并且在消融室间隔内的肥厚心肌时能够防止气胸、心包积液等问题的发生,减少出血。
所述消融针10的电极针主体11电性连接能量发生装置,其中,所述能量发生装置可以为微波发生器或者射频发生器。消融针10的电极针主体11露出绝缘套管30的部分对组织传递出微波能量或者射频能量,以进行消融操作。
请一并参阅图5至图7以及图9与图10,消融针10的电极针主体11接触组织的部分会传递射频能量或微波能量导致组织产生高温,使得组织凝固性坏死而达到治疗目的,但局部温度过高会影响不需要进行消融操作的正常组织,因此所述消融针10的电极针主体11内设有冷却通道16,所述冷却通道16用于输送气态或液态的冷却介质(如冷却水)对高温部位进行降温,以控制消融操作时的局部温度。
进一步地,如图11所示,所述电极针主体11的远端具有能够在医学影像装置下显影的第二引导部17,该第二引导部17的长度≥5mm,第二引导部17能够在医学影像装置下显影,帮助医生判断电极针主体11远端是否到达或处于预定的消融位置。具体地,所述第二引导部17可以为在所述电极针主体11的远端增加的一部分结构,或者将所述电极针主体11的远端进行一定处理得到。优选的,将所述电极针主体11远端的表面处理成凹凸不平的粗糙面以形成第二引导部17,适应超声显影的需求,比如可以对电极针主体11远端的表面做喷砂或打孔等处理。并且,本发明中,所述第二引导部17的表面粗糙度不应过高,在实现超声显影需求的同时,并不会影响所述电极针主体11在组织中的推进。由此,本实施例的消融针组件尤其适用于超声引导下的消融术治疗,操作者可在超声引导下,经穿刺,将消融针组件的远端送入患者体内,由所述电极针主体11露出绝缘套管30的部分对病变组织进行消融操作。
值得注意的是:由于心脏室间隔的结构较为扁平,消融室间隔内的肥厚心肌时应避免形成大面积、球形或接近球形的消融区域,防止消融穿透至心内膜,因此本发明对电极针主体11的远端部即电极针主体11上趋近电极针主体11远侧顶端的部分设计了不同于现有技术的结构。
请同时参阅图12a至图12d,为所述电极针主体11远端部的第一实施例。所述电极针主体11的远端部具有第一主斜面112,所述第一主斜面112与电极针主体11的远端部的外表面相交以斜切电极针主体11。所述第一主斜面112的近端与第一主斜面112的远端分别位于电极针主体11轴线的相对两侧。具体地,所述第一主斜面112与电极针主体11的远端部的外表面相交可以是如图12a与图12b所示那样,第一主斜面112的外轮廓全部与电极针主体11的远端部的外 周面相交,也可以是第一主斜面112的部分外轮廓与电极针主体11的远端部的外周面相交,其余外轮廓则与电极针主体11的远端部的顶面相交,从而第一主斜面112的近端与电极针主体11轴线之间的距离大于或等于第一主斜面112的远端与电极针主体11轴线之间的距离。进一步地,所述第一主斜面112与电极针主体轴线之间的角度α1越小,则电极针主体11的远端越尖锐,在电极针主体11与绝缘套管30组合进行穿刺的情况下,越有助于穿刺,但考虑到制作工艺的可行性,α1不能过小,故,所述第一主斜面112与电极针主体11轴线之间的角度α1的范围为15°~60°。优选地,如图21所示,绝缘套管30中活动地穿装穿刺针芯40,即,穿刺针芯40与电极针主体11更替地穿装在绝缘套管30中,从而通过穿刺针芯40与绝缘套管30组合进行穿刺,在这种实施方式中,电极针主体11只需穿装入绝缘套管30中执行消融,无需进行穿刺。
如图12c所示,所述绝缘套管30的远端可以是平直的。在待消融的室间隔S的肥厚心肌组织内,电极针主体11的远端部伸出绝缘套管30,电极针主体11上能够执行消融的部位包括所述第一主斜面112以及电极针主体11露出绝缘套管30的外表面。第一主斜面112相较其对侧的电极针主体11外表面来说,相当于切除了位于该第一主斜面112之上的电极针主体11外表面,在第一主斜面112对侧的电极针主体11外表面作用下所形成的第一消融区域A1自第一主斜面112对侧的电极针主体11外表面向外扩展,在第一主斜面112作用下所形成的第二消融区域A2自第一主斜面112向外扩展,这两处消融区域的形状是不同的,且第二消融区域A2较第一消融区域A1更加趋近电极针主体11的轴线,所以第一消融区域A1与第二消融区域A2组合而成的整体消融区域A不再是球形或接近球形,而是如图12c所示那样呈现出朝向第一主斜面112的对侧偏斜的不规则形状,从而消融区域A的最大宽度得以减小,能够适应心脏室间隔S的扁平结构,避免消融穿透至心内膜E,防止损伤传导束,尤其适用于通过经心尖室间隔消融术治疗肥厚型心肌病。
如图12d所示,绝缘套管30的远端还可以为斜切的尖端,且执行消融时,绝缘套管30的斜切尖端的倾斜方向与所述第一主斜面112的倾斜方向相悖(可通过旋转消融手柄12带动电极针主体11旋转实现)。与图12c所示绝缘套管30的远端末端是平直的情况相比较,绝缘套管30远端为斜切尖端时,第一主斜面112对侧的电极针主体11外表面的面积更大,第一消融区域A1与第二消融区域A2组合而成的整体消融区域A更加明显地呈现出朝向第一主斜面112的对侧偏斜的不规则形状,更适应心脏室间隔S的扁平结构,避免消融穿透至心内膜E,尤其适用于通过经心尖室间隔消融术治疗肥厚型心肌病。
请同时参阅图13a至图13g,为所述电极针主体11远端部的第二实施例。该电极针主体11远端部的第二实施例与上述第一实施例的区别在于:电极针主体11的远端部还包括两斜切所述电极针主体11的辅助穿刺面116,所述两辅助穿刺面116分别位于所述第一主斜面112的两侧。所述两辅助穿刺面116与所述第一主斜面112及电极针主体11的外表面相交,所述两辅助穿刺面116、第一主斜面112及电极针主体11的外表面相交于一点形成电极针主体11的尖锐的末端,且所述末端偏离所述电极针主体11的轴心。当电极针主体11与绝缘套管30组合进行穿刺时,所述尖锐的末端能够使得穿刺更加容易与顺畅。优选地,所述两辅助穿刺面116关于所述电极针主体11的轴线对称,每一所述辅助穿刺面116与所述电极针主体11的轴线之间的角度β的范围为30°~60°。可以理解的是,在其它一些实施例中,位于所述第一主斜面112两侧的辅助穿刺面数量可以更多,只要满足相邻的辅助穿刺面之间相互连接,所有辅助穿刺面与所述第一主斜面112相交于一点形成电极针主体11的尖锐的末端,且所述末端偏离所述电极针主体11的轴心即可;在另外一些实施例中,辅助穿刺面还可以是锥面。
请分别参阅图13f与图13g,虽然增加了所述辅助穿刺面116,但是电极针主体11的远端部执行消融的机理与上述第一实施例是相同的,此处不再进行重复描述。同样的,整体的消融区域A不再是球形或接近球形,而是呈现出朝向第一主斜面112对侧偏斜的不规则形状,从而消融区域A的最大宽度得以减小,能够适应心脏室间隔S的扁平结构,避免消融穿透至心内膜E,防止损伤传导束,尤其适用于通过经心尖室间隔消融术治疗肥厚型心肌病。
请同时参阅图14a至图14g,为所述电极针主体11远端部的第三实施例。该电极针主体11远端部的第三实施例与上述第一实施例的区别在于,电极针主体11的远端还包括第二主斜面114,所述第二主斜面114与第一主斜面112相对设置,所述第二主斜面114与电极针主体11的外表面相交以斜切所述电极针主体11,且所述第二主斜面114与电极针主体11轴线之间的角度α2小于第一主斜面112与电极针主体11轴线之间的角度α1。具体地,所述第二主斜面114与电极针主体11轴线之间的角度α2的范围优选为5°~30°。进一步地,所述第一主斜面112的远端与电极针主体11的远端部相交于一直线,第二主斜面114的远端与电极针主体11的远端部相交于同一所述直线。这种结构的电极针主体11通常需要在后述图21所示穿刺针芯40与绝缘套管30组合进行穿刺后,再穿装入绝缘套管30内,由电极针主体11的远端部来执行消融。
如图14f所示,绝缘套管30的远端可以是平直的。在待消融的室间隔S的肥厚心肌组织内,电极针主体11的远端部伸出绝缘套管30,电极针主体11上能够执行消融的部位包括所述第一主斜面112与第二主斜面114。第二主斜面114通过切除位于该第二主斜面114之上的电极针主体11外表面形成,第一主斜面112通过切除位于该第一主斜面112之上的更多的电极针主体11外表面形成,在第一主斜面112对侧的第二主斜面114作用下所形成的第一消融区域A1自第二主斜面114向外扩展,在第一主斜面112作用下所形成的第二消融区域A2自第一主斜面112向外扩展,这两处消融区域的形状是不同的,且第二消融区域A2较第一消融区域A1更加趋近电极针主体11轴线,所以第一消融区域A1与第二消融区域A2组合而成的整体消融区域A不再是球形或接近球形,而是呈现出朝向第一主斜面112的对侧偏斜的不规则形状,从而消融区域A的最大宽度得以减小,能够适应心脏室间隔S的扁平结构,避免消融穿透至心内膜E,防止损伤传导束,尤其适用于通过经心尖室间隔消融术治疗肥厚型心肌病。
如图14g所示,绝缘套管30的远端还可以为斜切的尖端,且执行消融时,绝缘套管30的斜切尖端的倾斜方向与所述第一主斜面112的倾斜方向相悖(可通过旋转消融手柄12带动电极针主体11旋转实现)。与图14f所示绝缘套管30的远端末端是平直的情况相比较,绝缘套管30远端为斜切尖端时,第一主斜面112的对侧不仅有第二主斜面114,还有位于第二主斜面114与绝缘套管之间的电极针主体11外表面,第一主斜面112对侧执行消融的面积更大,第一消融区域A1与第二消融区域A2组合而成的整体消融区域A更加明显地呈现出朝向第一主斜面112的对侧偏斜的不规则形状,更适应心脏室间隔S的扁平结构,避免消融穿透至心内膜E,尤其适用于通过经心尖室间隔消融术治疗肥厚型心肌病。
请同时参阅图15a至图15h,为所述电极针主体11远端部的第四实施例。该电极针主体11远端部的第四实施例与上述第三实施例的区别在于,电极针主体11的远端部还包括两斜切所述电极针主体11的辅助穿刺面116,所述两辅助穿刺面116分别位于所述第一主斜面112及第二主斜面114的两侧。所述两辅助穿刺面116、第一主斜面112及第二主斜面114相交于一点形成电极针主体11的尖锐的末端,且所述末端偏离所述电极针主体11的轴心。当电极针主体11与绝缘套管30组合进行穿刺时,所述尖锐的末端能够使得穿刺更加容易与顺畅。优选地,所述两辅助穿刺面116关于所述电极针主体11的轴线对称,每一所述辅助穿刺面116与所述电极针主 体11的轴线之间的角度β的范围为30°~60°。可以理解的是,在其它一些实施例中,位于所述第一主斜面112及第二主斜面114两侧的辅助穿刺面的数量可以更多,只要满足相邻的辅助穿刺面之间相互连接,所有辅助穿刺面与所述第一主斜面112及第二主斜面114相交于一点形成电极针主体11的尖锐的末端,且所述末端偏离所述电极针主体11的轴心即可;在另外一些实施例中,辅助穿刺面亦可是锥面。
请分别参阅图15g与图15h,虽然增加了所述辅助穿刺面116,但是电极针主体11的远端部执行消融的机理与上述第三实施例是相同的,此处不再进行重复描述。同样的,整体的消融区域A不再是球形或接近球形,而是呈现出朝向第一主斜面112对侧偏斜的不规则形状,从而消融区域A的最大宽度得以减小,能够适应心脏室间隔S的扁平结构,避免消融穿透至心内膜E,防止损伤传导束,尤其适用于治疗肥厚型心肌病。
请同时参阅图6、图7、图17与图18,所述消融手柄12包括驱动组件120及与所述驱动组件120旋转连接的连接件121,所述绝缘套管30近端与所述连接件121之间可拆卸连接。换句话说,所述绝缘套管30通过所述连接件121与驱动组件120连接,通过驱动组件120驱动绝缘套管30沿电极针主体11的延伸方向相对所述电极针主体11移动,以根据实际的消融范围需求调节消融针10的电极针主体11的远端伸出绝缘套管30的长度。本实施例中,绝缘套管30的近端设有外螺纹,连接件121的远端设有与绝缘套管30的外螺纹相适配的内螺纹,通过所述外螺纹与所述内螺纹的配合实现绝缘套管30与连接件121的可拆卸连接。进一步地,本发明一些实施例中,所述绝缘套管30设有外螺纹的位置朝向其远端一侧设有握持部33,以便于相对所述消融针10进行旋转或者与所述消融针10的拆装。本实施例中,在所述绝缘套管30的外壁设置多圈凸起,以形成所述握持部33。
请参阅图17,所述驱动组件120包括沿轴向设置的滑动件122及与所述滑动件122连接的调节件123。所述连接件121与所述滑动件122同轴设置并旋转连接,即使得连接件121能够相对滑动件122以其轴线为轴心进行旋转,从而使得与连接件121连接的绝缘套管30能够相对滑动件122进行旋转,而电极针主体11与消融手柄12进行连接,即使得所述绝缘套管30能够相对电极针主体11进行旋转。由此,当需要旋转调整消融针10时,可以保持绝缘套管30位置不变,仅旋转穿装在绝缘套管30中的消融针10,不仅可以减小对组织的摩擦或损伤,而且旋转的阻力较小,易于操作。本实施例中,所述滑动件122的远端环设有卡槽1221,所述连接件121的近端设有与所述卡槽1221适配的卡圈1211,所述卡圈1211恰好卡入所述卡槽1221内,从而连接件121能够绕轴向旋转,但不能沿轴向移动,实现所述连接件121与所述滑动件122旋转连接。并且,当在消融过程中,为了使所述绝缘套管30的斜切尖端的倾斜方向与所述第一主斜面112的倾斜方向相悖、或防止导线与冷却管路过度弯折、扭转缠绕、或方便查看消融手柄12上的刻度值,操作者需要旋转消融手柄12或/和消融针10时,操作者可以用手握住连接件121保持绝缘套管30不转,转动所述消融针10的消融手柄12,以通过所述消融手柄12带动所述电极针主体11旋转,从而减小绝缘套管30旋转时对组织的摩擦损伤,而且旋转的阻力较小。
所述滑动件122中设有沿轴向贯穿的通孔,所述消融针10的电极针主体11近端穿过所述通孔,保证了绝缘套管30与消融针10的同轴。所述消融针10的电极针主体11近端与消融手柄12之间通过本领域常见的粘结、卡接、销接等方式进行固定连接。
所述连接件121与所述滑动件122的轴向与所述消融针的电极针主体11的延伸方向相同,所述调节件123控制滑动件122沿其轴向移动,以带动与连接件121连接的绝缘套管30相对电极针主体11移动,以调节电极针主体11的远端伸出所述绝缘套管30的长度,从而能够根据病 变部位的解剖结构及实际的消融面积的需要,调整电极针主体11的远端伸出绝缘套管30的长度。本实施例中,所述调节件123设于滑动件122上,且延伸方向与滑动件122的延伸方向垂直,通过推动调节件123沿轴向移动,以带动滑动件122沿轴向移动。滑动件122的远端插入绝缘套管30的近端内,使得滑动件122与绝缘套管30同轴,沿轴向移动滑动件122时,带动所述绝缘套管30沿轴向移动。本实施例中,所述滑动件122的远端为锥形,绝缘套管30的近端的内壁设为与滑动件122相对应的锥形,从而使得滑动件122的远端能够容易地插入绝缘套管30内并能实现轴向定位,还能够方便卡圈1211与卡槽1221的装配。
所述消融针10的消融手柄12包括外壳124,所述驱动组件120收容于外壳124内。本实施例中,所述外壳124包括相对设置的第一外壳和第二外壳,二者之间通过卡扣、粘结等方式固定连接在一起,从而方便将所述驱动组件120装配于外壳124中。所述外壳124上沿滑动件122的轴向开设有控制槽1222。控制槽1222可以直接在第一外壳或第二外壳上开设,也可以在第一外壳和第二外壳上各开一个槽然后扣合在一起形成控制槽1222。所述调节件123背离所述滑动件122的一端从控制槽1222伸出外壳124;通过移动调节件123在控制槽1222的位置,以控制滑动件122沿其轴向的移动。
进一步地,所述控制槽1222一侧或两侧设置有刻度标识1225。作动调节件123至控制槽1222的某一位置后观测调节件123所对应的刻度值能够获知所述消融针10露出所述绝缘套管30的长度,即消融针10能够执行消融的有效消融长度。当作动调节件123使其处于控制槽1222最近端时,调节件123对应的刻度值最大,所述消融针10露出所述绝缘套管30的长度最长;作动调节件123使其处于控制槽1222最远端时,调节件123对应的刻度值最小,所述消融针10露出所述绝缘套管30的长度最短。根据不同组织的解剖结构差异,消融针10的有效消融长度的可调范围也是不同的。
请一并参阅图6、图7、图17与图18,所述外壳124的内表面设有沿滑动件122轴向设置的第一导向件(图中未示出),滑动件122的表面设有与所述第一导向件相配合的第二导向件1223,通过第二导向件1223与第一导向件的配合以使滑动件122顺畅地沿其轴向移动。具体地,第一导向件可以是凹槽,第二导向件1223可以为设置于滑动件122上与所述凹槽适配的凸肋;也可以将第一导向件设置成凸肋,而第二导向件1223可以为设置于滑动件122上与凸肋适配的凹槽。
所述调节件123与所述滑动件122之间还设有弹性件125,所述弹性件125的延伸方向朝向控制槽1222。所述外壳124的内壁与控制槽1222一侧或两侧的刻度标识1225相对应的位置设有多个卡位1226。所述调节件123上设有至少一个凸起1231。所述弹性件125可以但不限于为弹簧、弹片或弹性垫圈等。自然状态下,弹性件125推顶所述调节件123的凸起1231卡入所述卡位1226中实现调节件123及滑动件122的定位,操作者手动向下按压调节件123,所述弹性件125受压收缩,调节件123的凸起1231从卡位1226中分离解脱出来,此时沿轴向推拉调节件123便可以带动滑动件122及绝缘套管30沿轴向移动,从而调节消融针10露出绝缘套管30的长度,即有效消融长度;当调节件123到达某一刻度位置获得期望的有效消融长度后,操作者松开调节件123,所述弹性件125由于自身弹性复位,推顶调节件123的凸起1231卡入相应的卡位1226中,使得调节件123及滑动件122能够定位在该位置保持不动。
可以理解的是,在其它实施例中,可以设置所述电极针主体11与消融手柄12内的驱动组件固定,而绝缘套管30仅与所述消融手柄12可拆卸并旋转连接,不能做轴向移动。这种情况下,作动驱动组件沿轴向移动时会带动电极针主体11沿轴向移动,以调节电极针主体11伸出绝缘套 管30的长度即有效消融长度,且驱动组件越靠近消融手柄12远端,电极针主体11伸出绝缘套管30的长度越长。
请参阅图19、图20及图23a至图23c,本发明中,所述消融针组件100还包括活检针20,所述消融针10与所述活检针20更替地穿装在所述绝缘套管30内,进一步地,所述活检针20可以与所述绝缘套管30进行可拆卸并旋转连接。具体地,所述活检针20包括活检针主体21及与活检针主体21近端连接的活检手柄22;消融针10与绝缘套管30分离后,所述活检针20的活检针主体21穿装入绝缘套管30中,且绝缘套管30与活检针20的活检手柄22可拆卸并旋转连接。换句话说,消融针10与绝缘套管30能够可拆卸连接,活检针20也可以与绝缘套管30进行可拆卸连接,将消融针10与绝缘套管30拆分后,可以将活检针20与绝缘套管30连接。因此,在完成消融操作后,解除消融针10与绝缘套管30的连接,将绝缘套管30留在组织内,为活检操作提供通道,使得活检针20快速到达期望的活检位置,避免了重复穿刺,减小了对组织的损伤;或者,在有些手术过程中,可以在先完成活检操作后,解除活检针20与绝缘套管30的连接,将绝缘套管30留在组织内,为消融操作提供通道,使得消融针10快速到达期望的消融位置。并且,由于绝缘套管30与活检针20的活检针主体21可拆卸并旋转连接,从而使得在活检操作中,若需要旋转活检针20,可以保持绝缘套管30不动,从而减小对组织的损伤,而且旋转的阻力较小。
请结合图21、图22及图24a至图24e,进一步地,本发明一些实施例中,所述消融针组件100还包括穿刺针芯40,穿刺针芯40的直径大于所述消融针10或活检针20的直径,穿刺针芯40的直径范围优选为19G~16G。且穿刺针芯40优选为较硬质的材料制成,如:不锈钢。所述穿刺针芯40与所述消融针10或活检针20更替地穿装在所述绝缘套管30内并与绝缘套管30可拆卸连接,穿刺针芯40的远端伸出绝缘套管30。本实施例中,穿刺针芯40的远端呈尖锐的针状或三棱锥状,近端可以固定一具有内螺纹的接头41,所述接头41的内螺纹与绝缘套管30近端的外螺纹相适配。增加了穿刺针芯40后,可在消融前或活检前将穿刺针芯40与绝缘套管30组合对组织进行穿刺,之后解除穿刺针芯40与绝缘套管30的连接,撤出穿刺针芯40,再向绝缘套管30内穿入消融针10或活检针20。直径较大、较硬质的穿刺针芯40可以为绝缘套管30提供较好的支撑性,因此穿刺针芯40与绝缘套管30的组合更便于穿刺,并且可以防止直接利用消融针10或活检针20进行穿刺时,消融针10或活检针20受到损伤。
进一步地,请一并参阅图6及图25,本发明还提供一种消融系统,包括所述消融针组件100及能量发生装置110。本发明一些实施例中,所述消融系统200还包括医学影像装置120和/或冷源供给装置130。其中,所述能量发生装置110电性连接所述消融针10,所述能量发生装置110可以但不限于为射频发生器或微波发生器。所述冷源供给装置130通过冷却管路160与所述冷却通道16连通,向所述冷却通道16内提供气态或液态冷却介质。所述医学影像装置120用于实时显示所述绝缘套管30及消融针10的远端位置,可选自超声、CT、核磁、X光透视中的至少一种,优选超声。
本发明的所述消融针组件100及消融系统适用于肥厚型心肌病的治疗,具体是指在超声引导下,通过经心尖穿刺,将消融针组件100插入患者心脏的室间隔,对肥厚的室间隔进行射频消融或微波消融。如图16所示,使用本发明的消融针组件11及消融系统对新鲜猪心的室间隔组织进行射频消融,在以图4所示消融实验所采用的功率消融12分钟后,消融区域A呈现出朝向电极针主体11的第一主斜面112的对侧偏斜的不规则形状,心内膜E未受损伤,可见本发明的消融针组件100及消融系统适用于扁平结构的室间隔组织的消融,尤其适用于经心尖室间隔消融术治 疗肥厚型心肌病。如图23a至图23c所示,所述消融针组件100的使用过程为:
第一步:首先将消融针10穿装在绝缘套管30内,通过连接件121将绝缘套管30与消融针10的消融手柄12连接,得到如图6所示的消融针组件。作动调节件123以带动所述驱动组件120及绝缘套管30相对消融针10沿轴向移动,以绝缘套管30作为消融针10的绝缘管,获得期望的消融针10露出绝缘套管30的长度即有效消融长度。
第二步:如图23a所示,在超声装置的引导下将绝缘套管30与消融针10经患者的肋骨间经心尖穿刺由心外膜进入室间隔壁内,开启射频发生器,由消融针10露出绝缘套管30的部分对肥厚的室间隔心肌进行射频消融,破坏相应部位室间隔心肌的活性,使心肌坏死萎缩、变薄,从而使左室流出道增宽,解除梗阻。应用该消融针组件10治疗肥厚型心肌病,既避免了外科旋切手术开胸和体外循环的风险和痛苦,也没有化学酒精消融无效或酒精外溢造成大面积心梗的风险,简单易行,对患者创伤极其微小,手术风险小,且疗效显著。
第三步:如图23b及图23c所示,在需要进行消融操作,又需要进行活检操作时,在执行完消融后解除绝缘套管30与连接件121的连接,撤出消融针10而留置绝缘套管30,然后活检针20穿入绝缘套管30提取组织样本用于活检。所述绝缘套管30为活检操作提供了通道,能够避免重复穿刺,减小了对组织的损伤,并能够使得活检针20快速到达期望的活检位置。
可以理解的是,在某些情况下,亦可以在执行消融前先将绝缘套管30与活检针20组合进行穿刺、活检,然后撤出活检针20而留置绝缘套管30,接着作动调节件123使驱动组件120到达并定位在期望的刻度位置,最后将消融针10穿入绝缘套管30,通过旋转连接件121建立起绝缘套管30与连接件121的连接,消融针10以期望的有效消融长度执行消融,同样能够避免重复穿刺,减小对组织的损伤。
如图24a至图24e所示,在本发明的一些实施例中,所述消融针组件100增加了穿刺针芯40后,可在消融前或活检前将穿刺针芯40与绝缘套管30组合进行穿刺,之后解除穿刺针芯与绝缘套管30的连接,撤出穿刺针芯40,留置绝缘套管30在患者体内,再向绝缘套管30内穿入消融针10或活检针20,进行消融或活检操作,以增加穿刺强度,并防止穿刺过程损伤消融针10或者活检针20。
以上所述为本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (22)

  1. 一种适于治疗肥厚型心肌病的消融针组件,其特征在于,包括中空的绝缘套管以及消融针;所述消融针包括活动穿装在所述绝缘套管内的电极针主体,所述电极针主体的远端伸出所述绝缘套管;所述电极针主体的远端部具有第一主斜面,所述第一主斜面的近端与第一主斜面的远端分别位于电极针主体轴线的相对两侧,且第一主斜面的近端与电极针主体轴线之间的距离大于或等于第一主斜面的远端与电极针主体轴线之间的距离,所述第一主斜面与电极针主体轴线之间的夹角范围为15°~60°。
  2. 如权利要求1所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述电极针主体的远端部还具有第二主斜面,所述第二主斜面与第一主斜面相对设置,且所述第二主斜面与电极针主体轴线之间的夹角小于第一主斜面与电极针主体轴线之间的夹角。
  3. 如权利要求2所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述第二主斜面与电极针主体轴线之间的夹角范围为5°~30°。
  4. 如权利要求2所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述第一主斜面的远端与所述电极针主体的远端部相交于一直线,所述第二主斜面的远端与所述电极针主体的远端部相交于同一所述直线。
  5. 如权利要求1或2所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,还包括数个辅助穿刺面,所述数个辅助穿刺面分别位于所述第一主斜面的两侧并斜切所述电极针主体的远端部,所述数个辅助穿刺面与所述第一主斜面相交于一点形成所述电极针主体的末端,且所述末端偏离所述电极针主体的轴心。
  6. 如权利要求5所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述辅助穿刺面的数量为两个,且所述两个辅助穿刺面关于所述电极针主体的轴线对称,每一所述辅助穿刺面与所述电极针主体的轴线之间的夹角范围为30°~60°。
  7. 如权利要求1、2或5所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述绝缘套管的远端平直。
  8. 如权利要求1、2或5所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述绝缘套管的远端为斜切的尖端,且在执行消融时,所述斜切的尖端的倾斜方向与所述第一主斜面的倾斜方向相悖。
  9. 如权利要求1至8中任一项所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述消融针还包括与所述电极针主体近端连接的消融手柄,所述绝缘套管近端与所述消融手柄之间可拆卸并旋转连接,所述消融手柄相对所述绝缘套管旋转以带动所述电极针主体相对所述绝缘套管旋转。
  10. 如权利要求9所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,还包括穿刺针芯和/或活检针,所述消融针与所述穿刺针芯和/或所述活检针更替地穿装在所述绝缘套管内并与所述绝缘套管可拆卸连接,所述穿刺针芯的远端伸出所述绝缘套管。
  11. 如权利要求9所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述消融手柄包括外壳、收容于所述外壳内的驱动组件及与所述驱动组件旋转连接的连接件,所述绝缘套管与所述连接件可拆卸连接;所述驱动组件驱动所述绝缘套管与所述电极针主体之间沿轴向相对移动,以调节所述电极针主体的远端部伸出所述绝缘套管的长度。
  12. 如权利要求11所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述驱动组 件包括滑动件及与所述滑动件连接的调节件,所述连接件与所述滑动件同轴设置并旋转连接,所述调节件控制所述滑动件沿其轴向移动,以带动与所述连接件连接的所述绝缘套管相对所述电极针主体移动。
  13. 如权利要求12所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述外壳上沿所述滑动件的轴向开设有控制槽,所述调节件的一端从所述控制槽伸出所述外壳;通过移动所述调节件在所述控制槽的位置控制所述滑动件沿其轴向移动。
  14. 如权利要求13所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述控制槽的至少一侧设有刻度标识。
  15. 如权利要求14所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述调节件与所述滑动件之间设有弹性件,所述弹性件的延伸方向朝向所述控制槽;所述外壳的内壁设有与所述刻度标识相对应的多个卡位,所述调节件上设有至少一个凸起;所述弹性件自然伸长时,所述弹性件顶推所述凸起卡入所述卡位中。
  16. 如权利要求12所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述滑动件的远端环设有卡槽,所述连接件的近端设有卡圈,所述卡圈卡入所述卡槽内以使所述连接件与所述滑动件旋转连接。
  17. 如权利要求1所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述绝缘套管的远端具有第一引导部,所述第一引导部在医学影像装置下显影。
  18. 如权利要求1或17所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述电极针主体的远端具有第二引导部,所述第二引导部在医学影像装置下显影。
  19. 如权利要求1所述的适于治疗肥厚型心肌病的消融针组件,其特征在于,所述电极针主体内设有冷却通道。
  20. 一种消融系统,其特征在于,包括如权利要求1至19任一项所述的消融针组件以及与所述消融针的电极针主体之间电性连接的能量发生装置。
  21. 如权利要求20所述的消融系统,其特征在于,所述能量发生装置为射频发生器或微波发生器。
  22. 如权利要求20所述的消融系统,其特征在于,还包括与所述电极针主体的近端相连通的冷却装置。
PCT/CN2019/090923 2017-11-28 2019-06-12 适于治疗肥厚型心肌病的消融针组件及消融系统 WO2020052302A1 (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201711213683 2017-11-28
CN201821512454.7U CN209826963U (zh) 2017-11-28 2018-09-15 适于治疗肥厚型心肌病的消融针组件及消融系统
CN201821512454.7 2018-09-15
CN201811079426.5A CN109833089A (zh) 2017-11-28 2018-09-15 适于治疗肥厚型心肌病的消融针组件及消融系统
CN201811079426.5 2018-09-15

Publications (1)

Publication Number Publication Date
WO2020052302A1 true WO2020052302A1 (zh) 2020-03-19

Family

ID=65343651

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/090923 WO2020052302A1 (zh) 2017-11-28 2019-06-12 适于治疗肥厚型心肌病的消融针组件及消融系统
PCT/CN2019/106745 WO2020088139A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统
PCT/CN2019/106747 WO2020088140A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/106745 WO2020088139A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统
PCT/CN2019/106747 WO2020088140A1 (zh) 2017-11-28 2019-09-19 消融针组件及消融系统

Country Status (2)

Country Link
CN (7) CN109833091A (zh)
WO (3) WO2020052302A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013553B2 (en) 2017-11-28 2021-05-25 Hangzhou Nuo Cheng Medical Instrument Co., Ltd. Treatment method for hypertrophic cardiomyopathy
CN109833091A (zh) * 2017-11-28 2019-06-04 杭州诺诚医疗器械有限公司 消融针组件及消融系统
CN209713127U (zh) * 2018-08-24 2019-12-03 杭州诺诚医疗器械有限公司 消融针组件及消融系统
CN110051430A (zh) * 2019-05-27 2019-07-26 海南省妇幼保健院 一种带有水循环的微波消融针
CN110179539B (zh) * 2019-05-30 2024-03-01 江苏省肿瘤医院 一种用于消融术中消融针的密封定位装置
CN110169819A (zh) * 2019-05-31 2019-08-27 江苏美安医药股份有限公司 射频导管转动式出针系统
CN110179534A (zh) * 2019-06-27 2019-08-30 安徽邵氏华艾生物医疗电子科技有限公司 一种纳米刀消融电极
CN112294431A (zh) * 2019-07-30 2021-02-02 上海睿刀医疗科技有限公司 用于不可逆电穿孔设备的超声可显影电极针
CN110338903A (zh) * 2019-08-07 2019-10-18 杭州睿笛生物科技有限公司 一种用于引导电极的穿刺针及电极输送装置
CN110327108A (zh) * 2019-08-13 2019-10-15 上海导向医疗系统有限公司 可调节冷冻消融针
CN110876649A (zh) * 2019-10-25 2020-03-13 苏州达能激光科技有限公司 一种通水气的铒激光牙科治疗仪手柄
CN110870783A (zh) * 2019-12-06 2020-03-10 吕敬群 分体组件及手术附件
CN113116512B (zh) * 2019-12-31 2022-12-16 上海微创电生理医疗科技股份有限公司 消融电极组件及消融导管
CN112741682B (zh) * 2020-12-31 2022-04-01 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN112741683A (zh) * 2020-12-31 2021-05-04 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN113693716A (zh) * 2020-05-22 2021-11-26 Tau-Pnu医疗有限公司 具有冷却功能的用于室间隔治疗法的射频电极消融导管
CN111772817A (zh) * 2020-06-22 2020-10-16 厦门大学附属翔安医院 肿瘤消融针精准定位套管
CN113842201A (zh) * 2020-06-26 2021-12-28 天津美电医疗科技有限公司 一种带有冷冻功能的分体式外套管消融探针及方法
CN114098945A (zh) * 2020-08-28 2022-03-01 深圳钮迈科技有限公司 双极气冷探针
CN112220556B (zh) * 2020-12-14 2021-03-12 上海微创电生理医疗科技股份有限公司 一种医用导管及医疗设备
CN112741681B (zh) * 2020-12-31 2022-07-12 杭州堃博生物科技有限公司 电子装置、射频操作提示系统及存储介质
CN112998845B (zh) * 2021-02-08 2021-12-21 上海睿刀医疗科技有限公司 一种多电极消融针以及多电极消融针电极间距的确定方法
CN113113125A (zh) * 2021-03-23 2021-07-13 上海导向医疗系统有限公司 消融针的验证方法、装置、消融针及设备、存储介质
CN113907869A (zh) * 2021-10-08 2022-01-11 杭州维纳安可医疗科技有限责任公司 电极针组件和消融设备
CN113796954B (zh) * 2021-10-11 2023-03-28 杭州市第一人民医院 一种可改变加热角度的消融针
CN113974698B (zh) * 2021-10-29 2022-10-28 上海美微达医疗科技有限公司 一种带针道消融功能的有源活检装置及其系统和方法
CN114129256B (zh) * 2021-11-10 2023-06-30 中国人民解放军空军军医大学 一种射频消融电极针的消融方法
CN114424970B (zh) * 2022-01-20 2024-02-02 中国人民解放军空军军医大学 一种心肌消融组件
CN117653324A (zh) * 2022-08-31 2024-03-08 杭州诺沁医疗器械有限公司 消融针、消融装置及消融系统
CN116138870A (zh) * 2023-02-28 2023-05-23 上海澍能医疗科技有限公司 活检及消融装置、活检及消融系统
CN116327350B (zh) * 2023-05-24 2023-08-22 浙江伽奈维医疗科技有限公司 一种消融针组件及消融系统
CN116350337B (zh) * 2023-05-30 2023-09-12 海杰亚(北京)医疗器械有限公司 冷热消融针及消融系统
CN116942301B (zh) * 2023-07-26 2024-05-10 杭州先欧生物科技有限公司 高压陡脉冲用肿瘤消融针
CN117159128B (zh) * 2023-11-03 2024-01-30 浙江伽奈维医疗科技有限公司 可用于陡脉冲消融和/或射频消融的消融装置及消融电极

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770070B1 (en) * 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
CN105943159A (zh) * 2016-05-16 2016-09-21 安隽医疗科技(南京)有限公司 一种可调式注水消融电极针
CN109833089A (zh) * 2017-11-28 2019-06-04 杭州诺诚医疗器械有限公司 适于治疗肥厚型心肌病的消融针组件及消融系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331166B1 (en) * 1998-03-03 2001-12-18 Senorx, Inc. Breast biopsy system and method
EP1839581A1 (en) * 2006-03-28 2007-10-03 VibraTech AB Anti-seeding arrangement
KR101168711B1 (ko) * 2010-01-26 2012-07-30 (주) 태웅메디칼 생체검사 후 조직 적출부위나 신체 내 장기의 출혈부위의 지혈을 위한 전극침
US20120310230A1 (en) * 2011-06-01 2012-12-06 Angiodynamics, Inc. Coaxial dual function probe and method of use
US10639101B2 (en) * 2011-06-06 2020-05-05 Cosman Instruments, Llc Cool RF electrode
JP6267332B2 (ja) * 2013-10-28 2018-01-24 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド カテーテルの先端電極とセグメント化リング電極
CN104688333A (zh) * 2014-12-17 2015-06-10 珠海和佳医疗设备股份有限公司 一种单针双极性射频消融电极针及其射频电极裸露面积调节方法
EP3340915A1 (en) * 2015-08-27 2018-07-04 Boston Scientific Scimed, Inc. Tissue resecting device
CN206390989U (zh) * 2016-08-31 2017-08-11 迈德医疗科技(上海)有限公司 射频消融电极装置
CN106618727A (zh) * 2016-12-14 2017-05-10 汤敬东 一种具有爪状分支导管的血管射频消融电极导管
CN207253372U (zh) * 2017-03-07 2018-04-20 深圳市宝安区妇幼保健院 一种消融范围可控的消融针
CN208435787U (zh) * 2017-08-08 2019-01-29 中国人民解放军第三军医大学第一附属医院 双组子针射频消融装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770070B1 (en) * 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
CN105943159A (zh) * 2016-05-16 2016-09-21 安隽医疗科技(南京)有限公司 一种可调式注水消融电极针
CN109833089A (zh) * 2017-11-28 2019-06-04 杭州诺诚医疗器械有限公司 适于治疗肥厚型心肌病的消融针组件及消融系统

Also Published As

Publication number Publication date
CN109350234A (zh) 2019-02-19
WO2020088140A1 (zh) 2020-05-07
CN109350233A (zh) 2019-02-19
CN210301204U (zh) 2020-04-14
CN209826963U (zh) 2019-12-24
WO2020088139A1 (zh) 2020-05-07
CN109833089A (zh) 2019-06-04
CN210301203U (zh) 2020-04-14
CN109833091A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2020052302A1 (zh) 适于治疗肥厚型心肌病的消融针组件及消融系统
US20180303534A1 (en) Co-access bipolar ablation probe
US7192430B2 (en) Apparatuses and methods for interstitial tissue removal
EP2923645B1 (en) Devices and systems for obtaining a tissue sample using a biopsy tool
US8690868B2 (en) Needle kit and method for microwave ablation, track coagulation, and biopsy
US8535309B2 (en) Vertebral bone channeling systems
US9259241B2 (en) Methods of treating nerves within bone using fluid
US9750566B2 (en) Magnetic navigation systems and methods
US20180021048A1 (en) Nerve modulation systems
US20130325001A1 (en) Vertebral denervation
US20110054459A1 (en) Ecogenic Cooled Microwave Ablation Antenna
JP2009521967A (ja) 放射線アプリケータおよび組織に放射線を照射する方法
US20220338919A1 (en) Integrated ablation needle and ablation system
US11013553B2 (en) Treatment method for hypertrophic cardiomyopathy
WO2020038216A1 (zh) 消融针组件及消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859641

Country of ref document: EP

Kind code of ref document: A1