WO2020087902A1 - 四通阀 - Google Patents

四通阀 Download PDF

Info

Publication number
WO2020087902A1
WO2020087902A1 PCT/CN2019/086171 CN2019086171W WO2020087902A1 WO 2020087902 A1 WO2020087902 A1 WO 2020087902A1 CN 2019086171 W CN2019086171 W CN 2019086171W WO 2020087902 A1 WO2020087902 A1 WO 2020087902A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
chamber
valve
compressor
port
Prior art date
Application number
PCT/CN2019/086171
Other languages
English (en)
French (fr)
Inventor
高斌
Original Assignee
广东美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝精密制造有限公司 filed Critical 广东美芝精密制造有限公司
Publication of WO2020087902A1 publication Critical patent/WO2020087902A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/048Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves

Definitions

  • the present application relates to the technical field of air conditioning, in particular to a four-way valve.
  • the compression of the compressor and the throttling action of the throttling element transform the refrigerant between low temperature and low pressure and high temperature and high pressure, and use a four-way valve to change the flow of the compressor to the heat exchanger Heat exchange between the indoor heat exchanger and the outdoor heat exchanger and the surrounding environment to achieve the effect of cooling or heating.
  • the four-way valve plays a role in switching the flow path in the system.
  • the air conditioner realizes heating operation; and when the compressor exhaust port is When the refrigerant is first introduced into the outdoor heat exchanger, the air conditioner realizes the cooling operation.
  • the four-way valve in the related art has a single function and cannot meet the diversified requirements of the air conditioner for the flow path switching function of the four-way valve.
  • the present application aims to solve at least one of the technical problems in the prior art. For this reason, the present application proposes a four-way valve.
  • the valve core has a first position, a second position, and a third position, which is beneficial to meet the diversified requirements of the air conditioner for the flow switching function of the four-way valve.
  • the four-way valve includes: a valve body defining a valve cavity, the valve body is provided with a first interface to a fourth interface; a valve core, the valve core is movably provided In the valve cavity and having a first position to a third position, the valve core is provided with a communication portion protruding toward the inner wall of the valve cavity, the communication portion is provided with a communication channel, the valve core, The communication portion and the inner wall of the valve cavity define a first cavity to a third cavity, the communication channel communicates with the second cavity, and the third interface communicates with the second cavity; In the first position, the first interface and the second interface both communicate with the first chamber, and the fourth interface communicates with the second chamber; in the second position, the first interface An interface communicates with the second chamber through the communication channel; in the third position, the second interface communicates with the second chamber, and the first interface and the fourth interface are both The third chamber is in communication.
  • the spool has a first position, a second position and a third position, so that a variety of communication modes can be provided between the first interface, the second interface, the third interface and the fourth interface It is beneficial to meet the diversified requirements of the air conditioner for the flow switching function of the four-way valve.
  • the valve cavity has opposing first and second side walls, the first interface is located on the first side wall, and the second to fourth interfaces are located on the A second side wall, a first sub-chamber and a second sub-chamber are defined between the valve core, the communication portion and the first side wall, between the valve core and the second side wall A third sub-chamber, a fourth sub-chamber and the second sub-chamber are defined, wherein the third sub-chamber and the first sub-chamber are located on the same side of the second chamber and are in communication To define the first chamber, the second sub-chamber and the fourth sub-chamber are located on the same side of the second chamber and communicate to define the third chamber.
  • the valve core includes: a first blocking block and a second blocking block, the first blocking block and the second blocking block are spaced apart in the moving direction of the valve core; connection Plate, the connecting plate is connected between the first blocking block and the second blocking block, the surface of the connecting plate facing the first side wall is formed in a direction close to the first side wall
  • the protruding communication part, the communication part, the connection plate, the first blocking block and the first side wall define the first sub-chamber, the communication part, the connection plate ,
  • the second blocking block and the first side wall define the second sub-chamber; a first partition plate and a second partition plate, the first partition plate and the second partition
  • the plate is provided on the surface of the connecting plate away from the first side wall and spaced apart in the moving direction of the valve core, the first partition plate is located between the second partition plate and the Between the first blocking block, the first partition plate, the second partition plate, the connecting plate and the second side wall define the first The chamber, the first blocking block, the first partition plate, the connecting plate and the
  • the first barrier block, the second barrier block, the connection plate, the communication portion, the first partition plate, and the second partition is an integrally formed piece.
  • the four-way valve further includes a first connection pipe and a second connection pipe, the first connection pipe is connected to the second interface and the third interface respectively, the first A connecting tube is connected with a first control valve in series, the second connecting tube is connected to the third port and the fourth port respectively, and a second control valve is connected to the second connecting tube in series;
  • the communication part The surface facing the first side wall defines a first cut-off surface and a second cut-off surface, the first cut-off surface and the second cut-off surface are defined by an end of the communication channel facing the first side wall Spaced apart; the surface of the first partition plate facing the second side wall defines a third cutoff surface, and the surface of the second partition plate facing the second side wall defines the fourth The cut-off surface, the spool has a fourth position and a fifth position; in the fourth position, the first cut-off surface blocks the first interface, and the fourth cut-off surface blocks the fourth interface , The first control valve is opened and the second control valve is opened, the second interface and the
  • the four-way valve includes an electromagnetic control member, and the electromagnetic control member is used to drive the spool to move.
  • the cross section of the valve body is formed into a circle or a square.
  • FIG. 1 is a schematic structural diagram of a four-way valve according to an embodiment of the present application, in which the valve core is located in the first position;
  • FIG. 2 is a schematic structural view of the spool of the four-way valve in FIG. 1 in the second position;
  • FIG. 3 is a schematic structural view of the spool of the four-way valve in FIG. 2 in the third position;
  • FIG. 4 is a schematic diagram of the connection state of the interface of the four-way valve in FIG. 1, wherein the first interface communicates with the second interface, and the third interface communicates with the fourth interface;
  • FIG. 5 is a schematic diagram of the connection state of the interface of the four-way valve in FIG. 2, wherein the first interface is in communication with the third interface, and the second interface and the fourth interface are both disconnected;
  • FIG. 6 is a schematic diagram of the connection state of the four-way valve in FIG. 3, in which the first interface communicates with the fourth interface, and the second interface communicates with the third interface;
  • FIG. 7 is a schematic diagram of a four-way valve according to yet another embodiment of the present application, wherein the first interface communicates with the second interface, and the third interface communicates with the fourth interface;
  • FIG. 8 is a schematic diagram of the four-way valve according to FIG. 7, wherein the first interface is connected to the third interface, and the second interface and the fourth interface are both disconnected;
  • FIG. 9 is a schematic diagram of the four-way valve according to FIG. 7, wherein the first interface communicates with the fourth interface, and the second interface communicates with the third interface;
  • FIG. 10 is a schematic diagram of a four-way valve according to yet another embodiment of the present application, wherein the first interface communicates with the second interface, and the third interface communicates with the fourth interface;
  • FIG. 11 is a schematic diagram of the four-way valve according to FIG. 10, wherein the first interface, the third interface, and the fourth interface are connected, and the second interface is disconnected;
  • FIG. 12 is a schematic diagram of the four-way valve according to FIG. 10, wherein the first interface communicates with the fourth interface, and the second interface communicates with the third interface;
  • FIG. 13 is a schematic structural diagram of a four-way valve according to another embodiment of the present application, in which the valve core is located in the first position;
  • FIG. 14 is a schematic diagram of the communication structure of the four-way valve in FIG. 13, wherein the valve core is located in the fourth position;
  • 15 is a schematic diagram of the communication structure of the four-way valve in FIG. 13, wherein the valve core is located in the second position;
  • 16 is a schematic diagram of the communication structure of the four-way valve in FIG. 13, wherein the valve core is located in the fifth position;
  • 17 is a schematic diagram of the communication structure of the four-way valve in FIG. 13, wherein the valve core is located in the third position;
  • valve core 18 is a schematic structural view of an air conditioner according to some embodiments of the present application, in which the valve core is located in the first position;
  • FIG. 19 is a schematic structural view of an air conditioner according to some embodiments of the present application, in which the valve core is located in a third position;
  • FIG. 20 is a schematic structural view of an air conditioner according to some embodiments of the present application, in which the valve core is located in the second position;
  • 21 is a schematic structural diagram of an air conditioner according to some embodiments of the present application, in which the valve core is located in the second position, and the third interface is in communication with the fourth interface.
  • Air conditioner 100
  • First interface 101 First interface 101; second interface 102; third interface 103; fourth interface 104;
  • Valve body 1 first side wall 1a; second side wall 1b;
  • Valve chamber 11 first chamber 111; first sub-chamber 1111; third sub-chamber 1112; second chamber 112; third chamber 113; second sub-chamber 1131; fourth sub-chamber 1132;
  • Spool 2 communication portion 21; communication passage 211; first cut-off surface 21a; second cut-off surface 21b;
  • Electromagnetic control part 3
  • Compressor 20 exhaust port 201; return port 202;
  • Throttle element 50
  • the four-way valve 10 according to an embodiment of the present application will first be described below with reference to FIGS. 1-17.
  • a four-way valve 10 includes a valve body 1 and a spool 2.
  • the valve body 1 defines a valve cavity 11, and the valve body 1 is provided with a An interface 101 to a fourth interface 104, the spool 2 is movably disposed in the valve cavity 11 and has a first position to a third position, the spool 2 is provided with a communication portion 21 protruding toward the inner wall of the valve cavity 11,
  • the communication portion 21 is provided with a communication channel 211, the communication portion 21 and the inner wall of the valve cavity 11 define a first chamber 111, a second chamber 112, and a third chamber 113, and the communication passage 211 communicates with the second chamber 112, the third The interface 103 communicates with the second chamber 112.
  • both the first interface 101 and the second interface 102 communicate with the first chamber 111, and the fourth interface 104 communicates with the second chamber 112 so that the third interface 103 and the fourth interface 104 is connected;
  • the first interface 101 communicates with the second chamber 112 through the communication channel 211, so that the first interface 101 communicates with the third interface 103;
  • the second interface 102 communicates with the second chamber 112
  • the first interface 101 and the fourth interface 104 both communicate with the third chamber 113, so that the second interface 102 communicates with the third interface 103, the first The interface 101 and the fourth interface 104 are in communication.
  • the first interface 101, the second interface 102, the third interface 103, and the fourth interface 104 can have a variety of communication methods, which is beneficial to meet the diversified flow switching functions of the air conditioner 100 to the four-way valve 10 ⁇ Request.
  • the air conditioner 100 when the four-way valve 10 is applied to the air conditioner 100, the air conditioner 100 further includes: a compressor 20, an indoor heat exchanger 30, an outdoor heat exchanger 40, and a throttle element 50,
  • the compressor 20 has an exhaust port 201 and a return air port 202.
  • the first end of the indoor heat exchanger 30 is connected to the first end of the outdoor heat exchanger 40 through a throttle element 50.
  • the four-way valve 10 has a first port 101 to a fourth port 104, the first port 101 is connected to the exhaust port 201, the second port 102 is connected to the second end of the outdoor heat exchanger 40, and the third port 103 is connected to the return port 202 Connected, the fourth interface 104 is connected to the second end of the indoor heat exchanger 30; when the compressor 20 is stopped, the first interface 101 is connected to the third interface 103.
  • the spool 2 can move in the left-right direction, as shown in FIGS. 1 and 18, when the spool 2 is in the first position, the first port 101 and the second port 102 are both in communication with the first chamber 111 ,
  • the fourth interface 104 communicates with the second chamber 112, that is, the first interface 101 communicates with the second interface 102, and the third interface 103 communicates with the fourth interface 104, so that the outdoor heat exchanger 40 is changed to a high-pressure side
  • the heat exchanger, the indoor heat exchanger 30 is a low-pressure side heat exchanger, and the air conditioner 100 operates under refrigeration conditions;
  • both the second port 102 and the third port 103 are in communication with the second chamber 112, and the first port 101 and the fourth port 104 are both in communication with the third
  • the chamber 113 communicates so that the indoor heat exchanger 30 is a high-pressure side heat exchanger, the outdoor heat exchanger 40 is a low-pressure side heat exchanger, and the air conditioner 100 operates under heating conditions;
  • the spool 2 moves to the second position, the first port 101, the communication channel 211, the second chamber 112 and the third port 103 are connected, the first The second port 102 and the third port 103 are disconnected from other ports, so that when the compressor 20 is stopped, the exhaust port 201 and the return port 202 of the compressor 20 can be quickly communicated to achieve pressure balance, which can be quickly re-connected.
  • the compressor 20 is started, and the structure is simple and the cost is low.
  • the four-way valve 10 of the embodiment of the present application by making the spool 2 have the first position, the second position and the third position, the four-way valve 10 can have three reversing modes.
  • the four-way valve 10 is used for air conditioning
  • the first interface 101, the second interface 102, the third interface 103, and the fourth interface 104 can have multiple communication modes, which is beneficial to satisfy the flow path switching function of the air conditioner 100 to the four-way valve 10 Diversified requirements.
  • the valve chamber 11 has opposing first side walls 1a and second side walls 1b (as shown in FIG. 13), and the first interface 101 is located at the first The side wall 1a, the second interface 102, the third interface 103, and the fourth interface 104 are all located on the second side wall 1b, and the first sub-chamber 1111 and the first sub-chamber 1111 are defined between the spool 2, the communication portion 21, and the first side wall 1a
  • a third sub-chamber 1112, a fourth sub-chamber 1132 and a second chamber 112 are defined between the spool 2 and the second side wall 1b, wherein the third sub-chamber 1112 and the second A sub-chamber 1111 is located on the same side of the second chamber 112 and communicates to define the first chamber 111, and the second sub-chamber 1131 and the fourth sub-chamber 1132 are located on the same side of the second chamber 112 and communicate with
  • first sub-chamber 1111 and the second sub-chamber 1131 are in communication, and the third sub-chamber 1112 and the fourth sub-chamber 1132 are in communication.
  • the realization of the reversing function of the four-way valve 10 is facilitated, and it is advantageous to make the reversing of the four-way valve 10 reliable.
  • the first interface 101, the first sub-chamber 1111, the second sub-chamber 1131, and the second interface 102 communicate with each other.
  • the interface 103, the second chamber 112 and the fourth interface 104 are connected, so that the outdoor heat exchanger 40 is a high-pressure side heat exchanger, the indoor heat exchanger 30 is a low-pressure side heat exchanger, and the air conditioner 100 operates under refrigeration conditions;
  • the second port 102, the second chamber 112, and the third port 103 communicate with each other, and the first port 101, the third sub-chamber 1112 ,
  • the fourth sub-chamber 1132 and the fourth interface 104 are connected so that the indoor heat exchanger 30 is a high-pressure side heat exchanger, the outdoor heat exchanger 40 is a low-pressure side heat exchanger, and the air conditioner 100 is under heating conditions run;
  • the present application is not limited to this, for example, when the compressor is stopped in the cooling state, as shown in FIG. 15 and FIG. 21, when the spool 2 moves to the second position, the first interface 101, the communication channel 211.
  • the second chamber 112 communicates with the third interface 103, the second interface 102 is disconnected, and the third interface 103 communicates with the fourth interface 104; in another example, when the compressor is shut down in the heating state, when the valve When the core 2 is in the second position, the first interface 101, the communication channel 211, the second chamber 112, and the third interface 103 are in communication, the third interface 103 is disconnected, and the third interface 103 is in communication with the second interface 102.
  • the spool 2 includes a first blocking block 22, a second blocking block 23, a connecting plate 24, a first separating plate 25 and a second separating plate 26, the first blocking
  • the block 22 and the second blocking block 23 are spaced apart in the moving direction of the spool 2 (for example, as shown in FIG. 16, the first blocking block 22 and the second blocking block 23 are spaced apart in the left-right direction), and the connecting plate 24 Connected between the first blocking block 22 and the second blocking block 23, the surface of the connecting plate 24 facing the first side wall 1a is formed with a communicating portion 21 protruding toward the first side wall 1a.
  • the connecting plate 24, the first blocking block 22 and the first side wall 1a define a first sub-chamber 1111, and the communicating portion 21, the connecting plate 24, the second blocking block 23 and the first side wall 1a define a second sub-chamber 1131.
  • the first partition plate 25 and the second partition plate 26 are provided on the surface of the connecting plate 24 away from the first side wall 1 a and spaced in the moving direction of the valve core 2 (For example, as shown in FIG. 16, the first partition plate 25 and the second partition plate 26 are provided on the lower surface of the connecting plate 24 and are spaced apart in the left-right direction), the first partition plate 25 is located at the Between the two partition plates 26 and the first blocking block 22, the first partition plate 25, the second partition plate 26, the connecting plate 24, and the second side wall 1b define a second chamber 112, and the first blocking block 22 , The first partition plate 25, the connecting plate 24 and the second side wall 1b define a third sub-chamber 1112, the second partition plate 26, the second blocking block 23, the connecting plate 24 and the second side wall 1b define The fourth sub-chamber 1132.
  • the structure of the valve core 2 can be made simple and reliable, which is beneficial to the realization of the reversing function of the four-way valve 10.
  • the connecting plate 24 is provided with a first communication port 241 and a second communication port 242 spaced apart in the left-right direction. 24 through the connecting plate 24 in the thickness direction, the first communication port 241 is used to communicate the first sub-chamber 1111 and the second sub-chamber 1131, and the second communication port 242 is used to communicate the third sub-chamber 1112 and the fourth sub-chamber ⁇ 1132 ⁇ Chamber 1132.
  • the first blocking block 22, the second blocking block 23, the connecting plate 24, the communication portion 21, the first partition plate 25, and the second partition plate 26 are integrally formed pieces.
  • the manufacturing of the valve core 2 is simple, redundant assembly parts and connection processes are omitted, the assembly efficiency of the valve core 2 is greatly improved, and the reliability of the operation of the valve core 2 is ensured.
  • the first interface 101 is located on the first side wall 1a
  • the second interface 102, the third interface 103, and the fourth interface 104 are located on the second side wall 1b and are arranged in sequence.
  • the cross section of the valve body 1 may be formed into a circle or a square.
  • the structure of the valve body 1 can be made simple and easy to manufacture.
  • the four-way valve 10 is a metal piece.
  • the present application is not limited to this, the internal flow path scheme of the four-way valve 10 may also be as shown in FIGS. 7-9, the main difference from the embodiment in FIG. 1 is that the second interface 102, the fourth interface 104 Located on the first side wall 1a, the first interface 101 and the third interface 103 are located on the second side wall 1b, the specific structure of which will not be described in detail here.
  • the four-way valve 10 further includes a first connection tube 4 and a second connection tube 5.
  • the first connection tube 4 is connected to the second interface 102 and the third interface 103 respectively.
  • a connecting pipe 4 is connected with a first control valve 41 in series
  • a second connecting pipe 5 is connected to a third port 103 and a fourth port 104 respectively
  • a second control valve 51 is connected to the second connecting tube 5 in series.
  • the first control valve 41 and the second control valve 51 communicate with the control system of the air conditioner 100, and the conduction and disconnection of the first control valve 41 and the second control valve 51 can be controlled by the air conditioner 100 The system is independently controlled.
  • the surface of the communication portion 21 facing the first side wall 1a defines a first cut-off surface 21a and a second cut-off surface 21b, the first cut-off surface 21a and the second cut-off surface 21b are defined by the communication passage 211 The end of the first side wall 1a is spaced apart.
  • the upper surface of the communication portion 21 defines a first cut-off surface 21a and a second cut-off surface 21b, and the first cut-off surface 21a and the first The two cutoff surfaces 21b are separated by the upper end of the communication channel 211.
  • the surface of the first partition plate 25 facing the second side wall 1b defines a third cut-off surface 251
  • the surface of the second partition plate 26 facing the second side wall 1b defines a third With four cut-off surfaces 261
  • the spool 2 has a fourth position and a fifth position.
  • the lower surface of the first partition plate 25 defines a third cut-off surface 251
  • the lower surface of the second partition plate 26 defines a fourth cut-off surface 261
  • the spool 2 has a Four positions and fifth position.
  • the first cut-off surface 21a blocks the first port 101
  • the fourth cut-off surface 261 blocks the fourth port 104
  • the first control valve 41 is opened and the second control valve 51 is opened
  • the second interface 102 and the third interface 103 are not connected, so that the first interface 101 and the third interface 103 can be disconnected in the fourth position, the second interface 102 and the third interface 103 are not connected, and the third interface 103 is connected to the fourth interface 104.
  • the second cut-off surface 21b blocks the first port 101
  • the third cut-off surface 251 blocks the second port 102
  • the first control valve 41 opens and the second control valve 51 opens
  • the third interface 103 and the fourth interface 104 are not connected. Therefore, in the fourth position, the first interface 101 and the third interface 103 can be disconnected, the second interface 102 and the third interface 103 are connected, and the third interface 103 and the fourth interface 104 are not connected.
  • the four-way valve 10 includes an electromagnetic control member 3, and the electromagnetic control member 3 is used to drive the spool 2 to move.
  • the electromagnetic control member 3 is used to drive the spool 2 to move.
  • the movement of the spool 2 may also be driven by the pilot valve assembly, and the movement of the spool 2 between the first position, the second position, and the third position may also be achieved.
  • the air conditioner 100 may include: a compressor 20, an indoor heat exchanger 30, an outdoor heat exchanger 40, and a reversing component.
  • the compressor 20 has an exhaust port 201 With the air return port 202, the first end of the indoor heat exchanger 30 is connected to the first end of the outdoor heat exchanger 40 through the throttle element 50.
  • the commutation assembly has a first interface 101 to a fourth interface 104, the first interface 101 is connected to the exhaust port 201, and the second interface 102 is connected to the second end of the outdoor heat exchanger 40, The third interface 103 is connected to the return air port 202, and the fourth interface 104 is connected to the second end of the indoor heat exchanger 30; when the compressor 20 is stopped, the first interface 101 is connected to the third interface 103.
  • the reversing component is a four-way valve 10, which has a first port 101 to a fourth port 104, the first port 101 is connected to the exhaust port 201, and the second port 102 is connected to the second of the outdoor heat exchanger 40
  • the third port 103 is connected to the return port 202, and the fourth port 104 is connected to the second end of the indoor heat exchanger 30; when the compressor 20 is stopped, the first port 101 is connected to the third port 103.
  • the spool 2 can be moved in the left and right directions, when the spool 2 is in the first position, the first port 101 and the second port 102 are both in communication with the first chamber 111, the fourth port 104 communicates with the second chamber 112 so that the outdoor heat exchanger 40 is a high-pressure side heat exchanger, the indoor heat exchanger 30 is a low-pressure side heat exchanger, and the air conditioner 100 operates under refrigeration conditions;
  • both the second port 102 and the third port 103 are in communication with the second chamber 112, and the first port 101 and the fourth port 104 are both in communication with the third
  • the chamber 113 communicates so that the indoor heat exchanger 30 is a high-pressure side heat exchanger, the outdoor heat exchanger 40 is a low-pressure side heat exchanger, and the air conditioner 100 operates under heating conditions;
  • the spool 2 moves to the second position, the first port 101 communicates with the second chamber 112 through the communication channel 211, and communicates with the high-pressure side heat exchanger
  • the second interface 102 or the third interface 103 disconnects the communication with other interfaces, so that when the compressor 20 is stopped, the exhaust port 201 and the return port 202 of the compressor 20 can be quickly communicated to achieve pressure balance, and then can be quickly reconnected.
  • the compressor 20 is started, and the structure is simple and the cost is low.
  • the present application is not limited to this, and the reversing assembly may be composed of multiple pipelines with control valves.
  • the air conditioner 100 of the embodiment of the present application when the compressor 20 is stopped, by connecting the first interface 101 and the third interface 103, when the compressor 20 is stopped, the exhaust port 201 and the return air port of the compressor 20 can be quickly made 202 is connected to achieve pressure balance, so that the compressor 20 can be restarted quickly, and the structure is simple and the cost is low.
  • the second interface 102 and the fourth interface 104 are not in communication. Therefore, when the compression 1 is stopped, the high pressure side heat exchanger maintains a high pressure state (it can be understood that when the air conditioner 100 is cooled, the high pressure side heat exchanger is the outdoor heat exchanger 40; When the compressor 100 is cooling, the high-pressure side heat exchanger is the indoor heat exchanger 30), and by making the second port 102 and the fourth port 104 not communicate when the compressor 20 is stopped, the throttle element 50 can be Under the action, there is still a certain flow rate, the remaining heat of the high-pressure side heat exchanger can still be released, and the low-pressure side heat exchanger can still have the ability to absorb heat by evaporation, thereby improving the overall efficiency of the air conditioner 100. For example, both the second interface 102 and the fourth interface 104 are in a disconnected state. In other words, refrigerant cannot flow out from the second interface 102 and the fourth interface 104.
  • the third interface 103 communicates with the interface connected to the low-pressure side heat exchanger. It should be noted that when the compressor 20 is stopped, the first port 101 communicates with the third port 103, which can quickly connect the exhaust port 201 and the return port 202 of the compressor 20 to achieve pressure balance.
  • the low-pressure side heat exchange The pressure of the refrigerant in the compressor is greater than the pressure of the refrigerant between the discharge port 201 and the return port 202 of the compressor 20, and when the compressor 20 is stopped, the third port 103 is connected to the low-pressure side heat exchanger
  • the connection of the interfaces can increase the pressure difference between the high-pressure side heat exchanger and the low-pressure side heat exchanger, and help to improve the overall efficiency of the air conditioner 100.
  • the air conditioner 100 when the compressor 20 is shut down, the air conditioner 100 is in the cooling mode.
  • the high-pressure side heat exchanger is the outdoor heat exchanger 40
  • the low-pressure side heat exchanger is the indoor heat exchanger. 30, so control the first interface 101 to communicate with the third interface 103 and the third interface 103 to communicate with the fourth interface 104; when the compressor 20 stops, the air conditioner 100 is in the heating mode.
  • the high-pressure side is changed
  • the heat exchanger is an indoor heat exchanger 30, and the low-pressure side heat exchanger is an outdoor heat exchanger 40, so the first interface 101 is controlled to communicate with the third interface 103, and the third interface 103 is communicated with the second interface 102.
  • the throttle element 50 is an electronic expansion valve, a thermal expansion valve, or a capillary tube.
  • the throttle element 50 it is advantageous to ensure the throttling ability of the throttle element 50, and thus to improve the working efficiency of the air conditioner 100.
  • the control method of the air conditioner 100 is the air conditioner 100 according to the above embodiment of the present application.
  • the control method includes: controlling the compressor 20 to start, controlling the first The interface 101 and the third interface 103 are disconnected, and the third interface 103 is connected to the interface of the commutation component connected to the low-pressure side heat exchanger.
  • the air return port 202 of the compressor 20 can suck the refrigerant in the low-pressure side heat exchanger, thereby facilitating This causes the discharge pressure P1 of the compressor 20 to increase rapidly.
  • the first interface 101 and the third interface 103 are connected (of course, it may also be an interface where the first interface 101 and the third interface 103 are connected, and the third interface 103 is connected to the low-pressure side heat exchanger Connected), if the compressor 20 is in cooling operation before shutdown, the outdoor heat exchanger 40 is a high-pressure side heat exchanger, the indoor heat exchanger 30 is a low-pressure side heat exchanger, and the control system of the air conditioner 100 can control the commutation components Connect the third interface 103 and the fourth interface 104 but delay the connection between the first interface 101 and the second interface 102 to enable the compressor 20 to start quickly, and during the start of the compressor 20, the return port 202 of the compressor 20 may be sucked into the room The refrigerant in the heat exchanger 30 is rapidly pressurized;
  • the outdoor heat exchanger 40 is a low-pressure side heat exchanger and the indoor side heat exchanger is a high-pressure side heat exchanger.
  • the control system of the air conditioner 100 can control the commutation component to communicate with the third The interface 103 and the second interface 102 but delay the connection between the first interface 101 and the fourth interface 104 to enable the compressor 20 to start quickly, and during the start of the compressor 20, the air inlet 202 of the compressor 20 may be sucked into the outdoor heat exchanger
  • the refrigerant in 40 is pressurized quickly.
  • the discharge pressure P1 of the compressor 20 and the pressure P2 of the high-pressure side heat exchanger are detected.
  • a pressure sensor may be provided in the flow path of the outdoor heat exchanger 40 and the outdoor heat exchanger 40, respectively, and detected by the pressure sensor
  • the pressure P2 of the high-pressure side heat exchanger when P1 ⁇ P2, controls the first interface 101 to communicate with the interface of the reversing component connected to the high-pressure side heat exchanger.
  • the disconnected first port 101 and the high-pressure side heat exchanger remain connected until P1 ⁇ P2, and then the first port 101 and the high-pressure side of the reversing component are controlled.
  • the interface connected to the heat exchanger is connected; when P1 ⁇ P2, if the compressor 20 is stopped, the first interface 101 and the third interface 103 are connected to balance the pressure between the return port 202 and the exhaust port 201 of the compressor 20, and then The first interface 101 and the third interface 103 are controlled to be disconnected and the compressor 20 is started again. Thereby, it is possible to prevent the refrigerant of the high-pressure side heat exchanger from flowing back to the exhaust port 201 of the compressor 20, thereby contributing to improving the success rate of starting the compressor 20.
  • the first interface 101 and the third interface 103 are controlled to be disconnected, and the third interface 103 and the low-voltage side of the commutation component are connected
  • the interface connected to the heat exchanger when the compressor 20 is started, the air inlet 202 of the compressor 20 can suck the refrigerant in the low-pressure side heat exchanger, thereby helping to quickly increase the discharge pressure P1 of the compressor 20, and
  • P1 ⁇ P2 control the connection between the first interface 101 and the high-pressure side heat exchanger to prevent the refrigerant of the high-pressure side heat exchanger from flowing back to the exhaust port 201 of the compressor 20, thereby helping to improve the compressor 20
  • the success rate of startup when the compressor 20 is controlled to start, the first interface 101 and the third interface 103 are controlled to be disconnected, and the third interface 103 and the low-voltage side of the commutation component are connected
  • the air inlet 202 of the compressor 20 can suck the refrigerant in the low-pressure side heat exchanger, thereby helping to quickly increase the discharge
  • the pressure at the first interface 101 is detected to obtain the discharge pressure P1 of the compressor 20. This facilitates the detection of the discharge pressure P1 of the compressor 20.
  • a pressure sensor may be provided at the first interface 101 to obtain the discharge pressure P1 of the compressor 20.
  • the air conditioner 100 is the air conditioner 100 according to the above embodiment of the present application.
  • the control method includes: controlling the compressor 20 to start, and controlling the first interface 101 and the third interface 103 to be disconnected ,
  • the third interface 103 is connected to the interface of the commutation component connected to the low-pressure side heat exchanger.
  • the control system of the air conditioner 100 can record the working state of cooling or heating before shutdown.
  • the first interface 101 and the third interface 103 are connected (of course, the first interface 101 can also be It is connected to the third interface 103, and the third interface 103 is connected to the interface connected to the low-pressure side heat exchanger), if the compressor 20 is in cooling operation before shutdown, the outdoor heat exchanger 40 is a high-pressure side heat exchanger, and the indoor The heater 30 is a low-pressure side heat exchanger, and the control system of the air conditioner 100 can control the commutation component to communicate with the third interface 103 and the fourth interface 104 but delay the communication between the first interface 101 and the second interface 102 to enable the compressor 20 to start quickly , And when the compressor 20 is started, the return air port 202 of the compressor 20 may be sucked into the refrigerant in the indoor heat exchanger 30 to quickly pressurize;
  • the outdoor heat exchanger 40 is a low-pressure side heat exchanger and the indoor side heat exchanger is a high-pressure side heat exchanger.
  • the control system of the air conditioner 100 can control the commutation component to communicate with the third The interface 103 and the second interface 102 but delay the connection between the first interface 101 and the fourth interface 104 to enable the compressor 20 to start quickly, and when the compressor 20 starts, the air return port 202 of the compressor 20 may be drawn into the outdoor heat exchanger 40 The refrigerant is pressurized quickly.
  • the first interface 101 is controlled to communicate with the interface connected to the high-pressure side heat exchanger. It should be noted that, within t seconds of delaying the connection between the first port 101 and the high-pressure side heat exchanger, the discharge pressure of the compressor 20 continues to increase, and the value of t can be controlled so that the first port 101 and the high-pressure side are controlled. When the interface connected to the heat exchanger is connected, the discharge pressure P1 of the compressor 20 is greater than the pressure P2 of the high-pressure side heat exchanger.
  • the first interface 101 is connected to the interface connected to the high-pressure side heat exchanger, and if the compressor 20 is stopped, the first interface 101 and the third interface 103 are connected to balance the return port of the compressor 20
  • the pressure between 202 and the exhaust port 201 finally controls the disconnection of the first port 101 and the third port 103 and causes the compressor 20 to start again.
  • the first interface 101 and the third interface 103 are controlled to be disconnected, and the third interface 103 and the low-voltage side of the commutation component are connected
  • the interface connected to the heat exchanger the air inlet 202 of the compressor 20 can suck the refrigerant in the low-pressure side heat exchanger, which is beneficial to quickly increase the discharge pressure P1 of the compressor 20, and after t seconds, control the first An interface 101 communicates with the interface of the reversing component connected to the high-pressure side heat exchanger, so that the refrigerant of the high-pressure side heat exchanger can be prevented from flowing back to the exhaust port 201 of the compressor 20, thereby facilitating the startup of the compressor 20 Success rate.
  • t is not too small, so that the connection between the first port 101 and the high-pressure side heat exchanger cannot be guaranteed, and the discharge pressure P1 of the compressor 20 is greater than the pressure P2 of the high-pressure side heat exchanger.
  • t is not too large, so as to avoid making the start-up time of the compressor 20 too long.
  • t may be 1, 3, 5, 8, or 10.
  • control method of the air conditioner 100 is described below with reference to FIGS. 13-21, wherein the reversing component is the four-way valve 10 shown in FIGS. 13-17.
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the first position (as shown in FIGS. 13 and 18, the first The control valve 41 is turned off and the second control valve 51 is turned off) to the left to the second position (as shown in FIGS. 15 and 20, the first control valve 41 is turned off and the second control valve 51 is turned off), the first The interface 101 communicates with the second chamber 112 through the communication channel 211 to communicate with the third interface 103, so that when the compressor 20 is stopped, the discharge port 201 and the return port 202 of the compressor 20 can be quickly communicated to achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIGS. 15 and 20) to the right to the fourth position (as shown in FIG. 14), the first The cut-off surface 21a blocks the first port 101, the fourth cut-off surface 261 blocks the fourth port 104, the first control valve 41 is disconnected and the second control valve 51 is opened, the second port 102 and the third port 103 are not conductive and The third interface 103 and the fourth interface 104 are connected, so that during the startup process of the compressor 20, the air return port 202 of the compressor 20 can suck the refrigerant in the indoor heat exchanger 30 to quickly pressurize;
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the third position (as shown in FIGS. 17 and 19, the first control valve 41 is off and the second control valve 51 is off) moves to the second position to the right (as shown in FIGS. 15 and 20, the first control valve 41 is off and the second control valve 51 is off), the first interface 101
  • the communication channel 211 communicates with the second chamber 112 to communicate with the third port 103, so that when the compressor 20 is stopped, the discharge port 201 and the return port 202 of the compressor 20 can be quickly communicated to achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIG. 15) to the left to the fifth position (as shown in FIG. 16), the second cut-off surface 21b blocks the first port 101, the third cut-off surface 251 blocks the second port 102, the first control valve 41 is opened and the second control valve 51 is disconnected, the second port 102 and the third port 103 are conducting, and the third The interface 103 and the fourth interface 104 are not conductive, so that during the startup process of the compressor 20, the air return port 202 of the compressor 20 may suck the refrigerant in the outdoor heat exchanger 40 to quickly pressurize.
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the first position (as shown in FIG. 13, the first control valve 41 is turned off and the second control valve 51 is turned off to the left to the second position (as shown in FIGS.
  • the first port 101 communicates with the second chamber 112 through the communication channel 211 to communicate with the third port 103, and the third port 103 communicates with the fourth port 104, so that when the compressor 20 is stopped, it can be quickly
  • the discharge port 201 and the return port 202 of the compressor 20 are communicated to achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIG. 15) to the right to the fourth position (as shown in FIG. 14), and the first cut-off surface 21a
  • the first interface 101 is blocked, the fourth cut-off surface 261 blocks the fourth interface 104, the first control valve 41 is disconnected and the second control valve 51 is opened, the second interface 102 and the third interface 103 are not conductive and the third interface 103 is connected to the fourth interface 104, so that during the startup process of the compressor 20, the air return port 202 of the compressor 20 can suck the refrigerant in the indoor heat exchanger 30 to quickly pressurize;
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the third position (as shown in FIG. 17, the first control valve 41 is opened And the second control valve 51 is disconnected) moves to the second position to the right (as shown in FIG. 17 and controls the first control valve 41 to open and the second control valve 51 to be disconnected), the first interface 101 communicates with the The second chamber 112 communicates with the third port 103, and the second port 102 communicates with the third port 103, so that when the compressor 20 is stopped, the exhaust port 201 and the return port 202 of the compressor 20 can be quickly communicated To achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIG. 15) to the left to the fifth position (as shown in FIG. 16), the second cut-off surface 21b blocks the first port 101, the third cut-off surface 251 blocks the second port 102, the first control valve 41 is opened and the second control valve 51 is disconnected, the second port 102 and the third port 103 are conducting, and the third The interface 103 and the fourth interface 104 are not connected.
  • the air inlet 202 of the compressor 20 may suck the refrigerant in the outdoor heat exchanger 40 to rapidly pressurize.
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the first position (see FIGS. 13 and 20).
  • the first control valve 41 is turned off and the second control valve 51 is turned off to the left to the second position (as shown in FIGS. 15 and 20, the first control valve 41 is turned off and the second control valve 51 Disconnected)
  • the first port 101 communicates with the second chamber 112 through the communication channel 211 to communicate with the third port 103, so that when the compressor 20 is stopped, the exhaust port 201 and the return port 202 of the compressor 20 can be quickly communicated To achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIGS. 15 and 20) to the right to the fifth position (as shown in FIG. 14), the first The cut-off surface 21a blocks the first port 101, the fourth cut-off surface 261 blocks the fourth port 104, the first control valve 41 is disconnected and the second control valve 51 is opened, the second port 102 and the third port 103 are not conductive and The third interface 103 and the fourth interface 104 are connected, so that during the startup process of the compressor 20, the air return port 202 of the compressor 20 can suck the refrigerant in the indoor heat exchanger 30 to quickly pressurize;
  • the control system of the air conditioner 100 controls the spool 2 from the fourth position (as shown in FIG. 14) to the right to the first position (as shown in FIGS. 13 and 18), thereby making the first interface 101 and The interface of the four-way valve 10 connected to the high-pressure side heat exchanger is in communication.
  • the refrigerant of the outdoor heat exchanger 40 can be prevented from flowing back to the exhaust port 201 of the compressor 20, which is beneficial to increase the success rate of starting the compressor 20.
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the third position (as shown in FIGS. 17 and 19, the first control valve 41 is off and the second control valve 51 is off) moves to the second position to the right (as shown in FIGS. 15 and 20, the first control valve 41 is off and the second control valve 51 is off), the first interface 101
  • the communication channel 211 communicates with the second chamber 112 to communicate with the third port 103, so that when the compressor 20 is stopped, the discharge port 201 and the return port 202 of the compressor 20 can be quickly communicated to achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIG. 15) to the left to the fifth position (as shown in FIG. 16), the second cut-off surface 21b blocks the first port 101, the third cut-off surface 251 blocks the second port 102, the first control valve 41 is opened and the second control valve 51 is disconnected, the second port 102 and the third port 103 are conducting, and the third The interface 103 and the fourth interface 104 are not connected.
  • the air inlet 202 of the compressor 20 may suck the refrigerant in the outdoor heat exchanger 40 to rapidly pressurize.
  • the control system of the air conditioner 100 controls the spool 2 from the fifth position to the left to the third position (as shown in FIG. 13), so that the first port 101 and the four-way valve 10 exchange heat with the high pressure side
  • the interface connected to the device is connected.
  • the refrigerant of the indoor heat exchanger 30 can be prevented from flowing back to the exhaust port 201 of the compressor 20, which is beneficial to increase the success rate of starting the compressor 20.
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the first position (as shown in FIG. 13, the first control valve 41 is turned off and the second control valve 51 is turned off to the left to the second position (as shown in FIGS. 15 and 21, and the first control valve 41 is turned off and the second control Valve 51 is open), the first port 101 communicates with the second chamber 112 through the communication channel 211 to communicate with the third port 103, and the third port 103 communicates with the fourth port 104, so that when the compressor 20 is stopped, it can quickly
  • the discharge port 201 and the return port 202 of the compressor 20 are communicated to achieve pressure balance.
  • the spool 2 moves from the second position (as shown in FIG. 15) to the right to the fourth position (as shown in FIG. 14), and the first cut-off surface 21a
  • the first interface 101 is blocked, the fourth cut-off surface 261 blocks the fourth interface 104, the first control valve 41 is disconnected and the second control valve 51 is opened, the second interface 102 and the third interface 103 are not conductive and the third interface 103 is connected to the fourth interface 104, so that during the startup process of the compressor 20, the air return port 202 of the compressor 20 can suck the refrigerant in the indoor heat exchanger 30 to quickly pressurize;
  • the control system of the air conditioner 100 controls the spool 2 from the fourth position (as shown in FIG. 14) to the right to the first position (as shown in FIG. 13), thereby making the first interface 101 and the four-way valve 10 is connected to the interface connected to the high-pressure side heat exchanger.
  • the refrigerant of the outdoor heat exchanger 40 can be prevented from flowing back to the exhaust port 201 of the compressor 20, which is beneficial to increase the success rate of starting the compressor 20.
  • the control system of the air conditioner 100 controls the electromagnetic control member 3 to drive the spool 2 from the third position (as shown in FIG. 17, the first control valve 41 is opened And the second control valve 51 is disconnected) moves to the second position to the right (as shown in FIG. 17 and controls the first control valve 41 to open and the second control valve 51 to be disconnected), the first interface 101 communicates with the The second chamber 112 communicates with the third port 103, and the second port 102 communicates with the third port 103, so that when the compressor 20 is stopped, the exhaust port 201 and the return port 202 of the compressor 20 can be quickly communicated To achieve pressure balance.
  • the spool 2 moves from the second position (shown in FIG. 15) to the left to the fifth position (shown in FIG. 16 where the second cutoff surface 21b seals
  • the first interface 101 is blocked, the third cutoff surface 251 blocks the second interface 102, the first control valve 41 is opened and the second control valve 51 is disconnected, the second interface 102 is connected to the third interface 103, and the third interface 103 It is not connected to the fourth interface 104.
  • the air return port 202 of the compressor 20 may suck the refrigerant in the outdoor heat exchanger 40 to quickly pressurize.
  • the control system of the air conditioner 100 controls the spool 2 from the fifth position to the left to the third position (as shown in FIG. 13), so that the first port 101 and the four-way valve 10 exchange heat with the high pressure side
  • the interface connected to the device is connected.
  • the refrigerant of the indoor heat exchanger 30 can be prevented from flowing back to the exhaust port 201 of the compressor 20, which is beneficial to increase the success rate of starting the compressor 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种四通阀被公开。该四通阀(10)包括阀体(1)和阀芯(2),阀体(1)内限定出阀腔(11),阀体(1)上设有第一接口(101)至第四接口(104),阀芯(2)可移动地设在阀腔(11)内且具有第一位置至第三位置,阀芯(2)上设有朝向阀腔(11)的内壁凸出的连通部(21),连通部(21)设有连通通道(211),连通部(21)与阀腔(11)的内壁限定出第一腔室(111)第二腔室(112)和第三腔室(113),连通通道(211)与第二腔室(112)连通,第三接口(103)与第二腔室(112)连通。在第一位置,第一接口(101)和第二接口(102)均与第一腔室(111)连通,第四接口(104)与第二腔室(112)连通;在第二位置,第一接口(101)通过连通通道(211)与第二腔室(112)连通,从而使得第一接口(101)与第三接口(103)相连通;在第三位置,第二接口(102)与第二腔室(112)连通,第一接口(101)和第四接口(104)均与第三腔室(113)连通。

Description

四通阀
相关申请的交叉引用
本申请基于申请号为201811290392.4,申请日为2018年10月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,尤其是涉及一种四通阀。
背景技术
一般地,在空调系统中,通过压缩机的压缩和节流元件的节流作用,从而将制冷剂在低温低压和高温高压之间转化,且利用四通阀改变压缩机到换热器的流路,并通过室内换热器和室外换热器与周围环境的换热,实现制冷或制热的效果。其中,四通阀在系统中起到了流路切换的作用,当将压缩机排气口的制冷剂先导入室内换热器时,空调器实现制热运行;而当将压缩机排气口的制冷剂先导入室外换热器时,空调器实现制冷运行。然而,相关技术中的四通阀的功能单一,不能满足空调器对四通阀的流路切换功能的多样化要求。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出了一种四通阀,通过阀芯具有第一位置、第二位置和第三位置,有利于满足空调器对四通阀的流路切换功能的多样化要求。
根据本申请实施例的四通阀,包括:阀体,所述阀体内限定出阀腔,所述阀体上设有第一接口至第四接口;阀芯,所述阀芯可移动地设在所述阀腔内且具有第一位置至第三位置,所述阀芯上设有朝向所述阀腔的内壁凸出的连通部,所述连通部设有连通通道,所述阀芯、所述连通部与所述阀腔的内壁限定出第一腔室至第三腔室,所述连通通道与所述第二腔室连通,所述第三接口与所述第二腔室连通;在所述第一位置,所述第一接口和所述第二接口均与所述第一腔室连通,所述第四接口与所述第二腔室连通;在第二位置,所述第一接口通过所述连通通道与所述第二腔室连通;在所述第三位置,所述第二接口与所述第二腔室连通,所述第一接口和所述第四接口均与所述第三腔室连通。
根据本申请实施例的四通阀,通过阀芯具有第一位置、第二位置和第三位置,可使得第一接口、第二接口、第三接口和第四接口之间具有多种连通方式,有利于满足空调器对四通阀的流路切换功能的多样化要求。
在本申请的一些实施例中,所述阀腔具有相对的第一侧壁和第二侧壁,所述第一接口位于所述第一侧壁,所述第二至第四接口位于所述第二侧壁,所述阀芯、所述连通部与所述第一侧壁之间限定出第一子腔室和第二子腔室,所述阀芯与所述第二侧壁之间限定出第三子腔室、第四子腔室和所述第二腔室,其中,所述第三子腔室和所述第一子腔室位于所述第二腔室的同侧且连通以限定出所述第一腔室,所述第二子腔室和所述第四子腔室位于所述第二腔室的同侧且连通以限定出所述第三腔室。
在本申请的一些实施例中,所述阀芯包括:第一阻隔块和第二阻隔块,所述第一阻隔块和第二阻隔块在所述阀芯的移动方向上间隔开设置;连接板,所述连接板连接在所述第一阻隔块和所述第二阻隔块之间,所述连接板的朝向所述第一侧壁的表面形成有朝向靠近所述第一侧壁的方向凸出的所述连通部,所述连通部、所述连接板、所述第一阻隔块和所述第一侧壁限定出所述第一子腔室,所述连通部、所述连接板、所述第二阻隔块和所述第一侧壁限定出所述第二子腔室;第一分隔板和第二分隔板,所述第一分隔板和所述第二分隔板设在所述连接板的远离所述第一侧壁的表面上且在所述阀芯的移动方向上间隔开设置,所述第一分隔板位于所述第二分隔板和所述第一阻隔块之间,所述第一分隔板、所述第二分隔板、所述连接板和所述第二侧壁限定出所述第二腔室,所述第一阻隔块、所述第一分隔板、所述连接板和所述第二侧壁限定出所述第三子腔室,所述第二分隔板、所述第二阻隔块、所述连接板和所述第二侧壁限定出所述第四子腔室。
在本申请的一些可选的实施例中,所述第一阻隔块、所述第二阻隔块、所述连接板、所述连通部、所述第一分隔板和所述第二分隔板为一体成型件。
在本申请的一些实施例中,所述四通阀还包括第一连接管和第二连接管,所述第一连接管分别连接至所述第二接口和所述第三接口,所述第一连接管上串联有第一控制阀,所述第二连接管分别连接至所述第三接口和所述第四接口,所述第二连接管上串联有第二控制阀;所述连通部的朝向所述第一侧壁的表面限定出第一截止面和第二截止面,所述第一截止面和所述第二截止面由所述连通通道的朝向所述第一侧壁的一端间隔开;所述第一分隔板的朝向所述第二侧壁的表面限定出第三截止面,所述第二分隔板的朝向所述第二侧壁的表面限定出所述第四截止面,所述阀芯具有第四位置和第五位置;在所述第四位置,所述第一截止面封堵所述第一接口,所述第四截止面封堵所述第四接口,所述第一控制阀断开且所述第二控制阀打开,所述第二接口与所述第三接口不导通;在所述第五位置,所述第二截止面封堵所述 第一接口,所述第三截止面封堵所述第二接口,所述第一控制阀打开且所述第二控制阀断开,所述第三接口与所述第四接口不导通。
在本申请的一些实施例中,所述四通阀包括电磁控制件,所述电磁控制件用于驱动所述阀芯移动。
在本申请的一些实施例中,所述阀体的横截面形成为圆形或方形。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的四通阀的结构示意图,其中阀芯位于第一位置;
图2是图1中四通阀的阀芯在第二位置时的结构示意图;
图3是图2中四通阀的阀芯在第三位置时的结构示意图;
图4是图1中的四通阀的接口状态的连通示意图,其中第一接口与第二接口连通,第三接口与第四接口连通;
图5是图2中的四通阀的接口状态的连通示意图,其中第一接口与第三接口连通,第二接口、第四接口均断开;
图6是图3中的四通阀的接口状态的连通示意图,其中第一接口与第四接口连通,第二接口与第三接口连通;
图7是根据本申请又一个实施例的四通阀的连通示意图,其中第一接口与第二接口连通,第三接口与第四接口连通;
图8是根据图7中的四通阀的连通示意图,其中第一接口与第三接口连通,第二接口、第四接口均断开;
图9是根据图7中的四通阀的连通示意图,其中第一接口与第四接口连通,第二接口与第三接口连通;
图10是根据本申请再一个实施例的四通阀的连通示意图,其中第一接口与第二接口连通,第三接口与第四接口连通;
图11是根据图10中的四通阀的连通示意图,其中第一接口、第三接口和第四接口连通,第二接口断开;
图12是根据图10中的四通阀的连通示意图,其中第一接口与第四接口连通,第二 接口与第三接口连通;
图13是根据本申请另一个实施例的四通阀的结构示意图,其中阀芯位于第一位置;
图14是图13中四通阀的连通结构示意图,其中阀芯位于第四位置;
图15是图13中四通阀的连通结构示意图,其中阀芯位于第二位置;
图16是图13中四通阀的连通结构示意图,其中阀芯位于第五位置;
图17是图13中四通阀的连通结构示意图,其中阀芯位于第三位置;
图18是根据本申请一些实施例的空调器的结构示意图,其中阀芯位于第一位置;
图19是根据本申请一些实施例的空调器的结构示意图,其中阀芯位于第三位置;
图20是根据本申请一些实施例的空调器的结构示意图,其中阀芯位于第二位置;
图21是根据本申请一些实施例的空调器的结构示意图,其中阀芯位于第二位置,且第三接口与第四接口连通。
附图标记:
空调器100;
四通阀10;
第一接口101;第二接口102;第三接口103;第四接口104;
阀体1;第一侧壁1a;第二侧壁1b;
阀腔11;第一腔室111;第一子腔室1111;第三子腔室1112;第二腔室112;第三腔室113;第二子腔室1131;第四子腔室1132;
阀芯2;连通部21;连通通道211;第一截止面21a;第二截止面21b;
第一阻隔块22;第二阻隔块23;连接板24;第一连通口241;第二连通口242;
第一分隔板25;第三截止面251;第二分隔板26;第四截止面261;
电磁控制件3;
第一连接管4;第一控制阀41;
第二连接管5;第二控制阀51;
压缩机20;排气口201;回气口202;
室内换热器30;
室外换热器40;
节流元件50。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面首先参考图1-图17描述根据本申请实施例的四通阀10。
如图1-图12所示,根据本申请实施例的四通阀10,四通阀10包括阀体1和阀芯2,阀体1内限定出阀腔11,阀体1上设有第一接口101至第四接口104,阀芯2可移动地设在阀腔11内且具有第一位置至第三位置,阀芯2上设有朝向阀腔11的内壁凸出的连通部21,连通部21设有连通通道211,连通部21与阀腔11的内壁限定出第一腔室111第二腔室112和第三腔室113,连通通道211与第二腔室112连通,第三接口103与第二腔室112连通。
参照图1所示,在第一位置,第一接口101和第二接口102均与第一腔室111连通,第四接口104与第二腔室112连通以使得第三接口103与第四接口104连通;参照图2所示,在第二位置,第一接口101通过连通通道211与第二腔室112连通,从而使得第一接口101与第三接口103相连通;参照图3所示,在第三位置,第二接口102与第二腔室112连通,第一接口101和第四接口104均与第三腔室113连通,从而使得第二接口102与第三接口103连通,第一接口101和第四接口104连通。由此,可使得第一接口101、第二接口102、第三接口103和第四接口104之间具有多种连通方式,有利于满足空调器100对四通阀10的流路切换功能的多样化要求。
例如,如图18-图20所示,当四通阀10应用于空调器100时,空调器100还包括:压缩机20、室内换热器30、室外换热器40和节流元件50,压缩机20具有排气口201和回气口202,室内换热器30的第一端通过节流元件50与室外换热器40的第一端相连。四通阀10具有第一接口101至第四接口104,第一接口101与排气口201相连,第二接口102与室外换热器40的第二端相连,第三接口103与回气口202相连,第四接口104与室内换热器30的第二端相连;在压缩机20停机时,第一接口101与第三接口103连通。
具体而言,阀芯2可在左右方向上移动,结合图1和图18所示,当阀芯2在第一位置时,第一接口101和第二接口102均与第一腔室111连通,第四接口104与第二腔室112连通,也就是说,第一接口101和第二接口102连通,第三接口103与第四接口104连通,从而使得室外换热器40为高压侧换热器,室内换热器30为低压侧换热器,空调器100在制冷条件下运行;
如图3和图19所示,当阀芯2在第三位置时,第二接口102与第三接口103均与第二腔室112连通,第一接口101和第四接口104均与第三腔室113连通,使得室内换热 器30为高压侧换热器,室外换热器40为低压侧换热器,空调器100在制热条件下运行;
参照图2和图20所示,当压缩机20停机时,阀芯2移动到第二位置,第一接口101、连通通道211、第二腔室112和第三接口103之间相连通,第二接口102和第三接口103断开与其他接口之间的连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡,进而可以快速再次启动压缩机20,并且结构简单,成本低。
根据本申请实施例的四通阀10,通过使得阀芯2具有第一位置、第二位置和第三位置,可使得四通阀10具有三种换向方式,当四通阀10用于空调器100时,可使得第一接口101、第二接口102、第三接口103和第四接口104之间具有多种连通方式,有利于满足空调器100对四通阀10的流路切换功能的多样化要求。
在本申请的一些实施例中,参照图13-图17所示,阀腔11具有相对的第一侧壁1a和第二侧壁1b(如图13所示),第一接口101位于第一侧壁1a,第二接口102、第三接口103和第四接口104均位于第二侧壁1b,阀芯2、连通部21与第一侧壁1a之间限定出第一子腔室1111和第二子腔室1131,阀芯2与第二侧壁1b之间限定出第三子腔室1112、第四子腔室1132和第二腔室112,其中,第三子腔室1112和第一子腔室1111位于第二腔室112的同侧且连通以限定出第一腔室111,第二子腔室1131和第四子腔室1132位于第二腔室112的同侧且连通以限定出第三腔室113。可以理解的是,第一子腔室1111和第二子腔室1131相连通,第三子腔室1112、第四子腔室1132相连通。由此,便于四通阀10的换向功能的实现,有利于使得四通阀10的换向可靠。
例如,结合图13和图18所示,当阀芯2在第一位置时,第一接口101、第一子腔室1111、第二子腔室1131和第二接口102之间连通,第三接口103、第二腔室112和第四接口104相连通,使得室外换热器40为高压侧换热器,室内换热器30为低压侧换热器,空调器100在制冷条件下运行;
如图17和图19所示,当阀芯2在第三位置时,第二接口102、第二腔室112和第三接口103之间相连通,第一接口101、第三子腔室1112、第四子腔室1132和第四接口104之间相连通,使得室内换热器30为高压侧换热器,室外换热器40为低压侧换热器,空调器100在制热条件下运行;
如图15和图20所示,当阀芯2在第二位置时,第一接口101、连通通道211、第二腔室112和第三接口103之间相连通,第二接口102和第三接口103断开与其他接口之间的连通。当然,本申请不限于此,也可以是,例如,压缩机在制冷状态下停机时,如图15和图21所示,当阀芯2移动到第二位置时,第一接口101、连通通道211、第二 腔室112和第三接口103之间相连通,第二接口102断开,第三接口103与第四接口104连通;又如,压缩机在制热状态下停机时,当阀芯2在第二位置时,第一接口101、连通通道211、第二腔室112和第三接口103之间相连通,第三接口103断开,第三接口103与第二接口102连通。
可选地,参照图13-图17所示,阀芯2包括第一阻隔块22、第二阻隔块23、连接板24、第一分隔板25和第二分隔板26,第一阻隔块22和第二阻隔块23在阀芯2的移动方向上间隔开设置(例如,如图16所示,第一阻隔块22和第二阻隔块23在左右方向上间隔设置),连接板24连接在第一阻隔块22和第二阻隔块23之间,连接板24的朝向第一侧壁1a的表面形成有朝向靠近第一侧壁1a的方向凸出的连通部21,连通部21、连接板24、第一阻隔块22和第一侧壁1a限定出第一子腔室1111,连通部21、连接板24、第二阻隔块23和第一侧壁1a限定出第二子腔室1131。
进一步地,参照图13-图17所示,第一分隔板25和第二分隔板26设在连接板24的远离第一侧壁1a的表面上且在阀芯2的移动方向上间隔开设置(例如,如图16所示,第一分隔板25和第二分隔板26设在连接板24的下表面上且在左右方向上间隔设置),第一分隔板25位于第二分隔板26和第一阻隔块22之间,第一分隔板25、第二分隔板26、连接板24和第二侧壁1b限定出第二腔室112,第一阻隔块22、第一分隔板25、连接板24和第二侧壁1b限定出第三子腔室1112,第二分隔板26、第二阻隔块23、连接板24和第二侧壁1b限定出第四子腔室1132。由此,可使得阀芯2的结构简单、可靠,有利于四通阀10的换向功能的实现。可选地,如图13所示,连接板24上设有在左右方向上间隔设置的第一连通口241和第二连通口242,第一连通口241和第二连通口242分别在连接板24的厚度方向上贯穿连接板24,第一连通口241用于连通第一子腔室1111和第二子腔室1131,第二连通口242用于连通第三子腔室1112和第四子腔室1132。
在本申请的一些可选的实施例中,第一阻隔块22、第二阻隔块23、连接板24、连通部21、第一分隔板25和第二分隔板26为一体成型件。由此,使得阀芯2的制造简单,省去了多余的装配件以及连接工序,大大提高了阀芯2的装配效率,有利于保证阀芯2工作的可靠性。例如,如图1-图6所示,第一接口101位于第一侧壁1a,第二接口102、第三接口103和第四接口104位于第二侧壁1b且依次排布。
在本申请的一些实施例中,阀体1的横截面可形成为圆形、方形。由此,可使得阀体1的结构简单,易于制造。可选地,四通阀10为金属件。
当然,本申请不限于此,四通阀10的内部的流路方案还可以如图7-图9所示,与图1中的实施例的主要差异在于,第二接口102、第四接口104位于第一侧壁1a,第一 接口101、第三接口103位于第二侧壁1b,其具体结构在此不再详述。
可选地,参照图13和图17所示,四通阀10还包括第一连接管4和第二连接管5,第一连接管4分别连接至第二接口102和第三接口103,第一连接管4上串联有第一控制阀41,第二连接管5分别连接至第三接口103和第四接口104,第二连接管5上串联有第二控制阀51。例如,第一控制阀41和第二控制阀51与空调器100的控制系统有信号的传递,第一控制阀41和第二控制阀51的导通和断开均可被空调器100的控制系统独立控制。
参照图13-图17所示,连通部21的朝向第一侧壁1a的表面限定出第一截止面21a和第二截止面21b,第一截止面21a和第二截止面21b由连通通道211的朝向第一侧壁1a的一端间隔开,例如,如图13-图17所示,连通部21的上表面限定出第一截止面21a和第二截止面21b,第一截止面21a和第二截止面21b由连通通道211的上端间隔开。
参照图13-图17所示,第一分隔板25的朝向第二侧壁1b的表面限定出第三截止面251,第二分隔板26的朝向第二侧壁1b的表面限定出第四截止面261,阀芯2具有第四位置和第五位置。例如,如图13-图17所示,第一分隔板25的下表面限定出第三截止面251,第二分隔板26的下表面限定出第四截止面261,阀芯2具有第四位置和第五位置。
如图14所示,在第四位置,第一截止面21a封堵第一接口101,第四截止面261封堵第四接口104,第一控制阀41断开且第二控制阀51打开,第二接口102与第三接口103不导通,从而在第四位置可以实现第一接口101和第三接口103断开连通,第二接口102与第三接口103不导通,且第三接口103与第四接口104导通。
如图16所示,在第五位置,第二截止面21b封堵第一接口101,第三截止面251封堵第二接口102,第一控制阀41打开且第二控制阀51断开,第三接口103与第四接口104不导通。从而在第四位置可以实现第一接口101和第三接口103断开连通,第二接口102与第三接口103导通,且第三接口103与第四接口104不导通。
在本申请的一些可选的实施例中,参照图13-图17所示,四通阀10包括电磁控制件3,电磁控制件3用于驱动阀芯2移动。由此,有利于实现阀芯2在第一位置、第二位置和第三位置之间的移动可靠。当然,本申请不限于此,也可以通过先导阀组件来驱动阀芯2的移动,也可以实现阀芯2在第一位置、第二位置和第三位置之间的移动。
如图18-图21所示,根据本申请实施例的空调器100,可以包括:压缩机20、室内换热器30、室外换热器40和换向组件,压缩机20具有排气口201和回气口202,室内换热器30的第一端通过节流元件50与室外换热器40的第一端相连。
参照图1-图9所示,换向组件具有第一接口101至第四接口104,第一接口101与排气口201相连,第二接口102与室外换热器40的第二端相连,第三接口103与回气口202相连,第四接口104与室内换热器30的第二端相连;在压缩机20停机时,第一接口101与第三接口103连通。例如,换向组件为四通阀10,四通阀10具有第一接口101至第四接口104,第一接口101与排气口201相连,第二接口102与室外换热器40的第二端相连,第三接口103与回气口202相连,第四接口104与室内换热器30的第二端相连;在压缩机20停机时,第一接口101与第三接口103连通。
结合图1和图18所示,阀芯2可在左右方向上移动,当阀芯2在第一位置时,第一接口101和第二接口102均与第一腔室111连通,第四接口104与第二腔室112连通,使得室外换热器40为高压侧换热器,室内换热器30为低压侧换热器,空调器100在制冷条件下运行;
如图3和图19所示,当阀芯2在第三位置时,第二接口102与第三接口103均与第二腔室112连通,第一接口101和第四接口104均与第三腔室113连通,使得室内换热器30为高压侧换热器,室外换热器40为低压侧换热器,空调器100在制热条件下运行;
参照图2和图20所示,当压缩机20停机时,阀芯2移动到第二位置,第一接口101通过连通通道211与第二腔室112连通,与高压侧换热器连通的第二接口102或第三接口103断开与其他接口之间的连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡,进而可以快速再次启动压缩机20,并且结构简单,成本低。当然,本申请不限于此,换向组件可以为由多个具有控制阀的管路构成。
根据本申请实施例的空调器100,在压缩机20停机时,通过使得第一接口101与第三接口103连通,在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡,从而可以快速再次启动压缩机20,并且结构简单,成本低。
在本申请的一些实施例中,在压缩机20停机时,第二接口102与第四接口104不连通。由此,当压缩1停机时,高压侧换热器内部保持较高的压力状态(可以理解的是,当空调器100制冷时,高压侧换热器为室外换热器40;又如当空调器100制冷时,高压侧换热器为室内换热器30),而通过使得在压缩机20停机时,第二接口102与第四接口104不连通,可使得节流元件50在压差的作用下仍然具有一定的流量,高压侧换热器剩余的热量仍然可以进行放热而低压侧换热器仍然能够具有蒸发吸热的能力,从而提升了空调器100的总体效率。例如,第二接口102和第四接口104都处于断开状态,换言之,制冷剂无法从第二接口102与第四接口104流出。
可选地,在压缩机20停机时,第三接口103与低压侧换热器相连的接口连通。需要说明的是,在压缩机20停机时,第一接口101与第三接口103连通,可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡,此时低压侧换热器内的制冷剂的压力大于压缩机20的排气口201和回气口202之间的制冷剂的压力,而在压缩机20停机时,通过使得第三接口103与低压侧换热器相连的接口连通,可增大高压侧换热器与低压侧换热器之间的压差,有利于提升空调器100的总体效率。
例如,当压缩机20停机前空调器100处于制冷模式,如图21所示,在压缩机20停机时,高压侧换热器为室外换热器40,低压侧换热器为室内换热器30,因此控制第一接口101与第三接口103连通、第三接口103与第四接口104连通;当压缩机20停机前空调器100处于制热模式,在压缩机20停机时,高压侧换热器为室内换热器30,低压侧换热器为室外换热器40,因此控制第一接口101与第三接口103连通、第三接口103与第二接口102连通。
在本申请的一些实施例中,节流元件50为电子膨胀阀、热力膨胀阀或毛细管。由此,有利于保证节流元件50的节流能力,从而有利于提高空调器100的工作效率。
如图13-图21所示,根据本申请实施例的空调器100的控制方法,空调器100为根据本申请上述实施例的空调器100,控制方法包括:控制压缩机20启动、控制第一接口101和第三接口103断开,导通第三接口103与换向组件的与低压侧换热器相连的接口。通过使得第三接口103与换向组件的与低压侧换热器相连的接口,在压缩机20启动时,压缩机20的回气口202可吸入低压侧换热器内的制冷剂,从而有利于使得压缩机20的排气压力P1快速增大。
例如,在压缩机20停机时,第一接口101和第三接口103连通(当然,也可以是第一接口101和第三接口103连通、且第三接口103与低压侧换热器相连的接口连通),若压缩机20在停机前制冷运行,此时室外换热器40为高压侧换热器,室内换热器30为低压侧换热器,空调器100的控制系统可控制换向组件连通第三接口103与第四接口104但延迟连通第一接口101与第二接口102以使得压缩机20快速启动,并且在压缩机20启动的过程中,压缩机20的回气口202可吸入室内换热器30内的制冷剂以快速增压;
若空调器100在停机前制热运行,此时室外换热器40为低压侧换热器,室内侧热器为高压侧换热器,空调器100的控制系统可控制换向组件连通第三接口103与第二接口102但延迟连通第一接口101与第四接口104以使得压缩机20快速启动,并且在压缩机20启动的过程中,压缩机20的回气口202可吸入室外换热器40内的制冷剂以快速增压。
接着,检测压缩机20的排气压力P1和高压侧换热器的压力P2,例如,可分别在室 外换热器40和室外换热器40的流路中设置压力传感器,通过压力传感器来检测高压侧换热器的压力P2,当P1≥P2时,控制第一接口101与换向组件的与高压侧换热器相连的接口连通。
例如,当P1<P2时,若压缩机20未停机则保持断开的第一接口101与高压侧换热器的连通直至P1≥P2,接着控制第一接口101与换向组件的与高压侧换热器相连的接口连通;当P1<P2时,若压缩机20停机则连通第一接口101和第三接口103以平衡压缩机20的回气口202和排气口201之间的压力,接着控制第一接口101和第三接口103断开并且使得压缩机20再次启动。由此,可防止高压侧换热器的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
根据本申请实施例的空调器100的控制方法,在控制压缩机20启动时,通过控制第一接口101和第三接口103断开,且导通第三接口103与换向组件的与低压侧换热器相连的接口,在压缩机20启动时,压缩机20的回气口202可吸入低压侧换热器内的制冷剂,从而有利于使得压缩机20的排气压力P1快速增大,并且当P1≥P2时,控制第一接口101与高压侧换热器相连的接口连通,从而可防止高压侧换热器的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
在本申请的一些实施例中,检测第一接口101处的压力以获取压缩机20的排气压力P1。由此,便于实现对压缩机20的排气压力P1的检测。例如,可在第一接口101处设置压力传感器以获取压缩机20的排气压力P1。
根据本申请实施例的空调器100的控制方法,空调器100为根据本申请上述实施例的空调器100,控制方法包括:控制压缩机20启动、控制第一接口101和第三接口103断开,导通第三接口103与换向组件的与低压侧换热器相连的接口。通过使得第三接口103与换向组件的与低压侧换热器相连的接口,在压缩机20启动时,压缩机20的回气口202可吸入低压侧换热器内的制冷剂,从而有利于使得压缩机20的排气压力P1快速增大。
例如,空调器100的控制系统可记录其在停机前的制冷或制热的工作状态,在压缩机20停机时,第一接口101和第三接口103连通(当然,也可以是第一接口101和第三接口103连通、且第三接口103与低压侧换热器相连的接口连通),若压缩机20在停机前制冷运行,此时室外换热器40为高压侧换热器,室内换热器30为低压侧换热器,空调器100的控制系统可控制换向组件连通第三接口103与第四接口104但延迟连通第一接口101与第二接口102以使得压缩机20快速启动,并且在压缩机20启动时,压缩机20的回气口202可吸入室内换热器30内的制冷剂以快速增压;
若空调器100在停机前制热运行,此时室外换热器40为低压侧换热器,室内侧热器为高压侧换热器,空调器100的控制系统可控制换向组件连通第三接口103与第二接口102但延迟连通第一接口101与第四接口104以使得压缩机20快速启动,并且在压缩机20启动时,压缩机20的回气口202可吸入室外换热器40内的制冷剂以快速增压。
t秒后,控制第一接口101与高压侧换热器相连的接口连通。需要说明的是,在延迟连通第一接口101与高压侧换热器的t秒内,压缩机20的排气压力持续升高,可通过控制t的数值以使得在第一接口101与高压侧换热器相连的接口连通时,压缩机20的排气压力P1大于高压侧换热器的压力P2。
例如,t秒后若压缩机20未停机控制第一接口101与高压侧换热器相连的接口连通,若压缩机20停机则连通第一接口101和第三接口103以平衡压缩机20回气口202和排气口201之间的压力,最后控制第一接口101和第三接口103断开并且使得压缩机20再次启动。由此,可防止高压侧换热器的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
根据本申请实施例的空调器100的控制方法,在控制压缩机20启动时,通过控制第一接口101和第三接口103断开,且导通第三接口103与换向组件的与低压侧换热器相连的接口,压缩机20的回气口202可吸入低压侧换热器内的制冷剂,从而有利于使得压缩机20的排气压力P1快速增大,并且在t秒后,控制第一接口101与换向组件的与高压侧换热器相连的接口连通,从而可防止高压侧换热器的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
在本申请的一些实施例中,1≤t≤10。由此,一方面使得t不至于过小,从而无法保证第一接口101与高压侧换热器相连的接口连通时,压缩机20的排气压力P1大于高压侧换热器的压力P2,另一方面使得t不至于过大,从而避免使得压缩机20的启动时间过长。例如,t可以为1、3、5、8或10。优选地,2≤t≤6。
下面参照图13-图21描述根据本申请一些实施例的空调器100的控制方法,其中,换向组件为根据图13-图17所示的四通阀10。
实施例一、
参照图13-图20所示,当空调器100在制冷模式停机时,空调器100的控制系统控制电磁控制件3带动阀芯2由第一位置(如图13和图18所示,第一控制阀41断开且第二控制阀51断开)向左移动到第二位置(如图15和图20所示,第一控制阀41断开且第二控制阀51断开),第一接口101通过连通通道211与第二腔室112连通以与第三接口103连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口 202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制冷模式切换时,阀芯2由第二位置(如图15和图20所示)向右移动到第四位置(如图14所示),第一截止面21a封堵第一接口101,第四截止面261封堵第四接口104,第一控制阀41断开且第二控制阀51打开,第二接口102与第三接口103不导通且第三接口103与第四接口104导通,从而在压缩机20启动的过程中,压缩机20的回气口202可吸入室内换热器30内的制冷剂以快速增压;
检测压缩机20的排气压力P1和室外换热器40的压力P2,当P1≥P2时,控制阀芯2由第四位置(如图14所示)向右移动到第一位置(如图13和图18所示),从而使得第一接口101与四通阀10的与第二接口102连通。由此,可防止室外换热器40的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
当空调器100在制热模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第三位置(如图17和图19所示,第一控制阀41断开且第二控制阀51断开)向右移动到第二位置(如图15和图20所示,第一控制阀41断开且第二控制阀51断开),第一接口101通过连通通道211与第二腔室112连通以与第三接口103连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制热模式切换时,阀芯2由第二位置(如图15所示)向左移动到第五位置(如图16所示),第二截止面21b封堵第一接口101,第三截止面251封堵第二接口102,第一控制阀41打开且第二控制阀51断开,第二接口102与第三接口103导通,且第三接口103与第四接口104不导通,从而在压缩机20启动的过程中,压缩机20的回气口202可吸入室外换热器40内的制冷剂以快速增压。
检测压缩机20的排气压力P1和室内换热器30的压力P2,当P1≥P2时,控制阀芯2由第五位置向左移动到第三位置(如图13所示),从而使得第一接口101与四通阀10的与第四接口104。由此,可防止室内换热器30的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
实施例二、
参照图13-图19以及图21所示,当空调器100在制冷模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第一位置(如图13所示,第一控制阀41断开且第二控制阀51断开)向左移动到第二位置(如图15和图21所示,并且控制第一控制阀41断开且第二控制阀51打开),第一接口101通过连通通道211与第二腔室112连通以与第三接口103连通,且第三接口103与第四接口104相连通,从 而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制冷模式切换时,阀芯2由第二位置(如图15所示)向右移动到第四位置(如图14所示),第一截止面21a封堵第一接口101,第四截止面261封堵第四接口104,第一控制阀41断开且第二控制阀51打开,第二接口102与第三接口103不导通且第三接口103与第四接口104导通,从而在压缩机20启动的过程中,压缩机20的回气口202可吸入室内换热器30内的制冷剂以快速增压;
检测压缩机20的排气压力P1和室外换热器40的压力P2,当P1≥P2时,控制阀芯2由第四位置(如图14所示)向右移动到第一位置(如图13所示),从而使得第一接口101与四通阀10的与高压侧换热器相连的接口连通。由此,可防止室外换热器40的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
当空调器100在制热模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第三位置(如图17所示,第一控制阀41断开且第二控制阀51断开)向右移动到第二位置(如图17所示,并且控制第一控制阀41打开且第二控制阀51断开),第一接口101通过连通通道211与第二腔室112连通以与第三接口103连通,且第二接口102与第三接口103相连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制热模式切换时,阀芯2由第二位置(如图15所示)向左移动到第五位置(如图16所示),第二截止面21b封堵第一接口101,第三截止面251封堵第二接口102,第一控制阀41打开且第二控制阀51断开,第二接口102与第三接口103导通,且第三接口103与第四接口104不导通。在压缩机20启动的过程中,压缩机20的回气口202可吸入室外换热器40内的制冷剂以快速增压。
检测压缩机20的排气压力P1和室内换热器30的压力P2,当P1≥P2时,控制阀芯2由第五位置向左移动到第三位置(如图13所示),从而使得第一接口101与四通阀10的与高压侧换热器相连的接口连通。由此,可防止室内换热器30的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
实施例三、
参照图13-图20所示,当空调器100在制冷模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第一位置(如图13和图18所示,第一控制阀41断开且第二控制阀51断开)向左移动到第二位置(如图15和图20所示,第一控制阀41断开且第二控制阀51断开),第一接口101通过连通通道211与第二腔室112 连通以与第三接口103连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制冷模式切换时,阀芯2由第二位置(如图15和图20所示)向右移动到第五位置(如图14所示),第一截止面21a封堵第一接口101,第四截止面261封堵第四接口104,第一控制阀41断开且第二控制阀51打开,第二接口102与第三接口103不导通且第三接口103与第四接口104导通,从而在压缩机20启动的过程中,压缩机20的回气口202可吸入室内换热器30内的制冷剂以快速增压;
5秒后,空调器100的控制系统控制阀芯2由第四位置(如图14所示)向右移动到第一位置(如图13和图18所示),从而使得第一接口101与四通阀10的与高压侧换热器相连的接口连通。由此,可防止室外换热器40的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
当空调器100在制热模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第三位置(如图17和图19所示,第一控制阀41断开且第二控制阀51断开)向右移动到第二位置(如图15和图20所示,第一控制阀41断开且第二控制阀51断开),第一接口101通过连通通道211与第二腔室112连通以与第三接口103连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制热模式切换时,阀芯2由第二位置(如图15所示)向左移动到第五位置(如图16所示),第二截止面21b封堵第一接口101,第三截止面251封堵第二接口102,第一控制阀41打开且第二控制阀51断开,第二接口102与第三接口103导通,且第三接口103与第四接口104不导通。在压缩机20启动的过程中,压缩机20的回气口202可吸入室外换热器40内的制冷剂以快速增压。
5秒后,空调器100的控制系统控制阀芯2由第五位置向左移动到第三位置(如图13所示),从而使得第一接口101与四通阀10的与高压侧换热器相连的接口连通。由此,可防止室内换热器30的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
实施例四、
参照图13-图19以及图21所示,当空调器100在制冷模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第一位置(如图13所示,第一控制阀41断开且第二控制阀51断开)向左移动到第二位置(如图15和图21所示,并且控制第一控制阀41断开且第二控制阀51打开),第一接口101通过连通通道211与 第二腔室112连通以与第三接口103连通,且第三接口103与第四接口104相连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制冷模式切换时,阀芯2由第二位置(如图15所示)向右移动到第四位置(如图14所示),第一截止面21a封堵第一接口101,第四截止面261封堵第四接口104,第一控制阀41断开且第二控制阀51打开,第二接口102与第三接口103不导通且第三接口103与第四接口104导通,从而在压缩机20启动的过程中,压缩机20的回气口202可吸入室内换热器30内的制冷剂以快速增压;
5秒后,空调器100的控制系统控制阀芯2由第四位置(如图14所示)向右移动到第一位置(如图13所示),从而使得第一接口101与四通阀10的与高压侧换热器相连的接口连通。由此,可防止室外换热器40的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
当空调器100在制热模式停机时,如图1所示,空调器100的控制系统控制电磁控制件3带动阀芯2由第三位置(如图17所示,第一控制阀41断开且第二控制阀51断开)向右移动到第二位置(如图17所示,并且控制第一控制阀41打开且第二控制阀51断开),第一接口101通过连通通道211与第二腔室112连通以与第三接口103连通,且第二接口102与第三接口103相连通,从而在压缩机20停机时可快速使得压缩机20的排气口201和回气口202连通以实现压力平衡。
当空调器100控制压缩机20启动并向制热模式切换时,阀芯2由第二位置(如图15所示)向左移动到第五位置(如图16所示第二截止面21b封堵第一接口101,第三截止面251封堵第二接口102,第一控制阀41打开且第二控制阀51断开,第二接口102与第三接口103导通,且第三接口103与第四接口104不导通。在压缩机20启动的过程中,压缩机20的回气口202可吸入室外换热器40内的制冷剂以快速增压。
5秒后,空调器100的控制系统控制阀芯2由第五位置向左移动到第三位置(如图13所示),从而使得第一接口101与四通阀10的与高压侧换热器相连的接口连通。由此,可防止室内换热器30的制冷剂回流到压缩机20的排气口201,从而有利于提高压缩机20启动的成功率。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在 任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (7)

  1. 一种四通阀,其特征在于,包括:
    阀体,所述阀体内限定出阀腔,所述阀体上设有第一接口至第四接口;
    阀芯,所述阀芯可移动地设在所述阀腔内且具有第一位置至第三位置,所述阀芯上设有朝向所述阀腔的内壁凸出的连通部,所述连通部设有连通通道,所述阀芯、所述连通部与所述阀腔的内壁限定出第一腔室至第三腔室,所述连通通道与所述第二腔室连通,所述第三接口与所述第二腔室连通;
    在所述第一位置,所述第一接口和所述第二接口均与所述第一腔室连通,所述第四接口与所述第二腔室连通;
    在第二位置,所述第一接口通过所述连通通道与所述第二腔室连通;
    在所述第三位置,所述第二接口与所述第二腔室连通,所述第一接口和所述第四接口均与所述第三腔室连通。
  2. 根据权利要求1所述的四通阀,其特征在于,所述阀腔具有相对的第一侧壁和第二侧壁,所述第一接口位于所述第一侧壁,所述第二至第四接口位于所述第二侧壁,所述阀芯、所述连通部与所述第一侧壁之间限定出第一子腔室和第二子腔室,所述阀芯与所述第二侧壁之间限定出第三子腔室、第四子腔室和所述第二腔室,其中,所述第三子腔室和所述第一子腔室位于所述第二腔室的同侧且连通以限定出所述第一腔室,所述第二子腔室和所述第四子腔室位于所述第二腔室的同侧且连通以限定出所述第三腔室。
  3. 根据权利要求2所述的四通阀,其特征在于,所述阀芯包括:
    第一阻隔块和第二阻隔块,所述第一阻隔块和第二阻隔块在所述阀芯的移动方向上间隔开设置;
    连接板,所述连接板连接在所述第一阻隔块和所述第二阻隔块之间,所述连接板的朝向所述第一侧壁的表面形成有朝向靠近所述第一侧壁的方向凸出的所述连通部,所述连通部、所述连接板、所述第一阻隔块和所述第一侧壁限定出所述第一子腔室,所述连通部、所述连接板、所述第二阻隔块和所述第一侧壁限定出所述第二子腔室;
    第一分隔板和第二分隔板,所述第一分隔板和所述第二分隔板设在所述连接板的远离所述第一侧壁的表面上且在所述阀芯的移动方向上间隔开设置,所述第一分隔板位于所述第二分隔板和所述第一阻隔块之间,所述第一分隔板、所述第二分隔板、所述连接板和所述第二侧壁限定出所述第二腔室,所述第一阻隔块、所述第一分隔板、所述连接板和所述第二侧壁 限定出所述第三子腔室,所述第二分隔板、所述第二阻隔块、所述连接板和所述第二侧壁限定出所述第四子腔室。
  4. 根据权利要求3所述的四通阀,其特征在于,所述第一阻隔块、所述第二阻隔块、所述连接板、所述连通部、所述第一分隔板和所述第二分隔板为一体成型件。
  5. 根据权利要求2所述的四通阀,其特征在于,所述四通阀还包括第一连接管和第二连接管,所述第一连接管分别连接至所述第二接口和所述第三接口,所述第一连接管上串联有第一控制阀,所述第二连接管分别连接至所述第三接口和所述第四接口,所述第二连接管上串联有第二控制阀;
    所述连通部的朝向所述第一侧壁的表面限定出第一截止面和第二截止面,所述第一截止面和所述第二截止面由所述连通通道的朝向所述第一侧壁的一端间隔开;所述第一分隔板的朝向所述第二侧壁的表面限定出第三截止面,所述第二分隔板的朝向所述第二侧壁的表面限定出所述第四截止面,所述阀芯具有第四位置和第五位置;
    在所述第四位置,所述第一截止面封堵所述第一接口,所述第四截止面封堵所述第四接口,所述第一控制阀断开且所述第二控制阀打开,所述第二接口与所述第三接口不导通;
    在所述第五位置,所述第二截止面封堵所述第一接口,所述第三截止面封堵所述第二接口,所述第一控制阀打开且所述第二控制阀断开,所述第三接口与所述第四接口不导通。
  6. 根据权利要求1-5中任一项所述的四通阀,其特征在于,所述四通阀包括电磁控制件,所述电磁控制件用于驱动所述阀芯移动。
  7. 根据权利要求1-6中任一项所述的四通阀,其特征在于,所述阀体的横截面形成为圆形或方形。
PCT/CN2019/086171 2018-10-31 2019-05-09 四通阀 WO2020087902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811290392.4A CN111120690B (zh) 2018-10-31 2018-10-31 四通阀
CN201811290392.4 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020087902A1 true WO2020087902A1 (zh) 2020-05-07

Family

ID=70463649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086171 WO2020087902A1 (zh) 2018-10-31 2019-05-09 四通阀

Country Status (2)

Country Link
CN (1) CN111120690B (zh)
WO (1) WO2020087902A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963715A (zh) * 2020-09-07 2020-11-20 包根所 一种全自动换向阀门机构
CN112268365B (zh) * 2020-10-27 2022-01-28 宁波方太厨具有限公司 两用炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221375A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 空気調和機の四方切換弁
US20040060308A1 (en) * 1998-07-02 2004-04-01 Yoshitaka Yoshizawa Channel selectory value and method of driving the same, compressor with the channel selector valve, and device for controlling refrigerating cycle
CN101205984A (zh) * 2006-12-19 2008-06-25 日立空调·家用电器株式会社 四通转换阀及使用它的空调机
CN104344014A (zh) * 2013-07-25 2015-02-11 珠海格力电器股份有限公司 四通阀及空调器
CN104964490A (zh) * 2015-06-25 2015-10-07 广东美的暖通设备有限公司 四通阀及空调系统
CN108105419A (zh) * 2017-12-12 2018-06-01 珠海格力电器股份有限公司 四通阀、空调机组及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894561A (en) * 1974-03-14 1975-07-15 Controls Co Of America Four-way reversing valve with differential area operator
US4750511A (en) * 1986-12-22 1988-06-14 General Motors Corporation Fluid pressure spool valve and method of controlling pressure forces acting thereon
US4976286A (en) * 1989-12-14 1990-12-11 Automatic Switch Company Four-way slide valve
JPH09229214A (ja) * 1995-12-22 1997-09-05 Pacific Ind Co Ltd 四方切換弁
JP3650971B2 (ja) * 2002-11-22 2005-05-25 株式会社イワキ スプール弁の構造
KR20100008303A (ko) * 2008-07-15 2010-01-25 김시영 냉난방용 사방향 리버싱밸브의 밸브 바디와 스풀 제조방법
CN203162226U (zh) * 2013-01-11 2013-08-28 河南源泉电器有限公司 一种用于电磁四通换向阀的滑块偏置结构
JP5932131B2 (ja) * 2013-02-27 2016-06-08 三菱電機株式会社 車両用空気調和装置
WO2015100752A1 (zh) * 2014-01-06 2015-07-09 上海高迪亚电子系统有限公司 一种低压降低泄漏节能型四通换向阀
CN105508658A (zh) * 2015-12-30 2016-04-20 嵊州高翔冷链设备股份有限公司 一种三通换向阀
CN107355563B (zh) * 2016-05-09 2019-09-20 浙江三花制冷集团有限公司 换向阀及具有其的制冷系统
CN108071818B (zh) * 2016-11-10 2021-12-07 浙江盾安机械有限公司 四通阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060308A1 (en) * 1998-07-02 2004-04-01 Yoshitaka Yoshizawa Channel selectory value and method of driving the same, compressor with the channel selector valve, and device for controlling refrigerating cycle
JP2002221375A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 空気調和機の四方切換弁
CN101205984A (zh) * 2006-12-19 2008-06-25 日立空调·家用电器株式会社 四通转换阀及使用它的空调机
CN104344014A (zh) * 2013-07-25 2015-02-11 珠海格力电器股份有限公司 四通阀及空调器
CN104964490A (zh) * 2015-06-25 2015-10-07 广东美的暖通设备有限公司 四通阀及空调系统
CN108105419A (zh) * 2017-12-12 2018-06-01 珠海格力电器股份有限公司 四通阀、空调机组及控制方法

Also Published As

Publication number Publication date
CN111120690A (zh) 2020-05-08
CN111120690B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2016155370A1 (zh) 多联机系统
WO2018082282A1 (zh) 多联机系统及其除霜时的防回液控制方法
WO2015158174A1 (zh) 制冷装置
KR20160086652A (ko) 공기 조화기 및 공기 조화기의 제어 방법
WO2018046026A1 (zh) 采用喷射器的空调热泵系统、空调器及空调器控制方法
US20060090487A1 (en) Air conditioner
WO2018082281A1 (zh) 多联机系统及其防回液控制方法
WO2020087902A1 (zh) 四通阀
WO2020192087A1 (zh) 多联机空调及其控制方法
JP2001304714A (ja) Co2冷媒を用いた空気調和機
CN209857294U (zh) 制冷系统及具有其的空调器
US11933526B2 (en) Compressor and refrigeration device
CN106286889B (zh) 六通换向阀和空调系统
CN104964490B (zh) 四通阀及空调系统
WO2020077984A1 (zh) 三通阀、压缩机组件、制冷装置及其控制方法
KR100357112B1 (ko) 히트 펌프및 그 운전 제어 방법
WO2020087903A1 (zh) 空调器及空调器的控制方法
WO2023173847A1 (zh) 空气源热泵热水器系统
JP2966597B2 (ja) 双方向電磁弁
CN210510379U (zh) 一种空调用四通阀
JP2015114026A (ja) 空気調和機
WO2020056943A1 (zh) 蒸发冷凝机组及其控制方法
CN112066458A (zh) 采用节流阀的空调机组及其控制方法
JP2004125254A (ja) 蓄熱式空気調和機
JP3407867B2 (ja) 空気調和装置の運転制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878662

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19878662

Country of ref document: EP

Kind code of ref document: A1