WO2015100752A1 - 一种低压降低泄漏节能型四通换向阀 - Google Patents

一种低压降低泄漏节能型四通换向阀 Download PDF

Info

Publication number
WO2015100752A1
WO2015100752A1 PCT/CN2014/070188 CN2014070188W WO2015100752A1 WO 2015100752 A1 WO2015100752 A1 WO 2015100752A1 CN 2014070188 W CN2014070188 W CN 2014070188W WO 2015100752 A1 WO2015100752 A1 WO 2015100752A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
pressure chamber
high pressure
tube
valve body
Prior art date
Application number
PCT/CN2014/070188
Other languages
English (en)
French (fr)
Inventor
虞仕君
Original Assignee
上海高迪亚电子系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海高迪亚电子系统有限公司 filed Critical 上海高迪亚电子系统有限公司
Priority to PCT/CN2014/070188 priority Critical patent/WO2015100752A1/zh
Publication of WO2015100752A1 publication Critical patent/WO2015100752A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/124Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston servo actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0716Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides with fluid passages through the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves

Definitions

  • the invention relates to a four-way reversing valve for cooling and heating commutation of a heat pump air conditioning system. Background technique
  • the heat pump refrigeration unit changes the direction of refrigerant flow through its internal four-way reversing valve to convert the cooling or heating mode of the refrigeration system.
  • the four-way reversing valve usually has two isolated high-pressure passages and low-pressure passages.
  • small particles such as metal scraps and slag are inevitable in the system. It is necessary to ensure that these small particles cannot affect the commutation switching of the four-way reversing valve.
  • the existing small-capacity four-way reversing valve shown in Fig. 1 generally causes the refrigeration performance of the whole unit. Decreased by about 4% to 8%.
  • the low-pressure passage of the four-way reversing valve is bent by 180 degrees from the evaporation pipe E to the low-pressure exhaust pipe S.
  • the general low-pressure pressure loss is 2.0 psi (13.8 kPa)
  • the internal leakage of the valve is large, for example, at a rated capacity of 5 ton (18kw), the internal leakage is 4 liters/min.
  • the technical problem to be solved by the present invention is to reduce the low pressure pressure loss and internal leakage of the four-way reversing valve.
  • the technical solution of the present invention provides a low-pressure, low-leakage, energy-saving four-way reversing valve, which is characterized in that it comprises a valve body and can be in a first dwell position and a second dwell position in the valve body.
  • the moving valve core, the valve body and the valve core are arranged coaxially, and the space between the valve body and the valve core is at least divided into the first piston by the end seal structure at the two ends of the valve core and the middle seal structure at the middle of the valve core.
  • a cavity a first high pressure chamber, a low pressure chamber, a second high pressure chamber and a second piston chamber, wherein the first high pressure chamber is in communication with the second high pressure chamber, and between the first high pressure chamber and the low pressure chamber and between the low pressure chamber and the second high pressure chamber
  • a high-pressure intake pipe, an evaporation pipe, a condensation pipe and a low-pressure exhaust pipe, and a radial angle of the condensation pipe and the evaporation pipe are connected to the valve body
  • the low pressure exhaust pipe is located at the center of the condensation pipe and the evaporation pipe
  • the high pressure intake pipe is located at one end of the valve body
  • the high-pressure intake pipe is only connected to the condensing pipe through the first high-pressure chamber, and the evaporating pipe is only connected to the low-pressure exhaust pipe through the low-pressure chamber;
  • the high pressure intake pipe communicates with the evaporating pipe only through the first high pressure chamber and the second high pressure chamber, and the condensing pipe communicates only with the low pressure exhaust pipe through the low pressure chamber.
  • the evaporation pipe, the condensation pipe and the low pressure exhaust pipe have the same pipe diameter, and the center distance between the condensation pipe and the evaporation pipe is more than 2 pipe diameters and less than 3 pipe diameters.
  • an angle between a central axis of the low-pressure exhaust pipe and a central axis of the condensation pipe or the evaporation pipe is 0 to 180 degrees; or a central axis of the high-pressure intake pipe and the condensation pipe Or the angle between the central axes of the evaporation tubes is 0 to 180 degrees.
  • the valve core adopts a hollow tube, and the diameter of the hollow tube is the same as or slightly larger than the diameter of the intake pipe, and the holes in the first high pressure chamber and the second high pressure chamber are respectively opened, and the opening area is larger than The high pressure inlet pipe area is such that the first high pressure chamber communicates with the second high pressure chamber through the opening and the hollow passage in the hollow tube.
  • the middle sealing structure is a first U-shaped sealing ring directly sleeved on the valve core, and an outer circumferential surface of the first U-shaped sealing ring is sealingly engaged with an inner wall of the valve body, the first U
  • the opening of the glyph seal is respectively directed toward the first high pressure chamber or the second high pressure chamber; or a cup tightly sleeved on the valve core, the outer circumferential surface of the cup is sealingly matched with the inner wall of the valve body The opening of the cup is directed toward the first high pressure chamber or the second high pressure chamber, respectively.
  • the first U-shaped sealing ring is fixed on the valve core through a sealing ring positioning ring disposed on the valve core, and a sealing ring protection ring is disposed on a side opposite to the sealing ring positioning ring, and is positioned by the sealing ring a ring and a seal ring to clamp the first U-shaped seal;
  • the cup is fixed to the spool by a cup retaining ring disposed on the spool, opposite to the bowl retaining ring a cup protector is provided, the cup is clamped by a cup protector and a cup retaining ring; when the spool is reversing between the first dwell position and the second dwell position,
  • the first U-shaped sealing ring passes through the opening of the condensation tube and the evaporation tube, it is not damaged by tearing under the protection of the sealing ring positioning ring and the sealing ring protection ring, or the skin bowl passes through the
  • the mouth of the condensing pipe and the evaporation pipe is opened, it is not damaged by
  • the end seal structure or a sealed end cap structure the outer circumferential surface of the seal end cap structure is sealingly engaged with the inner wall of the valve body; or comprises a piston seat fixed at the end of the valve core, The piston seat is sleeved with a second U-shaped sealing ring, and the opening of the second U-shaped sealing ring faces the first high pressure chamber or the second high pressure chamber respectively, and the outer circumferential surface thereof is sealingly matched with the inner wall of the valve body .
  • the first U-shaped sealing ring or the second U-shaped sealing ring is made of a material resistant to Freon and high temperature; in the first U-shaped sealing ring or the second U-shaped sealing ring Embedding a spring, or embedding a toothed spring in the cup, and forming an apex angle on an outer circumferential surface of the first U-shaped sealing ring or the second U-shaped sealing ring or the cup.
  • the obtuse angle of the obtuse angle, only the outermost ring of the obtuse angle projection is in precise contact with the inner wall of the valve body to form a high and low pressure seal.
  • the valve body is made of stainless steel, stainless steel or brass having poor thermal conductivity
  • the valve core is made of stainless steel, stainless steel or brass having poor thermal conductivity
  • the low pressure flow path can be regarded as a S elbow. Therefore, the pressure loss is reduced by more than 50% compared to the existing four-way directional control valve.
  • the seal between the high pressure part and the low pressure part is a U-shaped seal ring made of a freon-proof and high-temperature resistant spring-loaded polytetrafluoroethylene or the like.
  • the spring provides the initial seal specific pressure, and the high and low pressure differential pressure When it is relatively small, it will seal.
  • the sealing pressure of the valve body will increase proportionally under the action of high pressure gas inside the U-shaped sealing ring, so it can automatically compensate for the high temperature and high pressure difference. Sealed, so the internal leakage is almost zero.
  • valve core is coaxially mounted with the valve body.
  • the valve core and the valve body are in contact with the obtuse angle of the maximum outer diameter of the sealing ring, and the rest has a clearance of 0.3 mm or more.
  • the high and low pressure difference of the system does not generate the shaft for the valve core.
  • the U-shaped sealing ring of the present invention contains most of the Teflon component and has very little friction even when there is no oil.
  • the frictional force of the sealing ring of the present invention on the valve body is much smaller than the frictional force of the existing four-way reversing valve sliding bowl and the valve body, for example, the 10 ton (35 kW) cooling capacity is at the IMPa pressure difference.
  • the four-way reversing valve requires a spool thrust of 180N to 250N, and the four-way reversing valve of the same capacity of the present invention only needs to provide 80N of the spool thrust to be reversed, so the required thrust for commutation is small, commutation reliable.
  • the U-shaped sealing ring fixed on the valve core has a wiping effect on the sealing surface of the inner wall of the valve body in the reversing direction, so that impurities such as minute metal chips and welding slag in the system do not affect.
  • Valve Sealing and reversing
  • valve body of the four-way reversing valve of the present invention has a slightly longer length, but the valve body diameter is about 1.3 times that of the low-pressure exhaust pipe, which is smaller than the existing four-way reversing valve of the same capacity.
  • the structure is also simple, so that there is an advantage in addition to the obvious breakthrough in performance.
  • Figure 1 is a schematic view showing the structure of an existing four-way reversing valve
  • FIG. 2 is a schematic view showing the valve body of the four-way reversing valve of the first structure provided in the first residence position according to the present invention
  • Figure 3 is a schematic view showing the valve body of the four-way reversing valve of the first structure provided in the second residence position of the present invention
  • Figure 4 is a schematic view of the central sealing structure
  • Figure 5 is a schematic view of the end seal structure of Figure 2;
  • Figure 6 is a schematic view of a four-way reversing valve of the second structure provided by the present invention.
  • Figure 7 is a schematic view of the end seal structure of Figure 6;
  • Figure 8 is a schematic view of a four-way reversing valve of the third structure provided by the present invention.
  • Figure 9 is a schematic view of a four-way reversing valve of the fourth structure provided by the present invention.
  • Figure 10 is a schematic view of a four-way reversing valve of a fifth structure provided by the present invention.
  • Figure 11 is a schematic view of the middle seal structure of Figure 10. detailed description
  • the present invention provides a four-way reversing valve for cooling and heating commutation of a heat pump air conditioning system, including a valve body 1 and a first stop position and a second position in the valve body 1.
  • the valve body 2 which is switched between the rest positions, is disposed coaxially with the valve body 2.
  • Both the valve body 1 and the valve body 2 are made of stainless steel, stainless steel or brass with poor thermal conductivity.
  • the space between the valve body 1 and the valve core 2 is divided into a first high pressure chamber 5, a low pressure chamber 6 and a second sealing structure 3 at the two ends of the valve core 2 and two central sealing structures 4 at the center of the valve core 2 Two high pressure chambers 7.
  • the valve core 2 is a hollow tube, and the hollow tube is located in the first high pressure chamber 5 and the second high pressure chamber 7 The inner portion is separately opened such that the first high pressure chamber 5 communicates with the second high pressure chamber 7 through the opening and the hollow passage in the hollow tube. At the same time, the first high pressure chamber 5 and the low pressure chamber 6 and the low pressure chamber 6 and the second high pressure chamber 7 are independent from each other.
  • the valve body 1 is provided with a high-pressure intake pipe D, an evaporation pipe E, a condensing pipe C, and a low-pressure exhaust pipe S connected thereto.
  • the diameters of the evaporation tube E, the condensation tube C and the low pressure exhaust tube S are the same, and the center distance between the condensation tube C and the evaporation tube E is more than 2 pipe diameters and less than 3 pipe diameters.
  • the radial angle of the condensing pipe C and the evaporating pipe E is the same, that is, the condensing pipe C is in the same direction as the evaporating pipe E, and the low-pressure exhaust pipe S is located at the center of the condensing pipe C and the evaporating pipe E, and in this embodiment, the low pressure
  • the exhaust pipe S is opposite to the direction of the condensation pipe C and the evaporation pipe E.
  • the high pressure intake pipe D is disposed at one end of the valve body 1, and in the present embodiment, the high pressure intake pipe D has the same direction as the condensation pipe C and the evaporation pipe E. .
  • the high-pressure intake pipe D communicates with the condensing pipe C only through the first high-pressure chamber 5, and the evaporating pipe E passes through the low-pressure chamber 6 only with the low-pressure exhaust pipe S. Connected.
  • the high pressure intake pipe D communicates with the evaporation pipe E only through the first high pressure chamber 5 and the second high pressure chamber 7, and the condensation pipe C passes through the low pressure chamber 6 only It is in communication with the low pressure exhaust pipe S.
  • the middle sealing structure 4 is a first U-shaped sealing ring 8 directly sleeved on the valve body 2, and the first U-shaped sealing ring 8 is positioned by a sealing ring disposed on the valve body 2.
  • the ring 13 is fixed on the valve core 2, and a sealing ring protection ring 14 is disposed on the opposite side of the sealing ring positioning ring 13, and the first U-shaped sealing ring 8 is clamped by the sealing ring positioning ring 13 and the sealing ring protection ring 14.
  • the first U-shaped seal ring 8 passes through the tube of the condensation tube C and the evaporation tube E The opening of the mouth is not damaged by tearing, and the openings of the two first U-shaped sealing rings 8 face the first high pressure chamber 5 and the second high pressure chamber 7, respectively.
  • the end seal structure 3 includes a piston seat 10 fixed to the end of the valve body 2, and a second U-shaped seal ring 11 is disposed on the piston seat 10, and openings of the two second U-shaped seal rings 11 are provided.
  • the first high pressure chamber 5 and the second high pressure chamber 7 are respectively oriented.
  • the first U-shaped seal ring 8 and the second U-shaped seal ring 11 are made of a material resistant to freon and high temperature, such as polytetrafluoroethylene or a material having similar properties.
  • a spring 12 is embedded in the first U-shaped sealing ring 8 and the second U-shaped sealing ring 11 respectively, and an annular angle is formed at an obtuse angle on the outer circumferential surface of the first U-shaped sealing ring 8 and the second U-shaped sealing ring 11
  • the obtuse angle projection only the outermost ring of the obtuse angle projection is in precise contact with the inner wall of the valve body 1 to form a high and low pressure seal.
  • the difference between the embodiment and the embodiment 1 is that the end seal structure 3 adopts a sealed end cap structure 9 , and the outer circumferential surface of the seal end cap structure 9 is sealed with the inner wall of the valve body 1 .
  • Other structures and working principles are the same as those in Embodiment 1.
  • the difference between this embodiment and the embodiment 1 is that the low-pressure exhaust pipe S has the same direction as the condensing pipe C and the evaporation pipe E, and is arranged side by side.
  • Other structures and working principles are the same as those in the first embodiment.
  • the difference between the embodiment and the embodiment 3 is that the low-pressure exhaust pipe S is disposed on the side of the low-pressure exhaust pipe S and the condensing pipe C in an elbow structure, and other structures and working principles are the same as the embodiment. 3.
  • the middle sealing structure 4 adopts a cup 15 tightly sleeved on the valve core 2, and the opening of the cup 15 faces the first high pressure chamber 5 and
  • the second high pressure chamber 7 has a toothed spring 18 embedded in the cup 15, and an obtuse angle protrusion having an obtuse angle at the apex angle is formed on the outer circumferential surface of the cup 15, only the outermost circle of the obtuse angle protrusion and the valve body 1
  • the precise contact of the inner wall constitutes a high and low pressure seal.
  • the cup 15 is fixed to the valve core 2 via a cup retaining ring 17 provided on the valve body 2, and a cup protection sleeve 16 is provided on the opposite side of the cup retaining ring 17, and the cup protector 16 and the bowl retaining ring are provided. 17 clamping the cup 15 , when the spool 2 is reversing between the first stop position and the second stop position, when the cup 15 passes through the opening of the condensation tube C and the evaporation tube E, in the cup The protective sleeve 16 and the bowl retaining ring 17 are protected from tearing damage.
  • Other structures and working principles are the same as in Embodiment 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种低压降低泄漏四通换向阀,包括阀体(1)和阀芯(2),阀体(1)包括在阀体(1)上同向设置的高压进气管(D)、冷凝管(C)、蒸发管(E)以及与冷凝管(C)、蒸发管(E)成0~180度布置的低压排气管(S),阀芯(2)为带四个活塞的空心管,四个活塞按一定距离设置把阀芯(2)分割成第一高压腔(5)、低压腔(6)、第二高压腔(7)。阀芯(2)在第一停留位置时,阀芯(2)的第一高压腔(5)与阀体(1)高压进气管(D)及冷凝管(C)相通,阀芯(2)的低压腔(6)与阀体(1)蒸发管(E)及低压排气管(S)相通;阀芯(2)在第二停留位置时,阀芯(2)的第一高压腔(5)与阀体(1)高压进气管(D)相通、第二高压腔(7)与阀体(1)蒸发管(E)相通,阀芯(2)的低压腔(6)与阀体(1)冷凝管(C)及低压排气管(S)相通。上述换向阀几乎无泄漏,低压通路阻力损失小,高低压气流不对阀芯产生径向及轴向力,换向可靠。

Description

一种低压降低泄漏节能型四通换向阀
技术领域
本发明涉及一种用于热泵空调系统制冷制热换向的四通换向阀。 背景技术
热泵制冷机组通过其内部的四通换向阀来改变制冷剂流动方向以转换制冷 系统的制冷或制热模式。四通换向阀通常具有两个相互隔离的高压通道及低压通 道,为了能使热泵式制冷系统具有高的能效比, 就必须要减少经过四通换向阀的 压力降、 热量传导及高低压通道间的泄漏。 其次, 热泵机组在制造及运行中, 系 统内难免会有金属屑焊渣等小颗粒,需要保证这些小颗粒不能对四通换向阀的换 向切换造成影响。
在热泵机组内装置四通换向阀后,会额外增加压力损失、热量传导及内部泄 漏,如图 1所示的现有的较小容量的四通换向阀一般会造成整个机组的制冷性能 下降约 4%〜8%。该四通换向阀的低压通道由蒸发管 E到低压排气管 S经过 180 度的转弯, 在额定制冷量时, 一般的低压压力损失在 2.0 psi(13.8kpa), 且该四通 换向阀的内部泄漏较大, 例如在 5冷吨(18kw) 的额定容量时, 其内部泄漏为 4 升 /分。 若低压压力降从 2.0 psi(13.8kpa)减小为 0.8psi (5.5kPa)时, 在无需增加输 入功率的情况下增加约 1.2kw的热量输出,因此这种四通换向阀对空调系统的低 碳节能不利。 发明内容
本发明要解决的技术问题是降低四通换向阀的低压压力损失及内部泄漏。 为了解决上述技术问题,本发明的技术方案是提供了一种低压降低泄漏节能 型四通换向阀, 其特征在于,包括阀体及在阀体内可在第一停留位及第二停留位 之间移动的阀芯, 阀体与阀芯同轴布置, 由位于阀芯两端的端部密封结构及位于 阀芯中部的中部密封结构将阀体与阀芯之间的空间至少分割为第一活塞腔、第一 高压腔、 低压腔、 第二高压腔及第二活塞腔, 第一高压腔与第二高压腔相连通, 第一高压腔与低压腔之间及低压腔与第二高压腔之间各自独立;在阀体上设有与 其连通的高压进气管、 蒸发管、冷凝管及低压排气管, 冷凝管与蒸发管的径向角 度相同,低压排气管位于冷凝管与蒸发管的居中位置, 高压进气管位于阀体的一 端设置;
当阀芯运动至第一停留位时, 高压进气管通过第一高压腔仅与冷凝管相连 通, 蒸发管通过低压腔仅与低压排气管相连通;
当阀芯运动至第二停留位时,高压进气管通过第一高压腔及第二高压腔仅与 蒸发管相连通, 冷凝管通过低压腔仅与低压排气管相连通。
优选地, 所述蒸发管、冷凝管及低压排气管的管径相同, 冷凝管与蒸发管的 中心间距为大于 2倍管径且小于 3倍管径。
优选地,所述低压排气管的中轴线与所述冷凝管或所述蒸发管的中轴线交叉 后的夹角为 0〜180度; 或所述高压进气管的中轴线与所述冷凝管或所述蒸发管 的中轴线交叉后的夹角为 0〜180度。
优选地,所述阀芯采用空心管, 空心管管径与高压进气管相同或略大于进气 管管径,位于第一高压腔与第二高压腔内的部分上分别开孔, 开孔面积大于高压 进气管面积,使得所述第一高压腔通过开孔及空心管内的中空通道与所述第二高 压腔相连通。
优选地, 所述中部密封结构或为直接紧套在所述阀芯上的第一 U字形密封 圈, 第一 U字形密封圈的外圆周面与所述阀体的内壁密封配合, 第一 U字形密 封圈的开口分别朝向所述第一高压腔或所述第二高压腔;或为紧套在所述阀芯上 的皮碗, 皮碗的外圆周面与所述阀体的内壁密封配合, 皮碗的开口分别朝向所述 第一高压腔或所述第二高压腔。
优选地, 所述第一 U字形密封圈通过设置在所述阀芯上的密封圈定位环固 定在所述阀芯上,在密封圈定位环对侧设有密封圈保护环, 由密封圈定位环与密 封圈保护环把所述第一 U字形密封圈夹住; 所述皮碗通过设置在所述阀芯上的 皮碗挡环固定在所述阀芯上,在皮碗挡环对侧设有皮碗保护套, 由皮碗保护套及 皮碗挡环把所述皮碗夹住;所述阀芯在所述第一停留位及所述第二停留位之间换 向移动时, 所述第一 U字形密封圈经过所述冷凝管及所述蒸发管的管口开口时, 在密封圈定位环及密封圈保护环的保护下不至于撕裂损坏,或所述皮碗经过所述 冷凝管及所述蒸发管的管口开口时,在皮碗保护套及皮碗挡环的保护下不至于撕 裂损坏。 优选地,所述端部密封结构或采用密封端盖结构, 该密封端盖结构的外圆周 面与所述阀体的内壁密封配合; 或包括固定在所述阀芯端部的活塞座,在活塞座 上套有第二 U字形密封圈, 该第二 U字形密封圈的开口分别朝向所述第一高压 腔或所述第二高压腔, 其外圆周面与所述阀体的内壁密封配合。
优选地, 所述第一 U字形密封圈或所述第二 U字形密封圈采用耐氟利昂及 耐高温的材料制得; 在所述第一 U字形密封圈或所述第二 U字形密封圈内嵌有 弹簧, 或在所述皮碗内嵌有齿形弹簧, 在所述第一 U字形密封圈或所述第二 U 字形密封圈或所述皮碗的外圆周面形成有一圈顶角为钝角的钝角突起,仅该钝角 突起的最外圈与所述阀体的内壁精密接触构成高低压的密封。
优选地, 所述阀体采用导热性能较差的不锈钢、不锈铁或黄铜制成; 所述阀 芯采用导热性能较差的不锈钢、 不锈铁或黄铜制成。
本发明提供的四通换向阀具有以下几个方面的特点:
第一、低压流道可视为一个 S弯头。因此压力损失比现有的四通换向阀减少 50%以上。
第二、高压部分与低压部分之间的密封为耐氟利昂及耐高温的带弹簧的聚四 氟乙烯类或类似材料制成的 U字形密封圈, 弹簧提供初始密封比压, 在高低压 压差比较小时起到密封作用, 当高低压压差大时 U字形密封圈内部在高压气体 的作用下对阀体的密封压力亦成比例增大,因此在高温及高压力差时都能自动补 偿可靠密封, 因此内泄漏几乎为零。
第三、阀芯与阀体同轴安装,阀芯与阀体除密封圈的最大外径的钝角接触外, 其余部分有 0.3mm 以上的间隙, 系统的高低压压差对阀芯不产生轴向及侧向压 力, 阀芯移动只需要克服密封圈对阀体的滑动摩擦力, 本发明的 U字形密封圈 是含有大部分的聚四氟乙烯成分即使在无油时也具有极小的摩擦系数,因此本发 明的密封圈对阀体的摩擦力远小于现有四通换向阀滑碗与阀体直接接触的摩擦 力,例如 10冷吨(35kW)冷量在 IMPa压差时现有的四通换向阀大概需要 180N〜 250N的阀芯推力, 而本发明同容量的四通换向阀只需要提供 80N的阀芯推力就 可以换向, 因此换向所需推力小, 换向可靠。
第四、 固定在阀芯上的 U字形密封圈除起到密封作用外, 在换向时对阀体 内壁的密封面有擦拭作用, 因此系统内的微小金属屑、焊渣等杂质不会影响本阀 的密封及换向。
第五、本发明的四通换向阀的阀体的长度略长,但阀体管径约为低压排气管 的 1.3倍, 与现有的同容量四通换向阀相比要小, 也不需要在主阀内焊接阀座的 复杂工艺, 因此结构也要简单, 这样除性能上有明显突破外成本上也有优势。 附图说明
图 1为已有的四通换向阀的结构示意图;
图 2为本发明提供的第 1种结构的四通换向阀的阀芯位于第一停留位的示意 图;
图 3为本发明提供的第 1种结构的四通换向阀的阀芯位于第二停留位的示意 图;
图 4为中部密封结构的示意图;
图 5为图 2中的端部密封结构的示意图;
图 6为本发明提供的第 2种结构的四通换向阀的示意图;
图 7为图 6中的端部密封结构的示意图;
图 8为本发明提供的第 3种结构的四通换向阀的示意图;
图 9为本发明提供的第 4种结构的四通换向阀的示意图;
图 10为本发明提供的第 5种结构的四通换向阀的示意图;
图 11为图 10中的中部密封结构示意图。 具体实施方式
为使本发明更明显易懂, 兹以优选实施例, 并配合附图作详细说明如下。
实施例 1
如图 2及图 3所示,本发明提供的一种热泵空调系统制冷制热换向用的四通 换向阀,包括阀体 1及在阀体 1内可在第一停留位及第二停留位之间切换的阀芯 2, 阀体 1与阀芯 2同轴布置。 阀体 1及阀芯 2均采用导热性能较差的不锈钢、 不锈铁或黄铜制成。由位于阀芯 2两端的端部密封结构 3及位于阀芯 2中部的两 个中部密封结构 4将阀体 1与阀芯 2之间的空间分割为第一高压腔 5、 低压腔 6 及第二高压腔 7。 阀芯 2采用空心管, 空心管位于第一高压腔 5与第二高压腔 7 内的部分上分别开孔,使得第一高压腔 5通过开孔及空心管内的中空通道与第二 高压腔 7相连通。 同时,第一高压腔 5与低压腔 6之间及低压腔 6与第二高压腔 7之间各自独立。 在阀体 1设有与其连通的高压进气管 D、 蒸发管 E、 冷凝管 C 及低压排气管 S。蒸发管 E、冷凝管 C及低压排气管 S的管径相同, 冷凝管 C与 蒸发管 E的中心间距为大于 2倍管径且小于 3倍管径。 冷凝管 C与蒸发管 E的 径向角度相同, 即冷凝管 C与蒸发管 E方向相同, 低压排气管 S则位于冷凝管 C与蒸发管 E的居中位置, 且在本实施例中, 低压排气管 S与冷凝管 C及蒸发 管 E的方向相反, 高压进气管 D位于阀体 1的一端设置, 且在本实施例中, 高 压进气管 D与冷凝管 C及蒸发管 E的方向相同。
如图 2所示, 当阀芯 2运动至第一停留位时, 高压进气管 D通过第一高压 腔 5仅与冷凝管 C相连通, 蒸发管 E通过低压腔 6仅与低压排气管 S相连通。
如图 3所示, 当阀芯 2运动至第二停留位时, 高压进气管 D通过第一高压 腔 5及第二高压腔 7仅与蒸发管 E相连通, 冷凝管 C通过低压腔 6仅与低压排 气管 S相连通。
如图 4所示, 中部密封结构 4为直接紧套在所述阀芯 2上的第一 U字形密 封圈 8, 第一 U字形密封圈 8通过设置在所述阀芯 2上的密封圈定位环 13固定 在所述阀芯 2上, 在密封圈定位环 13对侧设有密封圈保护环 14, 由密封圈定位 环 13与密封圈保护环 14把所述第一 U字形密封圈 8夹住, 使所述阀芯 2在所 述第一停留位及所述第二停留位之间换向移动时, 第一 U字形密封圈 8经过所 述冷凝管 C及所述蒸发管 E的管口开口不至于撕裂损坏, 两个第一 U字形密封 圈 8的开口分别朝向第一高压腔 5及第二高压腔 7。
如图 5所示, 端部密封结构 3包括固定在阀芯 2端部的活塞座 10, 在活塞 座 10上套有第二 U字形密封圈 11, 两个第二 U字形密封圈 11的开口分别朝向 第一高压腔 5及第二高压腔 7。
第一 U字形密封圈 8及第二 U字形密封圈 11采用耐氟利昂及耐高温的材料 制得, 例如聚四氟乙烯或性能相似的材料。 在第一 U字形密封圈 8及第二 U字 形密封圈 11分别内嵌有弹簧 12, 在第一 U字形密封圈 8及第二 U字形密封圈 11 的外圆周面形成有一圈顶角为钝角的钝角突起, 仅该钝角突起的最外圈与阀 体 1的内壁精密接触构成高低压的密封。 只有第一 U字形密封圈 8及第二 U字 形密封圈 11的最大外径的钝角与阀体 1紧密接触把第一高压腔 5及第二高压腔 7与低压腔 6严格隔离, 弹簧 12提供初始密封比压, 当高低压压力差较大时, 压差在第一 U字形密封圈 8及第二 U字形密封圈 11内部把密封圈撑开,使密封 比压与压差同步增加,因此内部几乎无泄漏;低压腔 6内的低压通路阻力损失小; 阀芯 2沿轴线可以自由旋转, 而且高低压气流不对阀芯 2产生径向及轴向力, 阀 芯 2移动的摩擦阻力小, 换向可靠。
实施例 2
如图 6及图 7所示,本实施例与实施例 1的区别在于: 端部密封结构 3采用 密封端盖结构 9, 该密封端盖结构 9的外圆周面与阀体 1的内壁密封配合, 其他 结构及工作原理同实施例 1。
实施例 3
如图 8所示, 本实施例与实施例 1的区别在于, 低压排气管 S与冷凝管 C 及蒸发管 E的方向相同, 且与其并排布置, 其他结构及工作原理同实施例 1。
实施例 4
如图 9所示,本实施例与实施例 3的区别在于,低压排气管 S通过以弯管结 构布置在低压排气管 S与冷凝管 C的侧边, 其他结构及工作原理同实施例 3。
实施例 5
如图 10及图 11所示, 本实施例与实施例 2的区别在于: 中部密封结构 4采 用紧套在阀芯 2上的皮碗 15, 皮碗 15的开口分别朝向第一高压腔 5及第二高压 腔 7,在皮碗 15内嵌有齿形弹簧 18,在皮碗 15的外圆周面形成有一圈顶角为钝 角的钝角突起,仅该钝角突起的最外圈与阀体 1的内壁精密接触构成高低压的密 封。 皮碗 15通过设置在阀芯 2上的皮碗挡环 17固定在阀芯 2上, 在皮碗挡环 17对侧设有皮碗保护套 16,由皮碗保护套 16及皮碗挡环 17把所述皮碗 15夹住, 阀芯 2在第一停留位及第二停留位之间换向移动时, 皮碗 15经过冷凝管 C及蒸 发管 E的管口开口时, 在皮碗保护套 16及皮碗挡环 17的保护下不至于撕裂损 坏。 其他结构及工作原理同实施例 2。

Claims

权利要求:
1. 一种低压降低泄漏节能型四通换向阀, 其特征在于, 包括阀体 (1 ) 及在阀 体(1 ) 内可在第一停留位及第二停留位之间切换的阀芯(2), 阀体(1 )与阀芯
(2) 同轴布置, 由位于阀芯 (2)两端的端部密封结构 (3)及位于阀芯 (2) 中 部的中部密封结构 (4) 将阀体 (1 ) 与阀芯 (2) 之间的空间至少分割为第一高 压腔 (5)、 低压腔 (6)及第二高压腔 (7), 第一高压腔 (5) 与第二高压腔 (7) 相连通, 第一高压腔 (5) 与低压腔 (6) 之间及低压腔 (6) 与第二高压腔 (7) 之间各自独立; 在阀体 (1 ) 上设有与其连通的高压进气管 (D)、 蒸发管 (E)、 冷凝管 (C) 及低压排气管 (S), 冷凝管 (C) 与蒸发管 (E) 的径向角度相同, 低压排气管 (S)位于冷凝管 (C)与蒸发管 (E) 的居中位置, 高压进气管 (D) 位于阀体 (1 ) 的一端设置;
2. 当阀芯 (2) 移动至第一停留位时, 高压进气管 (D) 通过第一高压腔 (5) 仅与冷凝管 (C) 相连通, 蒸发管 (E) 通过低压腔 (6) 仅与低压排气管 (S ) 相连通;
3. 当阀芯 (2) 运动至第二停留位时, 高压进气管 (D) 通过第一高压腔 (5) 及第二高压腔 (7) 仅与蒸发管 (E) 相连通, 冷凝管 (C) 通过低压腔 (6) 仅 与低压排气管 (S) 相连通。
4. 如权利要求 1所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述蒸发管 (E)、 冷凝管 (C)及低压排气管 (S) 的管径相同, 冷凝管 (C) 与蒸 发管 (E) 的中心间距为大于 2倍管径且小于 3倍管径。
5. 如权利要求 1所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述低压排气管 (S) 的中轴线与所述冷凝管 (C) 或所述蒸发管 (E) 的中轴线交 叉后的夹角为 0〜180度; 所述高压进气管 (D) 的中轴线与所述冷凝管 (C)或 所述蒸发管 (E) 的中轴线交叉后的夹角为 0〜180度。
6. 如权利要求 1所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述阀芯 (2) 采用空心管, 空心管管径与高压进气管相同或略大于高压进气管管 径, 位于第一高压腔(5)与第二高压腔 (7) 内的部分上分别开孔, 开孔面积大 于高压进气管面积, 使得所述第一高压腔 (5) 通过开孔及空心管内的中空通道 与所述第二高压腔 (7) 相连通。
7. 如权利要求 1所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述中部密封结构(4)或为直接紧套在所述阀芯(2)上的第一 U字形密封圈(8), 第一 U字形密封圈 (8) 的外圆周面与所述阀体 (1 ) 的内壁密封配合, 第一 U 字形密封圈 (8) 的开口分别朝向所述第一高压腔 (5) 或所述第二高压腔 (7); 或为紧套在所述阀芯(2)上的皮碗(15), 皮碗(15)的外圆周面与所述阀体(1 ) 的内壁密封配合, 皮碗 (15) 的开口分别朝向所述第一高压腔 (5) 或所述第二 高压腔 (7)。
8. 如权利要求 5所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述第一 U字形密封圈 (8) 通过设置在所述阀芯 (2) 上的密封圈定位环 (13) 固定在所述阀芯 (2) 上, 在密封圈定位环 (13) 对侧设有密封圈保护环 (14), 由密封圈定位环 (13) 与密封圈保护环 (14) 把所述第一 U字形密封圈 (8) 夹 住; 所述皮碗 (15) 通过设置在所述阀芯 (2) 上的皮碗挡环 (17) 固定在所述 阀芯(2)上, 在皮碗挡环(17)对侧设有皮碗保护套(16), 由皮碗保护套(16) 及皮碗挡环 (17) 把所述皮碗 (15) 夹住; 所述阀芯 (2) 在所述第一停留位及 所述第二停留位之间换向移动时, 所述第一 U字形密封圈 (8)经过所述冷凝管
(C) 及所述蒸发管 (E) 的管口开口时, 在密封圈定位环 (13) 及密封圈保护 环 (14) 的保护下不至于撕裂损坏, 或所述皮碗 (15) 经过所述冷凝管 (C) 及 所述蒸发管 (E) 的管口开口时, 在皮碗保护套 (16) 及皮碗挡环 (17) 的保护 下不至于撕裂损坏。
9. 如权利要求 5所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述端部密封结构 (3)或采用密封端盖结构 (9), 该密封端盖结构 (9) 的外圆周 面与所述阀体(1 ) 的内壁密封配合; 或包括固定在所述阀芯(2)端部的活塞座
( 10), 在活塞座 (10) 上套有第二 U字形密封圈 (11 ), 该第二 U字形密封圈
( 11 ) 的开口分别朝向所述第一高压腔 (5) 或所述第二高压腔 (7 ), 其外圆周 面与所述阀体 (1 ) 的内壁密封配合。
10. 如权利要求 7所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述第一 U字形密封圈 (8)或所述第二 U字形密封圈 (11 )采用耐氟利昂及耐高 温的材料制得; 在所述第一 U字形密封圈 (8) 或所述第二 U字形密封圈 (11 ) 内嵌有弹簧 (12), 或在所述皮碗 (15) 内嵌有齿形弹簧 (18 ), 在所述第一 U 字形密封圈 (8) 或所述第二 U字形密封圈 (11 ) 或所述皮碗 (15) 的外圆周面 形成有一圈顶角为钝角的钝角突起, 仅该钝角突起的最外圈与所述阀体 (1 ) 的 内壁精密接触构成高低压的密封。
11. 如权利要求 1所述的一种低压降低泄漏节能型四通换向阀, 其特征在于: 所 述阀体(1 )采用导热性能较差的不锈钢、 不锈铁或黄铜制成; 所述阀芯(2)采 用导热性能较差的不锈钢、 不锈铁或黄铜制成。
PCT/CN2014/070188 2014-01-06 2014-01-06 一种低压降低泄漏节能型四通换向阀 WO2015100752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070188 WO2015100752A1 (zh) 2014-01-06 2014-01-06 一种低压降低泄漏节能型四通换向阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070188 WO2015100752A1 (zh) 2014-01-06 2014-01-06 一种低压降低泄漏节能型四通换向阀

Publications (1)

Publication Number Publication Date
WO2015100752A1 true WO2015100752A1 (zh) 2015-07-09

Family

ID=53493055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070188 WO2015100752A1 (zh) 2014-01-06 2014-01-06 一种低压降低泄漏节能型四通换向阀

Country Status (1)

Country Link
WO (1) WO2015100752A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023690A (zh) * 2017-03-21 2017-08-08 珠海励高精工制造有限公司 换向阀和空调系统
CN111088966A (zh) * 2020-01-30 2020-05-01 山东威马泵业股份有限公司 液驱无杆排水采气装置及二位四通换向阀
CN111120690A (zh) * 2018-10-31 2020-05-08 广东美芝精密制造有限公司 四通阀
CN111412679A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法
DE102020101031A1 (de) 2020-01-17 2021-07-22 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
DE102020101030A1 (de) 2020-01-17 2021-07-22 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
CN113586764A (zh) * 2021-09-10 2021-11-02 湖南西爱斯流体控制设备有限公司 一种自动排料三通换向阀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6407576A (zh) * 1963-07-05 1965-01-06
CN2706644Y (zh) * 2004-05-20 2005-06-29 顾金良 四通电磁换向阀
CN101576169A (zh) * 2009-05-21 2009-11-11 浙江同星制冷有限公司 低热传导四通换向阀
CN102518832A (zh) * 2011-11-25 2012-06-27 宁波奥克斯空调有限公司 一种容量可调双电磁控制阀及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6407576A (zh) * 1963-07-05 1965-01-06
CN2706644Y (zh) * 2004-05-20 2005-06-29 顾金良 四通电磁换向阀
CN101576169A (zh) * 2009-05-21 2009-11-11 浙江同星制冷有限公司 低热传导四通换向阀
CN102518832A (zh) * 2011-11-25 2012-06-27 宁波奥克斯空调有限公司 一种容量可调双电磁控制阀及其控制方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023690B (zh) * 2017-03-21 2023-05-26 珠海励高精工制造有限公司 换向阀和空调系统
CN107023690A (zh) * 2017-03-21 2017-08-08 珠海励高精工制造有限公司 换向阀和空调系统
CN111120690B (zh) * 2018-10-31 2021-10-22 广东美芝精密制造有限公司 四通阀
CN111120690A (zh) * 2018-10-31 2020-05-08 广东美芝精密制造有限公司 四通阀
DE102020101030B4 (de) 2020-01-17 2022-11-03 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
DE102020101031A1 (de) 2020-01-17 2021-07-22 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
DE102020101030A1 (de) 2020-01-17 2021-07-22 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
DE102020101031B4 (de) 2020-01-17 2022-11-03 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Verteilen eines Fluids in einem Fluidkreislauf
CN111088966A (zh) * 2020-01-30 2020-05-01 山东威马泵业股份有限公司 液驱无杆排水采气装置及二位四通换向阀
CN111088966B (zh) * 2020-01-30 2024-05-28 山东威马泵业股份有限公司 液驱无杆排水采气装置及二位四通换向阀
CN111412679B (zh) * 2020-03-02 2021-02-23 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法
CN111412679A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 四通阀、空调系统及其控制方法
CN113586764A (zh) * 2021-09-10 2021-11-02 湖南西爱斯流体控制设备有限公司 一种自动排料三通换向阀

Similar Documents

Publication Publication Date Title
WO2015100752A1 (zh) 一种低压降低泄漏节能型四通换向阀
CN106415092B (zh) 一种低压降低泄漏旋转式四通换向阀
CN104895825B (zh) 使双端面机械密封摩擦副冷却的轴套及其离心泵冷却系统
CN104879530B (zh) 一种柱塞式电磁四通换向阀
JPS585163Y2 (ja) 可逆型電気式膨張弁
WO2020192128A1 (zh) 四通换向阀
WO2014173080A1 (zh) 一种双向流通膨胀阀
NZ212783A (en) Reversing valve for heat pump systems:reduced heat transfer between valve body and flow tubes
CN106246956B (zh) 滑动式切换阀以及冷冻循环系统
JP2006189115A (ja) 制御弁の取り付け構造
CN105090581B (zh) 一种用于高温高压气体输送管路中的安全阀
JP2018194032A (ja) 流路切換弁
CN103890505A (zh) 具有压力平衡的流量控制阀
JP6725204B2 (ja) 排気熱回収装置
CN101749247B (zh) 冷缸压缩循环的全封闭转子式制冷压缩机
JP6928945B2 (ja) 流路切換弁及びその組立方法
CN104586267B (zh) 一种冷热两用咖啡机水路系统
JP5663330B2 (ja) 四方切換弁
CN107084276B (zh) 一种以真空为动力气源的活塞式真空同轴阀
KR20090056148A (ko) 퀵 커넥터
JP3958059B2 (ja) 四方向切換弁
CN110410533A (zh) 一种空调用四通阀
JP2005321060A (ja) 高温用弁
JP2009068695A (ja) 切換弁及び可逆サイクル冷凍装置
CN111594637B (zh) 四通换向阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875945

Country of ref document: EP

Kind code of ref document: A1