WO2023173847A1 - 空气源热泵热水器系统 - Google Patents

空气源热泵热水器系统 Download PDF

Info

Publication number
WO2023173847A1
WO2023173847A1 PCT/CN2022/138740 CN2022138740W WO2023173847A1 WO 2023173847 A1 WO2023173847 A1 WO 2023173847A1 CN 2022138740 W CN2022138740 W CN 2022138740W WO 2023173847 A1 WO2023173847 A1 WO 2023173847A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
port
water tank
air source
heating
Prior art date
Application number
PCT/CN2022/138740
Other languages
English (en)
French (fr)
Inventor
梁杰
孙强
杜顺祥
Original Assignee
青岛海尔新能源电器有限公司
青岛经济技术开发区海尔热水器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔新能源电器有限公司, 青岛经济技术开发区海尔热水器有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔新能源电器有限公司
Publication of WO2023173847A1 publication Critical patent/WO2023173847A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • This application belongs to the technical field of heat pumps, and specifically relates to an air source heat pump water heater system.
  • an air source heat pump water heater includes a host machine and a water tank, and the host machine and the water tank are connected through pipelines.
  • the main engine includes a compressor, expansion valve, evaporator and other devices, and a heat exchanger and other devices are installed in the water tank.
  • Its working principle is similar to that of an air conditioner, that is, electric energy drives the compressor to operate, and the high-pressure liquid working fluid evaporates into a gaseous working fluid in the evaporator after passing through the expansion valve, and absorbs a large amount of heat energy from the air; the gaseous working fluid is evaporated by the compressor It is compressed into a high-temperature, high-pressure gaseous working fluid, and then enters the heat exchanger to condense into a liquid state and release heat to heat the water in the water tank.
  • the air source heat pump water heater system not only has the function of heating water, but also has the function of cooling and heating, so that it can not only meet the various needs of users, but also help improve the user experience; And it is helpful to improve the utilization rate of air source heat pump water heater system.
  • This application provides an air source heat pump water heater system, including a compressor, a four-way valve, a water tank, a water tank heat exchanger, a first heat exchanger and a second heat exchanger.
  • the water tank heat exchanger is housed in the water tank. Inside; the inlet of the water tank heat exchanger and the first interface of the four-way valve are both connected to the outlet of the compressor, and the second interface of the four-way valve is connected to the inlet of the compressor.
  • the third interface of the four-way valve is connected to the first port of the first heat exchanger, and the fourth interface of the four-way valve is connected to the first port of the second heat exchanger; the water tank heat exchanger The outlet, the second port of the first heat exchanger and the second port of the second heat exchanger are all connected.
  • the air source heat pump water heater system includes a compressor, a four-way valve, a water tank, a water tank heat exchanger, a first heat exchanger and a second heat exchanger. By placing the water tank heat exchanger in the water tank, the water tank heat exchanger can heat the water in the water tank.
  • the heating heat exchanger has a first working fluid port, a second working fluid port, a heating fluid inlet and a heating fluid outlet.
  • the first working fluid port is connected to the fourth port of the four-way valve, the second working fluid port is connected to the second port of the first heat exchanger; the heating fluid inlet and the heating fluid outlet are Connected to the heat dissipation end.
  • the heat dissipation end includes at least one of a floor heating coil and a radiator.
  • the above air source heat pump water heater system also includes a first main valve, a second main valve, a third main valve and a fourth main valve; the first main valve is arranged on the first heat exchanger
  • the second main valve is arranged near the first port of the water tank heat exchanger, or is arranged near the second port of the first heat exchanger; the second main valve is arranged near the inlet of the water tank heat exchanger, or is arranged near the inlet of the water tank heat exchanger.
  • the third main valve is provided near the first port of the second heat exchanger, or, is provided near the second port of the second heat exchanger;
  • the fourth main valve It is arranged near the first working fluid port of the heating heat exchanger, or is arranged near the second working fluid port of the heating heat exchanger.
  • the economizer is arranged near the second port of the first heat exchanger, and the second port of the first heat exchanger
  • the main path of the economizer is connected to the outlet of the water tank heat exchanger and the second port of the second heat exchanger; the auxiliary path inlet of the economizer is connected to the second port of the first heat exchanger.
  • the auxiliary path outlet of the economizer is connected with the air supply port of the compressor, and an auxiliary valve is provided on the auxiliary path of the economizer.
  • the above air source heat pump water heater system also includes a first fan and a second fan, the first fan is located close to the first heat exchanger, and the second fan is located close to the second heat exchanger. Heater settings.
  • a first stop valve is also included, and the first stop valve is provided at both ends of the first heat exchanger.
  • a second stop valve is also included, and the second stop valve is provided at both ends of the second heat exchanger.
  • a third stop valve is also included, and the third stop valve is provided at both ends of the water tank heat exchanger.
  • a fourth stop valve is also included, and the fourth stop valve is provided at both ends of the heating heat exchanger.
  • a first temperature sensor is further included, and the first temperature sensor is arranged on the first heat exchanger.
  • a second temperature sensor is further included, and the second temperature sensor is arranged on the heating heat exchanger.
  • the upstream end of at least one of the first main valve, the second main valve, the third main valve and the fourth main valve is provided with a filter.
  • the first heat exchanger includes a fin heat exchanger.
  • the second heat exchanger includes at least one of a fin heat exchanger and a coil heat exchanger.
  • the water tank heat exchanger includes a microchannel heat exchanger, a coil heat exchanger, a plate heat exchanger, a shell and tube heat exchanger and a sleeve heat exchanger. At least one of.
  • the heating heat exchanger includes at least one of a plate heat exchanger, a shell and tube heat exchanger, and a jacket heat exchanger.
  • the air source heat pump water heater system provided by the embodiments of the present application can solve Other technical problems, other technical features included in the technical solution, and the beneficial effects brought by these technical features will be further described in detail in the specific implementation modes.
  • Figure 1 is a schematic diagram of the principle of an air source heat pump water heater system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the working fluid flow direction of the air source heat pump water heater system in working mode 1 provided by the embodiment of the present application;
  • Figure 3 is a schematic diagram of the flow direction of the working fluid in the second working mode of the air source heat pump water heater system provided by the embodiment of the present application;
  • Figure 4 is a schematic diagram of the flow direction of the working fluid in the third working mode of the air source heat pump water heater system provided by the embodiment of the present application;
  • Figure 5 is a schematic diagram of the working fluid flow direction of the air source heat pump water heater system in working mode 4 according to the embodiment of the present application;
  • Figure 6 is a schematic diagram of the working fluid flow direction of the air source heat pump water heater system in working mode 5 according to the embodiment of the present application;
  • Figure 7 is a schematic diagram of the flow direction of the working fluid in working mode six of the air source heat pump water heater system provided by the embodiment of the present application.
  • air source heat pump water heaters are only used to heat water and have a single function; indoor cooling and heating are usually completed by air conditioning equipment.
  • air source heat pump water heaters nor air conditioning equipment operate at full capacity 24 hours a day. , all have non-working time, which not only results in low utilization of the air source heat pump water heater, but also because the air source heat pump water heater and air conditioning equipment are two separate sets of equipment, resulting in a large space occupied and low space utilization.
  • this application provides an air source heat pump water heater system, including a compressor, a four-way valve, a water tank, a water tank heat exchanger, a first heat exchanger and a second heat exchanger.
  • a compressor a four-way valve
  • a water tank a water tank heat exchanger
  • a first heat exchanger a heat exchanger
  • a second heat exchanger a heat exchanger
  • Figure 1 is a schematic diagram of the principle of the air source heat pump water heater system provided by the embodiment of the present application
  • Figure 2 is a schematic diagram of the working fluid flow direction of the air source heat pump water heater system in working mode 1 provided by the embodiment of the present application
  • Figure 3 is a schematic diagram of the working medium flow of the air source heat pump water heater system provided by the embodiment of the present application
  • Figure 4 is a schematic diagram of the working medium flow direction of the air source heat pump water heater system in working mode 2 of the air source heat pump water heater system
  • Figure 4 is a schematic diagram of the working medium flow direction of the air source heat pump water heater system in working mode 3 provided by the embodiment of the present application
  • Figure 5 is a schematic diagram of the air source heat pump water heater system provided by the embodiment of the present application.
  • FIG. 4 A schematic diagram of the working fluid flow direction of the source heat pump water heater system in working mode 4;
  • Figure 6 is a schematic diagram of the working fluid flow direction of the air source heat pump water heater system in working mode 5 provided by an embodiment of the present application;
  • Figure 7 is a schematic diagram of the working medium flow direction of the air source heat pump water heater system provided by an embodiment of the present application. Schematic diagram of working fluid flow in working mode 6 of the water heater system.
  • the air source heat pump water heater system includes a compressor 100, a four-way valve 200, a water tank 300, a water tank heat exchanger 400, and a first heat exchanger.
  • the water tank heat exchanger 400 and the second heat exchanger 600 are housed in the water tank 300 so that the water tank heat exchanger 400 can heat the water in the water tank 300 .
  • the compressor 100 has an outlet, an inlet and an air supply port.
  • the outlet of the compressor can be provided with a high-pressure switch and a discharge temperature sensor to control the discharge and detect the discharge temperature.
  • the inlet of the compressor can be provided with a low-pressure switch and a suction switch. Air temperature sensor to control suction and detect suction temperature.
  • the low-pressure working fluid enters the compressor 100 through the inlet of the compressor 100 and becomes a high-pressure working fluid through the work of the compressor 100.
  • the high-pressure working fluid is discharged through the outlet of the compressor 100.
  • the working fluid can also enter the compressor 100 through the air supply port of the compressor 100, which is beneficial to improving the efficiency of the compressor 100.
  • a compressor heating belt can be installed on the compressor 100 to protect the compressor 100 from damage when it is turned on in a cold environment, which is beneficial to extending the service life of the compressor 100 .
  • the four-way valve 200 includes a valve body and a valve core.
  • the valve core is accommodated in the valve body.
  • the valve body is provided with a first interface 201, a second interface 202, a third interface 203 and a fourth interface 204.
  • the valve core can move in the valve body cavity to change the communication status of the first interface 201, the second interface 202, the third interface 203 and the fourth interface 204.
  • the water tank 300 may include an outer shell and an inner tank, the inner tank is accommodated in the outer shell, and an insulation layer may be filled between the outer shell and the inner tank.
  • the outer shell can protect the inner tank, and on the other hand, the outer shell can improve the aesthetics of the water tank 300 .
  • Temperature sensors can be installed on the upper and lower parts of the water tank respectively to detect the water temperatures in the upper and lower parts of the water tank.
  • the water tank heat exchanger 400 has an inlet and an outlet.
  • the working fluid enters the water tank heat exchanger 400 through the inlet and is discharged from the water tank heat exchanger 400 through the outlet of the water tank heat exchanger 400 .
  • the working fluid entering the water tank heat exchanger 400 can be condensed and released heat in the water tank heat exchanger 400 to heat the water in the water tank 300 .
  • the first heat exchanger 500 has a first port and a second port.
  • the working medium enters the first heat exchanger 500 through one of the first port and the second port, and passes through the other one of the first port and the second port.
  • the first heat exchanger 500 is discharged.
  • the working fluid entering the first heat exchanger 500 may evaporate and absorb heat in the first heat exchanger 500 , or may condense and release heat in the first heat exchanger 500 .
  • the second heat exchanger 600 has a first port and a second port.
  • the working medium enters the second heat exchanger 600 through one of the first port and the second port, and passes through the other one of the first port and the second port.
  • the second heat exchanger 600 is discharged.
  • the working fluid entering the second heat exchanger 600 may evaporate and absorb heat in the second heat exchanger 600 , or may condense and release heat in the second heat exchanger 600 .
  • the working medium may be various refrigerants known to those skilled in the art.
  • the inlet of the water tank heat exchanger 400 is connected with the outlet of the compressor 100 .
  • the inlet of the water tank heat exchanger 400 can be connected with the outlet of the compressor 100 through a pipeline, so that the high-temperature working fluid discharged from the outlet of the compressor 100 can enter the water tank heat exchanger 400 and interact with the water tank 300 .
  • the water in the water tank 300 undergoes heat exchange to increase the temperature of the water in the water tank 300.
  • the first interface 201 of the four-way valve 200 is connected with the outlet of the compressor 100 .
  • the first interface 201 of the four-way valve 200 can be connected to the outlet of the compressor 100 through a pipeline, so that the working fluid discharged from the outlet of the compressor 100 can enter the four-way valve through the first interface 201 of the four-way valve 200 .
  • the four-way valve 200 is discharged through the third interface 203 of the four-way valve 200 or the fourth interface 204 of the four-way valve 200 under the control of the four-way valve 200 .
  • the second interface 202 of the four-way valve 200 is connected with the inlet of the compressor 100 .
  • the second interface 202 of the four-way valve 200 can be connected with the inlet of the compressor 100 through a pipeline, so that the work of the four-way valve 200 can enter through the third interface 203 or through the fourth interface 204 of the four-way valve 200 .
  • the fluid can return to the compressor 100 through the second interface 202 of the four-way valve 200 and the inlet of the compressor 100 under the control of the four-way valve 200 .
  • the third interface 203 of the four-way valve 200 is connected with the first port of the first heat exchanger 500 .
  • the third interface 203 of the four-way valve 200 may be connected to the first port of the first heat exchanger 500 through a pipeline.
  • the working fluid discharged from the outlet of the compressor 100 can pass through the first interface 201, the third interface 203 and the third interface of the four-way valve 200.
  • a first port of a heat exchanger 500 enters the first heat exchanger 500 .
  • the working fluid discharged through the first port of the first heat exchanger 500 can pass through the third interface 203 of the four-way valve 200, The second interface 202 and the inlet of the compressor 100 return to the compressor 100 .
  • the fourth interface 204 of the four-way valve 200 is connected with the first port of the second heat exchanger 600 .
  • the fourth interface 204 of the four-way valve 200 may be connected to the first port of the second heat exchanger 600 through a pipeline.
  • the working fluid discharged from the outlet of the compressor 100 can pass through the first interface 201 , the fourth interface 204 and the third interface of the four-way valve 200 .
  • the first port of the second heat exchanger 600 enters the second heat exchanger 600 .
  • the fourth interface 204 of the four-way valve 200 When the fourth interface 204 of the four-way valve 200 is connected to the second interface 202 of the four-way valve 200, the working fluid discharged through the first port of the second heat exchanger 600 can pass through the fourth interface 204 of the four-way valve 200, The second interface 202 and the inlet of the compressor 100 return to the compressor 100 .
  • the outlet of the water tank heat exchanger 400, the second port of the first heat exchanger 500, and the second port of the second heat exchanger 600 are all connected.
  • the outlet of the water tank heat exchanger 400 can be connected to the second port of the first heat exchanger 500 through a pipeline
  • the second port of the second heat exchanger 600 can be connected to the first heat exchanger 500 through a pipeline.
  • the second port is connected, and the outlet of the water tank heat exchanger 400 can be connected with the second port of the second heat exchanger 600 through a pipeline.
  • the working fluid discharged from the outlet of the water tank heat exchanger 400 can enter the first heat exchanger 500 through the second port of the first heat exchanger 500, or can enter through the second port of the second heat exchanger 600.
  • Second heat exchanger 600 The working fluid discharged from the second port of the second heat exchanger 600 can enter the first heat exchanger 500 through the second port of the first heat exchanger 500.
  • the working fluid discharged from the second port of the first heat exchanger 500 may enter the second heat exchanger 600 through the second port of the second heat exchanger 600 .
  • the air source heat pump water heater system also includes a heating heat exchanger 700 .
  • the heating heat exchanger 700 has a first working fluid port 710 , a second working fluid port 720 , a heating fluid inlet 730 and a heating fluid outlet 740 .
  • the heating heat exchanger 700 includes at least one of a plate heat exchanger, a shell and tube heat exchanger, and a jacket heat exchanger. It can be understood that the heating heat exchanger 700 includes a working fluid chamber and a heating fluid chamber, and the working fluid in the working fluid chamber can heat the heating fluid in the heating fluid chamber.
  • the first working medium port 710 is connected with the fourth interface 204 of the four-way valve 200 .
  • the first working fluid port 710 can be connected to the fourth interface 204 of the four-way valve 200 through a pipeline, so that when the fourth interface 204 of the four-way valve 200 is connected to the first interface 201 of the four-way valve 200,
  • the high-temperature working fluid discharged from the outlet of the compressor 100 can enter the working fluid chamber of the heating heat exchanger 700 through the first interface 201 and the fourth interface 204 of the four-way valve 200 and the first working fluid port 710 of the heating heat exchanger 700 .
  • the second working fluid port 720 is connected with the second port of the first heat exchanger 500 so that the working fluid discharged from the second working fluid port 720 of the heating heat exchanger 700 can pass through the second port of the first heat exchanger 500 Enter the first heat exchanger 500.
  • the heating fluid inlet 730 and the heating fluid outlet 740 are used to communicate with the heat dissipation terminal.
  • the heat dissipation end includes at least one of a floor heating coil and a radiator.
  • the heat dissipation end may also include other structural heat dissipation devices known to those skilled in the art.
  • the heating fluid outlet 740 is connected to the inlet of the heat dissipation end through a pipeline, so that the heating fluid in the heating fluid cavity of the heating heat exchanger 700 can enter the heat dissipation end for heat dissipation; the heating fluid inlet 730 is connected to the heat dissipation end through a pipeline.
  • the outlets are connected, so that the heating fluid that has been dissipated through the heat dissipation end can return to the heating fluid cavity of the heating heat exchanger 700 for heating.
  • a target flow switch 741 can be provided between the heating fluid outlet 740 and the heat dissipation end.
  • the air source heat pump water heater system also includes a first main valve 810 , a second main valve 820 , a third main valve 830 and a fourth main valve 840 .
  • the first main valve 810 is provided near the first port of the first heat exchanger 500 , or the first main valve 810 is provided near the second port of the first heat exchanger 500 .
  • the first main valve 810 is disposed on a pipe connected to the first port of the first heat exchanger 500, or the first main valve 810 is disposed on a pipe connected to the second port of the first heat exchanger 500. On the way. Therefore, the opening and closing of the branch pipeline where the first heat exchanger 500 is located can be controlled.
  • the second main valve 820 is disposed near the inlet of the water tank heat exchanger 400 , or the second main valve 820 is disposed near the outlet of the water tank heat exchanger 400 .
  • the second main valve 820 is provided on a pipeline connected to the inlet of the water tank heat exchanger 400 , or the second main valve 820 is provided on a pipeline connected to the outlet of the water tank heat exchanger 400 . Thereby, the opening and closing of the branch pipeline where the water tank heat exchanger 400 is located can be controlled.
  • the third main valve 830 is disposed near the first port of the second heat exchanger 600 , or the third main valve 830 is disposed near the second port of the second heat exchanger 600 .
  • the third main valve 830 is disposed on a pipe connected to the first port of the second heat exchanger 600, or the third main valve 830 is disposed on a pipe connected to the second port of the second heat exchanger 600.
  • the opening and closing of the branch pipeline where the second heat exchanger 600 is located can be controlled.
  • the fourth main valve 840 is disposed near the first working fluid port 710 of the heating heat exchanger 700 , or the fourth main valve 840 is disposed near the second working fluid port 720 of the heating heat exchanger 700 .
  • the fourth main valve 840 is provided on a pipeline connected to the inlet of the heating heat exchanger 700 , or the fourth main valve 840 is provided on a pipeline connected to the second port of the heating heat exchanger 700 .
  • the opening and closing of the branch pipeline where the heating heat exchanger 700 is located can be controlled.
  • the air source heat pump water heater system also includes an economizer 900.
  • the economizer 900 is arranged near the second port of the first heat exchanger 500, and the second port of the first heat exchanger 500 passes through the main path of the economizer 900. It is connected with the outlet of the water tank heat exchanger 400 and the second port of the second heat exchanger 600 .
  • the second port of the first heat exchanger 500 is connected to the first port of the economizer main path through a pipeline, and the second port of the economizer main path is connected to the outlet and second port of the water tank heat exchanger 400 through a pipeline.
  • the second port of the heat exchanger 600 and the outlet of the heating heat exchanger 700 are connected.
  • the working fluid discharged from the second port of the first heat exchanger 500 can enter the second heat exchanger 600 through the main path of the economizer 900; or, the outlet of the water tank heat exchanger 400, the second heat exchanger 600
  • the working fluid discharged from the second port and the outlet of the heating heat exchanger 700 can enter the first heat exchanger 500 through the main path of the economizer 900 .
  • the auxiliary path inlet of the economizer 900 is connected to the second port of the first heat exchanger 500, and the auxiliary path outlet of the economizer 900 is connected to the air supply port of the compressor 100.
  • An auxiliary valve 921 is provided on the auxiliary path of the economizer 900, and the auxiliary valve 921 can Controls the opening and closing of the auxiliary circuit of the economizer 900. Connecting the second port of the first heat exchanger 500 and the air supply port of the compressor 100 through the auxiliary path of the economizer 900 is beneficial to improving the efficiency of the compressor 100 .
  • the air source heat pump water heater system also includes a first fan 510 and a second fan.
  • the first fan 510 is located close to the first heat exchanger 500
  • the second fan is located close to the second heat exchanger 600 .
  • the first fan 510 can increase the flow rate of the air around the first heat exchanger 500, thereby improving the heat exchange efficiency between the first heat exchanger 500 and the air.
  • the second fan can increase the flow rate of the air around the second heat exchanger 600, thereby improving the heat exchange efficiency between the second heat exchanger 600 and the air.
  • the air source heat pump water heater system also includes a first stop valve, which is provided at both ends of the first heat exchanger 500, thereby facilitating the installation of the first heat exchanger 500 and the compressor 100 into a split structure. .
  • the air source heat pump water heater system also includes a second stop valve 610.
  • the second stop valve 610 is provided at both ends of the second heat exchanger 600, so as to facilitate setting the second heat exchanger 600 and the compressor 100 separately. Asana structure.
  • the air source heat pump water heater system also includes a third stop valve 410.
  • the third stop valve 410 is provided at both ends of the water tank heat exchanger 400, thereby facilitating the installation of the water tank heat exchanger 400 and the compressor 100 into a split structure. .
  • the air source heat pump water heater system also includes a fourth stop valve, which is provided at both ends of the heating heat exchanger 700, thereby facilitating the installation of the heating heat exchanger 700 and the compressor 100 in a split structure.
  • the first heat exchanger 500 , the second heat exchanger 600 , the water tank heat exchanger 400 and the heating heat exchanger 700 can be configured as an integral structure with the compressor 100 .
  • the first heat exchanger 500 and the compressor 100 may be provided as an integral structure and installed outdoors.
  • the heating heat exchanger 700 and the compressor 100 can also be configured as an integral structure and installed outdoors.
  • the heating heat exchanger 700 can be connected to the heat dissipation terminal in the room through pipelines to achieve heating.
  • the water tank heat exchanger 400 and the compressor 100 can be configured as a split structure, and the water tank heat exchanger 400 can be installed indoors to provide hot water to users.
  • the second heat exchanger 600 and the compressor 100 can be arranged in a split structure, and the second heat exchanger 600 can be installed indoors to cool or heat indoor air.
  • the air source heat pump water heater system also includes a first temperature sensor 520.
  • the first temperature sensor 520 is provided on the first heat exchanger 500.
  • the first temperature sensor 520 is used to detect the temperature of the first heat exchanger 500 to detect the temperature of the first heat exchanger 500.
  • the air source heat pump water heater system also includes a second temperature sensor 750.
  • the second temperature sensor 750 is provided on the heating heat exchanger 700.
  • the second temperature sensor 750 is used to detect the temperature of the heating liquid in the heating heat exchanger 700. When the heating heat exchanger 700 is located outdoors, it is detected whether the heating liquid in the heating heat exchanger 700 freezes, so that timely measures can be taken.
  • a filter 850 is provided at the upstream end of at least one of the first main valve 810, the second main valve 820, the third main valve 830 and the fourth main valve 840 to prevent impurities in the working fluid from clogging the filter.
  • a filter 850 may also be provided upstream of the auxiliary valve 921 to prevent impurities in the working fluid from clogging the auxiliary valve 921 downstream of the filter 850.
  • the first heat exchanger 500 includes a fin heat exchanger.
  • the first heat exchanger 500 may also include other types of heat exchangers known to those skilled in the art.
  • the second heat exchanger 600 includes at least one of a fin heat exchanger and a coil heat exchanger.
  • the second heat exchanger 600 may also include other types of heat exchangers known to those skilled in the art.
  • the water tank heat exchanger 400 includes at least one of a microchannel heat exchanger, a coil heat exchanger, a plate heat exchanger, a shell and tube heat exchanger, and a jacket heat exchanger.
  • Water tank heat exchanger 400 may also include other types of heat exchangers known to those skilled in the art.
  • the heating heat exchanger 700 includes at least one of a plate heat exchanger, a shell and tube heat exchanger, and a jacket heat exchanger. Heating heat exchanger 700 may also include other types of heat exchangers known to those skilled in the art.
  • the air source heat pump water heater system also includes a liquid storage tank.
  • the liquid storage tank can be set near the first heat exchanger 500 , and the liquid storage tank is used to store the working fluid.
  • the air source heat pump water heater system includes multiple working modes. Under different working modes, the series and parallel relationships between each heat exchanger will also be different:
  • Operation mode one (hot water and heating mode): the first main valve 810 to the fourth main valve 840 are all open, and the auxiliary valve 921 is automatically controlled to open or close according to the ambient temperature and water temperature.
  • part of the high-temperature and high-pressure working fluid coming out of the compressor 100 enters the water tank heat exchanger 400 to heat the water in the water tank 300; part of it enters the second heat exchanger 600, and the second fan drives the indoor air circulation and interacts with it.
  • the second heat exchanger 600 exchanges heat to heat the indoor air; part of it enters the heating heat exchanger 700 to exchange heat with the heating liquid.
  • the heated heating liquid is circulated to the indoor heat dissipation end through a water pump to heat the indoor air.
  • the working fluid can enter the second heat exchanger 600 and the heating heat exchanger 700 at the same time, or it can enter the second heat exchanger 600 or the heating heat exchanger 700 separately.
  • the working fluid discharged from the water tank heat exchanger 400, the second heat exchanger 600 and the heating heat exchanger 700 all returns to the compressor 100 through the first heat exchanger 500 and the four-way valve 200.
  • Operation mode two (separate hot water mode): the first main valve 810 and the second main valve 820 are opened, the third main valve 830 and the fourth main valve 840 are closed, and the auxiliary valve 921 is automatically controlled to open or close according to the ambient temperature and water temperature.
  • the high-temperature and high-pressure working fluid from the compressor 100 enters the water tank heat exchanger 400 to heat the water in the water tank 300 .
  • Operation mode three (individual heating mode): the first main valve 810 is opened, the third main valve 830 and/or the fourth main valve 840 are opened, the second main valve 820 is closed, and the auxiliary valve 921 is automatically controlled to open or close according to the ambient temperature and water temperature. close.
  • part of the high-temperature and high-pressure working fluid coming out of the compressor 100 enters the second heat exchanger 600.
  • the second fan drives the indoor air to circulate and exchange heat with the second heat exchanger 600 to heat the indoor air; part of it enters
  • the heating heat exchanger 700 exchanges heat with the heating liquid, and the heated heating liquid is circulated to the heat dissipation end of the room through a water pump or the like to heat the indoor air.
  • the working fluid can enter the second heat exchanger 600 and the heating heat exchanger 700 at the same time, or enter the second heat exchanger 600 or the heating heat exchanger 700 separately.
  • the working fluid discharged from the second heat exchanger 600 and the heating heat exchanger 700 returns to the compressor 100 through the first heat exchanger 500 and the four-way valve 200 .
  • Operation mode four (individual cooling mode): the first main valve 810 and the third main valve 830 are opened, the second main valve 820 and the fourth main valve 840 are closed, and the auxiliary valve 921 is automatically controlled to open or close according to the ambient temperature and water temperature.
  • the high-temperature and high-pressure working fluid from the compressor 100 enters the first heat exchanger 500 and is condensed, and then enters the second heat exchanger 600.
  • the second fan drives the indoor air to circulate and exchange with the second heat exchanger 600. heat to cool indoor air.
  • Operation mode five (hot water and cooling mode): the first to third main valves 810 to 830 are all open, the fourth main valve 840 is closed, and the auxiliary valve 921 is automatically controlled to open or close according to the ambient temperature and water temperature.
  • part of the high-temperature and high-pressure working fluid coming out of the compressor 100 enters the water tank heat exchanger 400 to heat the water in the water tank 300, and the working fluid is condensed; part of it enters the first heat exchanger 500 for condensation (or all of it enters the water tank for heat exchange).
  • the water in the water tank 300 is heated by the device 400 and the working medium is condensed).
  • the condensed working fluid discharged from the first heat exchanger 500 and the water tank heat exchanger 400 enters the second heat exchanger 600.
  • the second fan drives the indoor air to circulate and exchange heat with the second heat exchanger 600 to cool the indoor air. Cool down.
  • Operation mode six (defrost mode): the first main valve 810 is opened, the third main valve 830 and/or the fourth main valve 840 are opened, the second main valve 820 is opened or closed, and the auxiliary valve 921 is closed.
  • part (all) of the high-temperature and high-pressure working fluid coming out of the compressor 100 enters the first heat exchanger 500, heating the frost on the first heat exchanger 500 to melt it; part (not) enters the water tank for exchange. Heater 400 exchanges heat.
  • the condensed working fluid can enter the second heat exchanger 600 alone to evaporate and absorb heat; or it can enter the heating heat exchanger 700 alone to evaporate and absorb heat; or part of it enters the second heat exchanger 600 to evaporate and absorb heat, and part of it enters the heating heat exchanger 700 Evaporation absorbs heat.
  • the second fan may not be operated to avoid blowing cold air into the room.
  • the air source heat pump water heater system provided by the embodiment of the present application includes a compressor 100, a four-way valve 200, a water tank 300, a water tank heat exchanger 400, a first heat exchanger 500 and a second heat exchanger 600.
  • the water tank heat exchanger 400 can heat the water in the water tank 300.
  • the four-way valve 200 By connecting the inlet of the water tank heat exchanger 400 and the first interface 201 of the four-way valve 200 to the outlet of the compressor 100, and connecting the second interface 202 of the four-way valve 200 to the inlet of the compressor 100, the four-way valve The third interface 203 of 200 is connected to the first port of the first heat exchanger 500, and the fourth interface 204 of the four-way valve 200 is connected to the first port of the second heat exchanger 600; at the same time, by connecting the water tank heat exchanger The outlet of 400, the second port of the first heat exchanger 500 and the second port of the second heat exchanger 600 are all connected, so that the connection state of the four-way valve 200 can be controlled, so that the air source heat pump water heater system can not only realize a separate It has hot water heating function, separate cooling function and separate heating function, and can realize water heating and cooling at the same time, water heating and heating at the same time. On the one hand, it can meet the various needs of users and help improve user experience; on the other hand, it can
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection, or Integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection, or Integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本申请属于热泵技术领域,具体涉及一种空气源热泵热水器系统。本申请的空气源热泵热水器系统包括压缩机、四通阀、水箱、水箱换热器、第一换热器和第二换热器,水箱换热器容置在水箱内;水箱换热器的入口和四通阀的第一接口均与压缩机的出口连通,四通阀的第二接口与压缩机的入口连通,四通阀的第三接口与第一换热器的第一端口连通,四通阀的第四接口与第二换热器的第一端口连通;水箱换热器的出口、第一换热器的第二端口以及第二换热器的第二端口均连通。从而不仅可以增加空气源热泵热水器系统的功能,提升用户体验;而且可以提高空气源热泵热水器系统的利用率。

Description

空气源热泵热水器系统
本申请要求于2022年03月14日提交中国专利局、申请号为202210245987.8、申请名称为“空气源热泵热水器系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于热泵技术领域,具体涉及一种空气源热泵热水器系统。
背景技术
相关技术中,空气源热泵热水器包括主机和水箱,主机和水箱通过管路连接。主机包括压缩机、膨胀阀和蒸发器等装置,水箱内设置有换热器等装置。其工作原理与空调器相似,即,电能驱动压缩机运行,高压的液态工质经过膨胀阀后在蒸发器内蒸发为气态工质,并从空气中吸收大量的热能;气态工质被压缩机压缩成为高温、高压的气态工质,然后进入换热器冷凝为液态放热,以对水箱中的水进行加热。
然而,相关技术中的空气源热泵热水器的功能比较单一,设备利用率低。
发明内容
本申请提供一种空气源热泵热水器系统,该空气源热泵热水器系统不仅具有制热水的功能,而且具有制冷功能和制热功能,从而不仅可以满足用户的各种需求,有利于提升用户体验;而且有利于提高空气源热泵热水器系统的利用率。
本申请提供一种空气源热泵热水器系统,包括压缩机、四通阀、水箱、水箱换热器、第一换热器和第二换热器,所述水箱换热器容置在所述水箱内;所述水箱换热器的入口和所述四通阀的第一接口均与所述压缩机的出口连通,所述四通阀的第二接口与所述压缩机的入口连通,所述四通阀的第三接口与所述第一换热器的第一端口连通,所述四通阀的第四接口与所述第二换热器的第一端口连通;所述水箱换热器的出口、所述第一换热器的第二端口以及 所述第二换热器的第二端口均连通。
本领域技术人员能够理解的是,本申请提供的空气源热泵热水器系统包括压缩机、四通阀、水箱、水箱换热器、第一换热器和第二换热器。通过将水箱换热器容置在水箱内,从而使水箱换热器可以对水箱内的水进行加热。
通过将水箱换热器的入口和四通阀的第一接口均与压缩机的出口连通,将四通阀的第二接口与压缩机的入口连通,将四通阀的第三接口与第一换热器的第一端口连通,将四通阀的第四接口与第二换热器的第一端口连通;同时,通过将水箱换热器的出口、第一换热器的第二端口以及第二换热器的第二端口均连通,从而可以通过控制四通阀的连通状态,使空气源热泵热水器系统不仅可以实现单独制热水功能、单独制冷功能和单独制热功能,而且可以实现制热水和制冷同时进行以及制热水和制热同时进行。一方面,可以满足用户的各种需求,有利于提升用户体验;另一方面,有利于提高空气源热泵热水器系统的利用率,降低空间占用率。
在上述空气源热泵热水器系统的可选技术方案中,还包括采暖换热器,所述采暖换热器具有第一工质端口、第二工质端口、采暖流体入口和采暖流体出口,所述第一工质端口与所述四通阀的第四接口连通,所述第二工质端口与所述第一换热器的第二端口连通;所述采暖流体入口和所述采暖流体出口用于与散热末端连通。
在上述空气源热泵热水器系统的可选技术方案中,所述散热末端包括地暖盘管和暖气片中的至少一者。
在上述空气源热泵热水器系统的可选技术方案中,还包括第一主阀、第二主阀、第三主阀和第四主阀;所述第一主阀设置在所述第一换热器的第一端口附近,或,设置在所述第一换热器的第二端口附近;所述第二主阀设置在所述水箱换热器的入口附近,或,设置在所述水箱换热器的出口附近;所述第三主阀设置在所述第二换热器的第一端口附近,或,设置在所述第二换热器的第二端口附近;所述第四主阀设置在所述采暖换热器的第一工质端口附近,或,设置在所述采暖换热器的第二工质端口附近。
在上述空气源热泵热水器系统的可选技术方案中,还包括经济器,所述经济器设置在所述第一换热器的第二端口附近,且所述第一换热器的第二端口经由所述经济器的主路与所述水箱换热器的出口以及所述第二换热器的第二端口连通;所述经济器的辅路入口与所述第一换热器的第二端口连通,所 述经济器的辅路出口与所述压缩机的补气口连通,所述经济器的辅路上设置有辅阀。
在上述空气源热泵热水器系统的可选技术方案中,还包括第一风机和第二风机,所述第一风机靠近所述第一换热器设置,所述第二风机靠近所述第二换热器设置。
在上述空气源热泵热水器系统的可选技术方案中,还包括第一截止阀,所述第一截止阀设置在所述第一换热器的两端。
在上述空气源热泵热水器系统的可选技术方案中,还包括第二截止阀,所述第二截止阀设置在所述第二换热器的两端。
在上述空气源热泵热水器系统的可选技术方案中,还包括第三截止阀,所述第三截止阀设置在所述水箱换热器的两端。
在上述空气源热泵热水器系统的可选技术方案中,还包括第四截止阀,所述第四截止阀设置在所述采暖换热器的两端。
在上述空气源热泵热水器系统的可选技术方案中,还包括第一温度传感器,所述第一温度传感器设置在所述第一换热器上。
在上述空气源热泵热水器系统的可选技术方案中,还包括第二温度传感器,所述第二温度传感器设置在所述采暖换热器上。
在上述空气源热泵热水器系统的可选技术方案中,所述第一主阀、所述第二主阀、所述第三主阀和所述第四主阀中至少一者的上游端设置有过滤器。
在上述空气源热泵热水器系统的可选技术方案中,所述第一换热器包括翅片换热器。
在上述空气源热泵热水器系统的可选技术方案中,所述第二换热器包括翅片换热器和盘管换热器中的至少一者。
在上述空气源热泵热水器系统的可选技术方案中,所述水箱换热器包括微通道换热器、盘管换热器、板式换热器、壳管换热器和套管换热器中的至少一者。
在上述空气源热泵热水器系统的可选技术方案中,所述采暖换热器包括板式换热器、壳管换热器和套管换热器中的至少一种。
除了上面所描述的本申请实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本申请实施例提供的空气源热泵热水器系统所能解决的其他技术问题、技术方案中包含的其 他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的空气源热泵热水器系统的原理示意图;
图2是本申请实施例提供的空气源热泵热水器系统的工作模式一的工质流向示意图;
图3是本申请实施例提供的空气源热泵热水器系统的工作模式二的工质流向示意图;
图4是本申请实施例提供的空气源热泵热水器系统的工作模式三的工质流向示意图;
图5是本申请实施例提供的空气源热泵热水器系统的工作模式四的工质流向示意图;
图6是本申请实施例提供的空气源热泵热水器系统的工作模式五的工质流向示意图;
图7是本申请实施例提供的空气源热泵热水器系统的工作模式六的工质流向示意图。
具体实施方式
相关技术中,空气源热泵热水器仅用来制热水,功能单一;室内制冷和制热通常由空调设备来完成,然而,无论是空气源热泵热水器还是空调设备均不是全天24小时满负荷运转,均存在不工作的时间,从而不仅导致空气源热泵热水器的利用率均不高,而且由于空气源热泵热水器与空调设备为两套单独的设备,导致占用空间较大,空间利用率不高。
为了解决上述技术问题,本申请提供一种空气源热泵热水器系统,包括压缩机、四通阀、水箱、水箱换热器、第一换热器和第二换热器。通过将水箱换热器容置在水箱内,从而使水箱换热器可以对水箱内的水进行加热。
通过将水箱换热器的入口和四通阀的第一接口均与压缩机的出口连通,将四通阀的第二接口与压缩机的入口连通,将四通阀的第三接口与第一换热器的第一端口连通,将四通阀的第四接口与第二换热器的第一端口连通;同时,通过将水箱换热器的出口、第一换热器的第二端口以及第二换热器的第二端口均连通,从而可以通过控制四通阀的连通状态,使空气源热泵热水器系统不仅可以实现单独制热水功能、单独制冷功能和单独制热功能,而且可以实现制热水和制冷同时进行以及制热水和制热同时进行。一方面,可以满足用户的各种需求,有利于提升用户体验;另一方面,不仅有利于提高空气源热泵热水器系统的利用率,而且有利于降低空间占用率。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例提供的空气源热泵热水器系统的原理示意图;图2是本申请实施例提供的空气源热泵热水器系统的工作模式一的工质流向示意图;图3是本申请实施例提供的空气源热泵热水器系统的工作模式二的工质流向示意图;图4是本申请实施例提供的空气源热泵热水器系统的工作模式三的工质流向示意图;图5是本申请实施例提供的空气源热泵热水器系统的工作模式四的工质流向示意图;图6是本申请实施例提供的空气源热泵热水器系统的工作模式五的工质流向示意图;图7是本申请实施例提供的空气源热泵热水器系统的工作模式六的工质流向示意图。
参照图1和图7所示,本实施例提供一种空气源热泵热水器系统,该空气源热泵热水器系统包括压缩机100、四通阀200、水箱300、水箱换热器400、第一换热器500和第二换热器600,水箱换热器400容置在水箱300内,以使水箱换热器400可以对水箱300内的水进行加热。
可以理解的是,压缩机100具有出口、入口和补气口,压缩机的出口可以设置高压开关和排气温度传感器,以控制排气和检测排气温度,压缩机的入口可以设置低压开关和吸气温度传感器,以控制吸气和检测吸气温度。低压工质经由压缩机100的入口进入压缩机100内,经过压缩机100做功变成高压工质,高压工质经由压缩机100的出口排出。工质也可以经由压缩机100 的补气口进入压缩机100内,有利于提高压缩机100的效率。压缩机100上可以设置压缩机加热带,以保护压缩机100在寒冷环境下开启不受损伤,有利于延长压缩机100的使用寿命。
四通阀200包括阀体和阀芯,阀芯容置在阀体内,阀体上设置有第一接口201、第二接口202、第三接口203和第四接口204。阀芯可以在阀体内腔中移动以改变第一接口201、第二接口202、第三接口203和第四接口204的连通状态。
水箱300可以包括外壳和内胆,内胆容置在外壳内,外壳和内胆之间可以填充保温层。一方面,外壳可以对内胆形成保护,另一方面,外壳可以提高水箱300的美观度。水箱上部和下部可以分别设置温度传感器以检测水箱上部和下部的水温。
水箱换热器400具有入口和出口,工质经由水箱换热器400的入口进入水箱换热器400,经由水箱换热器400的出口排出水箱换热器400。进入水箱换热器400的工质可以在水箱换热器400内实现冷凝放热,以加热水箱300内的水。
第一换热器500具有第一端口和第二端口,工质经由第一端口和第二端口中的一者进入第一换热器500,经由第一端口和第二端口中的另一者排出第一换热器500。进入第一换热器500的工质可以在第一换热器500内实现蒸发吸热,也可以在第一换热器500内实现冷凝放热。
第二换热器600具有第一端口和第二端口,工质经由第一端口和第二端口中的一者进入第二换热器600,经由第一端口和第二端口中的另一者排出第二换热器600。进入第二换热器600的工质可以在第二换热器600内实现蒸发吸热,也可以在第二换热器600内实现冷凝放热。
其中,工质可以是本领域技术人员所知的各种制冷剂。
水箱换热器400的入口与压缩机100的出口连通。示例性的,水箱换热器400的入口可以通过管路与压缩机100的出口连通,以使从压缩机100的出口排出的高温工质可以进入水箱换热器400内,并与水箱300内的水进行换热,以提高水箱300内的水的温度。
四通阀200的第一接口201与压缩机100的出口连通。示例性的,四通阀200的第一接口201可以通过管路与压缩机100的出口连通,以使从压缩机100的出口排出的工质可以经由四通阀200的第一接口201进入四通阀200, 并在四通阀200的控制下经由四通阀200的第三接口203或四通阀200的第四接口204排出。
四通阀200的第二接口202与压缩机100的入口连通。示例性的,四通阀200的第二接口202可以通过管路与压缩机100的入口连通,以使经由四通阀200的第三接口203或经由第四接口204进入四通阀200的工质可以在四通阀200的控制下经由四通阀200的第二接口202和压缩机100的入口回到压缩机100内。
四通阀200的第三接口203与第一换热器500的第一端口连通。示例性的,四通阀200的第三接口203可以通过管路与第一换热器500的第一端口连通。当四通阀200的第三接口203与四通阀200的第一接口201连通时,压缩机100的出口排出的工质可以经由四通阀200的第一接口201、第三接口203以及第一换热器500的第一端口进入第一换热器500。当四通阀200的第三接口203与四通阀200的第二接口202连通时,经由第一换热器500的第一端口排出的工质可以经由四通阀200的第三接口203、第二接口202以及压缩机100的入口回到压缩机100。
四通阀200的第四接口204与第二换热器600的第一端口连通。示例性的,四通阀200的第四接口204可以通过管路与第二换热器600的第一端口连通。当四通阀200的第四接口204与四通阀200的第一接口201连通时,压缩机100的出口排出的工质可以经由四通阀200的第一接口201、第四接口204以及第二换热器600的第一端口进入第二换热器600。当四通阀200的第四接口204与四通阀200的第二接口202连通时,经由第二换热器600的第一端口排出的工质可以经由四通阀200的第四接口204、第二接口202以及压缩机100的入口回到压缩机100。
水箱换热器400的出口、第一换热器500的第二端口以及第二换热器600的第二端口均连通。示例性的,水箱换热器400的出口可以通过管路与第一换热器500的第二端口连通,第二换热器600的第二端口可以通过管路与第一换热器500的第二端口连通,水箱换热器400的出口可以通过管路与第二换热器600的第二端口连通。
具体应用时,水箱换热器400的出口排出的工质既可以经由第一换热器500的第二端口进入第一换热器500,也可以经由第二换热器600的第二端口进入第二换热器600。第二换热器600的第二端口排出的工质可以经由第一换 热器500的第二端口进入第一换热器500。第一换热器500的第二端口排出的工质可以经由第二换热器600的第二端口进入第二换热器600。
可选的,空气源热泵热水器系统还包括采暖换热器700,采暖换热器700具有第一工质端口710、第二工质端口720、采暖流体入口730和采暖流体出口740。示例性的,采暖换热器700包括板式换热器、壳管换热器和套管换热器中的至少一种。可以理解的是,采暖换热器700包括工质腔和采暖流体腔,工质腔内的工质可以对采暖流体腔内的采暖流体进行加热。
第一工质端口710与四通阀200的第四接口204连通。示例性的,第一工质端口710可以通过管路与四通阀200的第四接口204连通,从而在四通阀200的第四接口204与四通阀200的第一接口201连通时,压缩机100的出口排出的高温工质可以经由四通阀200的第一接口201、第四接口204以及采暖换热器700的第一工质端口710进入采暖换热器700的工质腔内。
第二工质端口720与第一换热器500的第二端口连通,以使从采暖换热器700的第二工质端口720排出的工质可以经由第一换热器500的第二端口进入第一换热器500内。
采暖流体入口730和采暖流体出口740用于与散热末端连通。示例性的,散热末端包括地暖盘管和暖气片中的至少一者,当然,散热末端还可以包括本领域技术人员所知的其他结构的散热装置。
具体实现时,采暖流体出口740通过管路与散热末端的入口连通,以使采暖换热器700的采暖流体腔内的采暖流体可以进入散热末端进行散热;采暖流体入口730通过管路与散热末端的出口连通,以使经过散热末端散热后的采暖流体可以重新回到采暖换热器700的采暖流体腔内进行加热。可选的,采暖流体出口740和散热末端之间可以设置靶流开关741。
可选的,空气源热泵热水器系统还包括第一主阀810、第二主阀820、第三主阀830和第四主阀840。
其中,第一主阀810设置在第一换热器500的第一端口附近,或者,第一主阀810设置在设置在第一换热器500的第二端口附近。示例性的,第一主阀810设置在与第一换热器500的第一端口连通的管路上,或者,第一主阀810设置在与第一换热器500的第二端口连通的管路上。从而可以控制第一换热器500所在的支管路的通断。
第二主阀820设置在水箱换热器400的入口附近,或者,第二主阀820 设置在水箱换热器400的出口附近。示例性的,第二主阀820设置在与水箱换热器400的入口连通的管路上,或者,第二主阀820设置在与水箱换热器400的出口连通的管路上。从而可以控制水箱换热器400所在的支管路的通断。
第三主阀830设置在第二换热器600的第一端口附近,或者,第三主阀830设置在第二换热器600的第二端口附近。示例性的,第三主阀830设置在与第二换热器600的第一端口连通的管路上,或者,第三主阀830设置在与第二换热器600的第二端口连通的管路上。从而可以控制第二换热器600所在的支管路的通断。
第四主阀840设置在采暖换热器700的第一工质端口710附近,或者,第四主阀840设置在采暖换热器700的第二工质端口720附近。示例性的,第四主阀840设置在与采暖换热器700的入口连通的管路上,或者,第四主阀840设置在与采暖换热器700的第二端口连通的管路上。从而可以控制采暖换热器700所在的支管路的通断。
可选的,空气源热泵热水器系统还包括经济器900,经济器900设置在第一换热器500的第二端口附近,且第一换热器500的第二端口经由经济器900的主路与水箱换热器400的出口以及第二换热器600的第二端口连通。示例性的,第一换热器500的第二端口通过管路与经济器主路的第一端口连通,经济器主路的第二端口通过管路与水箱换热器400的出口、第二换热器600的第二端口以及采暖换热器700的出口连通。
具体实现时,第一换热器500的第二端口排出的工质可以经由经济器900的主路进入第二换热器600;或者,水箱换热器400的出口、第二换热器600的第二端口和采暖换热器700的出口排出的工质可以经由经济器900的主路进入第一换热器500。
经济器900的辅路入口与第一换热器500的第二端口连通,经济器900的辅路出口与压缩机100的补气口连通,经济器900的辅路上设置有辅阀921,辅阀921可以控制经济器900的辅路的通断。通过经济器900的辅路将第一换热器500的第二端口和压缩机100的补气口连通,有利于提高压缩机100的效率。
可选的,空气源热泵热水器系统还包括第一风机510和第二风机,第一风机510靠近第一换热器500设置,第二风机靠近第二换热器600设置。
具体实现时,第一风机510可以提高第一换热器500周围的空气的流速, 从而有利于提高第一换热器500和空气的换热效率。第二风机可以提高第二换热器600周围的空气的流速,从而有利于提高第二换热器600和空气的换热效率。
可选的,空气源热泵热水器系统还包括第一截止阀,第一截止阀设置在第一换热器500的两端,从而便于将第一换热器500和压缩机100设置为分体式结构。
可选的,空气源热泵热水器系统还包括第二截止阀610,第二截止阀610设置在第二换热器600的两端,从而便于将第二换热器600和压缩机100设置为分体式结构。
可选的,空气源热泵热水器系统还包括第三截止阀410,第三截止阀410设置在水箱换热器400的两端,从而便于将水箱换热器400和压缩机100设置为分体式结构。
可选的,空气源热泵热水器系统还包括第四截止阀,第四截止阀设置在采暖换热器700的两端,从而便于将采暖换热器700和压缩机100设置为分体式结构。
可选的,第一换热器500、第二换热器600、水箱换热器400和采暖换热器700均可以与压缩机100设置为整体结构。
在一种实现方式中,第一换热器500和压缩机100可以设置为整体结构,并可以安装在室外。采暖换热器700和压缩机100也可以设置为整体结构,并可以安装在室外,采暖换热器700可以通过管路和室内的散热末端连通,以实现供暖。水箱换热器400和压缩机100可以设置为分体式结构,水箱换热器400可以安装在室内,以便于向用户提供热水。第二换热器600和压缩机100可以设置为分体式结构,第二换热器600可以安装在室内,以对室内空气进行制冷或制热。
可选的,空气源热泵热水器系统还包括第一温度传感器520,第一温度传感器520设置在第一换热器500上,第一温度传感器520用于检测第一换热器500的温度,以在第一换热器500位于室外时,检测第一换热器500是否结霜,以便于及时进行除霜操作。
可选的,空气源热泵热水器系统还包括第二温度传感器750,第二温度传感器750设置在采暖换热器700上,第二温度传感器750用于检测采暖换热器700内采暖液体的温度,以在采暖换热器700位于室外时,检测采暖换热 器700内的采暖液体是否结冰,以便于及时采取措施。
可选的,第一主阀810、第二主阀820、第三主阀830和第四主阀840中至少一者的上游端设置有过滤器850,以避免工质中的杂质堵塞过滤器850下游的第一主阀810、第二主阀820、第三主阀830或第四主阀840。可选的,辅阀921的上游也可以设置过滤器850,以避免工质中的杂质堵塞过滤器850下游的辅阀921。
可选的,第一换热器500包括翅片换热器。第一换热器500还可以包括本领域技术人员所知的其他类型的换热器。
可选的,第二换热器600包括翅片换热器和盘管换热器中的至少一者。第二换热器600还可以包括本领域技术人员所知的其他类型的换热器。
可选的,水箱换热器400包括微通道换热器、盘管换热器、板式换热器、壳管换热器和套管换热器中的至少一者。水箱换热器400还可以包括本领域技术人员所知的其他类型的换热器。
可选的,采暖换热器700包括板式换热器、壳管换热器和套管换热器中的至少一种。采暖换热器700还可以包括本领域技术人员所知的其他类型的换热器。
可选的,空气源热泵热水器系统还包括储液罐,储液罐可以设置在第一换热器500附近,储液罐用于存储工质。
具体实现时,空气源热泵热水器系统包括多种工作模式,不同的工作模式下,各个换热器之间的串并联关系也会有差异:
运行模式一(热水和采暖模式):第一主阀810至第四主阀840均打开,辅阀921根据环境温度及水温自动控制开或关。参照图2所示,从压缩机100出来的高温高压工质一部分进入水箱换热器400,以加热水箱300中的水;一部分进入第二换热器600,第二风机驱动室内空气循环并与第二换热器600换热,以加热室内空气;一部分进入采暖换热器700与采暖液体进行换热,加热后的采暖液体通过水泵等循环至室内的散热末端,以加热室内空气。其中,工质可以同时进入第二换热器600和采暖换热器700,也可以单独进入第二换热器600或采暖换热器700。从水箱换热器400、第二换热器600和采暖换热器700排出的工质均经由第一换热器500和四通阀200回到压缩机100中。
运行模式二(单独热水模式):第一主阀810和第二主阀820打开,第三主阀830和第四主阀840关闭,辅阀921根据环境温度及水温自动控制开 或关。参照图3所示,从压缩机100出来的高温高压工质进入水箱换热器400,以加热水箱300中的水。
运行模式三(单独采暖模式):第一主阀810打开、第三主阀830和/或第四主阀840打开,第二主阀820关闭,辅阀921根据环境温度及水温自动控制开或关。参照图4所示,从压缩机100出来的高温高压工质一部分进入第二换热器600,第二风机驱动室内空气循环并与第二换热器600换热,以加热室内空气;一部分进入采暖换热器700与采暖液体进行换热,加热后的采暖液体通过水泵等循环至室内的散热末端,以加热室内空气。其中,工质可以同时进入第二换热器600和采暖换热器700,或者,单独进入第二换热器600或采暖换热器700。从第二换热器600和采暖换热器700排出的工质均经由第一换热器500和四通阀200回到压缩机100中。
运行模式四(单独制冷模式):第一主阀810和第三主阀830打开,第二主阀820和第四主阀840关闭,辅阀921根据环境温度及水温自动控制开或关。参照图5所示,从压缩机100出来的高温高压工质进入第一换热器500冷凝后,进入第二换热器600,第二风机驱动室内空气循环并与第二换热器600换热,以对室内空气进行降温。
运行模式五(热水和制冷模式):第一主阀810至第三主阀830均打开,第四主阀840关闭,辅阀921根据环境温度及水温自动控制开或关。参照图6所示,从压缩机100出来的高温高压工质一部分进入水箱换热器400加热水箱300中的水,工质冷凝;一部分进入第一换热器500冷凝(或者全部进入水箱换热器400加热水箱300中的水,工质冷凝)。从第一换热器500和水箱换热器400排出的冷凝后的工质进入第二换热器600,第二风机驱动室内空气循环并与第二换热器600换热,以对室内空气进行降温。
运行模式六(除霜模式):第一主阀810打开,第三主阀830和/或第四主阀840打开,第二主阀820开或关,辅阀921关闭。参照图7所示,从压缩机100出来的高温高压工质一部分(全部)进入第一换热器500,加热第一换热器500上的霜,使其融化;一部分(不)进入水箱换热器400换热。冷凝后的工质可以单独进入第二换热器600蒸发吸热;或者单独进入采暖换热器700蒸发吸热;或者一部分进入第二换热器600蒸发吸热,一部分进入采暖换热器700蒸发吸热。工质在第二换热器600内蒸发吸热时,第二风机可以不运行,以避免给室内吹冷风。
综上,本申请实施例提供的空气源热泵热水器系统包括压缩机100、四通阀200、水箱300、水箱换热器400、第一换热器500和第二换热器600。通过将水箱换热器400容置在水箱300内,从而使水箱换热器400可以对水箱300内的水进行加热。
通过将水箱换热器400的入口和四通阀200的第一接口201均与压缩机100的出口连通,将四通阀200的第二接口202与压缩机100的入口连通,将四通阀200的第三接口203与第一换热器500的第一端口连通,将四通阀200的第四接口204与第二换热器600的第一端口连通;同时,通过将水箱换热器400的出口、第一换热器500的第二端口以及第二换热器600的第二端口均连通,从而可以通过控制四通阀200的连通状态,使空气源热泵热水器系统不仅可以实现单独制热水功能、单独制冷功能和单独制热功能,而且可以实现制热水和制冷同时进行以及制热水和制热同时进行。一方面,可以满足用户的各种需求,有利于提升用户体验;另一方面,有利于提高空气源热泵热水器系统的利用率,降低空间占用率。
本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本申请的描述中,术语“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示本实施例中的装置或构件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个构件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种空气源热泵热水器系统,其中,包括压缩机、四通阀、水箱、水箱换热器、第一换热器和第二换热器,所述水箱换热器容置在所述水箱内;
    所述水箱换热器的入口和所述四通阀的第一接口均与所述压缩机的出口连通,所述四通阀的第二接口与所述压缩机的入口连通,所述四通阀的第三接口与所述第一换热器的第一端口连通,所述四通阀的第四接口与所述第二换热器的第一端口连通;所述水箱换热器的出口、所述第一换热器的第二端口以及所述第二换热器的第二端口均连通。
  2. 根据权利要求1所述的空气源热泵热水器系统,其中,还包括采暖换热器,所述采暖换热器具有第一工质端口、第二工质端口、采暖流体入口和采暖流体出口,所述第一工质端口与所述四通阀的第四接口连通,所述第二工质端口与所述第一换热器的第二端口连通;所述采暖流体入口和所述采暖流体出口用于与散热末端连通。
  3. 根据权利要求2所述的空气源热泵热水器系统,其中,所述散热末端包括地暖盘管和暖气片中的至少一者。
  4. 根据权利要求2所述的空气源热泵热水器系统,其中,还包括第一主阀、第二主阀、第三主阀和第四主阀;
    所述第一主阀设置在所述第一换热器的第一端口附近,或,设置在所述第一换热器的第二端口附近;
    所述第二主阀设置在所述水箱换热器的入口附近,或,设置在所述水箱换热器的出口附近;
    所述第三主阀设置在所述第二换热器的第一端口附近,或,设置在所述第二换热器的第二端口附近;
    所述第四主阀设置在所述采暖换热器的第一工质端口附近,或,设置在所述采暖换热器的第二工质端口附近。
  5. 根据权利要求1-4任一项所述的空气源热泵热水器系统,其中,还包括经济器,所述经济器设置在所述第一换热器的第二端口附近,且所述第一换热器的第二端口经由所述经济器的主路与所述水箱换热器的出口以及所述第二换热器的第二端口连通;
    所述经济器的辅路入口与所述第一换热器的第二端口连通,所述经济器的辅路出口与所述压缩机的补气口连通,所述经济器的辅路上设置有辅阀。
  6. 根据权利要求1-4任一项所述的空气源热泵热水器系统,其中,还包括第一风机和第二风机,所述第一风机靠近所述第一换热器设置,所述第二风机靠近所述第二换热器设置。
  7. 根据权利要求1-4任一项所述的空气源热泵热水器系统,其中,还包括第一截止阀,所述第一截止阀设置在所述第一换热器的两端;和/或,
    还包括第二截止阀,所述第二截止阀设置在所述第二换热器的两端;和/或,
    还包括第三截止阀,所述第三截止阀设置在所述水箱换热器的两端;和/或,
    还包括第一温度传感器,所述第一温度传感器设置在所述第一换热器上。
  8. 根据权利要求2-4任一项所述的空气源热泵热水器系统,其中,还包括第四截止阀,所述第四截止阀设置在所述采暖换热器的两端;和/或,
    还包括第二温度传感器,所述第二温度传感器设置在所述采暖换热器上。
  9. 根据权利要求4所述的空气源热泵热水器系统,其中,所述第一主阀、所述第二主阀、所述第三主阀和所述第四主阀中至少一者的上游端设置有过滤器。
  10. 根据权利要求2-4任一项所述的空气源热泵热水器系统,其中,所述第一换热器包括翅片换热器;和/或,
    所述第二换热器包括翅片换热器和盘管换热器中的至少一者;和/或,
    所述水箱换热器包括微通道换热器、盘管换热器、板式换热器、壳管换热器和套管换热器中的至少一者;和/或,
    所述采暖换热器包括板式换热器、壳管换热器和套管换热器中的至少一种。
PCT/CN2022/138740 2022-03-14 2022-12-13 空气源热泵热水器系统 WO2023173847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210245987.8A CN114992851A (zh) 2022-03-14 2022-03-14 空气源热泵热水器系统
CN202210245987.8 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023173847A1 true WO2023173847A1 (zh) 2023-09-21

Family

ID=83024218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138740 WO2023173847A1 (zh) 2022-03-14 2022-12-13 空气源热泵热水器系统

Country Status (2)

Country Link
CN (1) CN114992851A (zh)
WO (1) WO2023173847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992851A (zh) * 2022-03-14 2022-09-02 青岛海尔新能源电器有限公司 空气源热泵热水器系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249319A (ja) * 2004-03-05 2005-09-15 Fujitsu General Ltd ヒートポンプ給湯エアコン
CN202041020U (zh) * 2010-12-01 2011-11-16 重庆大学 户式空气源热泵-地板辐射多功能系统
CN202648246U (zh) * 2012-04-26 2013-01-02 安徽尚格瑞太阳能科技有限公司 太阳能-空气双热源型热泵系统
CN203964360U (zh) * 2014-05-23 2014-11-26 Tcl空调器(中山)有限公司 制热水系统
CN104457026A (zh) * 2014-12-30 2015-03-25 郎力文 空气源热泵热水器复合空调装置
CN110030762A (zh) * 2019-04-09 2019-07-19 广东五星太阳能股份有限公司 太阳能-空气源耦合热源多功能热泵系统
CN112432382A (zh) * 2020-12-10 2021-03-02 珠海格力电器股份有限公司 热泵机组及其控制方法
CN216977220U (zh) * 2022-01-17 2022-07-15 青岛海尔新能源电器有限公司 换热系统及热水器
CN114992851A (zh) * 2022-03-14 2022-09-02 青岛海尔新能源电器有限公司 空气源热泵热水器系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249319A (ja) * 2004-03-05 2005-09-15 Fujitsu General Ltd ヒートポンプ給湯エアコン
CN202041020U (zh) * 2010-12-01 2011-11-16 重庆大学 户式空气源热泵-地板辐射多功能系统
CN202648246U (zh) * 2012-04-26 2013-01-02 安徽尚格瑞太阳能科技有限公司 太阳能-空气双热源型热泵系统
CN203964360U (zh) * 2014-05-23 2014-11-26 Tcl空调器(中山)有限公司 制热水系统
CN104457026A (zh) * 2014-12-30 2015-03-25 郎力文 空气源热泵热水器复合空调装置
CN110030762A (zh) * 2019-04-09 2019-07-19 广东五星太阳能股份有限公司 太阳能-空气源耦合热源多功能热泵系统
CN112432382A (zh) * 2020-12-10 2021-03-02 珠海格力电器股份有限公司 热泵机组及其控制方法
CN216977220U (zh) * 2022-01-17 2022-07-15 青岛海尔新能源电器有限公司 换热系统及热水器
CN114992851A (zh) * 2022-03-14 2022-09-02 青岛海尔新能源电器有限公司 空气源热泵热水器系统

Also Published As

Publication number Publication date
CN114992851A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN211739588U (zh) 一种可提高换热性能的空调
US20140230477A1 (en) Hot water supply air conditioning system
CN2937909Y (zh) 空调热水器
CN204923448U (zh) 空调热水系统
WO2019134509A1 (zh) 室外机、空调系统及控制方法
CN108679870A (zh) 一种带新风处理功能的温湿分控空调系统
CN109028650A (zh) 一种多联机空调热水一体机
EP3553398B1 (en) Air conditioning heat pump system which uses injector, air conditioner, and air conditioner control method
CN106524399A (zh) 一种空调化霜装置、空调化霜控制方法、系统和空调
WO2023173847A1 (zh) 空气源热泵热水器系统
EP2375187A2 (en) Heat pump apparatus and operation control method of heat pump apparatus
KR20130087219A (ko) 핫가스 제상식 히트펌프장치
CN210568955U (zh) 空调系统
CN206739618U (zh) 一种多功能热泵热水机组
CN215638113U (zh) 一种制冷系统
CN215638112U (zh) 一种制冷系统
WO2021047158A1 (zh) 空调器及其控制方法
KR100987705B1 (ko) 핫가스 제상용 시스템이 적용된 냉동 사이클장치
CN206113445U (zh) 空调系统
CN211503237U (zh) 相变蓄能式热水系统
CN109340919B (zh) 空调器
CN109724286B (zh) 空调系统和空调器
CN111043760A (zh) 相变蓄能式热水系统及其控制方法
CN217737372U (zh) 空调室外机及热泵系统
CN218864376U (zh) 一种三联供空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931856

Country of ref document: EP

Kind code of ref document: A1