WO2020085842A9 - 중수소 함유 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

중수소 함유 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2020085842A9
WO2020085842A9 PCT/KR2019/014147 KR2019014147W WO2020085842A9 WO 2020085842 A9 WO2020085842 A9 WO 2020085842A9 KR 2019014147 W KR2019014147 W KR 2019014147W WO 2020085842 A9 WO2020085842 A9 WO 2020085842A9
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
layer
same
Prior art date
Application number
PCT/KR2019/014147
Other languages
English (en)
French (fr)
Other versions
WO2020085842A1 (ko
Inventor
윤홍식
홍완표
김진주
이동훈
김명곤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/262,592 priority Critical patent/US20220271233A1/en
Priority to CN201980051913.7A priority patent/CN112533900A/zh
Publication of WO2020085842A1 publication Critical patent/WO2020085842A1/ko
Publication of WO2020085842A9 publication Critical patent/WO2020085842A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a deuterium-containing compound and an organic light-emitting device comprising the same.
  • the present invention relates to a novel organic compound that can be advantageously used in an organic light emitting device. More particularly, the present invention relates to deuterium substituted thermally active delayed fluorescence (TADF) materials and their use in OLEDs.
  • TADF deuterium substituted thermally active delayed fluorescence
  • a phenomenon using a phenomenon in which reverse intersystem crossing from triplet excitons to singlet excitons (thermally activated delayed fluorescence, also referred to as thermally excited delayed fluorescence: Thermally Activated) Delayed Fluorescence (hereinafter, appropriately abbreviated as "TADF”) has been reported to be used as a fluorescent light-emitting material and an organic EL device.
  • RISC reverse intersystem crossing from triplet excitons to singlet excitons
  • the TADF phenomenon in order to express the TADF phenomenon, it is effective to decrease the ⁇ ST of the organic compound, and to decrease the ⁇ ST, the highest occupied molecular orbital (HOMO) and the lowest non-occupied molecular orbital (LUMO) are mixed in the molecule. It is advantageous to separate them clearly without having to do so.
  • HOMO highest occupied molecular orbital
  • LUMO lowest non-occupied molecular orbital
  • the present invention is a singlet energy level (S1 D) and the triplet energy level (T1 D) difference ( ⁇ ST D) is smaller in device efficiency high and a good compound lifespan characteristics when included in a light emitting layer of the organic light emitting element of; And an organic light emitting device including the same.
  • An exemplary embodiment of the present specification provides a compound represented by Formula 1 below.
  • X1 to X6 are the same as or different from each other, and each independently N, C(A1), C(A2), C(A3), C(A4), CH, CD or C-R', and R'is an aryl group ego,
  • (1) 3 of X1 to X6 are CD, 1 is C(A2), 1 is C(A4), 1 is N, C(A2), C(A4), CH, CD or C-R', or (2) at least one of X1 to X6 is C(A1) or C(A2), at least one is C(A3) or C(A4), but at least one of X1 to X6 One is C(A1) or C(A3),
  • A1 is any one of the following a-1 to a-4, and when A1 is 2 or more, A1 is the same as or different from each other,
  • a1 is an integer of 1 to 4
  • a2 is an integer of 1 to 8
  • a3 is an integer of 1 to 8
  • A2 is the following b-1 or b-2, and when A2 is 2 or more, A2 is the same as or different from each other,
  • A3 is the following c-1 or c-2, and when A3 is 2 or more, A3 is the same as or different from each other,
  • A4 is the following d-1 or d-2, and when A4 is 2 or more, A4 is the same as or different from each other,
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; Alkyl group; Aryl group; And any one group selected from the group consisting of a heteroaryl group, or a group to which two or more groups selected from the group are connected,
  • b1 is an integer from 0 to 8, and when b1 is 2 or more, R1 is the same as or different from each other,
  • b2 is an integer from 0 to 4, and when b2 is 2 or more, R2 is the same as or different from each other,
  • b3 is an integer of 0 to 2, and when b3 is 2, R3 is the same as or different from each other,
  • b4 is an integer of 0 to 4, and when b4 is 2 or more, R4 is the same as or different from each other.
  • an exemplary embodiment of the present specification is a first electrode; A second electrode provided to face the first electrode; And an emission layer provided between the first electrode and the second electrode, wherein the emission layer includes a compound represented by Formula 1 above.
  • the organic light-emitting device including the compound of the present invention has high efficiency or excellent lifespan characteristics.
  • the compound represented by Formula 1 may be used in an emission layer of an organic light emitting device.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 8, and a cathode 4.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a hole control layer 7, a light emitting layer 8, an electron transport layer 9, and an electron injection layer 10. And an example of an organic light-emitting device comprising the cathode 4 is shown.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent.
  • the position at which the substituent is substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, the position at which the substituent is substituted.
  • the substituents are 2 or more, the 2 or more substituents may be the same or different from each other.
  • energy level refers to the energy level. Therefore, even when the energy level is displayed in the negative (-) direction from the vacuum level, the energy level is interpreted to mean the absolute value of the corresponding energy value. For example, a large energy level means that the absolute value increases in the negative direction from the vacuum level.
  • expressions such as "deep” or “high” having an energy level have the same meaning as the expression that the energy level is large.
  • the triplet energy level can be measured using a spectroscopic device capable of measuring fluorescence and phosphorescence. Specifically, a solution was prepared at a concentration of 10 -6 M using toluene or tetrahydrofuran (THF) as a solvent in a cryogenic state using liquid nitrogen, and the solution was irradiated with a light source in the absorption wavelength band of the substance, and then singlet from the emission spectrum. Excluding the light emission from the energy level, it can be confirmed by analyzing the spectrum emitted from the triplet energy level.
  • THF tetrahydrofuran
  • the singlet energy level is measured using a fluorescent device, and unlike the triplet energy level measurement method described above, it may be measured by irradiating a light source at room temperature.
  • an alkyl group refers to a linear or branched saturated hydrocarbon.
  • the number of carbon atoms in the alkyl group is not particularly limited, but 1 to 40; 1 to 20; 1 to 10; Or 1 to 6.
  • the alkyl group may be chain or cyclic.
  • chain alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methylbutyl, 1-ethylbutyl, n-pentyl, isopentyl , Neopentyl, tert-pentyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methylpentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, n-octyl, tert-octyl , 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 1-ethylpropyl, 1,1-dimethylpropyl, isohexyl, 4-methylhexyl,
  • the number of carbon atoms of the cyclic alkyl group is not particularly limited, but is 3 to 40; 3 to 24; 3 to 14; Or 3 to 8.
  • Specific examples of the cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethyl Cyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
  • an aryl group means wholly or partially unsaturated substituted or unsubstituted monocyclic or polycyclic.
  • the number of carbon atoms is not particularly limited, but 6 to 60; 6 to 40; Or 6 to 30.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group. Examples of the monocyclic aryl group include, but are not limited to, a phenyl group, a biphenyl group, and a terphenyl group.
  • the polycyclic aryl group is a naphthyl group, anthracenyl group, phenanthrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, phenalenyl group, pyrenyl group, tetracenyl group, chrysenyl group, pentacenyl group , Fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirofluorenyl group, and the like, but are not limited thereto.
  • the substituted fluorenyl group when the fluorenyl group may be substituted, includes all compounds in which the substituents of the pentagonal rings of the fluorenyl group are spied to each other to form an aromatic hydrocarbon.
  • the substituted fluorene includes 9,9'-spirobifluorene, spiro[cyclopentane-1,9'-fluorene], spiro[benzo[c]fluorene-7,9-fluorene], etc. , Is not limited thereto.
  • the heteroaryl group is a cyclic group including at least one of N, O, and S as a heteroatom, and the number of carbon atoms is not particularly limited, but 2 to 40; 2 to 30; Or 2 to 20.
  • the heteroaryl group include thiophenyl group, furanyl group, pyrrolyl group, imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, triazolyl group, pyridinyl group, bipyridinyl group, pyrimidinyl group, Triazinyl group, triazolyl group, acridinyl group, carbonyl group, acenaphthoquinoxalinyl group, indenoquinazolinyl group, indenoisoquinolinyl group, indenoquinolinyl group, pyridoindole group, pyridazinyl group, Pyrazinyl group, quinolin
  • An exemplary embodiment of the present specification provides a compound represented by Formula 1 below.
  • X1 to X6 are the same as or different from each other, and each independently N, C(A1), C(A2), C(A3), C(A4), CH, CD or C-R', and R'is an aryl group ego,
  • (1) 3 of X1 to X6 are CD, 1 is C(A2), 1 is C(A4), 1 is N, C(A2), C(A4), CH, CD or C-R', or (2) at least one of X1 to X6 is C(A1) or C(A2), at least one is C(A3) or C(A4), but at least one of X1 to X6 One is C(A1) or C(A3).
  • the compound represented by Formula 1 includes a carbazole or indolocarbazole serving as an electron donor and a triazine or cyano group serving as an electron acceptor. Accordingly, the compound represented by Formula 1 may have a delayed fluorescence characteristic because the orbital forms of the highest occupied molecular orbital (HOMO) and the lowest non-occupied molecular orbital (LUMO) in the molecule are separated by 50% or more.
  • HOMO highest occupied molecular orbital
  • LUMO lowest non-occupied molecular orbital
  • the structure further containing a cyano group or triazine like the compound represented by Formula 1 has a small difference between the triplet energy and the singlet energy, so that the inverse transition ( RISC) has better delayed fluorescence properties.
  • At least one of X1 to X6 is C(A4), and A4 is d-2.
  • A4 is d-2, -CN is directly bonded to the central core containing X1.
  • the LUMO lowest unoccupied molecular orbital
  • Carbazole or indolocarbazole contained in the compound represented by Formula 1 is bonded to a ring containing X1 in nitrogen. Accordingly, the compound represented by Formula 1 has a small difference in singlet and triplet energy compared to a structure in which carbon of carbazole or indolocarbazole is bonded to a ring containing X1, and thus has better delayed fluorescence properties.
  • the compound represented by Formula 1 is a deuterium-containing compound containing at least one deuterium.
  • the compound represented by Formula 1 includes deuterium in a form in which any one of X1 to X6 is C-D, C(A1) or C(A3).
  • A1 is any one of the following a-1 to a-4.
  • a1 is an integer of 1 to 4
  • a2 is an integer of 1 to 8
  • a3 is an integer of 1 to 8.
  • A3 is the following c-1 or c-2.
  • the compound represented by Formula 1 includes carbazole substituted with deuterium of 1 to 4 represented by a-1.
  • the reaction rate of a chemical process of a compound containing a C-D bond may be slower than that of a compound containing only a C-H bond due to a mechanical isotope effect.
  • the chemical decomposition of the luminescent compound involves the destruction of the C-H bond, the stability of the compound is improved due to the stronger C-D bond.
  • a1 is 1.
  • a1 is 2.
  • a1 is 4.
  • a-1 is any one of the following a-11 to a-15.
  • the compound of Formula 1 includes carbazole substituted with -CD 3 represented by a-2.
  • the benzylic proton When -CH 3 is substituted on the benzene ring of carbazole, the benzylic proton may be particularly reactive, so that chemical decomposition in the luminescent compound may be easy. At this time , if hydrogen in -CH 3 is substituted with deuterium, stability of the compound may be increased. Since the Van der Waals radius of CD is smaller than that of CH , -CD 3 is a substituent with less steric hindrance compared to -CH 3. Accordingly, in the case of having -CD 3 as a substituent on the benzene ring of carbazole, the twist on the aromatic ring is small, so that the conjugation of the compound can be improved, and the efficiency and life of the device can be improved.
  • a2 is 1.
  • a2 is 2.
  • a-2 is a-21 or a-22 below.
  • the compound of Formula 1 includes carbazole substituted with -C 6 D 5 represented by a-3.
  • the distribution of the HOMO most occupied molecular orbital
  • the hydrogen of the phenyl group is substituted with deuterium, the C-D bond may improve the stability of the compound. Therefore, it is possible to improve the efficiency and life of the device.
  • a3 is 1.
  • a-3 is any one of the following a-31 to a-33.
  • A2 is the following b-1 or b-2, and when A2 is 2 or more, A2 is the same as or different from each other,
  • the A4 is the following d-1 or d-2, and when A4 is 2 or more, A4 is the same as or different from each other,
  • R1 to R5, R7 and R8 are the same as or different from each other, and each independently hydrogen; Alkyl group; Aryl group; And any one group selected from the group consisting of a heteroaryl group, or a group to which two or more groups selected from the group are connected,
  • b1 is an integer from 0 to 8, and when b1 is 2 or more, R1 is the same as or different from each other,
  • b2 is an integer from 0 to 4, and when b2 is 2 or more, R2 is the same as or different from each other,
  • b3 is an integer of 0 to 2, and when b3 is 2, R3 is the same as or different from each other,
  • b4 is an integer of 0 to 4, and when b4 is 2 or more, R4 is the same as or different from each other.
  • Chemical Formula 1 is represented by Chemical Formula 1-1 or Chemical Formula 1-2 below.
  • X is N or CR26
  • R26 is A1, A2, A3, A4, H, D or an aryl group
  • At least one of R21 to R25 is A1 or A2, at least one is A3 or A4, but at least one of R21 to R25 is A1 or A3,
  • R27 is A2, R28 is A4, R29 is A2, A4, H, D or an aryl group,
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; A C1-C10 alkyl group; C6-C30 aryl group; And a C2-C30 heteroaryl group, or a group to which two or more groups selected from the group are connected.
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; C1-C6 alkyl group; C6-C25 aryl group; And a C2-C25 heteroaryl group, or a group to which two or more groups selected from the group are linked.
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; C1-C4 alkyl group; C6-C18 aryl group; And a C2-C18 heteroaryl group, or a group to which two or more groups selected from the group are linked.
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; Methyl group; An aryl group unsubstituted or substituted with an alkyl group; Or a heteroaryl group unsubstituted or substituted with an aryl group.
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; Methyl group; Phenyl group; Naphthyl group; Dimethylfluorenyl group; Dibenzofuranyl group; Dibenzothiophenyl group; Or a carbazolyl group substituted with a phenyl group.
  • R1 is a methyl group; Phenyl group; Or a carbazolyl group substituted with a phenyl group.
  • R2 to R5 are the same as or different from each other, and each independently hydrogen; Phenyl group; Dimethylfluorenyl group; Naphthyl group; Dibenzofuranyl group; Or a dibenzothiophenyl group.
  • R2 to R6 are the same as or different from each other, and each independently hydrogen; Phenyl group; Dimethylfluorenyl group; Naphthyl group; Dibenzofuranyl group; Or a dibenzothiophenyl group.
  • R6 to R8 are the same as or different from each other, and each independently hydrogen; Phenyl group; Dibenzofuranyl group; Dibenzothiophenyl group; Or a carbazolyl group substituted with a phenyl group.
  • R5 to R8 are the same as or different from each other, and each independently hydrogen; Phenyl group; Dibenzofuranyl group; Dibenzothiophenyl group; Or a carbazolyl group substituted with a phenyl group.
  • R' is a C6-C36 aryl group; C6-C30 aryl group; Or a C6-C25 aryl group.
  • R' is a phenyl group.
  • three of X1 to X6 are CD, one is C(A2), one is C(A4), and one is C(A2), C(A4), CH, CD or C-R'.
  • three of X1 to X6 are C-D, one is C(A2), one is C(A4), and one is C(A2) or C(A4).
  • At least one of X1 to X6 is C(A1).
  • At least one of X1 to X6 is C(A3).
  • 0 or 1 of X1 to X6 is N.
  • At least one of X1 to X6 is C(A4), and A4 is d-2.
  • At least two of X1 to X6 are C(A4), and each of the two A4s is d-2.
  • Chemical Formula 1-2 is represented by the following Chemical Formula 2.
  • R27 to R29 are as defined in Formula 1-2.
  • the compound represented by Formula 1 is any one selected from the following compounds.
  • the compound represented by Formula 1 is a fluorescent material.
  • the compound represented by Formula 1 is a delayed fluorescent material.
  • the compound represented by Formula 1 may be used as a green dopant for the emission layer.
  • An exemplary embodiment of the present specification is a first electrode; A second electrode provided to face the first electrode; And an emission layer provided between the first electrode and the second electrode, wherein the emission layer includes the compound represented by Formula 1 described above.
  • the emission layer may be composed of only the compound represented by Chemical Formula 1, or may further include other materials other than the compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 may be used as a host, or may be used together with other host materials to serve as a dopant.
  • the compound represented by Formula 1 may generate excitons by receiving holes and electrons from a host, or may generate excitons by receiving holes and electrons directly from an adjacent layer of the emission layer without passing through a host. have.
  • the role of the compound represented by Formula 1 in the emission layer is not limited thereto, and may contribute to improvement of the characteristics of the device in various ways depending on the combination of compounds included in the emission layer.
  • An exemplary embodiment of the present specification is a first electrode; A second electrode provided to face the first electrode; And an emission layer provided between the first electrode and the second electrode, wherein the emission layer includes the compound represented by Formula 1 as a dopant, and further includes a host.
  • the mechanism by which light emission can occur in the light emitting layer is not limited, and may vary depending on the compound used for the light emitting layer.
  • holes and electrons move through the host to the compound (dopant) represented by Chemical Formula 1, and excitons are generated in the triplet and the singlet in a ratio of 3:1, and then the dopant is The excitons generated in the triplet are transferred to the singlet of the dopant to emit light, and the exciton generated in the singlet may emit light as it is in the singlet.
  • a host serving only as a matrix material is included in the light emitting layer, and holes; Electronic; Alternatively, holes and electrons may be injected into the dopant without passing through the host, so that excitons may be formed in the triplet and the singlet.
  • this is only an example of a light-emitting mechanism, and light emission may occur by other light-emitting mechanisms.
  • the emission layer includes the compound represented by Formula 1 as a dopant.
  • the emission wavelength of the compound represented by Formula 1 is 500nm to 565nm.
  • the difference ( ⁇ D ST) of the formula singlet energy level of the compound represented by 1 (D S1) and triplet energy level (T1 D) is more than 0eV 0.3eV or less; Preferably it is 0 eV or more and 0.2 eV or less.
  • the difference ( ⁇ D ST) of the singlet energy level (D S1) and triplet energy level (T1 D) a compound represented by the formula (1) refers to the absolute value of T1 D D -S1.
  • the triplet energy level (T1 H ) of the host is 2.4 eV or more.
  • the singlet energy level (S1 H ) of the host is 2.1 eV to 2.8 eV.
  • the triplet energy level (T1 H ) of the host is higher than the triplet energy level (T1 D ) of the compound represented by Formula 1 above.
  • the singlet energy level (S1 H ) of the host is higher than the singlet energy level (S1 D ) of the compound represented by Formula 1, and when the energy relationship is satisfied, excitons of the dopant are transferred to the host. It can prevent reverse movement.
  • the host is dibenzofuran; Dibenzofuran derivatives; Dibenzothiophene; Or it may be a dibenzothiophene derivative.
  • the host is at least one selected from the following structures.
  • the light emitting layer including the compound represented by Formula 1 may further include a fluorescent light emitting material.
  • the light-emitting layer further includes a fluorescent light-emitting material
  • excitons move from the compound represented by Formula 1 to the fluorescent light-emitting material to emit final light from the fluorescent light-emitting material. Color purity may be increased, and exciton-polaron quenching of the compound represented by Chemical Formula 1 may be prevented, thereby increasing the life of the device.
  • the emission layer may further include other fluorescent emission-type materials.
  • the organic light emitting device further includes a phosphorescent light emitting layer in addition to the light emitting layer including the compound represented by Formula 1 above.
  • the organic light-emitting device includes a plurality of light-emitting layers, and the light-emitting layers are formed adjacent to each other.
  • a certain organic material layer includes a certain compound, it means that at least one compound is included.
  • the weight part of the compound represented by Formula 1 means the sum of the weight parts of the at least one compound represented by Formula 1.
  • the organic light emitting device further includes one or more organic material layers.
  • the organic light-emitting device further includes one or more organic material layers between the first electrode and the light-emitting layer.
  • the organic light-emitting device further includes one or more organic material layers between the second electrode and the light-emitting layer.
  • the organic light emitting device of the present invention is an organic material layer, a hole injection layer, a hole transport layer, a layer that simultaneously transports and injects holes, a hole control layer, a light-emitting layer, an electron control layer, an electron transport layer, an electron injection layer, and an electron transport layer. And it may have a structure including a layer and the like at the same time injection.
  • the organic light emitting device may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light-emitting device may be an inverted type organic light-emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • FIGS. 1 and 2 The structure of the organic light-emitting device according to an exemplary embodiment of the present specification is illustrated in FIGS. 1 and 2.
  • the organic light emitting device may include a substrate 1, an anode 2, an emission layer 8, and a cathode 4, as shown in FIG. 1.
  • the compound represented by Formula 1 is included in the light-emitting layer 8.
  • the organic light emitting device includes a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a hole control layer 7, and a light emitting layer, as shown in FIG. (8), the electron transport layer 9, the electron injection layer 10 and may be made of a cathode (4).
  • the compound represented by Formula 1 is included in the light-emitting layer 8.
  • the structure of the organic light-emitting device according to the exemplary embodiment of the present specification is not limited to FIGS. 1 and 2 and may be any one of the following structures.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition method (PVD, physical vapor deposition) such as sputtering or e-beam evaporation, a metal or a conductive metal oxide or an alloy thereof is deposited on the substrate. It can be manufactured by forming an anode, forming an organic material layer including a hole injection layer, a hole transport layer, an emission layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition method
  • a metal or a conductive metal oxide or an alloy thereof is deposited on the substrate. It can be manufactured by forming an anode, forming an organic material layer including a hole injection layer, a hole transport layer, an emission layer, and an electron transport layer thereon, and then depositing a material that can be used
  • the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate.
  • the manufacturing method is not limited thereto.
  • anode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the anode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes received from an electrode into a light emitting layer or an adjacent layer provided toward the light emitting layer.
  • the hole injection material has the ability to transport holes and thus has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and transfer of excitons generated in the light emitting layer to the electron injection layer or the electron injection material. It is preferable to use a compound that prevents and is excellent in thin film formation ability. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, perylene.
  • metal porphyrin oligothiophene
  • arylamine-based organic material arylamine-based organic material
  • hexanitrile hexaazatriphenylene-based organic material hexaazatriphenylene-based organic material
  • quinacridone-based organic material perylene.
  • perylene perylene.
  • organic substances anthraquinone, and polyaniline and a polythiophene series of conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the emission layer.
  • the hole transport material a material capable of transporting holes from an anode or a hole injection layer to the light emitting layer and having high mobility for holes is suitable.
  • Specific examples of the hole transport material include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion.
  • the hole control layer is a layer that prevents electrons from flowing into the light emitting layer to the anode and controls the flow of holes flowing into the light emitting layer to control the performance of the entire device.
  • the hole control material is preferably a compound having the ability to prevent the inflow of electrons from the light-emitting layer to the anode and to control the flow of holes injected into the light-emitting layer or the light-emitting material.
  • an arylamine-based organic material may be used as the electron blocking layer, but is not limited thereto.
  • the emission layer includes the compound represented by Chemical Formula 1.
  • the light-emitting layer including the compound represented by Formula 1 may further include other light-emitting materials in the light-emitting layer, or the light-emitting layer not including the compound represented by Formula 1 may include other light-emitting materials.
  • light-emitting materials include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzothiazole, and benzimidazole-based compounds; Poly(p-phenylenevinylene) (PPV)-based polymer; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto.
  • Alq 3 8-hydroxyquinoline aluminum complex
  • Carbazole-based compounds Dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compound
  • Benzoxazole, benzothiazole Benzoxazole, benzothiazole, and benzimidazole-based compounds
  • Poly(p-phenylenevinylene) (PPV)-based polymer Spiro compounds
  • Polyfluorene, rubrene, and the like but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladders. Type furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the compound represented by Formula 1 may be used as a host material for the emission layer.
  • Examples of the dopant material for the light emitting layer include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivative as a condensed aromatic ring derivative having a substituted or unsubstituted arylamine group, pyrene, anthracene, chrysene, periflanthene and the like having an arylamine group may be used.
  • As the styrylamine compound a compound in which at least one arylvinyl group is substituted with a substituted or unsubstituted arylamine may be used.
  • styrylamine compound examples include, but are not limited to, styrylamine, styryldiamine, styryltriamine, and styryltetraamine.
  • metal complex an iridium complex, a platinum complex, or the like may be used, but is not limited thereto.
  • the electron control layer is a layer that blocks the inflow of holes from the emission layer to the cathode and controls the electrons flowing into the emission layer to control the performance of the entire device.
  • the electron controlling material is preferably a compound having the ability to prevent the inflow of holes from the emission layer to the cathode and to control electrons injected into the emission layer or the emission material.
  • a suitable material may be used according to the configuration of the organic material layer used in the device.
  • the electron control layer is located between the light emitting layer and the cathode, and is preferably provided in direct contact with the light emitting layer.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high mobility for electrons is suitable.
  • the electron transport material include an Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired negative electrode material as used according to the prior art.
  • the negative electrode material a material having a low work function; And an aluminum layer or a silver layer. Examples of the material having the low work function include cesium, barium, calcium, ytterbium, and samarium. After forming a layer with the material, an aluminum layer or a silver layer may be formed on the layer.
  • the electron injection layer is a layer for injecting electrons received from an electrode into the light emitting layer.
  • the electron injection material has an ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and prevents movement of excitons generated in the light emitting layer to the hole injection layer
  • Complex compounds and nitrogen-containing 5-membered ring derivatives but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
  • the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be formed by introducing various kinds of substituents substituted with deuterium as follows. Various compounds in the specific examples were synthesized through the following preparation method.
  • a glass substrate coated with a thin film of ITO (Indium Tin Oxide) to a thickness of 1,000 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO Indium Tin Oxide
  • Fischer Co. product was used as a detergent
  • distilled water secondarily filtered with a filter made by Millipore Co. was used as distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • HAT-CN hexaazatriphenylene-hexanitrile
  • the following compound NPB was vacuum-deposited on the hole injection layer to form a hole transport layer (300 ⁇ ).
  • An electron blocking layer (100 ⁇ ) was formed by vacuum depositing the following compound EB1 with a film thickness of 100 ⁇ on the hole transport layer.
  • a hole blocking layer was formed by vacuum depositing the following compound HB1 with a film thickness of 100 ⁇ on the emission layer.
  • the following compound ET1 and the compound LiQ were vacuum-deposited at a weight ratio of 1:1 to form an electron injection and transport layer with a thickness of 300 ⁇ .
  • Lithium fluoride (LiF) at a thickness of 12 ⁇ and aluminum at a thickness of 2,000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • the deposition rate of organic material was maintained at 0.4 ⁇ /sec to 0.7 ⁇ /sec, lithium fluoride at the negative electrode was maintained at 0.3 ⁇ /sec, and the deposition rate for aluminum was 2 ⁇ /sec.
  • ⁇ 10 -7 torr to 5 ⁇ 10 -6 torr, an organic light emitting device was manufactured.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 1-1, except that the compound of Table 1 below was used instead of the compound 4CzIPN in Comparative Example 1-1.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 1-1, except that the compounds of the following T1 to T6 were used instead of the compound 4CzIPN in Comparative Example 1-1.
  • the compound according to the present invention is applicable to a delayed fluorescent organic light-emitting device due to its excellent luminescence ability and high color purity.
  • a glass substrate coated with a thin film of ITO (Indium Tin Oxide) to a thickness of 1,000 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO Indium Tin Oxide
  • Fischer Co. product was used as a detergent
  • distilled water secondarily filtered with a filter made by Millipore Co. was used as distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • HAT-CN hexaazatriphenylene-hexanitrile
  • the following compound NPB was vacuum-deposited on the hole injection layer to form a hole transport layer (300 ⁇ ).
  • An electron blocking layer (100 ⁇ ) was formed by vacuum depositing the following compound EB1 with a film thickness of 100 ⁇ on the hole transport layer.
  • a hole blocking layer was formed by vacuum depositing the following compound HB1 with a film thickness of 100 ⁇ on the emission layer.
  • the following compound ET1 and the compound LiQ were vacuum-deposited at a weight ratio of 1:1 to form an electron injection and transport layer with a thickness of 300 ⁇ .
  • Lithium fluoride (LiF) at a thickness of 12 ⁇ and aluminum at a thickness of 2,000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ /sec to 0.7 ⁇ /sec, the lithium fluoride of the negative electrode maintained a deposition rate of 0.3 ⁇ /sec and the aluminum was maintained at a deposition rate of 2 ⁇ /sec.
  • An organic light emitting device was manufactured by maintaining 10 -7 torr to 5 ⁇ 10 -6 torr.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 2-1, except that the compound of Table 2 below was used instead of the compound 4CzIPN in Comparative Example 2-1.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 2-1, except that the compound of Table 2 below was used instead of the compound 4CzIPN in Comparative Example 2-1.
  • the compound according to the present invention has excellent luminescence ability and enables tuning of the emission wavelength, thereby enabling the implementation of an organic light emitting device with high color purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.

Description

중수소 함유 화합물 및 이를 포함하는 유기 발광 소자
본 발명은 중수소 함유 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 출원은 2018년 10월 26일 한국특허청에 제출된 한국 특허 출원 제10-2018-0128593호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 유기 발광 소자에 유리하게 사용될 수 있는 신규한 유기 화합물에 관한 것이다. 더욱 특히, 본 발명은 중수소가 치환된 열활성 지연 형광(TADF) 물질 및 이의 OLED에서의 용도에 관한 것이다.
삼중항 엑시톤로부터 일중항 엑시톤로의 역항간 교차(Reverse Intersystem Crossing: 이하, 적절히 「RISC」라고 약기함)가 일어나는 현상을 이용한 현상(열 활성형 지연 형광. 열 여기형 지연 형광이라고도 함: Thermally Activated Delayed Fluorescence: 이하, 적절히 「TADF」라고 약기함)을 이용한 형광 발광 재료와, 유기 EL 소자로의 이용 가능성이 보고되어 있다. TADF 기구에 의한 지연 형광을 이용하면, 전계 여기에 의한 형광 발광에 있어서도, 이론적으로는 인광 발광과 동등한 100%의 내부 양자 효율이 가능하게 된다.
TADF 현상을 발현시키기 위해서는, 실온 또는 발광 소자 중의 발광층 온도에서 전계 여기에 의해 발생한 75%의 삼중항 엑시톤으로부터 일중항 엑시톤으로의 역항간 교차가 일어날 필요가 있다. 또한, 역항간 교차에 의해 발생한 일중항 엑시톤이 직접 여기에 의해 발생한 25%의 일중항 엑시톤와 마찬가지로 형광 발광함으로써, 100%의 내부 양자 효율이 이론상 가능하게 된다. 이 역항간 교차가 일어나기 위해서는, 일중항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차(△ST)가 작을 것이 요구된다.
예를 들어, TADF 현상을 발현시키기 위해서는, 유기 화합물의 △ST를 작게 하는 것이 유효하고, △ST를 작게 하기 위해서는, 분자 내의 최고 점유 분자 오비탈(HOMO)와 최저 비점유 분자 오비탈(LUMO)를 혼재시키지 않고 명확하게 분리하는 것이 유리하다.
하지만, 분자 내의 최고 점유 분자 오비탈(HOMO)과 최저 비점유 분자 오비탈(LUMO)을 혼재시키지 않고 명확하게 분리시킬 경우 분자 내의 π 공액계가 축소 또는 절단되어, 안정성과 양립시키는 것이 곤란해지고, 결과적으로는 발광 소자의 수명을 단축시키게 된다.
그로 인해, TADF 수명을 높이는 새로운 방법이 요구되고 있다.
본 발명은 일중항 에너지 준위(S1D)와 삼중항 에너지 준위(T1D)의 차(△STD)가 작아 유기 발광 소자의 발광층에 포함되는 경우 소자의 효율이 높거나 수명 특성이 좋은 화합물; 및 이를 포함하는 유기 발광 소자를 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019014147-appb-I000001
상기 화학식 1에 있어서,
X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 N, C(A1), C(A2), C(A3), C(A4), C-H, C-D 또는 C-R'이며, R'은 아릴기이고,
단, (1) X1 내지 X6중 3개는 C-D이고, 1개는 C(A2)이고, 1개는 C(A4)이고, 1개는 N, C(A2), C(A4), C-H, C-D 또는 C-R'이거나, (2) X1 내지 X6 중 적어도 1개는 C(A1) 또는 C(A2)이고, 적어도 1개는 C(A3) 또는 C(A4)이되, X1 내지 X6 중 적어도 1개는 C(A1) 또는 C(A3)이며,
A1은 하기 a-1 내지 a-4 중 어느 하나이고, A1이 2 이상인 경우 A1은 서로 같거나 상이하고,
Figure PCTKR2019014147-appb-I000002
상기 a-1 내지 a-3에 있어서, a1은 1 내지 4의 정수이고, a2는 1 내지 8의 정수이고, a3는 1 내지 8의 정수이고,
A2는 하기 b-1 또는 b-2이고, A2가 2 이상인 경우 A2는 서로 같거나 상이하고,
Figure PCTKR2019014147-appb-I000003
A3는 하기 c-1 또는 c-2이고, A3가 2 이상인 경우 A3는 서로 같거나 상이하고,
Figure PCTKR2019014147-appb-I000004
A4는 하기 d-1 또는 d-2이며, A4가 2 이상인 경우 A4는 서로 같거나 상이하고,
Figure PCTKR2019014147-appb-I000005
상기 b-1, b-2, c-1 및 d-1에 있어서,
R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 알킬기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 어느 하나의 기이거나, 상기 군에서 선택된 2 이상의 기가 연결된 기이며,
b1은 0 내지 8의 정수이고, b1이 2 이상인 경우 R1은 서로 같거나 상이하고,
b2는 0 내지 4의 정수이고, b2가 2 이상인 경우 R2는 서로 같거나 상이하고,
b3는 0 내지 2의 정수이고, b3가 2인 경우 R3는 서로 같거나 상이하고,
b4는 0 내지 4의 정수이고, b4가 2 이상인 경우 R4는 서로 같거나 상이하다.
또한 본 명세서의 일 실시상태는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
몇몇 실시상태에 있어서, 본 발명의 화합물을 포함하는 유기 발광 소자는 효율이 높거나 수명 특성이 우수하다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 발광층에 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공 주입층(5), 정공 수송층(6), 정공 조절층(7), 발광층(8), 전자 수송층(9), 전자 주입층(10) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
<부호의 설명>
1: 기판
2: 양극
3: 유기물층
4: 음극
5: 정공 주입층
6: 정공 수송층
7: 정공 조절층
8: 발광층
9: 전자 수송층
10: 전자 주입층
이하 본 발명을 더욱 상세히 설명한다.
본 명세서에 있어서,
Figure PCTKR2019014147-appb-I000006
는 다른 치환기 또는 결합부에 결합되는 부위를 의미한다.
일 실시상태에 있어서, "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미한다. 상기 치환기가 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않는다. 상기 치환기가 2 이상인 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "에너지 준위"는 에너지 크기를 의미하는 것이다. 따라서 진공 준위로부터 마이너스(-) 방향으로 에너지 준위가 표시되는 경우에도, 에너지 준위는 해당 에너지 값의 절댓값을 의미하는 것으로 해석된다. 예컨대, 에너지 준위가 크다는 것은 진공 준위로부터 마이너스 방향으로 절댓값이 커지는 것을 의미한다. 또한 본 명세서에 있어서, 에너지 준위가 '깊다' 또는 '높다' 등의 표현은 에너지 준위가 크다는 표현과 그 의미가 같은 것이다.
본 명세서에 있어서, 삼중항 에너지 준위는 형광과 인광 측정이 가능한 분광 기기를 이용하여 측정 가능하다. 구체적으로, 액화질소를 이용한 극저온 상태에서 톨루엔이나 테트라하이드로퓨란(THF)을 용매로 하여 10-6M 농도로 용액을 제조하고, 용액에 물질의 흡수 파장대의 광원을 조사한 후, 발광 스펙트럼으로부터 일중항 에너지 준위로부터의 발광을 제외하고, 삼중항 에너지 준위에서 발광하는 스펙트럼을 분석하여 확인할 수 있다. 광원으로부터 전자가 여기되면 전자가 삼중항 에너지 준위에 머물게되는 시간이 일중항 에너지 준위에 머물게되는 시간보다 훨씬 길기 때문에 극저온 상태에서 두 성분의 분리가 가능하다. 본 명세서에 있어서, 일중항 에너지 준위의 경우 형광 기기를 이용하여 측정하며, 전술한 삼중항 에너지 준위 측정 방법과 달리 상온에서 광원을 조사하여 측정할 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우 뿐만 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서의 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄의 포화 탄화수소를 의미한다. 상기 알킬기의 탄소수는 특별히 한정되지 않으나 1 내지 40; 1 내지 20; 1 내지 10; 또는 1 내지 6이다. 상기 알킬기는 사슬형 또는 고리형일 수 있다.
상기 사슬형 알킬기의 구체적인 예로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸부틸, 1-에틸부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되지 않는다.
상기 고리형 알킬기(시클로알킬기)의 탄소수는 특별히 한정되지 않으나 3 내지 40; 3 내지 24; 3 내지 14; 또는 3 내지 8이다. 상기 시클로알킬기의 구체적인 예로는 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 전체적으로 또는 부분적으로 불포화된 치환 또는 비치환된 모노사이클릭 또는 폴리사이클릭을 의미한다. 탄소수는 특별히 한정되지 않으나 6 내지 60; 6 내지 40; 또는 6 내지 30이다. 상기 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 상기 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 있으나, 이에 한정되지 않는다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 크라이세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로플루오레닐기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 플루오레닐기가 치환될 수 있다고 할 때, 치환된 플루오레닐기는 플루오레닐기의 5각 고리의 치환기가 서로 스피로 결합하여 방향족 탄화수소를 형성하는 화합물까지 모두 포함하는 것이다. 상기 치환된 플루오렌은 9,9'-스피로바이플루오렌, 스피로[사이클로펜탄-1,9'-플루오렌], 스피로[벤조[c]플루오렌-7,9-플루오렌] 등을 포함하나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로아릴기는 이종원자로 N, O, S 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 2 내지 40; 2 내지 30; 또는 2 내지 20이다. 헤테로아릴기의 예로는 티오페닐기, 퓨라닐기, 피롤릴기, 이미다졸릴기, 티아졸릴기, 옥사졸릴기, 옥사디아졸릴기, 트리아졸릴기, 피리디닐기, 바이피리디닐기, 피리미디닐기, 트리아지닐기, 트리아졸릴기, 아크리디닐기, 카르볼리닐기, 아세나프토퀴녹살리닐기, 인데노퀴나졸리닐기, 인데노이소퀴놀리닐기, 인데노퀴놀리닐기, 피리도인돌기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀리닐기, 인돌릴기, 카바졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티아졸릴기, 벤조카바졸릴기, 벤조티오페닐기, 디벤조티오페닐기, 벤조퓨라닐기, 페난쓰롤리닐기(phenanthrolinyl), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페녹사지닐기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 헤테로아릴기는 지방족 헤테로아릴기와 방향족 헤테로아릴기를 포함한다.
이하 본 발명의 여러 실시상태에 대하여 보다 자세히 설명한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019014147-appb-I000007
상기 화학식 1에 있어서,
X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 N, C(A1), C(A2), C(A3), C(A4), C-H, C-D 또는 C-R'이며, R'은 아릴기이고,
단, (1) X1 내지 X6중 3개는 C-D이고, 1개는 C(A2)이고, 1개는 C(A4)이고, 1개는 N, C(A2), C(A4), C-H, C-D 또는 C-R'이거나, (2) X1 내지 X6 중 적어도 1개는 C(A1) 또는 C(A2)이고, 적어도 1개는 C(A3) 또는 C(A4)이되, X1 내지 X6 중 적어도 1개는 C(A1) 또는 C(A3)이다.
상기 화학식 1로 표시되는 화합물은 전자를 주는(electron donor) 역할을 하는 카바졸 또는 인돌로카바졸과 전자를 받는(electron acceptor) 역할을 하는 트리아진 또는 시아노기를 동시에 포함한다. 이로 인하여 화학식 1로 표시되는 화합물은 분자 내의 최고 점유 분자 오비탈(HOMO)과 최저 비점유 분자 오비탈(LUMO)의 오비탈 형태가 50% 이상 분리되어, 지연 형광 특성을 가질 수 있다.
인돌로카바졸이나 카바졸만 포함하는 구조에 비하여, 상기 화학식 1로 표시되는 화합물처럼 시아노기 또는 트리아진을 더 포함하는 구조는 삼중항 에너지와 일중항 에너지의 차이가 작기 때문에, 역계간 전이(RISC)를 통한 지연 형광 특성이 더 우수하다.
일 실시상태에 있어서, X1 내지 X6 중 적어도 1개는 C(A4)이고, A4는 d-2이다. A4가 d-2인 경우 -CN은 X1을 포함하는 중심 코어에 직접 결합된다. -CN이 X1을 포함하는 코어에 아릴기를 통하여 연결되면 공액(conjugation) 확장으로 인하여 LUMO(최저 비점유 분자 오비탈) 에너지 준위가 낮아지므로, 삼중항 에너지 준위와 일중항 에너지 준위의 차이가 커지게 되어 지연 형광 특성이 감소한다.
상기 화학식 1로 표시되는 화합물에 포함되는 카바졸 또는 인돌로카바졸은 질소가 X1을 포함하는 환과 결합된다. 이에, 상기 화학식 1로 표시되는 화합물은 카바졸 또는 인돌로카바졸의 탄소가 X1을 포함하는 환과 결합된 구조에 비하여 일중항과 삼중항 에너지 차이가 작아, 지연 형광 특성이 더 우수하다.
상기 화학식 1로 표시되는 화합물은 적어도 1개의 중수소를 포함하는 중수소 함유 화합물이다.
어떤 화합물에 존재하는 수소 중 일부 또는 전부를 중수소로 치환하는 경우, 대부분의 화학적 성질은 변화하지 않는다. 그러나, 중수소의 원자량은 수소의 원자량의 두배이므로, 화합물의 수소를 중수소로 치환하는 경우 화합물의 진동 모드가 작아지므로, 진동 에너지 준위가 낮아진다. 따라서 화합물에 존재하는 수소 원자가 중수소로 치환되는 경우, 분자간 반데르발스 힘이 감소하므로, 분자간 진동으로 인한 충돌에 기인한 양자 효율의 감소를 방지할 수 있다. 또한 C-D결합이 화합물의 안정성을 개선한다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 X1 내지 X6 중 어느 하나가 C-D, C(A1) 또는 C(A3)인 형태로, 중수소를 포함한다.
일 실시상태에 있어서, 상기 A1은 하기 a-1 내지 a-4 중 어느 하나이다.
Figure PCTKR2019014147-appb-I000008
상기 a-1 내지 a-3에 있어서, a1은 1 내지 4의 정수이고, a2는 1 내지 8의 정수이고, a3는 1 내지 8의 정수이다.
일 실시상태에 있어서, 상기 A3는 하기 c-1 또는 c-2이다.
Figure PCTKR2019014147-appb-I000009
일 실시상태에 있어서, 화학식 1로 표시되는 화합물은 a-1으로 표시되는 1 내지 4의 중수소가 치환된 카바졸을 포함한다. C-D 결합을 포함하는 화합물의 화학적 공정의 반응 속도는 역학적 동위 원소 효과로 인하여 C-H 결합만 포함하는 화합물에 비하여 느릴 수 있다. 발광성 화합물의 화학적 분해가 C-H 결합의 파괴를 수반하는 경우, 더 강한 C-D 결합으로 인하여 화합물의 안정성이 개선된다.
일 실시상태에 있어서, 상기 a1은 1이다.
일 실시상태에 있어서, 상기 a1은 2이다.
일 실시상태에 있어서, 상기 a1은 4이다.
일 실시상태에 있어서, 상기 a-1은 하기 a-11 내지 a-15 중 어느 하나이다.
Figure PCTKR2019014147-appb-I000010
일 실시상태에 있어서, 상기 화학식 1의 화합물은 a-2로 표시되는 -CD3가 치환된 카바졸을 포함한다.
카바졸의 벤젠고리에 -CH3가 치환시, 벤질성 양성자는 특히 반응성이 있을 수 있어서 발광성 화합물에서 화학적 분해가 용이할 수 있다. 이 때 상기 -CH3 내 수소를 중수소로 치환하면, 화합물의 안정성을 증가시킬 수 있다. C-H 보다 C-D의 반데르발스 반지름이 더 작으므로, -CD3는 -CH3에 비하여 입체장애가 적은 치환기이다. 이에, -CD3를 카바졸의 벤젠 고리에 치환기로 가지는 경우, 방향족 고리상의 꼬임(twist)이 적어 화합물의 공액(conjugation)을 개선시킬 수 있고, 소자의 효율 및 수명의 개선이 가능하다.
일 실시상태에 있어서, 상기 a2는 1이다.
일 실시상태에 있어서, 상기 a2는 2이다.
일 실시상태에 있어서, 상기 a-2는 하기 a-21 또는 a-22이다.
Figure PCTKR2019014147-appb-I000011
일 실시상태에 있어서, 상기 화학식 1의 화합물은 a-3로 표시되는 -C6D5가 치환된 카바졸을 포함한다.
페닐기가 카바졸에 치환되는 경우 페닐기를 통하여 HOMO(최고 점유 분자 오비탈) 분포가 넓어질 수 있고, 페닐기의 수소가 중수소로 치환되는 경우 C-D 결합이 화합물의 안정성을 개선할 수 있다. 따라서, 소자의 효율 및 수명의 개선이 가능하다.
일 실시상태에 있어서, 상기 a3는 1이다.
일 실시상태에 있어서, 상기 a-3은 하기 a-31 내지 a-33 중 어느 하나이다.
Figure PCTKR2019014147-appb-I000012
일 실시상태에 있어서, 상기 A2는 하기 b-1 또는 b-2이고, A2가 2 이상인 경우 A2는 서로 같거나 상이하고,
Figure PCTKR2019014147-appb-I000013
상기 A4는 하기 d-1 또는 d-2이며, A4가 2 이상인 경우 A4는 서로 같거나 상이하고,
Figure PCTKR2019014147-appb-I000014
상기 b-1, b-2 및 d-1에 있어서,
R1 내지 R5, R7 및 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 알킬기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 어느 하나의 기이거나, 상기 군에서 선택된 2 이상의 기가 연결된 기이며,
b1은 0 내지 8의 정수이고, b1이 2 이상인 경우 R1은 서로 같거나 상이하고,
b2는 0 내지 4의 정수이고, b2가 2 이상인 경우 R2는 서로 같거나 상이하고,
b3는 0 내지 2의 정수이고, b3가 2인 경우 R3는 서로 같거나 상이하고,
b4는 0 내지 4의 정수이고, b4가 2 이상인 경우 R4는 서로 같거나 상이하다.
일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시된다.
[화학식 1-1]
Figure PCTKR2019014147-appb-I000015
상기 화학식 1-1에 있어서,
X는 N 또는 CR26이고, R26은 A1, A2, A3, A4, H, D 또는 아릴기이며,
R21 내지 R25 중 적어도 1개는 A1 또는 A2이고, 적어도 1개는 A3 또는 A4이되, R21 내지 R25 중 적어도 1개는 A1 또는 A3이며,
[화학식 1-2]
Figure PCTKR2019014147-appb-I000016
상기 화학식 1-2에 있어서,
R27은 A2이고, R28은 A4이고, R29는 A2, A4, H, D 또는 아릴기이고,
상기 화학식 1-1 및 1-2에 있어서, A1, A2, A3 및 A4의 정의는 화학식 1에서 정의한 바와 같다.
일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; C1-C10의 알킬기; C6-C30의 아릴기; 및 C2-C30의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나의 기이거나, 상기 군에서 선택된 2 이상의 기가 연결된 기이다.
일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; C1-C6의 알킬기; C6-C25의 아릴기; 및 C2-C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나의 기이거나, 상기 군에서 선택된 2 이상의 기가 연결된 기이다.
일 실시상태에 있어서, R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; C1-C4의 알킬기; C6-C18의 아릴기; 및 C2-C18의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나의 기이거나, 상기 군에서 선택된 2 이상의 기가 연결된 기이다.
일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 메틸기; 알킬기로 치환 또는 비치환된 아릴기; 또는 아릴기로 치환 또는 비치환된 헤테로아릴기이다.
일 실시상태에 있어서, R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 메틸기; 페닐기; 나프틸기; 디메틸플루오레닐기; 디벤조퓨라닐기; 디벤조티오페닐기; 또는 페닐기로 치환된 카바졸릴기이다.
일 실시상태에 있어서, 상기 R1은 메틸기; 페닐기; 또는 페닐기로 치환된 카바졸릴기이다.
일 실시상태에 있어서, 상기 R2 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 페닐기; 디메틸플루오레닐기; 나프틸기; 디벤조퓨라닐기; 또는 디벤조티오페닐기이다.
일 실시상태에 있어서, 상기 R2 내지 R6는 서로 같거나 상이하고, 각각 독립적으로 수소; 페닐기; 디메틸플루오레닐기; 나프틸기; 디벤조퓨라닐기; 또는 디벤조티오페닐기이다.
일 실시상태에 있어서, 상기 R6 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 페닐기; 디벤조퓨라닐기; 디벤조티오페닐기; 또는 페닐기로 치환된 카바졸릴기이다.
일 실시상태에 있어서, 상기 R5 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 페닐기; 디벤조퓨라닐기; 디벤조티오페닐기; 또는 페닐기로 치환된 카바졸릴기이다.
일 실시상태에 있어서, 상기 R'은 C6-C36의 아릴기; C6-C30의 아릴기; 또는 C6-C25의 아릴기이다.
일 실시상태에 있어서, 상기 R'은 페닐기이다.
일 실시상태에 있어서, 상기 X1 내지 X6중 3개는 C-D이고, 1개는 C(A2)이고, 1개는 C(A4)이고, 1개는 C(A2), C(A4), C-H, C-D 또는 C-R'이다.
일 실시상태에 있어서, 상기 X1 내지 X6중 3개는 C-D이고, 1개는 C(A2)이고, 1개는 C(A4)이고, 1개는 C(A2) 또는 C(A4)이다.
일 실시상태에 있어서, 상기 X1 내지 X6 중 적어도 하나는 C(A1)이다.
일 실시상태에 있어서, 상기 X1 내지 X6 중 적어도 하나는 C(A3)이다.
일 실시상태에 있어서, 상기 X1 내지 X6 중 0 또는 1은 N이다.
일 실시상태에 있어서, 상기 X1 내지 X6 중 적어도 1개는 C(A4)이고, A4는 d-2이다.
일 실시상태에 있어서, 상기 X1 내지 X6 중 적어도 2개는 C(A4)이고, 2개의 A4는 각각 d-2이다.
일 실시상태에 있어서, 상기 화학식 1-2는 하기 화학식 2로 표시된다.
[화학식 2]
Figure PCTKR2019014147-appb-I000017
상기 화학식 2에 있어서, R27 내지 R29의 정의는 화학식 1-2에서 정의한 바와 같다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화합물 중에서 선택된 어느 하나이다.
Figure PCTKR2019014147-appb-I000018
Figure PCTKR2019014147-appb-I000019
Figure PCTKR2019014147-appb-I000020
Figure PCTKR2019014147-appb-I000021
Figure PCTKR2019014147-appb-I000022
Figure PCTKR2019014147-appb-I000023
Figure PCTKR2019014147-appb-I000024
Figure PCTKR2019014147-appb-I000025
Figure PCTKR2019014147-appb-I000026
Figure PCTKR2019014147-appb-I000027
Figure PCTKR2019014147-appb-I000028
.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 형광 재료이다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 지연 형광 재료이다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 발광층의 녹색 도판트로 사용할 수 있다.
본 명세서의 일 실시상태는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 발광층을 포함하고, 상기 발광층은 전술한 화학식 1로 표시되는 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
일 실시상태에 있어서, 상기 발광층은 전술한 화학식 1로 표시되는 화합물만으로 구성될 수도 있고, 상기 화학식 1로 표시되는 화합물 이외의 기타 다른 물질을 더 포함할 수도 있다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 호스트로 사용될 수도 있고, 기타 호스트 물질과 함께 사용되어 도판트의 역할을 할 수도 있다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 호스트에서 정공과 전자를 전달받아 엑시톤을 생성할 수도 있고, 호스트를 거치지 않고 발광층의 인접한 층으로부터 직접 정공과 전자를 전달받아 엑시톤을 생성할 수도 있다. 그러나, 상기 화학식 1로 표시되는 화합물의 발광층에서의 역할은 이에 한정되지 않으며, 발광층에 포함되는 화합물의 조합에 따라서 다양한 방식으로 소자의 특성의 향상에 기여할 수 있다.
본 명세서의 일 실시상태는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 도판트로 포함하고, 호스트를 더 포함한다.
일 실시상태에 있어서, 발광층에서 발광이 일어날 수 있는 메커니즘은 한정되지 않으며, 발광층에 사용하는 화합물에 따라서 달라질 수 있다.
일 실시상태에 있어서, 호스트를 통해 정공과 전자가 상기 화학식 1로 표시되는 화합물(도판트)로 이동하여 도판트에서 엑시톤이 삼중항과 일중항에 3:1 비율로 생성된 후, 도판트의 삼중항에 생성된 엑시톤은 도판트의 일중항으로 전이되어 발광하고, 일중항에 생성된 엑시톤은 일중항에서 그대로 발광할 수 있다. 또 다른 실시상태에 있어서, 발광층에 매트릭스 재료로만 작용하는 호스트가 포함되고, 정공; 전자; 또는 정공과 전자가 호스트를 통하지 않고 도판트로 주입되어 삼중항과 일중항에 엑시톤이 형성될 수도 있다. 그러나, 이는 발광 메커니즘의 하나의 예시일 뿐이며, 기타 다른 발광 메커니즘에 의하여 발광이 일어날 수 있다.
일 실시상태에 있어서, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 도판트로 포함한다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물의 발광 파장은 500nm 내지 565nm이다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물의 일중항 에너지 준위(S1D)와 삼중항 에너지 준위(T1D)의 차(△STD)는 0eV 이상 0.3eV 이하; 바람직하게는 0eV 이상 0.2eV 이하이다.
본 명세서에 있어서, 상기 화학식 1로 표시되는 화합물의 일중항 에너지 준위(S1D)와 삼중항 에너지 준위(T1D)의 차(△STD)는 T1D-S1D의 절댓값을 의미한다.
상기 화학식 1로 표시되는 화합물의 일중항 에너지 준위(S1D)와 삼중항 에너지(T1D) 준위의 차가 상기 범위를 만족하는 경우, 삼중항에 생성된 엑시톤이 역계간전이(RISC)에 의해 일중항으로 이동하는 비율 및 속도가 증가하여 삼중항에 엑시톤이 머무는 시간이 줄어들게 되므로 유기 발광 소자의 효율 및 수명이 증가하는 이점이 있다.
일 실시상태에 있어서, 상기 호스트의 삼중항 에너지 준위(T1H)는 2.4eV 이상이다.
일 실시상태에 있어서, 상기 호스트의 일중항 에너지 준위(S1H)는 2.1eV 내지 2.8eV이다.
일 실시상태에 있어서, 상기 호스트의 삼중항 에너지 준위(T1H)는 상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위(T1D)보다 높다.
일 실시상태에 있어서, 상기 호스트의 일중항 에너지 준위(S1H)는 상기 화학식 1로 표시되는 화합물의 일중항 에너지 준위(S1D)보다 높으며, 상기 에너지 관계를 만족하면 도판트의 엑시톤이 호스트로 역이동하는 것을 방지할 수 있다.
일 실시상태에 있어서, 상기 호스트는 디벤조퓨란; 디벤조퓨란 유도체; 디벤조티오펜; 또는 디벤조티오펜 유도체일 수 있다.
일 실시상태에 있어서, 상기 호스트는 하기 구조들 중 선택된 적어도 어느 하나이다.
Figure PCTKR2019014147-appb-I000029
Figure PCTKR2019014147-appb-I000030
Figure PCTKR2019014147-appb-I000031
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층은 형광 발광 물질을 더 포함할 수 있다.
상기 발광층이 형광 발광 물질을 더 포함할 경우 상기 화학식 1로 표기되는 화합물에서 형광 발광 물질로 엑시톤이 이동하여 형광 발광형 물질에서 최종 발광을 하기 때문에 좁은 반치폭을 갖는 형광 발광형 물질을 이용하여 소자의 색순도를 높일 수 있고, 상기 화학식 1로 표기되는 화합물의 엑시톤-폴라론 퀜칭을 방지하여 소자의 수명이 증가할 수 있다.
일 실시상태에 있어서, 상기 발광층은 기타 형광 발광형 물질을 더 포함할 수 있다.
일 실시상태에 있어서, 상기 형광 발광형 물질은 플루오렌 유도체; 나프탈렌 유도체; 안트라센 유도체; 테트라센 유도체; 파이렌 유도체; 크라이센 유도체; 플루오란텐 유도체; 페릴렌 유도체; 퀴놀리노[2,3-b]아크리딘-7,14(5H,12H)-다이온(quinolino[2,3-b]acridine-7,14(5H,12H)-dione) 유도체; 4H-크로민(4H-chromene) 유도체; 1,2,3,5,6,7-헥사하이드로피리도[3,2,1-ij]퀴놀린(1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline) 유도체; 벤조-꺙-파이론(benzo-꺙-pyrone)(=coumarine) 유도체; 4H-파이란(4H-pyran) 유도체; 벤조[d]싸이아졸(benzo[d]thiazole) 유도체; 피롤 유도체; 퀴나졸 유도체; 카바졸 유도체; 2,3,6,7-테트라하이드로-1H-피라노[2,3-f]피리도[3,2,1-ij]퀴놀린-11(5H)-온(2,3,6,7-tetrahydro-1H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11(5H)-one) 유도체; 및 보론계 유도체 등일 수 있으나, 이에 한정되지 않는다.
일 실시상태에 있어서, 상기 유기 발광 소자는 상기 화학식 1로 표시되는 화합물을 포함하는 발광층 이외에, 인광 발광형의 발광층을 더 포함한다.
일 실시상태에 있어서, 상기 유기 발광 소자는 복수의 발광층을 포함하고, 상기 발광층은 서로 인접하여 형성된다.
본 명세서에 있어서, 어떤 유기물층이 어떤 화합물을 포함한다고 할 때, 이는 1종 이상의 화합물이 포함되는 것을 의미한다.
일 실시상태에 있어서, 상기 발광층에 화학식 1로 표시되는 화합물이 1종 이상 포함된다고 할 때, 화학식 1로 표시되는 화합물의 중량부는 상기 화학식 1로 표시되는 1종 이상의 화합물의 중량부의 합을 의미한다.
일 실시상태에 있어서, 상기 유기 발광 소자는 1층 이상의 유기물층을 더 포함한다.
일 실시상태에 있어서, 상기 유기 발광 소자는 상기 제1 전극과 상기 발광층 사이에 1층 이상의 유기물층을 더 포함한다.
일 실시상태에 있어서, 상기 유기 발광 소자는 상기 제2 전극과 상기 발광층 사이에 1층 이상의 유기물층을 더 포함한다.
일 실시상태에 있어서, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 정공 수송과 주입을 동시에 하는 층, 정공 조절층, 발광층, 전자 조절층, 전자 수송층, 전자 주입층, 전자 수송 및 주입을 동시에 하는 층 등을 포함하는 구조를 가질 수 있다.
일 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 노말 구조(normal type)의 유기 발광 소자일 수 있다.
일 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
본 발명의 일 실시상태에 따른 유기 발광소자는 도 1에 도시한 바와 같이, 기판(1), 양극(2), 발광층(8) 및 음극(4)으로 이루어질 수 있다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층(8)에 포함된다.
본 발명의 일 실시상태에 따른 유기 발광 소자는 도 2에 도시된 바와 같이 기판(1), 양극(2), 정공 주입층(5), 정공 수송층(6), 정공 조절층(7), 발광층(8), 전자 수송층(9), 전자 주입층(10) 및 음극(4)으로 이루어질 수 있다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층(8)에 포함된다.
그러나, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 및 도 2에 한정되지 않고, 하기의 구조 중 어느 하나일 수 있다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공수송층/발광층/전자수송층/음극
(4) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(5) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(7) 양극/정공수송층/정공조절층/발광층/전자수송층/음극
(8) 양극/정공수송층/정공조절층/발광층/전자수송층/전자주입층/음극
(9) 양극/정공주입층/정공수송층/정공조절층/발광층/전자수송층/음극
(10) 양극/정공수송층/발광층/전자조절층/전자수송층/음극
(11) 양극/정공수송층/발광층/전자조절층/전자수송층/전자주입층/음극
(12) 양극/정공주입층/정공수송층/발광층/전자조절층/전자수송층/음극
(13) 양극/정공주입층/정공수송층/발광층/전자조절층/전자수송층/전자주입층/음극
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 서로 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 물리적 증착 방법(PVD, physical Vapor Deposition)을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다. 다만, 제조 방법이 이에 한정되는 것은 아니다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 수취받은 정공을 발광층 또는 발광층쪽으로 구비된 인접한 층에 주입하는 층이다. 상기 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광 재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 엑시톤의 전자 주입층 또는 전자 주입 재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물을 사용하는 것이 바람직하다. 상기 정공 주입 물질의 최고 점유 분자 오비탈(HOMO)은 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 상기 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 수송층은 정공 주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층이다. 상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 조절층은 발광층으로주터 전자가 양극으로 유입되는 것을 방지하고 발광층으로 유입되는 정공의 흐름을 조절하여 소자 전체의 성능을 조절하는 층이다. 상기 정공 조절 물질로는 발광층으로부터 양극으로의 전자의 유입을 방지하고, 발광층 또는 발광 재료에 대하여 주입되는 정공의 흐름을 조절하는 능력을 갖는 화합물이 바람직하다. 일 실시상태에 있어서, 전자 차단층으로는 아릴아민 계열의 유기물이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 본 발명의 일 실시상태에 있어서, 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 발광층은 기타 발광 물질을 발광층에 더 포함하거나, 상기 화학식 1로 표시되는 화합물을 포함하지 않는 발광층은 기타 발광 물질을 포함할 수 있다. 기타 발광 물질의 구체적인 예로는 8-하이드록시퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-하이드록시벤조퀴놀린-금속 화합물; 벤즈옥사졸, 벤조티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
일 실시상태에 있어서, 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 파이렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 발광층의 호스트 재료로 사용할 수 있다.
상기 발광층의 도판트 재료로는 방향족 아민 유도체, 스티릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 상기 방향족 아민 유도체로는 치환 또는 비치환된 아릴아민기를 갖는 축합 방향족환 유도체로서, 아릴아민기를 갖는 파이렌, 안트라센, 크라이센, 페리플란텐 등을 사용할 수 있다. 상기 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환된 화합물을 사용할 수 있다. 상기 스티릴아민 화합물의 예로는 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체로는 이리듐 착체, 백금 착체 등을 사용할 수 있으나, 이에 한정되지 않는다.
상기 전자 조절층은 발광층으로부터 정공이 음극으로 유입되는 것을 차단하고 발광층으로 유입되는 전자를 조절하여 소자 전체의 성능을 조절하는 층이다. 전자 조절 물질로는 발광층으로부터 음극으로의 정공의 유입을 방지하고, 발광층 또는 발광 재료에 대하여 주입되는 전자를 조절하는 능력을 갖는 화합물이 바람직하다. 전자 조절 물질로는 소자 내 사용되는 유기물층의 구성에 따라 적절한 물질을 사용할 수 있다. 상기 전자 조절층은 발광층과 음극 사이에 위치하며, 바람직하게는 발광층에 직접 접하여 구비된다.
상기 전자 수송층은 전자 주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층이다. 상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 상기 전자 수송 물질의 예로는 8-하이드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 하이드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 음극 물질과 함께 사용할 수 있다. 일 실시상태에 있어서, 상기 음극 물질로는 낮은 일함수를 가지는 물질; 및 알루미늄층 또는 실버층을 사용할 수 있다. 상기 낮은 일함수를 가지는 물질의 예로는 세슘, 바륨, 칼슘, 이테르븀 및 사마륨 등이 있으며, 상기 물질로 층을 형성한 후 알루미늄 층 또는 실버층을 상기 층 위에 형성할 수 있다.
상기 전자 주입층은 전극으로부터 수취받은 전자를 발광층에 주입하는 층이다. 상기 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자 주입 효과를 가지며, 발광층에서 생성된 엑시톤의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하기 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
<제조예>
상기 화학식 1로 표시되는 화합물은 하기와 같이 중수소가 치환된 다양한 종류의 치환기를 도입하여 형성할 수 있다. 하기 제조 방법을 통해 구체예 상의 다양한 화합물들을 합성하였다.
제조예 1-1: 화합물 1의 합성
Figure PCTKR2019014147-appb-I000032
2,5-다이플루오로테레프탈로나이트릴 10g(60.9mmol), 9H-카바졸-1,2,3,4-d4 122mmol, 디메틸포름아미드(DMF) 100mL 및 포타슘카보네이트 244mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 1(25.6 g)을 얻었다(수율 90%).
MS[M+H]+ = 467
제조예 1-2: 화합물 2의 합성
Figure PCTKR2019014147-appb-I000033
2,3,5,6-테트라플루오로테레프탈로나이트릴 12.2g(60.9mmol), 9H-카바졸-1,2,3,4-d4 243.6mmol, DMF 120mL 및 포타슘카보네이트 487mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 2(39.7 g)를 얻었다(수율 81%).
MS[M+H]+ = 805
제조예 1-3: 화합물 3의 합성
Figure PCTKR2019014147-appb-I000034
2,4,5,6-테트라플루오로아이소프탈로나이트릴 12.2g(60.9mmol), 9H-카바졸-4-d 243.6mmol, DMF 120mL 및 포타슘카보네이트 487mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 3(40.1 g)을 얻었다(수율 83%).
MS[M+H]+ = 793
제조예 1-4: 화합물 4의 합성
Figure PCTKR2019014147-appb-I000035
2,4,6-트라이플루오로아이소프탈로나이트릴 11.1g(60.9mmol), 9H-카바졸-1-d 182.7mmol, DMF 110mL 및 포타슘카보네이트 365.4mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 4(30.5 g)를 얻었다(수율 80%).
MS[M+H]+ = 627
제조예 1-5: 화합물 5의 합성
Figure PCTKR2019014147-appb-I000036
2,4,5,6-테트라플루오로아이소프탈로나이트릴 12.2g(60.9mmol), 9H-카바졸-2,4,5,7-d4 243.6mmol, DMF 120mL 및 포타슘카보네이트 487mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 5(37.8 g)를 얻었다(수율 77%).
MS[M+H]+ = 807
제조예 1-6: 화합물 6의 합성
Figure PCTKR2019014147-appb-I000037
3,6-다이플루오로프탈로나이트릴 10g(60.9mmol), 3-(페닐-d5)-9H-카바졸 121.8mmol, DMF 100mL 및 포타슘카보네이트 243.6mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 6(31.7 g)을 얻었다(수율 84%).
MS[M+H]+ = 621
제조예 1-7: 화합물 7의 합성
Figure PCTKR2019014147-appb-I000038
5-(4,6-다이페닐 -1,3,5-트리아진-2-일)-2,4-다이플루오로벤조나이트릴 22.6g(60.9mmol), 9H-카바졸-2,4,5,7-d4 121.8mmol, DMF 200mL 및 포타슘카보네이트 243.6mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 7(33.2 g)을 얻었다(수율 81%).
MS[M+H]+ = 673
제조예 1-8: 화합물 8의 합성
Figure PCTKR2019014147-appb-I000039
2,4-다이페닐-6-(3,4,5-트라이플루오로페닐)-1,3,5-트리아진 22.1g(60.9mmol), 3,6-비스(메틸-d3)-9H-카바졸 182.7mmol, DMF 220mL 및 포타슘카보네이트 365.4mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 8(44.1 g)을 얻었다(수율 83%).
MS[M+H]+ = 873
제조예 1-9: 화합물 9의 합성
Figure PCTKR2019014147-appb-I000040
2,6-다이플루오로-4-페닐피리딘-3,5-다이카보나이트릴 14.7g(60.9mmol), 3-(메틸-d3)-9H-카바졸 121.8mmol, DMF 150mL 및 포타슘카보네이트 243.6mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 9(25.3 g)를 얻었다(수율 73%).
MS[M+H]+ = 570
제조예 1-10: 화합물 10의 합성
Figure PCTKR2019014147-appb-I000041
3-(4,6-다이페닐-1,3,5-트리아진-2-일)-4-플루오로벤조나이트릴 21.5g(60.9mmol), 2-(페닐-d5)-9H-카바졸 60.9mmol, DMF 220mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 10(25.1 g)을 얻었다(수율 71%).
MS[M+H]+ = 581
제조예 1-11: 화합물 11의 합성
Figure PCTKR2019014147-appb-I000042
5-(4-(다이벤조[b,d]사이오펜-2-일)-6-페닐-1,3,5-트릴아진-2-일)-2-플루오로벤조나이트릴 27.9g(60.9mmol), 5-(페닐-d5)-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 280mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 11(38.3 g)을 얻었다(수율 81%).
MS[M+H]+ = 776
제조예 1-12: 화합물 12의 합성
Figure PCTKR2019014147-appb-I000043
3-(4-(3-(4,6-다이페닐-1,3,5-트리아진-2-일)-4-플루오로페닐-2,5,6-d3)-6-페닐-1,3,5-트리아진-2-일)-9-페닐-9H-카바졸 44.3g(60.9mmol), 5-(9,9-다이메틸-9H-플루오렌-2-일)-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 400mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 12(49.2 g)를 얻었다(수율 70%).
MS[M+H]+ = 1155
제조예 1-13: 화합물 13의 합성
Figure PCTKR2019014147-appb-I000044
4-플루오로-3-(4-페닐-6-(9-페닐-9H-카바졸-3-일)-1,3,5-트리아진-2-일)벤조나이트릴-2,5,6-d3 31.7g(60.9mmol), 5-페닐-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 300mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 13(34.5 g)을 얻었다(수율 68%).
MS[M+H]+ = 833
제조예 1-14: 화합물 14의 합성
Figure PCTKR2019014147-appb-I000045
2-(다이벤조[b,d]사이오펜-2-일)-4-(3-(4,6-다이페닐-1,3,5-트리아진-2-일)-4-플루오로페닐-2,5,6-d3)-6-페닐-1,3,5-트리아진 40.7g(60.9mmol), 5-(다이벤조[b,d]퓨란-2-일)-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 350mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 14(46.9 g)를 얻었다(수율 72%).
MS[M+H]+ = 1070
제조예 1-15: 화합물 15의 합성
Figure PCTKR2019014147-appb-I000046
5-(4,6-비스(페닐-d5)-1,3,5-트리아진-2-일)-2-플루오로벤조나이트릴 22.1g(60.9mmol), 5-페닐-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 220mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 15(35.7 g)를 얻었다(수율 87%).
MS[M+H]+ = 675
제조예 1-16: 화합물 16의 합성
Figure PCTKR2019014147-appb-I000047
3-(4-(다이벤조[b,d]퓨란-2-일)-6-(페닐-d5)-1,3,5-트리아진-2-일)-4-플루오로벤조나이트릴 27.2g(60.9mmol), 5-페닐-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 250mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 16(35.2 g)을 얻었다(수율 76%).
MS[M+H]+ = 760
제조예 1-17: 화합물 17의 합성
Figure PCTKR2019014147-appb-I000048
2-(4-플루오로페닐)-4,6-비스(페닐-d5)-1,3,5-트리아진 20.5g(60.9mmol), 9'H-9,3':6',9''-터카바졸 60.9mmol, DMF 200mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 17(36.2 g)을 얻었다(수율 73%).
MS[M+H]+ = 815
제조예 1-18: 화합물 18의 합성
Figure PCTKR2019014147-appb-I000049
6,6'-(4-플루오로-1,3-페닐렌)비스(2,4-비스(페닐-d5)-1,3,5-트리아진) 35.2g(60.9mmol), 5-(다이벤조[b,d]사이오펜-2-일)-5,12-다이하이드로인돌로[3,2-a]카바졸 60.9mmol, DMF 300mL 및 포타슘카보네이트 121.8mmol를 혼합하고 100℃로 가열하여 3시간 동안 교반하였다. 반응 후 실온으로 냉각시킨 반응 용액을 필터하여 고체를 얻은 후, 이 고체를 테트라하이드로퓨란과 에탄올로 2회 재결정을 실시하여, 화합물 18(45.5 g)을 얻었다(수율 75%).
MS[M+H]+ = 997
<비교예 1-1>
ITO(Indium Tin Oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤 및 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ITO 투명 전극 위에 각 박막을 진공 증착법으로 진공도 5.0×10-4 ㎩로 적층하였다. 먼저, ITO 상에 헥사아자트리페닐렌-헥사니트릴(HAT-CN)을 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
상기 정공 주입층 위에 하기 화합물 NPB를 진공 증착하여 정공 수송층(300Å)을 형성하였다.
상기 정공 수송층 위에 막 두께 100Å으로 하기 화합물 EB1를 진공 증착하여 전자 저지층(100Å)을 형성하였다.
이어서, 상기 전자 저지층 위에 막 두께 300Å으로 하기 화합물 m-CBP와 4CzIPN을 70:30의 중량비로 진공 증착하여 발광층을 형성하였다.
상기 발광층 위에 막 두께 100Å으로 하기 화합물 HB1을 진공 증착하여 정공 저지층을 형성하였다.
상기 정공 저지층 위에 하기 화합물 ET1과 화합물 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 2,000Å두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4Å/sec 내지 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7torr 내지 5×10-6torr를 유지하여, 유기 발광소자를 제작하였다.
Figure PCTKR2019014147-appb-I000050
<실험예 1-1 내지 1-18>
상기 비교예 1-1에서 화합물 4CzIPN 대신 하기 표 1의 화합물을 사용한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<비교예 1-2 내지 1-7>
상기 비교예 1-1에서 화합물 4CzIPN 대신 하기 T1 내지 T6의 화합물을 사용한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2019014147-appb-I000051
실험예 1-1 내지 1-18 및 비교예 1-1 내지 1-7의 유기 발광 소자에 대하여 10㎃/㎠의 전류밀도에서 측정한 구동 전압(V)과 전류효율(cd/A), 3000cd/m2의 휘도에서 측정한 CIE 색좌표 및 3000cd/m2에서 밝기가 95%로 감소될 때까지의 시간(T95)을 측정하여, 하기 표 1에 나타내었다.
구분 화합물(발광층) 전압(V) 효율(cd/A) CIE 색좌표(x,y) T95(hr)
실험예 1-1 1 4.1 21 (0.23, 0.62) 99
실험예 1-2 2 4.2 20 (0.23, 0.63) 95
실험예 1-3 3 4.0 20 (0.22, 0.64) 97
실험예 1-4 4 4.1 22 (0.23, 0.63) 98
실험예 1-5 5 4.1 21 (0.22, 0.64) 95
실험예 1-6 6 4.0 21 (0.22, 0.63) 92
실험예 1-7 7 4.2 20 (0.22, 0.63) 92
실험예 1-8 8 4.1 20 (0.23, 0.63) 97
실험예 1-9 9 4.2 21 (0.22, 0.64) 99
실험예 1-10 10 4.1 22 (0.23, 0.63) 95
실험예 1-11 11 4.0 21 (0.22, 0.64) 94
실험예 1-12 12 4.1 20 (0.23, 0.64) 92
실험예 1-13 13 4.2 21 (0.22, 0.62) 90
실험예 1-14 14 4.1 20 (0.22, 0.63) 96
실험예 1-15 15 4.1 22 (0.23, 0.62) 94
실험예 1-16 16 4.0 21 (0.22, 0.63) 96
실험예 1-17 17 4.0 20 (0.23, 0.63) 99
실험예 1-18 18 4.0 23 (0.23, 0.64) 100
비교예 1-1 4CzIPN 4.7 15 (0.21, 0.61) 53
비교예 1-2 T1 4.7 14 (0.22, 0.60) 51
비교예 1-3 T2 4.8 15 (0.21, 0.61) 54
비교예 1-4 T3 4.8 3 (0.12, 0.24) 10
비교예 1-5 T4 4.9 4 (0.18, 0.31) 9
비교예 1-6 T5 4.8 1 (0.16, 0.23) 2
비교예 1-7 T6 4.7 5 (0.17, 0.33) 3
상기 표 1에서 보는 바와 같이, 상기 화학식 1의 화합물을 사용한 실험예 1-1 내지 1-18의 소자는 비교예 1-1에서 화합물 4CzIPN의 물질을 사용한 소자보다 전압이 낮아지고, 효율이 향상되었다. 또한, 비교예 1-2 내지 1-7보다 상기 화학식 1의 화합물을 사용한 소자가 전압, 효율 및 색순도 면에서 특성이 모두 향상됨을 알 수 있었다.
따라서, 본 발명에 따른 화합물은 발광 능력이 우수하고 색순도가 높아 지연 형광 유기 발광 소자에 적용 가능함을 확인할 수 있었다.
<비교예 2-1>
ITO(Indium Tin Oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤 및 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ITO 투명 전극 위에 각 박막을 진공 증착법으로 진공도 5.0×10-4㎩로 적층하였다. 먼저, ITO 상에 헥사아자트리페닐렌-헥사니트릴(HAT-CN)을 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
상기 정공 주입층 위에 하기 화합물 NPB를 진공 증착하여 정공 수송층(300Å)을 형성하였다.
상기 정공 수송층 위에 막 두께 100Å으로 하기 화합물 EB1를 진공 증착하여 전자 저지층(100Å)을 형성하였다.
이어서, 상기 전자 저지층 위에 막 두께 300Å으로 하기 화합물 m-CBP 4CzIPN 및 GD1을 68:30:2의 중량비로 진공 증착하여 발광층을 형성하였다.
상기 발광층 위에 막 두께 100Å으로 하기 화합물 HB1을 진공 증착하여 정공 저지층을 형성하였다.
상기 정공 저지층 위에 하기 화합물 ET1과 화합물 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4Å/sec내지 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7torr 내지 5×10-6torr를 유지하여, 유기 발광소자를 제작하였다.
Figure PCTKR2019014147-appb-I000052
<실험예 2-1 내지 2-18>
상기 비교예 2-1에서 화합물 4CzIPN 대신 하기 표 2의 화합물을 사용한 것을 제외하고는 비교예 2-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<비교예 2-2 내지 2-7>
상기 비교예 2-1에서 화합물 4CzIPN 대신 하기 표 2의 화합물을 사용한 것을 제외하고는 비교예 2-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2019014147-appb-I000053
실험예 2-1 내지 2-18 및 비교예 2-1 내지 2-7의 유기 발광 소자에 대하여 10㎃/㎠의 전류밀도에서 측정한 구동 전압(V)과 전류효율(cd/A), 3000cd/m2의 휘도에서 측정한 CIE 색좌표를 측정하여, 하기 표 2에 나타내었다.
구분 화합물(발광층) 전압(V) 효율(cd/A) CIE 색좌표(x,y)
실험예 2-1 1 4.1 21 (0.19, 0.68)
실험예 2-2 2 4.0 22 (0.19, 0.69)
실험예 2-3 3 4.1 21 (0.18, 0.68)
실험예 2-4 4 4.2 21 (0.19, 0.68)
실험예 2-5 5 4.1 22 (0.18, 0.68)
실험예 2-6 6 4.1 22 (0.19, 0.69)
실험예 2-7 7 4.2 20 (0.19, 0.69)
실험예 2-8 8 4.0 21 (0.18, 0.69)
실험예 2-9 9 4.1 22 (0.19, 0.69)
실험예 2-10 10 4.1 21 (0.19, 0.68)
실험예 2-11 11 4.2 21 (0.18, 0.68)
실험예 2-12 12 4.0 20 (0.18, 0.68)
실험예 2-13 13 4.2 20 (0.18, 0.69)
실험예 2-14 14 4.1 21 (0.18, 0.68)
실험예 2-15 15 4.1 21 (0.19, 0.68)
실험예 2-16 16 4.2 20 (0.19, 0.69)
실험예 2-17 17 4.1 21 (0.19, 0.68)
실험예 2-18 18 4.0 22 (0.19, 0.69)
비교예 2-1 4CzIPN 4.6 16 (0.16, 0.67)
비교예 2-2 T1 4.7 13 (0.16, 0.66)
비교예 2-3 T2 4.6 16 (0.17, 0.68)
비교예 2-4 T3 4.8 4 (0.15, 0.31)
비교예 2-5 T4 4.8 4 (0.18, 0.37)
비교예 2-6 T5 4.7 3 (0.16, 0.25)
비교예 2-7 T6 4.8 4 (0.16, 0.27)
상기 표 2에서 보는 바와 같이, 상기 화학식 1의 화합물을 사용한 실험예 2-1 내지 2-18의 소자는 비교예 2-1의 화합물 4CzIPN의 물질을 사용한 소자보다 전압이 낮아지고, 효율이 향상되었다. 또한, 비교예 2-1 내지 2-7 보다, 상기 화학식 1의 화합물을 사용한 소자가 전압, 효율 면에서 특성이 모두 향상됨을 알 수 있었다.
따라서, 본 발명에 따른 화합물은 발광 능력이 우수하고 발광 파장 튜닝이 가능하여 높은 색순도의 유기 발광 소자 구현이 가능함을 확인할 수 있었다.

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019014147-appb-I000054
    상기 화학식 1에 있어서,
    X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 N, C(A1), C(A2), C(A3), C(A4), C-H, C-D 또는 C-R'이며, R'은 아릴기이고,
    단, (1) X1 내지 X6 중 3개는 C-D이고, 1개는 C(A2)이고, 1개는 C(A4)이고, 1개는 N, C(A2), C(A4), C-H, C-D 또는 C-R'이거나, (2) X1 내지 X6 중 적어도 1개는 C(A1) 또는 C(A2)이고, 적어도 1개는 C(A3) 또는 C(A4)이되, X1 내지 X6 중 적어도 1개는 C(A1) 또는 C(A3)이며,
    A1은 하기 a-1 내지 a-4 중 어느 하나이고, A1이 2 이상인 경우 A1은 서로 같거나 상이하고,
    Figure PCTKR2019014147-appb-I000055
    상기 a-1 내지 a-3에 있어서, a1은 1 내지 4의 정수이고, a2는 1 내지 8의 정수이고, a3는 1 내지 8의 정수이고,
    A2는 하기 b-1 또는 b-2이고, A2가 2 이상인 경우 A2는 서로 같거나 상이하고,
    Figure PCTKR2019014147-appb-I000056
    A3는 하기 c-1 또는 c-2이고, A3가 2 이상인 경우 A3는 서로 같거나 상이하고,
    Figure PCTKR2019014147-appb-I000057
    A4는 하기 d-1 또는 d-2이며, A4가 2 이상인 경우 A4는 서로 같거나 상이하고,
    Figure PCTKR2019014147-appb-I000058
    상기 b-1, b-2, c-1 및 d-1에 있어서,
    R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 알킬기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 어느 하나의 기이거나, 상기 군에서 선택된 2 이상의 기가 연결된 기이며,
    b1은 0 내지 8의 정수이고, b1이 2 이상인 경우 R1은 서로 같거나 상이하고,
    b2는 0 내지 4의 정수이고, b2가 2 이상인 경우 R2는 서로 같거나 상이하고,
    b3는 0 내지 2의 정수이고, b3가 2인 경우 R3는 서로 같거나 상이하고,
    b4는 0 내지 4의 정수이고, b4가 2 이상인 경우 R4는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 것인 화합물:
    [화학식 1-1]
    Figure PCTKR2019014147-appb-I000059
    상기 화학식 1-1에 있어서,
    X는 N 또는 CR26이고, R26은 A1, A2, A3, A4, H, D 또는 아릴기이며,
    R21 내지 R25 중 적어도 1개는 A1 또는 A2이고, 적어도 1개는 A3 또는 A4이되, R21 내지 R25 중 적어도 1개는 A1 또는 A3이며,
    [화학식 1-2]
    Figure PCTKR2019014147-appb-I000060
    상기 화학식 1-2에 있어서,
    R27은 A2이고, R28은 A4이고, R29는 A2, A4, H, D 또는 아릴기이고,
    상기 화학식 1-1 및 1-2에 있어서, A1, A2, A3 및 A4의 정의는 화학식 1에서 정의한 바와 같다.
  3. 청구항 2에 있어서, 상기 화학식 1-2는 하기 화학식 2로 표시되는 것인 화합물:
    [화학식 2]
    Figure PCTKR2019014147-appb-I000061
    상기 화학식 2에 있어서, R27 내지 R29의 정의는 화학식 1-2에서 정의한 바와 같다.
  4. 청구항 1에 있어서, 상기 a-1은 하기 a-11 내지 a-15 중 어느 하나인 것인 화합물:
    Figure PCTKR2019014147-appb-I000062
    .
  5. 청구항 1에 있어서, 상기 a-2는 하기 a-21 또는 a-22인 것인 화합물:
    Figure PCTKR2019014147-appb-I000063
    .
  6. 청구항 1에 있어서, 상기 a-3은 하기 a-31 내지 a-33 중 어느 하나인 것인 화합물:
    Figure PCTKR2019014147-appb-I000064
    .
  7. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화합물 중에서 선택된 어느 하나인 것인 화합물:
    Figure PCTKR2019014147-appb-I000065
    Figure PCTKR2019014147-appb-I000066
    Figure PCTKR2019014147-appb-I000067
    Figure PCTKR2019014147-appb-I000068
    Figure PCTKR2019014147-appb-I000069
    Figure PCTKR2019014147-appb-I000070
    Figure PCTKR2019014147-appb-I000071
    Figure PCTKR2019014147-appb-I000072
    Figure PCTKR2019014147-appb-I000073
    Figure PCTKR2019014147-appb-I000074
    Figure PCTKR2019014147-appb-I000075
    .
  8. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물의 일중항 에너지 준위(S1D)와 삼중항 에너지 준위(T1D)의 차(△STD)는 0eV 이상 0.3eV 이하인 것인 화합물.
  9. 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층을 포함하고, 상기 발광층은 청구항 1 내지 8 중 어느 한 항에 따른 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 9에 있어서, 상기 발광층은 호스트를 더 포함하고, 상기 호스트의 삼중항 에너지 준위(T1H)는 상기 화학식 1로 표시되는 화합물의 삼중항 에너지 준위(T1D)보다 높은 것인 유기 발광 소자.
  11. 청구항 9에 있어서, 상기 발광층은 호스트를 더 포함하고, 상기 호스트의 일중항 에너지 준위(S1H)는 상기 화학식 1로 표시되는 화합물의 일중항 에너지 준위(S1D)보다 높은 것인 유기 발광 소자.
PCT/KR2019/014147 2018-10-26 2019-10-25 중수소 함유 화합물 및 이를 포함하는 유기 발광 소자 WO2020085842A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/262,592 US20220271233A1 (en) 2018-10-26 2019-10-25 Deuterium-containing compound, and organic light-emitting device comprising same
CN201980051913.7A CN112533900A (zh) 2018-10-26 2019-10-25 含氘化合物和包含其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180128593 2018-10-26
KR10-2018-0128593 2018-10-26

Publications (2)

Publication Number Publication Date
WO2020085842A1 WO2020085842A1 (ko) 2020-04-30
WO2020085842A9 true WO2020085842A9 (ko) 2021-05-20

Family

ID=70331678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014147 WO2020085842A1 (ko) 2018-10-26 2019-10-25 중수소 함유 화합물 및 이를 포함하는 유기 발광 소자

Country Status (4)

Country Link
US (1) US20220271233A1 (ko)
KR (1) KR102278235B1 (ko)
CN (1) CN112533900A (ko)
WO (1) WO2020085842A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278829B (zh) * 2018-01-04 2023-01-17 株式会社Lg化学 化合物和包含其的有机发光器件
KR102331904B1 (ko) * 2018-11-27 2021-11-26 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020111602A1 (ko) 2018-11-27 2020-06-04 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102288990B1 (ko) * 2019-02-28 2021-08-11 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN115606335A (zh) * 2020-08-04 2023-01-13 株式会社Lg化学(Kr) 有机发光器件
CN112079766A (zh) * 2020-08-28 2020-12-15 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN114805318B (zh) * 2021-01-28 2023-08-15 江苏三月科技股份有限公司 一种以三嗪衍生物为核心的有机化合物及其应用
CN115368348A (zh) * 2021-05-18 2022-11-22 江苏三月科技股份有限公司 一种以氰基吡啶为核心的化合物及其应用
WO2023090288A1 (ja) * 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023090154A1 (ja) * 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
EP4223853A1 (en) * 2022-02-04 2023-08-09 Samsung Display Co., Ltd. Organic electroluminescent devices
CN114853767A (zh) * 2022-04-11 2022-08-05 中国科学院宁波材料技术与工程研究所 一种多共振小分子发光材料及有机电致发光二极管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135466A (ja) * 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
CN107739352B (zh) * 2013-03-22 2024-05-14 默克专利有限公司 用于电子器件的材料
WO2016086885A1 (zh) * 2014-12-04 2016-06-09 广州华睿光电材料有限公司 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件
KR102646787B1 (ko) * 2016-06-01 2024-03-13 삼성전자주식회사 유기 발광 소자
KR101970863B1 (ko) * 2016-10-31 2019-04-19 성균관대학교산학협력단 지연형광 재료 및 이를 포함하는 유기 발광장치

Also Published As

Publication number Publication date
US20220271233A1 (en) 2022-08-25
KR102278235B1 (ko) 2021-07-16
KR20200047418A (ko) 2020-05-07
CN112533900A (zh) 2021-03-19
WO2020085842A1 (ko) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2020085842A9 (ko) 중수소 함유 화합물 및 이를 포함하는 유기 발광 소자
WO2019235873A1 (ko) 유기 발광 소자
WO2017204594A1 (ko) 유기 발광 소자
WO2019054833A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2020060320A1 (ko) 유기 발광 소자
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2019190223A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019156405A1 (ko) 화합물 및 이를 포함한 유기 발광 소자
WO2019194617A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2017146522A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020145693A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020145692A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2020149610A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017111420A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2022235101A1 (ko) 유기 발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876967

Country of ref document: EP

Kind code of ref document: A1