WO2020085738A1 - 소결 자석의 제조 방법 및 소결 자석 - Google Patents
소결 자석의 제조 방법 및 소결 자석 Download PDFInfo
- Publication number
- WO2020085738A1 WO2020085738A1 PCT/KR2019/013828 KR2019013828W WO2020085738A1 WO 2020085738 A1 WO2020085738 A1 WO 2020085738A1 KR 2019013828 W KR2019013828 W KR 2019013828W WO 2020085738 A1 WO2020085738 A1 WO 2020085738A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintered magnet
- fluoride
- rare earth
- manufacturing
- powder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
- B22F2301/355—Rare Earth - Fe intermetallic alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Definitions
- the present invention relates to a method for manufacturing a sintered magnet and a sintered magnet. More specifically, the present invention relates to a method for manufacturing an R-Fe-B-based sintered magnet and a sintered magnet produced by this method.
- the NdFeB-based magnet is a permanent magnet having a composition of Nd 2 Fe 14 B, a compound of neodymium (Nd) and iron, boron (B), which are rare earth elements, and has been used as a general purpose permanent magnet for 30 years since its development in 1983.
- These NdFeB magnets are used in various fields such as electronic information, automobile industry, medical equipment, energy, and transportation. In particular, it has been used in products such as machine tools, electronic information devices, electronic appliances for home appliances, mobile phones, robot motors, wind power generators, automobile small motors, and driving motors in line with the recent trend of light weight and small size.
- NdFeB-based magnets strip / mold casting or melt spinning methods based on metal powder metallurgy are known.
- metals such as neodymium (Nd), iron (Fe), and boron (B) are melted through heating to produce an ingot, and coarse grains are obtained. And, it is a process of manufacturing microparticles through a micronization process. By repeating this, a powder is obtained, and an anisotropic sintered magnet is manufactured through a pressing and sintering process under a magnetic field.
- melt spinning method melts metal elements, pours them into a spinning wheel at a high speed, rapidly cools them, crushes jet mills, blends them with polymers, forms them into bond magnets, or presses them into magnets. To manufacture.
- the residual magnetic flux density and the magnitude of the coercive force can be cited.
- the increase in the residual magnetic flux density of the NdFeB-based sintered magnet is achieved by increasing the volume fraction of the Nd 2 Fe 14 B compound and improving the crystal orientation, so that various processes have been improved so far.
- a composition alloy in which a part of Nd is substituted with Dy or Tb is used.
- Nd of the Nd 2 Fe 14 B compound By substituting Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropy of the compound increases, and the coercive force also increases.
- substitution with Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, when the heavy rare earth element of Dy or Tb is added, the coercive force can be increased, but the decrease in the residual magnetic flux density cannot be avoided.
- the problem to be solved by the embodiments of the present invention is to solve the above-described problems, and the embodiments of the present invention place the heavy rare earth element at the grain boundary, thereby increasing the coercive force while minimizing the drop in magnetic flux density. It is to provide a manufacturing method and a sintered magnet produced by this method.
- a method of manufacturing a sintered magnet according to an embodiment of the present invention comprises the steps of preparing a mixed powder by coating a surface of the magnet powder with fluoride; Adding heavy rare earth hydride to the mixed powder; And heating the mixed powder, wherein the magnet powder includes a rare earth element-iron-boron-based powder, and the fluoride includes at least one of organic fluoride and inorganic fluoride.
- the organic fluoride may include at least one of compounds having a carbon content of C6 to C17 in a perfluorinated carboxylic acid (PFCA) -based material.
- PFCA perfluorinated carboxylic acid
- the organic fluoride may include PerFluoro Octanoic Acid (PFOA).
- PFOA PerFluoro Octanoic Acid
- the inorganic fluoride may include at least one of ammonium fluoride and potassium fluoride.
- the rare earth element may include at least one of Nd, Pr, La, Ce, Pm, Sm and Eu.
- the heavy rare earth hydride may include at least one of GdH 2 , TbH 2, DyH 2 , HoH 2 , ErH 2 , TmH 2 , YbH 2 , and LuH 2 .
- the rare earth hydrides can comprise a NdH 2, PrH 2 and LaH 2, CeH 2, PmH 2, SmH 2 and EuH at least one of the 2, further comprising the step of adding a rare earth hydride with the powder mixture .
- the manufacturing of the mixed powder may include mixing and drying the magnetic powder and the fluoride in an organic solvent.
- the mixing and drying may further include grinding the magnetic powder, the fluoride, and the organic solvent.
- the organic solvent may include at least one of acetone, methanol, ethanol, butanol and normal hexane.
- a film of rare earth fluoride or rare earth fluoride may be formed at the grain interface of the sintered magnet.
- the sintered magnet is an R-Fe-B-based sintered magnet, the composition of the sintered magnet is R 2 Fe 14 B, and the R may be Nd, Pr, La, Ce, Pm, Sm or Eu.
- the added heavy rare earth element is mainly located at the interface rather than the main phase, thereby increasing the coercive force of the sintered magnet while minimizing the drop in magnetic flux density.
- Example 1 is a J-H graph showing a change in magnetization (J) according to a magnetic field (H) for each of Example 1, Comparative Example 1 and Comparative Example 2.
- a method of manufacturing a sintered magnet according to an embodiment of the present invention comprises the steps of preparing a mixed powder by coating a surface of the magnet powder with fluoride; Adding heavy rare earth hydride to the mixed powder; And heating the mixed powder, wherein the magnet powder includes a rare earth element-iron-boron-based powder, and the fluoride includes at least one of organic fluoride and inorganic fluoride.
- the magnet powder according to an embodiment of the present invention is coated on the surface with fluoride to prepare a mixed powder.
- the step of preparing the mixed powder may include mixing and drying the magnetic powder and the fluoride in an organic solvent, and may further include grinding the magnetic powder, the fluoride, and the organic solvent. .
- a ball mill a turbula mixer, a spex mill, or the like may be used for mixing or grinding each component.
- the organic fluoride is a perfluorinated compound (PFC: Perfluorinated Compound), and includes at least one of compounds having a carbon content of C6 to C17 in a perfluorinated carboxylic acid (PFCA) -based material. It is preferable to include PerFluoro Octanoic Acid (PFOA).
- PFC Perfluorinated Compound
- PFCA perfluorinated carboxylic acid
- PFOA PerFluoro Octanoic Acid
- compounds having a carbon content of C6 to C17 include Perfluorohexanoic Acid (PFHxA, C6), Perfluoroheptanoic Acid (PFHpA, C7), Perfluorooctanoic Acid (PFOA, C8) , Perfluorononanoic Acid (PFNA, C9), Perfluorodecanoic Acid (PFDA, C10), Perfluoroundecanoic Acid (PFUnDA, C11), Perfluorododecanoic Acid (PFDoDA, C12), Perfluorotridecnoic Acid (PFTrDA, C13), Perfluorotetradecanoic Acid (PFTeDA, C14), Perfluoropentade Corresponds to Acid (PFPeDA, C15), Perfluorohexadecanoic Acid (PFHxDA, C16) and Perfluoroheptadecanoic Acid (PFHpDA
- the inorganic fluoride may include at least one of ammonium fluoride and potassium fluoride.
- the organic solvent if the fluoride can be dissolved, the type is not particularly limited, but may include at least one of acetone, methanol, ethanol, butanol and normal hexane.
- the manufacturing method is not particularly limited, so the magnet powder may be produced by mechanical grinding or hydrogen grinding of a magnetic alloy, or by a strip cast method, but reduction- It is preferably produced by a diffusion method.
- the rare-earth element-iron-boron-based powder is formed by a reduction-diffusion method, a separate coarse grinding, hydrogen crushing, jet milling or surface treatment process is not required.
- Synthesis of the rare earth element-iron-boron-based powder according to the reduction-diffusion method includes a step of synthesizing from a raw material and a step of washing.
- a rare earth oxide such as neodymium oxide
- a raw material such as boron and iron
- a reducing agent such as Ca
- the molar ratio of rare earth oxide, boron and iron may be between 1: 14: 1 and 1.5: 14: 1.
- Rare earth oxide, boron and iron are raw materials for manufacturing R 2 Fe 14 B magnet powder, and when the molar ratio is satisfied, R 2 Fe 14 B magnet powder can be produced with high yield. If the molar ratio is 1: 14: 1 or less, there is a problem that the composition of the R 2 Fe 14 B column is misaligned and the R-rich grain boundary phase is not formed. When the molar ratio is 1.5: 14: 1 or more, the amount of rare earth elements is excessive There may be a problem that the reduced rare earth element remains, and the remaining rare earth element is changed to R (OH) 3 or RH 2 .
- the heating for the reduction-diffusion may be performed in an inert gas atmosphere at a temperature of 800 ° C to 1100 ° C for 10 minutes to 6 hours. If the heating time is 10 minutes or less, the powder is not sufficiently synthesized, and when the heating time is 6 hours or more, the size of the powder becomes coarse and there may be a problem of agglomeration of primary particles.
- the magnet powder is produced by the reduction-diffusion method, an oxide of an alkali metal or an alkali earth metal, which is a by-product produced in the manufacturing process, is formed, and a washing step for removing such a by-product may be performed.
- the washing step may further include removing a by-product using a quaternary ammonium-based methanol solution, and washing the powder from which the by-product has been removed with a solvent.
- the rare earth element may include at least one of Nd, Pr, La, Ce, Pm, Sm and Eu.
- the magnet powder is a rare earth element-iron-boron-based powder, the composition is R 2 Fe 14 B, and the R may be Nd, Pr, La, Ce, Pm, Sm or Eu.
- the heavy rare earth hydride is GdH 2 , TbH 2, DyH 2 , HoH 2 , ErH 2 , TmH 2 , YbH 2 , and LuH 2 .
- the heavy rare earth hydride By adding the heavy rare earth hydride, some of the rare earth elements of the sintered magnet are replaced with heavy rare earth elements such as Dy or Tb. Due to the substitution, the magnetic anisotropy of the sintered magnet is increased, and the coercive force is also increased. However, substitution with Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, when the heavy rare earth element of Dy or Tb is added, the coercive force can be increased, but the decrease in the residual magnetic flux density cannot be avoided.
- the method of manufacturing a sintered magnet according to an embodiment of the present invention prevents the heavy rare earth element from penetrating the R-Fe-B column by sintering the surface of the magnet powder with fluoride, thereby sintering the heavy rare earth element.
- the magnetic flux density decreases because fluorine is added to the rare earth element-iron-boron-based composition.
- the sintered magnet manufactured according to the embodiments of the present invention adds fluorine in a thin coating form, it is possible to suppress particle growth and improve corrosion resistance while minimizing magnetic flux density drop.
- the insulating fluoride is formed on the particle surface, the electrical resistance of the sintered body itself increases. As a result, the induction current inside the sintered magnet, which can be induced when the sintered magnet is used later in the driving motor, can be suppressed to prevent heat generation.
- rare earth hydrides of the mixed powder may further comprise a step of adding a rare earth hydride, wherein the rare earth hydride is NdH 2, PrH 2, LaH 2 , CeH 2, PmH 2, SmH 2 and EuH It may include at least one of the two .
- the rare earth hydride is a sintering aid, and the rare earth hydride is mixed with a rare earth element-iron-boron-based powder and then heat-treated and sintered, and R-rich and R-rich in the grain boundary region inside the sintered magnet or the grain boundary region of the sintered magnet column.
- the sinterability of the sintered magnet to be produced is improved and columnar decomposition is suppressed. That is, in order to manufacture a high-density sintered permanent magnet having an R-rich phase, sintering is performed after adding rare earth hydride. Therefore, the magnet powder and the rare earth hydride preferably contain the same rare earth element, and more preferably contain Nd.
- the mixed powder may be heated to a temperature of 1000 to 1100 degrees Celsius for sintering. The heating may be performed for 30 minutes to 4 hours.
- the mixed powder may be put into a graphite mold for compression molding, and a pulsed magnetic field may be applied for orientation to produce a molded body for a sintered magnet.
- the molded body for sintered magnets is heated in a vacuum atmosphere at a temperature of 1000 to 1100 degrees Celsius to prepare a sintered magnet.
- the fluoride containing organic fluoride or inorganic fluoride is dissolved in an organic solvent and mixed with the magnetic powder, the coating of the fluoride is evenly distributed and effectively suppresses material diffusion.
- the grain growth can be limited to the size of the initial magnet powder. As a result, it is possible to minimize the reduction in the coercive force of the sintered magnet through the grain growth limitation.
- lubricating action is possible with the fluoride and the organic solvent.
- a molded body for a sintered magnet having a high density can be produced, and heating the molded body for a sintered magnet makes it possible to manufacture a high-density, high-performance R-Fe-B based sintered magnet.
- the magnet powder and the fluoride coated on the surface of the magnet powder react, and a film of rare earth fluoride or rare earth fluoride may be formed at the grain boundary of the sintered magnet. Since the rare earth fluoride is formed by reacting with oxygen on the surface of the magnet powder, oxygen diffusion into the magnet powder can be minimized. Therefore, the new oxidation reaction of the magnet particles is limited, the corrosion resistance of the sintered magnet is improved, and it is possible to manufacture a high-density rare-earth sintered magnet because it suppresses unnecessary consumption of rare earth elements for oxide production.
- ammonium fluoride (NH 4 F) 0.05 g to 0.10 g, and 125 ml of methanol are added again, followed by grinding and coating for 1 to 2 hours. In this way, ammonium fluoride (NH 4 F) was coated and an average particle size of 0.5 to 20 micrometers was prepared for Nd-Fe-B powder.
- NdH 2 7g and DyH 2 3g were prepared by heat treatment at a temperature of 500 to 550 degrees Celsius in a vacuum atmosphere.
- Nd-Fe-B powder coated with ammonium fluoride (NH 4 F) was prepared in the same manner as in Example 1. After adding 10 g of Nd-Fe-B powder and 10 g of NdH 2 to the prepared Nd-Fe-B powder, compression molding was performed in a graphite mold, and a pulsed magnetic field of 5T or more was applied to orient the powder to prepare a molded body for a sintered magnet. The molded body for the sintered magnet was heated in a vacuum atmosphere at a temperature of 1040 ° C to 1080 ° C for 1 to 2 hours. Subsequently, Nd-Fe-B sintered magnets were prepared by heat treatment at a temperature of 500 to 550 degrees Celsius in a vacuum atmosphere.
- Nd-Fe-B powder was prepared in the same manner as in Example 1, except that ammonium fluoride (NH 4 F) was not coated.
- NH 4 F ammonium fluoride
- compression molding was performed in a graphite mold, and a pulsed magnetic field of 5T or more was applied to orient the powder to prepare a molded body for a sintered magnet.
- the molded body for the sintered magnet was heated in a vacuum atmosphere at a temperature of 1040 ° C to 1080 ° C for 1 to 2 hours.
- Nd-Fe-B sintered magnets were prepared by heat treatment at a temperature of 500 to 550 degrees Celsius in a vacuum atmosphere.
- Example 1 is a JH graph showing a change in magnetization (J) according to a magnetic field (H) for each of Example 1, Comparative Example 1 and Comparative Example 2.
- J magnetization
- H magnetic field
- Example 1 and Comparative Example 2 added the same amount of heavy rare earth hydride (DyH 2 ), the sintered magnet of Example 1 had a coercive force without decreasing the magnetic flux density, only by the difference between the presence or absence of fluoride coating on the magnet powder. You can see that this has risen further.
- DyH 2 heavy rare earth hydride
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
본 발명의 일 실시예에 따른 소결 자석의 제조 방법은 자석 분말 표면에 불화물을 코팅하여 혼합 분말을 제조하는 단계; 상기 혼합 분말에 중희토류 수소화물을 첨가하는 단계; 및 상기 혼합 분말을 가열하는 단계를 포함하고, 상기 자석 분말은 희토류 원소-철-붕소계 분말을 포함하며, 상기 불화물은 유기 불화물 및 무기 불화물 중 적어도 하나 이상을 포함한다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2018년 10월 22일자 한국 특허 출원 제10-2018-0125899호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 소결 자석의 제조 방법 및 소결 자석에 대한 것이다. 보다 구체적으로, R-Fe-B계 소결 자석의 제조 방법 및 이러한 방법으로 제조된 소결 자석에 관한 것이다.
NdFeB계 자석은 희토류 원소인 네오디뮴(Nd) 및 철, 붕소(B)의 화합물인 Nd2Fe14B의 조성을 갖는 영구자석으로서, 1983년 개발된 이후에 30년 동안 범용 영구 자석으로 사용되어 왔다. 이러한 NdFeB계 자석은 전자 정보, 자동차 공업, 의료기기, 에너지, 교통 등 여러 분야에서 쓰인다. 특히 최근 경량, 소형화 추세에 맞춰서 공작 기기, 전자 정보기기, 가전용 전자 제품, 휴대 전화, 로봇용 모터, 풍력발전기, 자동차용 소형 모터 및 구동 모터 등의 제품에 사용되고 있다.
NdFeB계 자석의 일반적인 제조는 금속 분말 야금법에 기초한 스트립(Strip)/몰드캐스팅(mold casting) 또는 멜트 스피닝(melt spinning)방법이 알려져 있다. 먼저, 스트립(Strip)/몰드캐스팅(mold casting) 방법의 경우, 네오디뮴(Nd), 철(Fe), 붕소(B) 등의 금속을 가열을 통해 용융시켜 잉곳을 제조하고, 결정립 입자를 조분쇄하고, 미세화 공정을 통해 마이크로 입자를 제조하는 공정이다. 이를 반복하여, 분말을 수득하고, 자기장 하에서 프레싱(pressing) 및 소결(sintering) 과정을 거쳐 비등방성 소결 자석을 제조하게 된다.
또한, 멜트 스피닝(melt spinning) 방법은 금속 원소들을 용융시킨 후, 빠른 속도로 회전하는 휠(wheel)에 부어서 급냉하고, 제트 밀 분쇄 후, 고분자로 블렌딩하여 본드 자석으로 형성하거나, 프레싱 하여 자석으로 제조한다.
자석의 성능의 지표로서, 잔류 자속 밀도와 보자력의 크기를 들 수 있다. NdFeB계 소결 자석의 잔류 자속 밀도 증대는 Nd2Fe14B 화합물의 체적율 증대와 결정 배향도 향상에 의해 달성되어, 지금까지 여러 프로세스의 개선이 행해지고 있다. 보자력의 증대에 관해서는, Nd의 일부를 Dy 또는 Tb로 치환한 조성합금을 사용하는 것이다. Nd2Fe14B 화합물의 Nd를 이들 원소로 치환함으로써 화합물의 자기 이방성이 증대되고, 보자력도 증대된다. 하지만, Dy 또는 Tb에 의한 치환은 화합물의 포화 자기 분극을 감소시킨다. 따라서, Dy 또는 Tb의 중희토류 원소를 첨가할 경우 보자력의 증대를 도모할 수 있으나, 잔류 자속 밀도의 저하는 피할 수 없다.
본 발명의 실시예들이 해결하고자 하는 과제는 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 실시예들은 중희토류 원소를 결정립 계면에 위치시켜, 보자력을 증대시키면서도 자속 밀도의 하락을 최소화하는 소결 자석의 제조 방법 및 이러한 방법으로 제조된 소결 자석을 제공하는 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 소결 자석의 제조 방법은 자석 분말 표면에 불화물을 코팅하여 혼합 분말을 제조하는 단계; 상기 혼합 분말에 중희토류 수소화물을 첨가하는 단계; 및 상기 혼합 분말을 가열하는 단계를 포함하고, 상기 자석 분말은 희토류 원소-철-붕소계 분말을 포함하며, 상기 불화물은 유기 불화물 및 무기 불화물 중 적어도 하나 이상을 포함한다.
상기 유기 불화물은 과불화카르복실산(PFCA: Perfluorinated Carboxylic Acid)계 물질 중 탄소 함량이 C6 내지 C17에 해당하는 화합물 중 적어도 하나 이상을 포함할 수 있다.
상기 유기 불화물은 과불화옥탄산(PFOA: PerFluoro Octanoic Acid)을 포함할 수 있다.
상기 무기 불화물은 불화 암모늄 및 불화 칼륨 중 적어도 하나를 포함할 수 있다.
상기 희토류 원소는 Nd, Pr, La, Ce, Pm, Sm 및 Eu 중 적어도 하나 이상을 포함할 수 있다.
상기 중희토류 수소화물은 GdH2, TbH2, DyH2, HoH2, ErH2, TmH2, YbH2, 및 LuH2 중 적어도 하나 이상을 포함할 수 있다.
상기 혼합 분말에 희토류 수소화물을 첨가하는 단계를 더 포함하고, 상기 희토류 수소화물은 NdH2, PrH2, LaH2, CeH2, PmH2, SmH2 및 EuH2 중 적어도 하나 이상을 포함할 수 있다.
상기 혼합 분말을 제조하는 단계는 상기 자석 분말과 상기 불화물을 유기 용매 중에서 혼합 및 건조하는 단계를 포함할 수 있다.
상기 혼합 및 건조하는 단계는 상기 자석 분말, 상기 불화물 및 상기 유기 용매를 분쇄하는 단계를 더 포함할 수 있다.
상기 유기 용매는 아세톤, 메탄올, 에탄올, 부탄올 및 노말헥산 중 적어도 하나를 포함할 수 있다.
상기 소결 자석의 결정립 계면에 희토류 불화물 또는 희토류산불화물의 피막이 형성될 수 있다.
상기 소결 자석은 R-Fe-B계 소결 자석이고, 상기 소결 자석의 조성은 R2Fe14B이며, 상기 R은 Nd, Pr, La, Ce, Pm, Sm 또는 Eu일 수 있다.
실시예들에 따르면, 자석 분말의 입자 표면에 불화물 피막을 형성시킴으로써, 첨가된 중희토류 원소가 주상이 아닌 계면에 주로 위치하도록 하여, 소결 자석의 보자력을 증대시키면서도 자속 밀도의 하락을 최소화할 수 있다.
또한, 소결 전 성형 공정에서 자석 분말의 입자 표면에 코팅된 불화물의 윤활 작용을 통하여 높은 치밀도의 자석 분말의 제조가 가능하다.
도 1은 실시예 1, 비교예 1 및 비교예 2 각각에 대해, 자기장(H)에 따른 자화(J)의 변화를 나타낸 J-H 그래프이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이제 본 발명의 실시예들에 따른 소결 자석의 제조 방법 및 소결 자석에 대하여 상세하게 설명한다.
본 발명의 일 실시예에 따른 소결 자석의 제조 방법은 자석 분말 표면에 불화물을 코팅하여 혼합 분말을 제조하는 단계; 상기 혼합 분말에 중희토류 수소화물을 첨가하는 단계; 및 상기 혼합 분말을 가열하는 단계를 포함하고, 상기 자석 분말은 희토류 원소-철-붕소계 분말을 포함하며, 상기 불화물은 유기 불화물 및 무기 불화물 중 적어도 하나 이상을 포함한다.
본 발명의 일 실시예에 따른 자석 분말은 그 표면을 불화물로 코팅하여, 혼합 분말을 제조한다. 혼합 분말을 제조하는 단계는 상기 자석 분말과 상기 불화물을 유기 용매 중에서 혼합 및 건조하는 단계를 포함할 수 있으며, 구체적으로 상기 자석 분말, 상기 불화물 및 상기 유기 용매를 분쇄하는 단계를 더 포함할 수 있다.
또한, 본 발명에서, 각 성분들의 혼합 또는 분쇄를 위해 볼밀(Ball-Mill), 터뷸러 믹서(Turbula mixer) 및 스펙스 밀(Spex mill) 등이 사용될 수 있다.
상기 유기 불화물은 과불화화합물(PFC: Perfluorinated Compound)로써 과불화카르복실산(PFCA: Perfluorinated Carboxylic Acid)계 물질 중 탄소 함량이 C6 내지 C17 에 해당하는 화합물 중 하나 이상을 포함하며, 그 중 특히, 과불화옥탄산(PFOA: PerFluoro Octanoic Acid)을 포함하는 것이 바람직하다.
상기 과불화카르복실산(PFCA: Perfluorinated Carboxylic Acid)계 물질 중 탄소 함량이 C6 내지 C17 에 해당하는 화합물은 Perfluorohexanoic Acid(PFHxA, C6), Perfluoroheptanoic Acid(PFHpA, C7), Perfluorooctanoic Acid(PFOA, C8), Perfluorononanoic Acid(PFNA, C9), Perfluorodecanoic Acid(PFDA, C10), Perfluoroundecanoic Acid(PFUnDA, C11), Perfluorododecanoic Acid (PFDoDA, C12), Perfluorotridecnoic Acid (PFTrDA, C13), Perfluorotetradecanoic Acid(PFTeDA, C14), Perfluoropentadecanoic Acid(PFPeDA, C15), Perfluorohexadecanoic Acid (PFHxDA, C16) 및 Perfluoroheptadecanoic Acid (PFHpDA, 17)에 해당한다.
상기 무기 불화물은 불화 암모늄 및 불화 칼륨 중 적어도 하나를 포함할 수 있다.
상기 유기 용매는 상기 불화물이 용해될 수 있으면, 그 종류는 특별히 제한 되지 않으나, 아세톤, 메탄올, 에탄올, 부탄올 및 노말헥산 중 적어도 하나를 포함할 수 있다.
상기 자석 분말은 희토류 원소-철-붕소계 분말을 포함한다면 제조 방법은 특별히 제한 되지 않으므로, 상기 자석 분말은 자석 합금을 기계 분쇄 또는 수소 분쇄하거나, 스트립 캐스트 방법에 의해 제조 된 것일 수도 있으나, 환원-확산법에 의해 제조됨이 바람직하다.
환원-확산법에 의해 희토류 원소-철-붕소계 분말을 형성할 경우 별도의 조분쇄, 수소파쇄, 제트밀과 같은 분쇄 공정이나 표면 처리 공정이 요구되지 않는다.
환원-확산법에 따른 희토류 원소-철-붕소계 분말의 합성은 원료 물질로부터 합성하는 단계 및 세정단계를 포함한다. 원료 물질로부터 합성하는 단계는 산화 네오디뮴과 같은 희토류 산화물, 붕소, 철과 같은 원재료 및 Ca 등의 환원제를 균일하게 혼합한 뒤, 가열하여 원재료들의 환원 및 확산에 의해 희토류-철-붕소계 분말을 형성하는 방법이다.
구체적으로, 희토류 산화물, 붕소, 철의 혼합물로 분말을 제조할 경우, 희토류 산화물, 붕소 및 철의 몰비는 1:14:1 내지 1.5:14:1 사이일 수 있다. 희토류 산화물, 붕소 및 철은 R2Fe14B 자석 분말을 제조하기 위한 원재료이며, 상기 몰비를 만족하였을 때 높은 수율로 R2Fe14B 자석 분말을 제조할 수 있다. 만일 몰비가 1:14:1이하인 경우 R2Fe14B 주상의 조성 틀어짐 및 R-rich 입계상이 미형성되는 문제점이 있고, 상기 몰비가 1.5:14:1 이상인 경우 희토류 원소의 양이 과도하여 환원된 희토류 원소가 잔존하게 되고, 남은 희토류 원소가 R(OH)3나 RH2로 바뀌는 문제점이 있을 수 있다.
상기 환원-확산을 위한 가열은 불활성 가스 분위기에서 섭씨 800도 내지 1100도의 온도로 10분 내지 6시간 동안 진행될 수 있다. 가열 시간이 10분 이하인 경우 분말이 충분히 합성되지 못하며, 가열 시간이 6시간 이상인 경우 분말의 크기가 조대해지고 1차 입자들끼리 뭉치는 문제점이 있을 수 있다.
환원-확산 방법으로 자석 분말을 제조하는 경우 상기 제조 과정에서 생성되는 부산물인 알칼리 금속의 산화물 또는 알칼리토금속의 산화물이 형성되며, 이러한 부산물 제거를 위한 세정 단계가 진행될 수 있다. 세정 단계는 4급 암모늄계 메탄올 용액을 사용하여 부산물을 제거하는 단계, 그리고 부산물이 제거된 분말을 용매로 세정하는 단계를 더 포함할 수 있다.
상기 희토류 원소는 Nd, Pr, La, Ce, Pm, Sm 및 Eu 중 적어도 하나 이상을 포함할 수 있다.
상기 자석 분말은 희토류 원소-철-붕소계 분말로서, 조성은 R2Fe14B이며, 상기 R은 Nd, Pr, La, Ce, Pm, Sm 또는 Eu일 수 있다.
한편, 상기 혼합 분말에 중희토류 수소화물을 첨가하는 단계에서, 상기 중희토류 수소화물은 GdH2, TbH2, DyH2, HoH2, ErH2, TmH2, YbH2, 및 LuH2중 적어도 하나 이상을 포함할 수 있다.
상기 중희토류 수소화물을 첨가함으로써, 소결 자석의 희토류 원소 중 일부가 Dy 또는 Tb 등의 중희로튜 원소로 치환된다. 상기 치환을 인해, 소결 자석의 자기 이방성이 증대되고, 보자력도 증대된다. 하지만, Dy 또는 Tb에 의한 치환은 화합물의 포화 자기 분극을 감소시킨다. 따라서, Dy 또는 Tb의 중희토류 원소를 첨가할 경우 보자력의 증대를 도모할 수 있으나, 잔류 자속 밀도의 저하는 피할 수 없다. 하지만, 본 발명의 일 실시예에 따른 소결 자석의 제조 방법은 자석 분말의 표면을 불화물로 코팅하고 소결함으로써, 중희토류 원소가 R-Fe-B 주상에 침투하는 것을 방지하여, 중희토류 원소는 소결 자석의 주상이 아닌 결정립 계면에 높은 농도로 존재하게 된다. 따라서, 소량의 중희토류 수소화물을 첨가하여도 보자력이 향상되며, 동시에 자속 밀도의 하락을 최소화할 수 있다. 또한, Dy 또는 Tb 등의 중희토류 원소는 고가이므로, 본 발명을 통해 제조 비용을 절감할 수 있다.
또한, 일반적으로 불소를 CuF2, GaF3 또는 DyF3 등 화합물의 형태로 첨가하는 경우, 희토류 원소-철-붕소계 조성에 불소를 첨가하는 형태가 되므로 자속 밀도가 하락한다. 하지만, 본 발명의 실시예들에 따라 제조된 소결 자석은 불소를 얇은 코팅 형태로 첨가하기 때문에 자속 밀도 하락을 최소화하면서 입자 성장을 억제하고 내식성을 향상시킬 수 있다. 또한, 입자 표면에 절연성 불화물이 형성되는 것이므로 소결체 자체의 전기 저항이 증가한다. 이로써, 소결 자석이 추후 구동 모터에서 사용될 경우 유도될 수 있는 소결 자석 내부의 유도 전류를 억제하여 발열을 방지할 수 있다.
한편, 혼합 분말에 중희토류 수소화물뿐만 아니라, 희토류 수소화물을 첨가하는 단계를 더 포함할 수 있고, 상기 희토류 수소화물은 NdH2, PrH2, LaH2, CeH2, PmH2, SmH2 및 EuH2 중 적어도 하나 이상을 포함할 수 있다.
상기 희토류 수소화물은 소결 보조제로서, 희토류 수소화물을 희토류 원소-철-붕소계 분말과 혼합한 후 열처리 및 소결하여, 소결 자석 내부의 입계부 또는 소결자석 주상립의 입계부 영역에 R-rich 및 ROX상을 형성함으로써, 제조되는 소결 자석의 소결성을 개선하고 주상 분해를 억제한다. 즉, R-rich 상을 갖는 고밀도의 소결 영구 자석을 제조하기 위해 희토류 수소화물을 첨가한 후 소결을 진행한다. 그러므로, 상기 자석 분말과 상기 희토류 수소화물은 동일한 희토류 원소를 포함하는 것이 바람직하며, Nd를 포함하는 것이 더욱 바람직하다.
다음, 소결을 위해, 상기 혼합 분말을 가열하는 단계가 진행된다.
구체적으로, 상기 혼합 분말을 소결을 위해 섭씨 1000도 내지 1100도의 온도로 가열할 수 있다. 상기 가열은 30분 내지 4시간동안 이루어질 수 있다. 구체적으로, 상기 혼합 분말을 흑연 몰드에 넣어 압축 성형 하고, 펄스 자기장을 가해 배향하여 소결 자석용 성형체를 제조할 수 있다. 상기 소결 자석용 성형체를 진공 분위기에서 섭씨 1000도 내지 1100도의 온도로 가열하여 소결 자석을 제조한다.
한편, 소결을 진행할 때 반드시 결정립 성장을 동반하게 되는데, 이러한 결정립의 성장은 보자력을 감소시키는 요인으로 작용한다. 그러나, 본 발명의 실시예들에서는, 유기 불화물 또는 무기 불화물을 포함하는 불화물을 유기 용매에 용해시켜 자석 분말과 혼합하므로, 불화물의 코팅이 고르게 분포하여, 물질 확산을 효과적으로 억제하기 때문에 소결 과정에서의 결정립 성장을 초기 자석 분말의 크기 정도로 제한할 수 있다. 결국, 결정립 성장 제한을 통해, 소결 자석의 보자력 감소를 최소화할 수 있다.
또한, 상기 불화물 및 상기 유기 용매에 의해 윤활 작용이 가능하다. 상기 윤활 작용을 통하여 높은 치밀도를 가진 소결 자석용 성형체를 제작할 수 있고, 이러한 소결 자석용 성형체를 가열하면 고밀도, 고성능의 R-Fe-B계 소결 자석의 제조가 가능하다.
한편, 소결 위한 가열시, 상기 자석 분말과 상기 자석 분말 표면에 코팅된 불화물이 반응하여, 소결 자석의 결정립 계면에 희토류 불화물 또는 희토류산불화물의 피막이 형성될 수 있다. 상기 희토류산불화물은 자석 분말 표면의 산소와 반응하여 형성된 것이므로, 자석 분말 내부로의 산소 확산을 최소화할 수 있다. 따라서, 자석 입자의 새로운 산화 반응이 제한되어 소결 자석의 내식성이 향상되며, 희토류 원소가 산화물 생성에 불필요하게 소비되는 것을 억제하므로 고밀도의 희토류 소결 자석의 제조가 가능하다.
그러면 이하에서 구체적인 실시예 및 비교예를 통하여 본 발명에 따른 소결 자석의 제조방법에 대하여 설명한다.
실시예 1: 불화 암모늄(NH
4
F) 코팅
Nd2O3 34.35g, Fe 69.50g, B 1.05g, Cu 0.0309g, Al 0.262g 및 Ca 18.412g을 입자의 입도 및 크기 제어를 위한 알칼리 금속 Na, K과 함께 밀폐된 플라스틱 통 안에서 균일하게 혼합한 후, 스테인레스 스틸 용기에 고르게 담아 누르고, 불활성 가스(Ar) 분위기에서 섭씨 920도 내지 950도의 온도로 30분 내지 6 시간 동안 튜브 전기로 안에서 반응시켰다. 이후 자동 분쇄기로 반응물을 분쇄한 후, 에탄올 또는 메탄올 등의 유기용매와 질산암모늄을 이용하여 잔여 칼슘화합물을 제거하였다. 이후 상기 분쇄된 반응물 10g과 질산 암모늄 0.375g, 메탄올 125ml 및 지르코니아 볼 50g을 혼합하고 터뷸러 믹서를 이용해 1시간 내지 2시간 분쇄하고 건조한다. 이런 방법으로 Nd-Fe-B 분말을 제조하였다.
Nd-Fe-B 분말로부터 질산 암모늄과 메탄올을 제거한 후 불화 암모늄(NH4F) 0.05g 내지 0.10g, 메탄올 125ml를 다시 첨가하여 1시간 내지 2시간 분쇄 및 코팅한다. 이런 방법으로 불화 암모늄(NH4F)이 코팅되고 평균 입도가 0.5 마이크로미터 내지 20 마이크로미터인 Nd-Fe-B 분말을 제조하였다.
상기 제조한 Nd-Fe-B 분말 100g에, NdH2 7g 및 DyH2 3g을 첨가한 후, 흑연 몰드에 넣어 압축 성형하고, 5T 이상의 펄스 자장을 가해 분말을 배향하여 소결 자석용 성형체를 제조하였다. 상기 소결 자석용 성형체를 진공 분위기에서 섭씨 1040도 내지 1080도의 온도로 1시간 내지 2시간 동안 가열하였다. 이후 진공 분위기에서 섭씨 500도 내지 550도의 온도로 열처리하여 Nd-Fe-B 소결 자석을 제조하였다.
비교예 1: 불화암모늄 코팅 및 중희토류 수소화물 미첨가
실시예 1과 동일한 방법으로 불화 암모늄(NH4F)이 코팅된 Nd-Fe-B 분말을 제조하였다. 상기 제조한 Nd-Fe-B 분말 100g에 및 NdH2 10g을 첨가한 후, 흑연 몰드에 넣어 압축 성형하고, 5T 이상의 펄스 자장을 가해 분말을 배향하여 소결 자석용 성형체를 제조하였다. 상기 소결 자석용 성형체를 진공 분위기에서 섭씨 1040도 내지 1080도의 온도로 1시간 내지 2시간 동안 가열하였다. 이후 진공 분위기에서 섭씨 500도 내지 550도의 온도로 열처리하여 Nd-Fe-B 소결 자석을 제조하였다.
비교예 2: 불화물 미코팅 및 중희토류 수소화물 첨가
불화 암모늄(NH4F)이 코팅되지 않은 것을 제외하고 실시예 1과 동일한 방법으로 Nd-Fe-B 분말을 제조하였다. 상기 제조한 Nd-Fe-B 분말 100g에, NdH2 7g 및 DyH2 3g을 첨가한 후, 흑연 몰드에 넣어 압축 성형하고, 5T 이상의 펄스 자장을 가해 분말을 배향하여 소결 자석용 성형체를 제조하였다. 상기 소결 자석용 성형체를 진공 분위기에서 섭씨 1040도 내지 1080도의 온도로 1시간 내지 2시간 동안 가열하였다. 이후 진공 분위기에서 섭씨 500도 내지 550도의 온도로 열처리하여 Nd-Fe-B 소결 자석을 제조하였다.
평가예 1
도 1은 실시예 1, 비교예 1 및 비교예 2 각각에 대해, 자기장(H)에 따른 자화(J)의 변화를 나타낸 J-H 그래프이다. 도 1을 참고하면, 중희토류 수소화물을 첨가한 비교예 2의 경우, 보자력은 상승되었으나, 자속 밀도가 하락한 것을 확인할 수 있다. 중희토류 수소화물을 첨가하지 않은 비교예 1의 경우 자속 밀도가 하락하지는 않았으나, 보자력은 상승되지 않았다. 반면, 실시예 1의 경우, 자속 밀도의 하락 없이, 보자력이 상승된 것을 확인할 수 있다. 즉, 실시예 1과 비교예 2는 동일한 양의 중희토류 수소화물(DyH2)을 첨가하였음에도, 자석 분말에 대한 불화물의 코팅 유무의 차이만으로, 실시예 1의 소결 자석은 자속 밀도의 하락 없이 보자력이 더 상승한 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (13)
- 자석 분말 표면에 불화물을 코팅하여 혼합 분말을 제조하는 단계;상기 혼합 분말에 중희토류 수소화물을 첨가하는 단계; 및상기 혼합 분말을 가열하는 단계를 포함하고,상기 자석 분말은 희토류 원소-철-붕소계 분말을 포함하며,상기 불화물은 유기 불화물 및 무기 불화물 중 적어도 하나 이상을 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 유기 불화물은 과불화카르복실산(PFCA: Perfluorinated Carboxylic Acid)계 물질 중 탄소 함량이 C6 내지 C17에 해당하는 화합물 중 적어도 하나 이상을 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 유기 불화물은 과불화옥탄산(PFOA: PerFluoro Octanoic Acid)을 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 무기 불화물은 불화 암모늄 및 불화 칼륨 중 적어도 하나를 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 희토류 원소는 Nd, Pr, La, Ce, Pm, Sm 및 Eu 중 적어도 하나 이상을 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 중희토류 수소화물은 GdH2, TbH2, DyH2, HoH2, ErH2, TmH2, YbH2, 및 LuH2 중 적어도 하나 이상을 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 혼합 분말에 희토류 수소화물을 첨가하는 단계를 더 포함하고,상기 희토류 수소화물은 NdH2, PrH2, LaH2, CeH2, PmH2, SmH2 및 EuH2 중 적어도 하나 이상을 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 혼합 분말을 제조하는 단계는 상기 자석 분말과 상기 불화물을 유기 용매 중에서 혼합 및 건조하는 단계를 포함하는 소결 자석의 제조 방법.
- 제8항에서,상기 혼합 및 건조하는 단계는 상기 자석 분말, 상기 불화물 및 상기 유기 용매를 분쇄하는 단계를 더 포함하는 소결 자석의 제조 방법.
- 제8항에서,상기 유기 용매는 아세톤, 메탄올, 에탄올, 부탄올 및 노말헥산 중 적어도 하나를 포함하는 소결 자석의 제조 방법.
- 제1항에서,상기 소결 자석의 결정립 계면에 희토류 불화물 또는 희토류산불화물의 피막이 형성되는 소결 자석의 제조 방법.
- 제1항에서,상기 소결 자석은 R-Fe-B계 소결 자석이고,상기 소결 자석의 조성은 R2Fe14B이며,상기 R은 Nd, Pr, La, Ce, Pm, Sm 또는 Eu인 소결 자석의 제조 방법.
- 제1항의 방법으로 제조된 소결 자석.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980021163.9A CN111902898B (zh) | 2018-10-22 | 2019-10-21 | 用于制备烧结磁体的方法和烧结磁体 |
US15/734,080 US11978576B2 (en) | 2018-10-22 | 2019-10-21 | Method for preparing sintered magnet and sintered magnet |
JP2020554132A JP7123469B2 (ja) | 2018-10-22 | 2019-10-21 | 焼結磁石の製造方法および焼結磁石 |
EP19876705.5A EP3754676B1 (en) | 2018-10-22 | 2019-10-21 | Method for manufacturing sintered magnet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180125899A KR102411584B1 (ko) | 2018-10-22 | 2018-10-22 | 소결 자석의 제조 방법 및 소결 자석 |
KR10-2018-0125899 | 2018-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085738A1 true WO2020085738A1 (ko) | 2020-04-30 |
Family
ID=70331583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/013828 WO2020085738A1 (ko) | 2018-10-22 | 2019-10-21 | 소결 자석의 제조 방법 및 소결 자석 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11978576B2 (ko) |
EP (1) | EP3754676B1 (ko) |
JP (1) | JP7123469B2 (ko) |
KR (1) | KR102411584B1 (ko) |
CN (1) | CN111902898B (ko) |
WO (1) | WO2020085738A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110536285B (zh) | 2018-09-26 | 2022-09-20 | 中兴通讯股份有限公司 | 干扰控制、消息发送、转发方法、装置、通信设备及系统 |
KR102261143B1 (ko) * | 2020-07-02 | 2021-06-07 | 성림첨단산업(주) | 희토류 영구자석의 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060000522A1 (en) * | 2001-07-10 | 2006-01-05 | Koichi Hirota | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
JP2014029896A (ja) * | 2012-07-31 | 2014-02-13 | Hitachi Chemical Co Ltd | 焼結磁石用塗布材料 |
KR101548684B1 (ko) * | 2014-04-18 | 2015-09-11 | 고려대학교 산학협력단 | 희토류계 소결 자석의 제조방법 |
KR20180038746A (ko) * | 2016-10-07 | 2018-04-17 | 성림첨단산업(주) | 고성능 희토류 자석의 제조방법 |
KR20180096334A (ko) * | 2017-02-21 | 2018-08-29 | 한국기계연구원 | Nd-Fe-B계 자석의 제조방법 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI413136B (zh) | 2005-03-23 | 2013-10-21 | Shinetsu Chemical Co | 稀土族永久磁體 |
MY141999A (en) | 2005-03-23 | 2010-08-16 | Shinetsu Chemical Co | Functionally graded rare earth permanent magnet |
JP4525425B2 (ja) | 2005-03-31 | 2010-08-18 | 株式会社日立製作所 | フッ化物コート膜形成処理液,フッ化物コート膜形成方法及び磁石 |
JP4508175B2 (ja) | 2006-09-29 | 2010-07-21 | 日立化成工業株式会社 | フッ化物コート膜形成処理液およびフッ化物コート膜形成方法 |
US20080241513A1 (en) * | 2007-03-29 | 2008-10-02 | Matahiro Komuro | Rare earth magnet and manufacturing method thereof |
JP4900121B2 (ja) | 2007-03-29 | 2012-03-21 | 日立化成工業株式会社 | フッ化物コート膜形成処理液およびフッ化物コート膜形成方法 |
JP2010027852A (ja) | 2008-07-18 | 2010-02-04 | Daido Steel Co Ltd | R−t−b系希土類磁石の製造方法 |
WO2010013774A1 (ja) | 2008-07-30 | 2010-02-04 | 日立金属株式会社 | 耐食性磁石およびその製造方法 |
JP2010238712A (ja) | 2009-03-30 | 2010-10-21 | Tdk Corp | 希土類焼結磁石の製造方法 |
JP4961454B2 (ja) | 2009-05-12 | 2012-06-27 | 株式会社日立製作所 | 希土類磁石及びこれを用いたモータ |
JP5247754B2 (ja) * | 2010-03-30 | 2013-07-24 | 株式会社日立製作所 | 磁性材料及びその磁性材料を用いたモータ |
JP2012199423A (ja) * | 2011-03-22 | 2012-10-18 | Tdk Corp | 異方性磁粉の製造方法及び異方性ボンド磁石 |
WO2013186864A1 (ja) * | 2012-06-13 | 2013-12-19 | 株式会社 日立製作所 | 焼結磁石及びその製造方法 |
CN102982942A (zh) | 2012-11-19 | 2013-03-20 | 宁波科星材料科技有限公司 | 一种氟化磁性材料 |
KR101624245B1 (ko) | 2015-01-09 | 2016-05-26 | 현대자동차주식회사 | 희토류 영구 자석 및 그 제조방법 |
JP2017002358A (ja) * | 2015-06-10 | 2017-01-05 | セイコーエプソン株式会社 | 造粒粉末および造粒粉末の製造方法 |
KR101733181B1 (ko) * | 2016-05-02 | 2017-05-08 | 성림첨단산업(주) | 희토류 소결 자석의 제조방법 |
CN106298135B (zh) * | 2016-08-31 | 2018-05-18 | 烟台正海磁性材料股份有限公司 | 一种R-Fe-B类烧结磁体的制造方法 |
KR102012446B1 (ko) * | 2016-10-07 | 2019-08-20 | 성림첨단산업(주) | 고성능 희토류 소결 자석의 제조방법 |
KR102100759B1 (ko) | 2016-11-08 | 2020-04-14 | 주식회사 엘지화학 | 금속 분말의 제조 방법 및 금속 분말 |
KR102093491B1 (ko) | 2017-11-28 | 2020-03-25 | 주식회사 엘지화학 | 소결 자석의 제조 방법 및 소결 자석 |
-
2018
- 2018-10-22 KR KR1020180125899A patent/KR102411584B1/ko active IP Right Grant
-
2019
- 2019-10-21 WO PCT/KR2019/013828 patent/WO2020085738A1/ko unknown
- 2019-10-21 JP JP2020554132A patent/JP7123469B2/ja active Active
- 2019-10-21 CN CN201980021163.9A patent/CN111902898B/zh active Active
- 2019-10-21 EP EP19876705.5A patent/EP3754676B1/en active Active
- 2019-10-21 US US15/734,080 patent/US11978576B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060000522A1 (en) * | 2001-07-10 | 2006-01-05 | Koichi Hirota | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
JP2014029896A (ja) * | 2012-07-31 | 2014-02-13 | Hitachi Chemical Co Ltd | 焼結磁石用塗布材料 |
KR101548684B1 (ko) * | 2014-04-18 | 2015-09-11 | 고려대학교 산학협력단 | 희토류계 소결 자석의 제조방법 |
KR20180038746A (ko) * | 2016-10-07 | 2018-04-17 | 성림첨단산업(주) | 고성능 희토류 자석의 제조방법 |
KR20180096334A (ko) * | 2017-02-21 | 2018-08-29 | 한국기계연구원 | Nd-Fe-B계 자석의 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3754676A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR20200045182A (ko) | 2020-05-04 |
KR102411584B1 (ko) | 2022-06-20 |
EP3754676B1 (en) | 2023-07-12 |
EP3754676A4 (en) | 2021-07-07 |
EP3754676A1 (en) | 2020-12-23 |
US20210225587A1 (en) | 2021-07-22 |
US11978576B2 (en) | 2024-05-07 |
CN111902898A (zh) | 2020-11-06 |
CN111902898B (zh) | 2022-09-16 |
JP7123469B2 (ja) | 2022-08-23 |
JP2021517365A (ja) | 2021-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3605570B1 (en) | Method for manufacturing sintered magnet | |
CN1265002C (zh) | 重熔稀土磁体废料和/或碎屑、磁体形成合金和烧结稀土磁体 | |
EP3473361B1 (en) | Method for preparing nd2fe14b metal powder | |
JPWO2002103719A1 (ja) | 希土類永久磁石材料 | |
WO2020085738A1 (ko) | 소결 자석의 제조 방법 및 소결 자석 | |
KR20200144853A (ko) | 소결 자석의 제조 방법 | |
WO2021071236A1 (ko) | 소결 자석의 제조 방법 | |
KR102092327B1 (ko) | 자석 분말의 제조 방법 및 자석 분말 | |
CN1186154C (zh) | 一种还原扩散法制造稀土铁硼永磁合金粉末的方法 | |
KR102438226B1 (ko) | 소결 자석의 제조 방법 및 소결 자석 | |
KR102647274B1 (ko) | 소결 자석의 제조 방법 | |
WO2021060849A1 (ko) | 소결 자석의 제조 방법 및 소결 자석 | |
US11491545B2 (en) | Method of preparing magnetic powder, and magnetic powder | |
US20210407712A1 (en) | Manufacturing Method of Sintered Magnet | |
KR102317014B1 (ko) | 자석 분말의 제조 방법 및 자석 분말 | |
JP2986321B2 (ja) | 希土類−鉄系永久磁石合金粉末及びボンド永久磁石 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876705 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019876705 Country of ref document: EP Effective date: 20200918 Ref document number: 2020554132 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |