WO2020085039A1 - 燃料噴射弁 - Google Patents
燃料噴射弁 Download PDFInfo
- Publication number
- WO2020085039A1 WO2020085039A1 PCT/JP2019/039245 JP2019039245W WO2020085039A1 WO 2020085039 A1 WO2020085039 A1 WO 2020085039A1 JP 2019039245 W JP2019039245 W JP 2019039245W WO 2020085039 A1 WO2020085039 A1 WO 2020085039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection hole
- curved surface
- surface portion
- peripheral edge
- injection valve
- Prior art date
Links
- 238000002347 injection Methods 0.000 title claims abstract description 482
- 239000007924 injection Substances 0.000 title claims abstract description 482
- 239000000446 fuel Substances 0.000 title claims abstract description 234
- 230000002093 peripheral effect Effects 0.000 claims abstract description 415
- 238000011144 upstream manufacturing Methods 0.000 claims description 21
- 230000007423 decrease Effects 0.000 claims description 11
- 238000012986 modification Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 239000007921 spray Substances 0.000 description 17
- 239000013598 vector Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/1846—Dimensional characteristics of discharge orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/184—Discharge orifices having non circular sections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/007—Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
- F02M63/0077—Valve seat details
Definitions
- the present invention relates to a fuel injection valve.
- Patent Document 1 A fuel injection nozzle disclosed in Japanese Patent Laid-Open No. 2008-68360 (Patent Document 1) is known.
- Patent Document 1 in order to reduce cavitation erosion, abrasive grains flow into an injection hole through a rear end of a nozzle body, an inner space of the nozzle body, a space sandwiched between a seat surface and an outer surface of a processing insert.
- a technique is shown in which a body is made to flow so that a curvature is provided around the entire circumference of the inlet peripheral portion of the injection hole.
- Patent Document 1 describes that the upstream edge of the inlet peripheral portion of the injection hole has a larger curvature than the curvature of the other peripheral portions (paragraphs 0050 and 0055).
- Patent Document 2 the fuel injection valve disclosed in JP-A-2016-3628 is known.
- the minimum radius of curvature of the axial center side edge portion of the inlet peripheral portion of the injection hole is larger than the minimum curvature radius of the valve seat side edge portion, and the valve seat side edge portion is formed as a sharp edge.
- paragraph 0024 That is, in the fuel injection valve of Patent Document 2, fuel is atomized by separating the flow of fuel at the sharp edge of the valve seat side to promote the occurrence of cavitation (paragraph 0031).
- the rounded shaft center side edge facilitates the flow of the fuel that stagnates on the shaft center side (fuel stagnation space at full opening) when the needle (valve element) is fully opened to the injection hole just before the needle closes.
- Fuel adhesion occurs on the nozzle surface, and a rich mixture is formed around the adhered fuel. It is known that combustion of this rich mixture produces particulate matter.
- An object of the present invention is to provide a fuel injection valve capable of suppressing fuel adhesion to the nozzle surface.
- the fuel injection valve of the present invention In a fuel injection valve including a seat portion with which the valve element abuts, an injection hole having an inlet opening on the downstream side of the seat portion, and an injection hole forming member in which the inlet opening is formed,
- the injection hole has an inner peripheral surface extending from the inlet side to the outlet side, and a curved surface portion formed between the peripheral edge of the inlet opening and the inner peripheral surface,
- the curved surface portion has a center side curved surface portion and an outer peripheral side curved surface portion
- the center-side curved surface portion is a curved surface portion formed inside the center-side peripheral edge portion in the radial direction centered on the injection valve center axis which is the center axis of the fuel injection valve, of the peripheral edge of the inlet opening
- the outer peripheral side curved surface portion is a curved surface portion formed inside the outer peripheral side peripheral edge portion in the radial direction centered on the injection valve central axis line, of the peripheral edge of the inlet opening
- the width of the center side curved surface portion is configured to be larger than the width of the outer peripheral side curved surface portion.
- the fuel injection valve of the present invention In a fuel injection valve including a seat portion with which the valve element abuts, an injection hole having an inlet opening on the downstream side of the seat portion, and an injection hole forming member in which the inlet opening is formed,
- the injection hole has an inner peripheral surface extending from the inlet side to the outlet side, and a curved surface portion formed between the peripheral edge of the inlet opening and the inner peripheral surface, Of the peripheral edge of the inlet opening, including the injection hole center axis which is the center axis of the injection hole, the center side peripheral edge portion and the outer peripheral side in the radial direction centered on the injection valve center axis which is the center axis of the fuel injection valve.
- the curved surface portion has a center side curved surface portion formed inside the center side peripheral edge portion and an outer peripheral side curved surface portion formed inside the outer peripheral side peripheral edge portion, Furthermore, the curved surface portion is Surrounded by the center side curved surface portion, an extension line of an inner peripheral surface portion of the inner peripheral surface connected to the center side curved surface portion, and a straight line connecting the center side peripheral portion and the outer peripheral side peripheral portion.
- the area of the portion to be formed is the outer peripheral side curved surface portion, the extension line of the inner peripheral surface portion of the inner peripheral surface connected to the outer peripheral side curved surface portion, the center side peripheral edge portion and the outer peripheral side peripheral edge portion. The area is larger than the area surrounded by the connecting straight line.
- the fuel injection valve of the present invention In a fuel injection valve including a seat portion with which the valve element abuts, an injection hole having an inlet opening on the downstream side of the seat portion, and an injection hole forming member in which the inlet opening is formed,
- the injection hole has an inner peripheral surface extending from the inlet side to the outlet side, and a curved surface portion formed between the peripheral edge of the inlet opening and the inner peripheral surface, Of the peripheral edge of the inlet opening, including the injection hole center axis which is the center axis of the injection hole, the center side peripheral edge portion and the outer peripheral side in the radial direction centered on the injection valve center axis which is the center axis of the fuel injection valve.
- the curved surface portion has a center side curved surface portion formed inside the center side peripheral edge portion and an outer peripheral side curved surface portion formed inside the outer peripheral side peripheral edge portion, Furthermore, the curved surface portion is The length of the curve connecting the center side peripheral edge portion and the upstream end of the inner peripheral surface portion of the inner peripheral surface connected to the center side curved surface portion, It is configured to be longer than a length of a curve connecting the outer peripheral side peripheral edge portion and the upstream end of the inner peripheral surface portion of the inner peripheral surface connected to the outer peripheral side curved surface portion.
- the fuel injection valve of the present invention it is possible to provide a fuel injection valve capable of reducing fuel adhesion to the nozzle surface around the outlet of the injection hole.
- FIG. 3 is a cross-sectional view showing a part of a cross section parallel to the central axis of the injection hole and including the central axis of the embodiment of the injection hole forming member according to the present invention. It is a top view which projected an injection hole on a virtual plane perpendicular to a central axis of an injection hole about one example of an injection hole concerning the present invention.
- FIG. 3 is a cross-sectional view showing a cross section including a central axis of the injection hole and including a peripheral edge portion on a radial center side and a peripheral edge portion on a radial outer peripheral side in an embodiment of the injection hole according to the present invention.
- It is sectional drawing of the injection hole in 1st Example. It is a figure which shows the result of having simulated the flow of the fuel in the injection hole which concerns on one Example of this invention. It is a figure which shows the result of having simulated the flow of the fuel in the injection hole in the comparative example with this invention. It is a conceptual diagram explaining the relationship of the flow velocity of the fuel which flows into an injection hole.
- FIG. 5 is a diagram showing a relationship between an average pressure in an injection hole and a fuel adhesion amount with respect to a fuel pressure applied to a fuel injection valve in the first embodiment. It is a figure which shows the relationship between the curvature radius R of the curved part 107AE comprised inside the peripheral part 107A on the radial center side, and the ratio of the internal pressure of the injection hole 107 with respect to the applied fuel pressure.
- FIG. 1 is a configuration diagram of a fuel injection valve according to an embodiment of the present invention.
- the fuel injection valve used for the description is an example, and the fuel injection valve to which the present invention is applicable is not limited to the configuration of FIG.
- the direction along the central axis 101a of the fuel injection valve 101 (injection valve central axis) will be referred to as the axial direction.
- the tip In the axial direction of the fuel injection valve, the end on the side where the injection hole 107 is provided is called the tip, and the end opposite to the tip is called the base.
- the tip end side In addition, with reference to an arbitrary member or position, the tip end side may be referred to as the tip end side, and the base end side may be referred to as the base end side with respect to this reference.
- the vertical direction may be specified, for example, “upper end” and “lower end”, but the vertical direction in this case is set based on the drawings. It does not specify the vertical direction in the mounted state of the injection valve.
- the fuel injection valve main body 102 includes a nozzle holder 103, a fixed core 104, and a housing 105. Fuel from a high-pressure fuel pump (not shown) is discharged from the plurality of injection holes 107 via the fuel passage 106. The plurality of injection holes 107 are formed in the injection hole forming member 112 attached to the tip of the nozzle holder 103.
- the valve body 108 is assembled to the anchor (movable core) 109, and is housed in the nozzle holder 103 so as to be movable in the axial direction together with the anchor 109.
- the valve element 108 and the anchor 109 are configured to be relatively displaceable in the axial direction, but they may be fixed to each other.
- the spring (first spring) 110A is arranged between the valve body 108 and the adjuster pin 111, and the position of the upper end of the spring 110A is restricted by the adjuster pin 111.
- the fuel injection valve 101 is closed by the spring 110A urging the valve element 108 toward the tip side (valve closing direction) and pressing it against the seat portion 113 of the injection hole forming member 112.
- the second spring 110B that biases the anchor 109 toward the base end side (valve opening direction) is provided. It is provided.
- the injection hole forming member 112 is configured as a member on which the sheet portion 113 is formed in addition to the injection hole 107.
- the injection hole 107 opens on the inner surface of the injection hole forming member 112.
- the inner surface of the injection hole forming member 112 is normally formed by a conical surface (conical surface).
- the conical surface is a surface on which the seat portion 113 is formed, and may be referred to as a seat portion forming surface.
- the solenoid 114 is arranged radially outside the anchor 109 and the fixed core 104.
- a drive current from a drive circuit flows through the solenoid 114 when energized.
- the fixed core 104 is excited to generate a magnetic attraction force to the anchor 109, and the anchor 109 is pulled up in the axial direction.
- the valve body 108 is pulled up in the axial direction by the anchor 109, and the valve body 108 separates from the seat portion 113.
- a fuel passage is formed between the valve body 108 and the seat portion 113, and the fuel injection valve 101 opens.
- the guides 115 and 116 guide the axial movement of the valve body 108.
- the fuel pressurized and pumped by the high-pressure fuel pump (not shown) is injected to the outside of the fuel injection valve 101 through the plurality of fuel injection holes 107.
- FIG. 2 is a view for explaining the structure of the injection hole 107 to which the present invention is applied, and is a view of the injection hole forming member 112 as seen from the upper side (base end side) of FIG. 1 along the axial direction. Note that FIG. 2 is a plan view in which the injection hole forming member 112 and the injection hole 107 are projected on a plane orthogonal to the central axis 101a.
- 107A represents a peripheral edge portion (center side peripheral edge portion) on the central axis 101a side (radial center side or sack side) of the fuel injection valve 101
- 107B represents a seat.
- a peripheral edge portion (outer peripheral edge portion) on the side of the portion 113 (radial outer peripheral side) is shown
- 107C and 107D are horizontal edge portions of the inlet opening peripheral edge 107I of the injection hole 107.
- the nozzle holder 103 and the fixed core 104 each have a cylindrical portion, but the central axis 101a of the fuel injection valve 101 coincides with the central axis of the cylindrical portion of the nozzle holder 103 and the fixed core 104.
- the valve body 108 has a cylindrical rod portion, and the central axis line of the rod portion of the valve body 108 is arranged so as to coincide with the central axis line 101a of the fuel injection valve 101.
- an x-axis 107x and a y-axis 107y that are orthogonal to each other are defined.
- the y-axis 107y is an axis that extends in the radial direction and intersects the central axis 101a and the central axis 107a of the injection hole 107.
- 107Ia is an intersection point where the central axis 107a of the injection hole 107 intersects with the inlet opening surface of the injection hole 107 (the surface surrounded by the inlet opening peripheral edge 107I). Therefore, the y-axis 107y passes through the intersection point 107Ia.
- the x-axis 107x is an axis that passes through the intersection point 107Ia and is orthogonal to the y-axis 107y.
- Reference numeral 107c denotes a circle centered on the central axis 101a, which is a reference circle for arranging the inlet opening of the injection hole 107, and is called an arrangement circle of the injection hole 107.
- the injection holes 107 are arranged so that the central axis 107a of the injection hole 107 intersects the arrangement circle 107c.
- the lateral direction of the inlet opening peripheral edge 107I of the injection hole 107 is the direction along the x-axis 107x in FIG.
- the lateral peripheral portions 107C and 107D are portions of the inlet opening peripheral edge 107I where the x axis 107x intersects, and the peripheral edge portion 107A on the radial center side and the peripheral edge portion 107B on the radial outer peripheral side in the circumferential direction of the inlet opening peripheral edge 107I. Formed between and.
- the x-axis 107x and the circumference 107c intersect the inlet opening peripheral edge 107I in the vicinity.
- the peripheral edge portions 107C and 107D in the horizontal direction can also be part of the inlet opening peripheral edge 107I where the circumference 107c intersects. Therefore, the peripheral edge portions 107C and 107D in the horizontal direction may be referred to as the peripheral edge portions of the inlet opening peripheral edge 107I.
- the circumferential edge portion 107C and the circumferential edge portion 107D are located at positions facing each other in the circumferential direction of the arrangement circle 107c or in the x-axis 107x direction.
- a curved surface portion 107E is formed at the inlet opening peripheral edge 107I (107A to 107D) of the injection hole 107 over the entire circumference of the inlet opening peripheral edge 107I of the injection hole 107. It is desirable that the inlet opening peripheral edge 107I of each injection hole 107 has a curvature and is smoothly connected so as to be rounded from the inlet of the injection hole 107 toward the outlet side. This curvature forms a rounded portion (curvature forming portion) 107E that connects the inner peripheral surface 107F of the injection hole 107 and the conical surface (sheet portion forming surface) 112A.
- FIG. 3 is a cross-sectional view showing a part of a cross section of the injection hole forming member 112 according to the present embodiment that is parallel to the central axis 107a of the injection hole 107 and passes through the central axis 107a.
- FIG. 4 is a plan view of the injection hole 107 according to the present embodiment in which the injection hole 107 is projected on a virtual plane IP (see FIG. 3) perpendicular to the central axis 107a.
- the injection hole 107 is formed between the inner peripheral surface 107F extending in the direction along the central axis 107a from the inlet side to the outlet side, the inlet-side end portion 107FI of the inner peripheral surface 107F, and the inlet opening peripheral edge 107I ( A curved surface portion 107E formed inside the inlet opening peripheral edge 107I).
- the surface surrounded by the inlet opening peripheral edge 107I is the inlet opening surface 107G of the injection hole 107.
- the peripheral edge portion 107A on the radial center side and the peripheral edge portion 107B on the radial outer peripheral side are on a plane parallel to the injection hole center axis 107a and passing through the injection hole center axis 107a, that is, the injection. It is defined as a point existing on a plane including the hole center axis line 107a.
- the straight line connecting the peripheral edge portion 107A on the radial center side and the peripheral edge portion 107B on the radial outer side is along the radial direction centered on the injection valve central axis 101a in the plan view of FIG.
- peripheral portions 107C and 107D in the lateral direction are defined as points existing on a plane that is parallel to the injection hole center axis 107a and passes through the injection hole center axis 107a.
- the plane including the peripheral edge portions 107C and 107D intersects perpendicularly with the plane including the peripheral edge portions 107A and 107B. Therefore, the straight line connecting the peripheral edge portion 107C in the horizontal direction and the peripheral edge portion 107B is perpendicular to the straight line (radial direction) connecting the peripheral edge portion 107A and the peripheral edge portion 107B in the plan view of FIG. .
- the curved surface portion 107AE and the curved surface portion 107BE are shown.
- the curved surface portion 107AE is provided between the end portion 107FAa on the radial center side of the end portion 107FI on the inlet side of the inner peripheral surface 107F of the injection hole 107 and the peripheral edge portion 107A on the radial center side of the inlet opening peripheral edge 107I.
- This is a curved surface portion (center side curved surface portion) formed on (inside the radial center side peripheral edge portion 107A).
- the curved surface portion 107BE is between a radially outer peripheral end portion 107FBa of the inlet-side end portion 107F of the inner peripheral surface 107F of the injection hole 107 and a radially outer peripheral edge portion 107B of the inlet opening peripheral edge 107I. It is a curved surface portion (outer peripheral side curved surface portion) formed on the inner side of the radially outer peripheral side peripheral edge portion 107B.
- the curvature of the radial center side peripheral edge portion 107A is made smaller than the curvature of the radial outer peripheral side peripheral edge portion 107B. That is, the radius of curvature of the radial center side peripheral edge portion 107A is set to be larger than the radius of curvature of the radial outer peripheral side peripheral edge portion 107B.
- the curvature of the peripheral edge portions 107C and 107D is made larger than the curvature of the radial center side peripheral portion 107A. That is, the radius of curvature of the circumferential edge portions 107C and 107D is smaller than the radius of curvature of the radial center side edge portion 107A.
- the surface of the curved surface portion 107E is a surface that forms an arc shape in the cross section in FIG. 3, and is configured as a curvature forming portion having a curvature.
- the width W107AE of the curved surface portion 107AE formed inside the radial center side peripheral edge portion 107A is larger than the width W107BE of the curved surface portion 107BE formed inside the radial outer peripheral side peripheral portion 107B. large.
- the width W107AE of the curved surface portion 107AE is larger than the widths W107CE, W107DE of the curved surface portions (circumferential curved surface portions) 107CE, 107DE formed inside the circumferential peripheral edge portions 107C, 107D.
- the width W107AE of the curved surface portion 107AE, the width W107BE of the curved surface portion 107BE, and the curved surface portion 107CE it suffices that the widths W107CE and W107DE of 107DE are configured as curved surface portions that satisfy the above relationship. That is, in the present invention, the shape of the surface of the curved surface portion 107E is not limited to the arc shape.
- FIG. 5 shows a cross section of the injection hole according to the present embodiment, including the injection hole central axis 107a and passing through the peripheral edge portion 107A on the radial center side and the peripheral edge portion 107B on the radial outer peripheral side.
- the inner peripheral surface of the injection hole 107 is a cylindrical surface, and the central axis 107a of the injection hole is perpendicular to the conical surface 112A in FIG.
- the shaded portion 107SA includes a curved surface portion 107AE on the radial center side formed inside the peripheral edge portion 107A on the radial center side and a curved surface portion 107AE on the radial center side of the inner peripheral surface 107F.
- An extension line 107FAb of the inner peripheral surface portion (inner peripheral surface portion on the radial direction center side) 107FA and a straight line 107ABL connecting the peripheral edge portion 107A on the radial center side and the peripheral edge portion 107B on the radial outer peripheral side. Indicates the enclosed part (range).
- the shaded portion 107SB is connected to the radially outer peripheral curved surface portion 107BE formed inside the radially outer peripheral edge portion 107B and to the radially outer peripheral curved surface portion 107BE of the inner peripheral surface 107F.
- a portion (range) surrounded by an extension line 107FBb of the peripheral surface portion (radially outer peripheral side inner peripheral surface portion) 107FB and a straight line 107ABL is shown.
- the area of the shaded portion 107SA is larger than the area of the shaded portion 107SB because of the radius of curvature. Even if the surface of the curved surface portion 107E is not an arcuate surface having a curvature, but is formed of another curved surface shape, the area of the shaded portion 107SA and the area of the shaded portion 107SB satisfy the above-described relationship. It suffices if it is configured as a curved surface portion.
- the length of the curve (arc) connecting the points 107A and 107FAa on the cross-sectional view of FIG. 5 is the curve connecting the points 107B and 107FBa (from the relationship of the radius of curvature).
- Arc is longer than the length.
- the point 107FAa is a connection point between the inner peripheral surface portion 107FA and the curved surface portion 107AE, and is an upstream end portion of the inner peripheral surface portion 107FA.
- a point 107FBa is a connection point between the inner peripheral surface portion 107BA and the curved surface portion 107BE, and is an upstream end portion of the inner peripheral surface portion 107BA.
- the length of the curve connecting the points 107A and 107FAa is the same as the points 107B and 107B. It may be configured to be longer than the length of the curve connecting 107 FBa.
- the inward flow velocity of the fuel from the radial outer peripheral side of the injection hole 107 toward the center of the injection hole 107 can be reduced. It can be continuous all around. If there is a discontinuous portion in the inward flow velocity, flow separation easily occurs there, but if continuous, separation can be suppressed.
- FIG. 6 illustrates the flow of fuel in the injection hole 107.
- Numeral 107a indicates the central axis of the injection hole 107 (the central axis of the injection hole).
- the injection hole 107 has a circular cross section (circular shape), and the central axis 107a is an axis passing through the center of the circle formed by the injection hole 107 cross section.
- the central axis 107a is a straight line passing through the center of this cylindrical shape.
- 301A shows the flow velocity vector of the fuel flowing into the injection hole 107 from the outer peripheral side (radial outer peripheral side) before flowing into the injection hole 107.
- 302A shows the flow velocity vector of the fuel flowing into the injection hole 107 from the central axis 101a side (radial center side) of the fuel injection valve 101 before flowing into the injection hole 107.
- 301B shows a flow velocity vector when flowing into the injection hole 107 from the outer peripheral side in the radial direction
- 302B shows a flow velocity vector when flowing into the injection hole 107 from the central side in the radial direction.
- Reference numeral 303A denotes a fuel flow velocity vector directed in a direction coaxial with the central axis 107a of the injection hole 107
- 303B denotes a fuel flow velocity vector in a direction perpendicular to the central axis 107a of the injection hole 107.
- the curved surface portion 107E is described as a curved surface having a curvature, but as described above, the curved surface portion 107E is not limited to a curved surface having a curvature.
- the radius of curvature of the curved surface portion 107AE formed inside the peripheral edge portion 107A on the radial center side is set to the curvature radius of the curved surface portion 107BE formed inside the peripheral edge portion 107B on the radial outer peripheral side.
- the fuel flow indicated by the flow velocity vectors 302A and 302B or the flow velocity thereof will be described as the fuel flow 302A and 302B or the flow velocity 302A and 302B, respectively.
- the fuel flow indicated by the flow velocity vectors 301A and 301B or the flow velocity thereof will be described as the fuel flow 301A and 301B or the flow velocity 301A and 301B, respectively.
- the fuel flow 301B and the fuel flow 302B cancel each other when the respective flow velocities flow into the injection hole 107, and do not separate at the inlet opening peripheral edge 107I portion of the injection hole 107 as shown by arrows 301B and 302B. It can flow into the injection hole 107. Therefore, it is possible to suppress the flow velocity component 303B that is generated in the fuel flow when injected from the injection hole 107 and is perpendicular to the central axis 107a of the injection hole 107, and to increase the flow velocity component 303A that is coaxial with the central axis 107a. be able to.
- FIG. 7A is a diagram showing a result of simulating the flow of fuel in the injection hole 107 according to the present embodiment.
- FIG. 7B is a diagram showing a result of simulating the flow of fuel in the injection hole 107 ′ in the comparative example with the present invention.
- 107 ', 107A', 107B ', 108' and 112 'shown in FIG. 7B are the injection hole 107 of this embodiment, the peripheral edge portion 107A on the radial center side, the peripheral edge portion 107B on the radial outer peripheral side, the valve element 108 and The structure of a comparative example corresponding to the injection hole forming member 112 is shown.
- the fuel flow 302B and the fuel flow 301B interfere with each other so as to flow along the inner peripheral surface 107F of the injection hole 107. It fits. As a result, it becomes possible to cause the fuel to flow into the injection hole 107 without causing flow separation or suppressing the occurrence of flow separation.
- FIG. 7B which is a comparative example with the present invention
- a region SF1 where the fuel flow velocity is slow is generated in a large range on the peripheral edge portion 107A ′ side on the radial center side, and the fuel flow on the peripheral edge portion 107B ′ side on the radial outer peripheral side.
- the peeled area SF2 is generated in a large range.
- the fuel flow velocity on the peripheral edge portion 107A side on the radial center side increases, and the separation region SF0 of the fuel flow on the peripheral edge portion 107B side on the radial outer side is extremely generated. It is suppressed to a small range.
- FIG. 8 is a conceptual diagram illustrating the relationship between the flow rates of the fuel flowing into the injection holes.
- FIG. 8 In the lower part of FIG. 8, there is shown an explanatory diagram relating to the definition of an angle in the y-axis 107y of FIG. 2 in which the radial outer peripheral side is 0 ° and the radial central side (center axis 101a side) is 180 °.
- a conceptual diagram is shown.
- a in the figure is a flow velocity distribution to which the present invention is applied, and B is a rounded portion (curved surface portion, curved portion) having a constant curvature inside the inlet opening peripheral edge 107I over the entire circumference of the inlet opening peripheral edge 107I of the injection hole. It is a flow velocity distribution in the case of providing.
- the flow velocity 302B becomes faster and the flow velocity 301B becomes slower by making the radius of curvature inside the peripheral edge portion 107A on the radial center side larger than the radius of curvature inside the peripheral edge portion 107B on the radial outer peripheral side.
- the decrease of the flow velocity 301B is caused by the increase of the flow velocity 302B.
- the velocity difference ⁇ V2 between the flow velocity 301B (0 °) of the fuel flow flowing into the injection hole 107 from the radially outer side and the flow velocity 302B (180 °) of the fuel flow flowing into the injection hole 107 from the radial center side is The flow velocity difference is smaller than the velocity difference ⁇ V1 when a rounded portion having a constant curvature is provided over the entire circumference of the inlet opening peripheral edge 107I, and the flow velocity difference between the flow velocity 302B and the flow velocity 301B can be reduced.
- the fuel flowing from the circumferential edge portions 107C and 107D into the injection hole 107 is formed. It is possible to reduce the flow and increase the fuel flows 302B and 301B flowing into the injection hole 107 from the peripheral edge portion 107A on the radial center side and the peripheral edge portion 107B on the radial outer peripheral side. Therefore, the flow velocity component 303B perpendicular to the central axis 107a of the injection hole 107 can be suppressed.
- the difference between the flow velocity of the fuel flow 302B and the flow velocity of the fuel flow 301B is further reduced, the separation of the fuel flow in the injection hole 107 can be suppressed, and the pressure of the fuel in the injection hole 107 can be increased. it can.
- the flow velocity at 90 ° and 270 ° is slower than the flow velocity at 0 ° and 180 °. This is because a large amount of fuel originally flows into the injection hole 107 from the outer peripheral side in the radial direction and then a large amount of fuel flows into the injection hole 107 from the central side in the radial direction. Setting the radius of curvature inside the peripheral edge portions 107C and 107D in the direction smaller than the radius of curvature inside the peripheral edge portion 107A on the radial center side also has an effect.
- the resistance of the fuel flow flowing into the injection hole 107 increases. For this reason, the flow velocity of the fuel flow decreases, but since the difference in the flow velocity of the fuel flowing into the injection hole 107 from the radially outer peripheral side and the radial center side can be made smaller, the fuel flows from the radially outer peripheral side into the injection hole 107 in particular. It is possible to reduce the peeling of the fuel that occurs and increase the pressure in the injection hole.
- the peripheral edges of the inlet openings of all the injection holes are curved, but the curvature may be limited to the injection holes having a low pressure or the injection holes having a large amount of fuel adhering at the injection hole outlet. Further, the magnitude of the curvature may be set to be different for each injection hole.
- the radius of curvature inside the peripheral edge portions 107C and 107D is smaller than the radius of curvature of the peripheral edge portion 107A on the radial center side, the radius of curvature differs between the peripheral edge portion 107C side and the peripheral edge portion 107D side. It may be sized. For example, the flow velocity of the fuel flowing into the plurality of injection holes 107 may differ depending on the arrangement of the injection holes 107. In this case, the radius of curvature may be changed between the peripheral edge portion 107C side and the peripheral edge portion 107D side depending on the flow velocity of the fuel flowing into each injection hole 107.
- the curvature having a rounded shape has been described, but if the flow velocity of the fuel flow flowing into the injection hole 107 is balanced in the same manner as in this embodiment, the shape does not need to have a curvature.
- a chamfered structure may be used instead of an arc shape (curved surface) having a curvature.
- the curved surface portion or the chamfer formed inside the peripheral edge portions 107A, 107B, 107C, 107D of the inlet opening peripheral edge 107I of the injection hole 107 constitutes a flow velocity adjusting portion.
- the flow velocity adjusting portion on the peripheral portion 107A side has a larger effect of increasing the fuel flow than the flow velocity adjusting portion on the peripheral portion 107B side.
- the flow velocity adjusting portions of the peripheral edge portions 107C and 107D are configured to reduce the fuel flow speed increasing effect with respect to the flow velocity adjusting portion of the peripheral edge portion 107A.
- the flow velocity adjusting portion is formed into an arc shape (curved surface) having a curvature, so that the inlet opening peripheral edge 107I of the injection hole 107 and the inner peripheral surface 107F can be smoothly connected and the design thereof can be performed. Or it is easy to manufacture. Therefore, from the viewpoint of design and manufacturing, it is preferable that the flow velocity adjusting portion be formed in an arc shape (curved surface) having a curvature.
- the area (the cross-sectional area of the fuel flow formed between the conical surface 112A and the valve body 108) is configured to be larger than the sum of the inlet opening areas of all the injection holes 107. This is for avoiding a decrease in the flow velocity of the fuel flow flowing into the injection hole 107 due to the narrowing of the fuel flow path on the upstream side of the inlet opening surface of the injection hole 107.
- the angle formed by the central axis line 107a of the injection hole 107 and the central axis line 101a of the fuel injection valve 101 is set according to the shape of the combustion chamber, so various inclination angles are set. can do.
- the number of the injection holes 107 in FIG. 2 is 6, it is not necessary to limit the number to 6, and the number may be set to be less than 6 or 6 or more.
- FIG. 9 is a sectional view taken along a plane including the central axis 101a of the fuel injection valve 101, the central axis 107-1a of the injection hole 107-1 and the central axis 107-2a of the injection hole 107-2. That is, in FIG. 9, the central axis 101a, the central axis 107-1a, and the central axis 107-2a are formed on one plane, but the inclination angle of the injection hole 107-1 and the inclination angle of the injection hole 107-2 are different from each other. If they are different, the central axis 101a, the central axis 107-1a, and the central axis 107-2a do not have to be formed on one plane.
- 107-1 is an injection hole with a small inclination angle ⁇
- 107-2 is an injection hole with a large inclination angle ⁇ .
- the inclination angle ⁇ of the injection hole 107-2 is illustrated as the inclination angle ⁇ of the injection hole 107.
- 107-1a represents the central axis of the injection hole 107-1 (the central axis of the injection hole)
- 107-2a represents the central axis of the injection hole 107-2 (the central axis of the injection hole).
- Reference numeral 107-1A represents a peripheral edge portion (center side peripheral edge portion) on the radial center side of the peripheral edge 107-1I of the inlet opening of the injection hole 107-1
- 107-1B is a radial outer peripheral side of the inlet opening peripheral edge 107-1I.
- a peripheral portion (outer peripheral side peripheral portion) is shown.
- Reference numeral 107-2A indicates a peripheral edge portion (center side peripheral edge portion) on the radial center side of the peripheral edge 107-2I of the inlet opening of the injection hole 107-2
- 107-2B indicates a radial outer peripheral side of the inlet opening peripheral edge 107-2I.
- a peripheral portion (outer peripheral side peripheral portion) is shown.
- the curvature (curvature radius) of the curved portion 107-1AE inside the peripheral edge portion 107-1A on the radial center side and the peripheral edge portion 107-1B on the radial outer peripheral side 107-1B.
- the relationship with the curvature (curvature radius) of the inner curved portion 107-1BE is the curvature (curvature radius) of the peripheral edge portion 107A on the radial center side and the curvature (curvature radius) of the peripheral edge portion 107B on the radial outer peripheral side described above. It is constructed in the same way as the relationship.
- the curvature (radius of curvature) of the curved portion 107-2AE inside the peripheral edge portion 107-2AE on the radial center side and the peripheral edge portion 107-on the radial outer peripheral side 107-2AE is that the curvature (curvature radius) of the peripheral edge portion 107A on the radial center side and the curvature (curvature radius) of the peripheral edge portion 107B on the radial outer peripheral side described above. ) And the relationship with.
- the curvature radius of the curved portion 107-2AE in the injection hole 107-2 with a large inclination angle ⁇ is configured to be larger than the curvature radius of the curved portion 107-1AE in the injection hole 107-1 with a small inclination angle ⁇ .
- Reference numeral 301-1 indicates a flow velocity vector from the radially outer side of the injection hole 107-1 toward the injection hole 107-1.
- Reference numeral 302-1 indicates a flow velocity vector from the radial center side of the injection hole 107-1 toward the injection hole 107-1.
- Reference numeral 301-2 indicates a flow velocity vector from the radially outer side of the injection hole 107-2 toward the injection hole 107-2.
- Reference numeral 302-2 indicates a flow velocity vector from the radial center side of the injection hole 107-2 toward the injection hole 107-2.
- the fuel flow indicated by the flow velocity vectors 301-1, 302-1, 301-2, 302-2 or the flow velocity thereof will be referred to as fuel flow 301-1, 302-1, 301-2, 302-2 or flow velocity 301-, respectively.
- the description will be given as 1, 302-1, 301-2, 302-2.
- the fuel flow 301- that flows into the injection hole from the radially outer peripheral side at the inlet of the injection hole 107-2 with respect to the injection hole 107-1 with a small inclination angle ⁇ 2 the flow velocity component in the direction perpendicular to the central axis 107-2a becomes large. Therefore, by making the radius of curvature inside the peripheral edge portion 107-2A of the injection hole 107-2 larger than the radius of curvature inside the peripheral edge portion 107-1A of the injection hole 107-1, the gas flows into the injection hole 107-2.
- the flow path resistance of the fuel flow 302-2 at the time of reducing becomes small, and the flow velocity of the fuel flow 302-2 flowing into the injection hole 107-2 from the radial center side can be increased. As a result, the velocity difference (absolute value) between the flow velocity of the fuel flow 301-2 and the flow velocity of the fuel flow 302-2 can be reduced.
- the fuel flow 301-2 and the fuel flow 302-2 interfere with each other so as to flow along the inner peripheral surface of the injection hole 107-2. Then, the generation and increase of the flow velocity component perpendicular to the central axis 107-2a of the injection hole 107-2 can be suppressed. Therefore, the fuel can be allowed to flow into the injection hole 107-2 without causing flow separation, and the fuel pressure inside the injection hole can be increased.
- FIG. 10 is a view showing the same cross section as FIG. 6, 107 G indicates an inlet opening surface of the injection hole 107, 107 H indicates an outlet opening surface of the injection hole 107, and 107 F indicates an inner peripheral surface of the injection hole 107 ( The side) is shown. 107J indicates the spatial volume of the injection hole 107 surrounded by the inlet opening surface 107G, the outlet opening surface 107H, and the inner peripheral surface 107F. Fu indicates the adhered fuel that adheres to the nozzle surface when the fuel injected from the injection hole 107 is scattered.
- FIG. 11 shows the relationship between the pressure of the space volume 107J of the injection hole 107 and the amount of the adhered fuel Fu that adheres to the nozzle surface when the fuel flows out from the injection hole 107.
- the vertical axis represents the amount of adhered fuel Fu
- the horizontal axis represents the ratio of the average fuel pressure of the spatial volume 107J to the pressure (fuel pressure) applied to the fuel injection valve.
- the fuel pressure may be considered as the pressure in the fuel pipe that supplies the fuel to the fuel injection valve 101.
- the internal pressure of the injection hole with respect to the pressure of the fuel applied to the fuel injection valve 101 at the time of maximum lift of the valve body 108 is maintained. It is configured so that the average value of the fuel pressure is 14% or more. That is, the average value of the fuel pressure inside the injection hole 107 (space volume) 107J is 14% or more with respect to the fuel pressure (fuel pressure) on the upstream side of the seat portion 113. This condition may be satisfied by at least one injection hole among the plurality of injection holes 107.
- the average fuel pressure of the space volume 107J inside at least one of the plurality of injection holes 107 is 14% or more with respect to the pressure of the fuel on the upstream side of the seat portion 113.
- the pressure of the fuel in the space volume 107J of the injection hole 107 can be made higher than the saturated vapor pressure, and the occurrence of cavitation in the injection hole 107 can be suppressed.
- generation of a flow velocity component in a direction perpendicular to the central axis 107a of the injection hole 107 is suppressed, and fuel adhesion to the periphery of the injection hole outlet (nozzle surface) is suppressed.
- FIG. 12 is a diagram showing the relationship between the radius of curvature R of the curved portion 107AE formed inside the peripheral edge portion 107A on the radial center side and the ratio of the internal pressure of the injection hole 107 to the applied fuel pressure.
- the average fuel pressure inside the injection hole 107 (space volume) 107J is 14% or more of the fuel pressure (fuel pressure) on the upstream side of the seat 113.
- the curved surface portion 107AE on the radial center side be formed so that the radius of curvature thereof is 0.023 mm or more.
- the purpose of the fuel pressure in the injection hole 107 to have an average fuel pressure of 14% or more with respect to the fuel pressure is to sufficiently reduce the amount of fuel adhered to the nozzle surface so that the adhered fuel Fu has a high fuel concentration. By suppressing the combustion in the state, it is possible to suppress the adhered fuel Fu from becoming the starting point of generation of the suspended particulate matter. Therefore, it is necessary to configure at least one injection hole 107 to have an injection hole pressure of 14% or more of the fuel pressure in order to sufficiently reduce the amount of fuel adhering to the nozzle surface.
- FIG. 13 is a conceptual diagram showing the characteristics of the fuel spray in the first embodiment.
- the pressure in the combustion chamber at the injection destination varies depending on the intake air amount and the injection timing according to the engine load.
- the pressure in the combustion chamber is lower than the atmospheric pressure, the resistance of air is reduced. Therefore, the spray 401 has a downward convex contour shape as shown in FIG.
- the shape of the spray 401 will be described in more detail.
- the shape of the spray 401 is such that the pressure in the injection hole is kept high as described above, so that the flow velocity 402 in the direction coaxial with the central axis 107a of the injection hole 107 is large when injected from the outlet of the injection hole, and is perpendicular to the central axis 107a. It is formed by reducing the flow velocity in the direction. Therefore, when the fuel flows out from the injection hole 107, the fuel spreads little in the direction perpendicular to the central axis 107a and advances in the direction along the central axis 107a.
- the spray 401 spreads in a direction perpendicular to the central axis 107a at a position away from the injection hole outlet, as the distance from the injection hole outlet increases. Therefore, the spray 401 has a spray contour shape that is convex downward.
- the spray 401 has a sufficiently small velocity component that spreads in the direction perpendicular to the central axis 107a near the outlet of the injection hole, so that fuel can be prevented from adhering to the nozzle surface near the outlet of the injection hole. Further, the shape of the spray 401 has a downwardly convex spray contour shape when injected into the combustion chamber lower than atmospheric pressure, and the vicinity of the outlet of the injection hole 107 is enlarged and observed using a long-distance microscope or the like. You can check it.
- FIG. 14 shows a state in which a counterbore is attached to the outlet of the injection hole 107-2 in FIG.
- the counterbore 107K indicates counterbore.
- the counterbore 107K is formed in a concave shape on the surface (nozzle surface) of the injection hole forming member 112.
- a counterbore 107K may be provided at the outlet of the injection hole 107 (107-1, 107-2) so that the spray flowing out from the injection hole does not come into contact with it. It is not necessary to provide the counterbore 107K in all of the plurality of ejection holes, and it is preferable to provide the counterbore 107K specifically for the ejection holes that may interfere with the spray.
- FIG. 15 shows a cross section of a modified example (modified example 2) of the injection hole in the first embodiment.
- the injection hole 107-2 on the side where the inclination angle ⁇ is large has an inner peripheral surface (side surface) where the cross-sectional area of the injection hole (cross-sectional area perpendicular to the central axis 107-2a) increases toward the outlet side (downstream side). It has 107L.
- the inner peripheral surface 107L having a wider cross-sectional area is provided in the specific injection hole 107-2, but it may be provided in all the injection holes. Even when the cross-sectional area increases toward the outlet of the injection hole, the radius of curvature of the inlet opening peripheral edge 107-2I on the peripheral edge portion 107-2A side on the radial center side is increased. Further, in the case where a plurality of injection holes have a shape in which the cross-sectional area increases toward the outlet, the radius of curvature on the radial center side of the inlet opening peripheral edge may be increased by limiting to a specific hole. As described in the embodiment, it is preferable to increase the radius of curvature of the peripheral portion of the injection hole with a large inclination angle ⁇ of the injection hole 107 or the injection hole with a low fuel pressure.
- FIG. 16 shows a cross section of a modified example (modified example 2) of the injection hole in the first embodiment.
- the diameters of the injection holes 107-1 and 107-2 are gradually reduced toward the outlet (downstream side). That is, the injection holes 107-1 and 107-2 have a tapered shape in which the diameter decreases from the inlet side toward the outlet side. In a taper shape in which the diameters of the injection holes 107-1 and 107-2 gradually decrease toward the outlet (downstream side), the degree to which the injection hole 107 reduces in diameter is represented by a taper angle ⁇ p (see FIG. 17).
- the inclination angle ⁇ of the injection hole is larger in the injection hole 107-2 than in the injection hole 107-1.
- the reduction rate of the injection hole diameter is smaller for the injection hole 107-1 with a smaller inclination angle ⁇ and larger for the injection hole 107-2 with a larger inclination angle ⁇ .
- the radius of curvature of the peripheral edge portion on the radial center side of the inlet opening peripheral edge of the injection hole is larger than that of the injection hole 107-1. It is configured to be larger than that on the side of the peripheral edge portion 107-1A on the radial center side.
- the injection hole 107-1 with a small inclination angle ⁇ has a smaller reduction ratio of the injection hole diameter than the injection hole 107-2 with a large inclination angle ⁇ . This is because the injection hole 107-1 with the smaller inclination angle ⁇ is likely to increase the pressure in the injection hole, whereas the injection hole 107-2 with the larger inclination angle is likely to decrease the pressure in the injection hole. Therefore, by increasing the reduction rate of the diameter of the injection hole 107-2, the decrease of the pressure in the injection hole of the injection hole 107-2 is suppressed.
- the relationship of the radius of curvature (or curvature) of the inlet opening peripheral edge of the injection hole to be the same as that of the above-described embodiment, the same effect as that of the above-described embodiment can be obtained.
- FIG. 17 is a diagram showing the relationship between the taper angle and the ratio of the internal pressure of the injection hole 107 to the applied fuel pressure.
- the average fuel pressure inside the injection hole 107 (space volume) 107J is 14% or more of the fuel pressure (fuel pressure) on the upstream side of the seat 113.
- the taper angle ⁇ p of the injection hole 107 is preferably set to an angle of 6.8 deg or more.
- the fuel injection valve of this embodiment described above has the following features.
- the fuel injection valve 101 includes a seat portion 113 with which the valve body 108 abuts, an injection hole 107 having an inlet opening 107G on the downstream side of the seat portion 113, and an injection hole forming member 112 having the inlet opening 107G formed therein. , Is provided.
- the injection hole 107 has an inner peripheral surface 107F extending from the inlet side to the outlet side, and a curved surface portion 107E formed between the peripheral edge 107I of the inlet opening 107G and the inner peripheral surface 107F.
- the inner peripheral surface 107F of the injection hole 107, the peripheral edge 107I of the inlet opening 107G, and the injection hole center axis line 107a that is the center axis line of the injection hole 107 are plan views projected on a virtual plane IP perpendicular to the injection hole center axis line 107a.
- the above has the following configuration.
- the curved surface portion 107E has a center side curved surface portion 107AE and an outer peripheral side curved surface portion 107BE.
- the center-side curved surface portion 107AE is a curved surface portion formed inside the center-side peripheral edge portion 107A in the radial direction around the injection valve center axis line 101a which is the center axis line of the fuel injection valve 101, of the peripheral edge 107I of the inlet opening 107G.
- the outer peripheral side curved surface portion 107BE is a curved surface portion formed inside the outer peripheral side peripheral edge portion 107B in the radial direction around the injection valve central axis 101a, of the peripheral edge of the inlet opening 107G.
- the width W107AE in the center side curved surface portion 107AE is larger than the width W107BE in the outer peripheral side curved surface portion 107BE.
- the fuel injection valve 101 includes a seat portion 113 with which the valve element 108 abuts, an injection hole 107 having an inlet opening 107G on the downstream side of the seat portion 113, and an injection hole forming member 112 having the inlet opening 107G formed therein. , Is provided.
- the injection hole 107 has an inner peripheral surface 107F extending from the inlet side to the outlet side, and a curved surface portion 107E formed between the peripheral edge 107I of the inlet opening 107G and the inner peripheral surface 107F.
- the injection hole 107 includes an injection hole center axis line 107a that is a center axis line of the injection hole 107, and a radial direction around the injection valve center axis line 101a that is the center axis line of the fuel injection valve 101 in the peripheral edge 107I of the inlet opening 107G.
- the curved surface portion 107E has a center side curved surface portion 107AE formed inside the center side peripheral edge portion 107A and an outer peripheral side curved surface portion 107BE formed inside the outer peripheral side peripheral portion 107B.
- the curved surface portion 107E includes a center side curved surface portion 107AE, an extension line 107FAb of an inner peripheral surface portion 107FA of the inner peripheral surface 107F connected to the center side curved surface portion 107AE, a center side peripheral edge portion 107A and an outer peripheral side peripheral portion 107B.
- the area 107SB of a portion surrounded by a straight line 107ABL connecting the side peripheral edge portion 107A and the outer peripheral side peripheral portion 107B is configured to be larger.
- the fuel injection valve 101 includes a seat portion 113 with which the valve body 108 abuts, an injection hole 107 having an inlet opening 107G on the downstream side of the seat portion 113, and an injection hole forming member 112 having the inlet opening 107G. , Is provided.
- the injection hole 107 has an inner peripheral surface 107F extending from the inlet side to the outlet side, and a curved surface portion 107E formed between the peripheral edge 107I of the inlet opening 107G and the inner peripheral surface 107F.
- the injection hole 107 includes an injection hole center axis line 107a that is a center axis line of the injection hole 107, and a radial direction around the injection valve center axis line 101a that is the center axis line of the fuel injection valve 101 in the peripheral edge 107I of the inlet opening 107G.
- the curved surface portion 107E has a center side curved surface portion 107AE formed inside the center side peripheral edge portion 107A and an outer peripheral side curved surface portion 107BE formed inside the outer peripheral side peripheral portion 107B.
- the length of the curve connecting the center side peripheral edge portion 107A and the upstream end portion 107FAa of the inner peripheral surface portion 107FA of the inner peripheral surface 107F connected to the center side curved surface portion 107AE is the outer peripheral side. It is configured to be longer than the length of the curve connecting the peripheral edge portion 107B and the upstream end portion 107FBa of the inner peripheral surface portion 107FB connected to the outer peripheral side curved surface portion 107BE of the inner peripheral surface 107F.
- the curved surface portion 107E formed between the peripheral edge 107I of the inlet opening 107G and the inner peripheral surface 107F has an arc shape having a curvature, and the radius of curvature of the center side curved surface portion 107AE is 0.023 mm or more. It is good to be formed in.
- the curved surface portion 107E formed between the peripheral edge 107I of the inlet opening 107G and the inner peripheral surface 107F has an arc shape having a curvature, and the radius of curvature of the center side curved surface portion 107AE is the curvature of the outer peripheral side curved surface portion 107BE. It may be formed to be larger than the radius.
- At least one injection hole is provided with a plurality of injection holes 107 configured by the injection holes 107 described in (1) to (3), and the injection holes 107 described in (1) to (3) are seat portions.
- the average value of the pressure inside the injection hole may be 14% or more with respect to the pressure of the fuel on the upstream side of 113.
- At least one injection hole has a plurality of injection holes 107 configured by the injection holes 107 described in (1) to (3).
- the cross-sectional area Ss of the flow path may be configured to be larger than the total area of the inlet openings 107G of the plurality of injection holes 107.
- the injection hole 107 has a tapered shape in which the cross-sectional area of the inner peripheral surface 107F extending from the inlet side to the outlet side perpendicular to the injection hole central axis 107a decreases from the inlet side to the outlet side. Good to be configured.
- the taper angle forming the taper shape is preferably 6.8 deg or more.
- all of the plurality of injection holes 107 may be formed of the injection holes 207 described in (1).
- the area of the cross section of the inner peripheral surface extending from the inlet side to the outlet side perpendicular to the injection hole central axis 107a is from the inlet side to the outlet side.
- the taper shape may be reduced toward the side.
- the injection hole center axis line 107a is an axis line passing through the center of the inner peripheral surface 107F of the injection hole 107, and the center side peripheral edge portion 107A and the outer peripheral side peripheral edge portion 107B are parallel to the injection hole center axis line 107a. It may be located on a plane passing through the hole center axis line 107a.
- the curved surface portion 107E may have the circumferential curved surface portions 107CE and 107DE inside the circumferential peripheral edge portions 107C and 107D between the center side peripheral portion 107A and the outer peripheral side peripheral portion 107B.
- the width W107AE in the center-side curved surface portion 107AE may be configured to be larger than the widths W107CE and 107DE in the circumferential curved surface portions 107CE and 107DE.
- the curved surface portion 107E may be formed on the entire circumference of the inlet opening 107G.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
本発明の目的は、ノズル表面への燃料付着を抑制することができる燃料噴射弁を提供することにある。そのため、噴射孔107は、入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eを有する。曲面部107Eは、中心側曲面部107AEと外周側曲面部107BEとを有する。中心側曲面部107AEにおける幅W107AEは、外周側曲面部107BEにおける幅W107BEよりも大きく形成する。
Description
本発明は燃料噴射弁に関する。
特開2008-68360号公報(特許文献1)の燃料噴射ノズルが知られている。特許文献1には、キャビテーションエロージョンの低減のために、ノズルボディの後端からノズルボディの内部空間、さらにシート面と加工用挿入具の外面とに挟まれた空間を経て噴射孔に砥粒流動体を流すことによって、噴射孔の入口周縁部の全周に曲率を設ける技術が示されている。特許文献1には、噴射孔の入口周縁部のうち上流側の縁が、それ以外の周縁部の曲率に比べて大きな曲率を有する、と説明されている(段落0050,0055)。しかし、特許文献1の段落0055では、噴射孔の入口周縁部のうち上流側の縁が集中的に面取り加工されることから、噴射孔の入口周縁部のうち上流側の縁の曲率はそれ以外の周縁部の曲率に比べて小さな曲率を有しており、上流側の縁の曲率半径がそれ以外の周縁部の曲率半径に比べて大きくなっているものと考えられる。
また、特開2016-3628号公報(特許文献2)の燃料噴射弁が知られている。特許文献2の燃料噴射弁では、噴射孔の入口周縁部のうち軸心側縁部の最小曲率半径が弁座側縁部の最小曲率半径よりも大きく、弁座側縁部がシャープエッジに形成されている(段落0024)。すなわち特許文献2の燃料噴射弁では、尖った弁座側縁部で燃料の流れを剥離させてキャビテーションの発生を促すことによって燃料の微粒化を図っている(段落0031)。一方、丸みを帯びた軸心側縁部によって、ニードル(弁体)の全開時に軸心側(全開時燃料停滞空間)に停滞する燃料を、ニードルが閉弁する間際に噴射孔に流し易くしている(段落0031)。
特許文献2のように、噴射孔の入口の縁を尖らせてシャープエッジに形成することは、噴射孔の尖った弁座側縁部で燃料流れの剥離を促進する。この場合、噴射孔内に流入する燃料流れが乱れるため、燃料流れは噴射孔の軸方向(中心軸線方向)に垂直な方向の速度成分を有するようになる。噴射孔の軸方向に垂直な方向の速度成分が大きくなると、噴射孔の出口周辺で燃料流れが広がって、ノズルの表面に燃料付着が発生し易くなる。
一方、噴射孔の入口の周縁部に曲率を設けるだけでは、噴射孔の全周において燃料流速のバランスを保つことができず、噴射孔内で噴射孔内周面からの燃料流れの剥離が発生してしまい、噴射孔内の圧力が低下し、キャビテーション(減圧沸騰)が発生し易くなってしまう。キャビテーションが発生すると、燃料流れには噴射孔の軸方向に垂直な方向の速度成分が発生し、噴射孔の出口周辺で燃料流れが広がって、ノズルの表面に燃料付着が発生し易くなる。
ノズルの表面に燃料付着が発生し、付着した燃料の周辺に過濃混合気が形成される。この過濃混合気は燃焼することで、粒子状物質が発生することが知られている。
本発明の目的は、ノズル表面への燃料付着を抑制することができる燃料噴射弁を提供することにある。
上記課題を解決するために本発明の燃料噴射弁は、
弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の前記内周面と、前記入口開口の前記周縁と、前記噴射孔の中心軸線である噴射孔中心軸線と、を前記噴射孔中心軸線に垂直な仮想平面に投影した平面図上において、
前記曲面部は、中心側曲面部と外周側曲面部とを有し、
前記中心側曲面部は、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向において中心側周縁部分の内側に形成される曲面部であり、
前記外周側曲面部は、前記入口開口の前記周縁のうち、前記噴射弁中心軸線を中心とする径方向において外周側周縁部分の内側に形成される曲面部であり、
前記中心側曲面部における幅が、前記外周側曲面部における幅よりも、大きく構成される。
また本発明の燃料噴射弁は、
弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の中心軸線である噴射孔中心軸線を含み、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向における中心側周縁部分及び外周側周縁部分を通る断面において、
前記曲面部は、前記中心側周縁部分の内側に形成される中心側曲面部と、前記外周側周縁部分の内側に形成される外周側曲面部と、を有し、
さらに前記曲面部は、
前記中心側曲面部と、前記内周面のうち前記中心側曲面部に接続される内周面部分の延長線と、前記中心側周縁部分と前記外周側周縁部分とを結ぶ直線と、で囲まれる部分の面積が、前記外周側曲面部と、前記内周面のうち前記外周側曲面部に接続される内周面部分の延長線と、前記中心側周縁部分と前記外周側周縁部分とを結ぶ直線と、で囲まれる部分の面積よりも、大きく構成される。
また本発明の燃料噴射弁は、
弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の中心軸線である噴射孔中心軸線を含み、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向における中心側周縁部分及び外周側周縁部分を通る断面において、
前記曲面部は、前記中心側周縁部分の内側に形成される中心側曲面部と、前記外周側周縁部分の内側に形成される外周側曲面部と、を有し、
さらに前記曲面部は、
前記中心側周縁部分と前記内周面のうち前記中心側曲面部に接続される内周面部分の上流側端部とを接続する曲線の長さが、
前記外周側周縁部分と前記内周面のうち前記外周側曲面部に接続される内周面部分の上流側端部とを接続する曲線の長さよりも、長く構成される。
弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の前記内周面と、前記入口開口の前記周縁と、前記噴射孔の中心軸線である噴射孔中心軸線と、を前記噴射孔中心軸線に垂直な仮想平面に投影した平面図上において、
前記曲面部は、中心側曲面部と外周側曲面部とを有し、
前記中心側曲面部は、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向において中心側周縁部分の内側に形成される曲面部であり、
前記外周側曲面部は、前記入口開口の前記周縁のうち、前記噴射弁中心軸線を中心とする径方向において外周側周縁部分の内側に形成される曲面部であり、
前記中心側曲面部における幅が、前記外周側曲面部における幅よりも、大きく構成される。
また本発明の燃料噴射弁は、
弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の中心軸線である噴射孔中心軸線を含み、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向における中心側周縁部分及び外周側周縁部分を通る断面において、
前記曲面部は、前記中心側周縁部分の内側に形成される中心側曲面部と、前記外周側周縁部分の内側に形成される外周側曲面部と、を有し、
さらに前記曲面部は、
前記中心側曲面部と、前記内周面のうち前記中心側曲面部に接続される内周面部分の延長線と、前記中心側周縁部分と前記外周側周縁部分とを結ぶ直線と、で囲まれる部分の面積が、前記外周側曲面部と、前記内周面のうち前記外周側曲面部に接続される内周面部分の延長線と、前記中心側周縁部分と前記外周側周縁部分とを結ぶ直線と、で囲まれる部分の面積よりも、大きく構成される。
また本発明の燃料噴射弁は、
弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の中心軸線である噴射孔中心軸線を含み、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向における中心側周縁部分及び外周側周縁部分を通る断面において、
前記曲面部は、前記中心側周縁部分の内側に形成される中心側曲面部と、前記外周側周縁部分の内側に形成される外周側曲面部と、を有し、
さらに前記曲面部は、
前記中心側周縁部分と前記内周面のうち前記中心側曲面部に接続される内周面部分の上流側端部とを接続する曲線の長さが、
前記外周側周縁部分と前記内周面のうち前記外周側曲面部に接続される内周面部分の上流側端部とを接続する曲線の長さよりも、長く構成される。
本発明の燃料噴射弁によれば、噴射孔出口周辺のノズル表面への燃料付着を低減することができる燃料噴射弁を提供することができる。
また、前述した以外の課題、構成及び効果は、以下の実施形態の中で詳述する。
以下に、本発明に関する燃料噴射弁の実施例を、図面に基づき詳細に説明する。
[実施例1]
本発明の第1実施例について、図1~図9を用いて説明する。
本発明の第1実施例について、図1~図9を用いて説明する。
本実施例の燃料噴射弁の詳細な構成について、図1を用いて説明する。図1は、本発明の一実施例に係る燃料噴射弁の構成図である。なお、説明に用いる燃料噴射弁は一例であり、本発明を適用可能な燃料噴射弁は、図1の構成に限定されない。
以下の説明では、燃料噴射弁101の中心軸線(噴射弁中心軸線)101aに沿う方向を軸方向と呼んで説明する。燃料噴射弁の軸方向において、噴射孔107が設けられる側の端部を先端部と呼び、先端部に対して反対側の端部を基端部と呼んで説明する。また、任意の部材又は位置を基準として、この基準に対して先端部の側を先端側と呼び、基端部の側を基端側と呼ぶ場合もある。また説明の中で、例えば「上端部」及び「下端部」のように上下方向を指定して説明する場合があるが、この場合の上下方向は図面に基づいて設定されるものであり、燃料噴射弁の実装状態における上下方向を特定するものではない。
燃料噴射弁101において、燃料噴射弁本体102はノズルホルダ103と固定コア104とハウジング105とから構成される。図示しない高圧燃料ポンプからの燃料は、燃料通路106を介して、複数の噴射孔107から吐出される。複数の噴射孔107はノズルホルダ103の先端部に取り付けられた噴射孔形成部材112に形成されている。
弁体108は、アンカー(可動コア)109に組み付けられ、アンカー109と共に軸方向に移動可能に、ノズルホルダ103内に収納されている。本実施例では、弁体108とアンカー109とは軸方向に相対変位可能に構成されているが、両者が固定された構成であってもよい。
スプリング(第1スプリング)110Aは、弁体108とアジャスタピン111との間に配置され、アジャスタピン111によってスプリング110Aの上端部の位置が拘束される。スプリング110Aが弁体108を先端側(閉弁方向)に向けて付勢して噴射孔形成部材112のシート部113に押し付けることによって、燃料噴射弁101は閉弁する。また本実施例では、弁体108とアンカー109とが軸方向に相対変位可能に構成されていることから、アンカー109を基端側(開弁方向)に向けて付勢する第2スプリング110Bが設けられる。
なお噴射孔形成部材112は、噴射孔107の他にシート部113が形成される部材として、構成されている。噴射孔107は噴射孔形成部材112の内面に開口する。噴射孔形成部材112の内面は、通常、円錐面(円錐台面)で構成される。この円錐面は、シート部113が形成される面であり、シート部形成面と呼ぶ場合もある。
ソレノイド114は、アンカー109及び固定コア104の径方向外側に配置される。
ソレノイド114は、通電時に、図示しない駆動回路からの駆動電流が流れる。これにより、固定コア104が励磁されることで、アンカー109に対する磁気吸引力が生じ、アンカー109は軸方向に引き上げられる。それに伴い、弁体108がアンカー109によって軸方向に引き上げられ、弁体108がシート部113から離れる。弁体108がシート部113から離れることにより、弁体108とシート部113との間に燃料通路が形成され、燃料噴射弁101は開弁する。このとき、ガイド115,116が弁体108の軸方向の移動をガイドする。
ソレノイド114は、通電時に、図示しない駆動回路からの駆動電流が流れる。これにより、固定コア104が励磁されることで、アンカー109に対する磁気吸引力が生じ、アンカー109は軸方向に引き上げられる。それに伴い、弁体108がアンカー109によって軸方向に引き上げられ、弁体108がシート部113から離れる。弁体108がシート部113から離れることにより、弁体108とシート部113との間に燃料通路が形成され、燃料噴射弁101は開弁する。このとき、ガイド115,116が弁体108の軸方向の移動をガイドする。
弁体108とシート部113との間に燃料通路が形成されると、複数の燃料噴射孔107を通じて、図示しない高圧燃料ポンプによって加圧、圧送された燃料が燃料噴射弁101の外部に噴射される。
図2は、本発明を適用した噴射孔107の構造を説明する図であり、噴射孔形成部材112を軸方向に沿って図1の上方(基端側)から見た図である。なお、図2は、中心軸線101aと直交する平面に、噴射孔形成部材112及び噴射孔107を投影した平面図である。
噴射孔107の入口の周縁(入口開口周縁)107Iについて、107Aは燃料噴射弁101の中心軸線101a側(径方向中心側又はサック側)の周縁部分(中心側周縁部分)を表し、107Bはシート部113側(径方向外周側)の周縁部分(外周側周縁部分)を表し、107C,107Dは噴射孔107の入口開口周縁107Iの横方向の周縁部分を表している。
本実施例において、ノズルホルダ103及び固定コア104はそれぞれ円筒部を有するが、燃料噴射弁101の中心軸線101aはノズルホルダ103及び固定コア104の円筒部の中心軸線に一致する。また、弁体108は円柱状のロッド部を有するが、弁体108のロッド部の中心軸線は燃料噴射弁101の中心軸線101aに一致するように配置される。
図2の平面図上において、相互に直交するx軸107xとy軸107yとを定義する。y軸107yは中心軸線101a及び噴射孔107の中心軸線107aと交差する、径方向に延びる軸である。107Iaは、噴射孔107の中心軸線107aが噴射孔107の入口開口面(入口開口周縁107Iで囲まれる面)と交差する交点である。従って、y軸107yは交点107Iaを通る。x軸107xは交点107Iaを通り、y軸107yと直交する軸である。
107cは、中心軸線101aを中心とする円を示しており、噴射孔107の入口開口を配置する基準となる円であり、噴射孔107の配置円と呼ばれる。本実施例では、噴射孔107の中心軸線107aが配置円107cと交差すように、各噴射孔107が配置されている。
噴射孔107の入口開口周縁107Iの横方向とは、図2上において、x軸107xに沿う方向を表す。横方向の周縁部分107C,107Dは、x軸107xが交差する入口開口周縁107Iの一部分であり、入口開口周縁107Iの周方向において径方向中心側の周縁部分107Aと径方向外周側の周縁部分107Bとの間に形成される。x軸107xと円周107cとは近傍で入口開口周縁107Iと交差する。このため、横方向の周縁部分107C,107Dは、円周107cが交差する入口開口周縁107Iの一部分とすることもできる。従って、横方向の周縁部分107C,107Dは、入口開口周縁107Iの周方向周縁部分と呼ぶ場合もある。周方向周縁部分107Cと周方向周縁部分107Dとは、配置円107cの円周方向、或いはx軸107x方向において、対向する位置にある。
噴射孔107の入口開口周縁107I(107A~107D)には、噴射孔107の入口開口周縁107Iの全周に渡って曲面部107Eが形成される。各噴射孔107の入口開口周縁107Iは、全周に渡って、噴射孔107の入口から出口側に向かって丸みがつくように、曲率を持って滑らかに接続されることが望ましい。この曲率は、噴射孔107の内周面107Fと円錐面(シート部形成面)112Aとの間を接続する丸み部(曲率形成部)107Eを形成する。
図3~図5を用いて、噴射孔の構成について、更に詳細に説明する。図3は、本実施例に係る噴射孔形成部材112について、噴射孔107の中心軸線107aに平行で且つ中心軸線107aを通る断面の一部を示す断面図である。図4は、本実施例に係る噴射孔107について、中心軸線107aに垂直な仮想面IP(図3参照)上に噴射孔107を投影した平面図である。
噴射孔107は、入口側から出口側に向かって中心軸線107aに沿う方向に延設される内周面107Fと、内周面107Fの入口側の端部107FIと入口開口周縁107Iとの間(入口開口周縁107Iの内側)に形成される曲面部107Eと、を有する。入口開口周縁107Iによって囲まれる面が噴射孔107の入口開口面107Gである。
図3及び図4に示すように、径方向中心側の周縁部分107A及び径方向外周側の周縁部分107Bは、噴射孔中心軸線107aに平行で且つ噴射孔中心軸線107aを通る平面上、すなわち噴射孔中心軸線107aを含む平面上に存在する点として、定義される。この場合、径方向中心側の周縁部分107Aと径方向外周側の周縁部分107Bとを結ぶ直線は、図4の平面図上において、噴射弁中心軸線101aを中心とする径方向に沿う。また、横方向の周縁部分107C,107Dは、噴射孔中心軸線107aに平行で且つ噴射孔中心軸線107aを通る平面上に存在する点として、定義される。この場合、周縁部分107C,107Dを含む平面は、周縁部分107A,107Bを含む平面に対して垂直に交わる。従って、横方向の周縁部分107Cと横方向の周縁部分107Bとを結ぶ直線は、図4の平面図上において、周縁部分107Aと周縁部分107Bとを結ぶ直線(径方向)に対して垂直となる。
図3では、曲面部107AEと曲面部107BEとを示している。曲面部107AEは、噴射孔107の内周面107Fの入口側の端部107FIのうち径方向中心側の端部107FAaと、入口開口周縁107Iのうち径方向中心側の周縁部分107Aと、の間(径方向中心側周縁部分107Aの内側)に形成される曲面部(中心側曲面部)である。曲面部107BEは、噴射孔107の内周面107Fの入口側の端部107FIのうち径方向外周側の端部107FBaと、入口開口周縁107Iのうち径方向外周側の周縁部分107Bと、の間(径方向外周側周縁部分107Bの内側)に形成される曲面部(外周側曲面部)である。
さらに本実施例では、曲面部107Eの表面を円弧形状に形成する場合、径方向中心側周縁部分107Aの曲率は、径方向外周側周縁部分107Bの曲率よりも小さくする。すなわち、径方向中心側周縁部分107Aの曲率半径の大きさは、径方向外周側周縁部分107Bの曲率半径よりも大きくする。
さらに本実施例では、周方向周縁部分107C,107Dの曲率は、径方向中心側周縁部分107Aの曲率よりも大きくする。すなわち、周方向周縁部分107C,107Dの曲率半径は、径方向中心側周縁部分107Aの曲率半径よりも小さくする。
本実施例では、曲面部107Eの表面は、図3における断面において円弧形状を成す面であり、曲率を有する曲率形成部として、構成されている。これにより、図4上において、径方向中心側周縁部分107Aの内側に形成される曲面部107AEの幅W107AEは、径方向外周側周縁部分107Bの内側に形成される曲面部107BEの幅W107BEよりも大きい。また、曲面部107AEの幅W107AEは、周方向周縁部分107C,107Dの内側に形成される曲面部(周方向曲面部)107CE,107DEの幅W107CE,W107DEよりも大きい。
なお、曲面部107Eの表面が曲率を有する円弧形状の面ではない、他の曲面形状で構成される場合であっても、曲面部107AEの幅W107AE、曲面部107BEの幅W107BE及び曲面部107CE,107DEの幅W107CE,W107DEが上述した関係を満たすような曲面部として構成されればよい。すなわち、本発明は、曲面部107Eの表面の形状が円弧形状に限定される訳ではない。
また、図5は、本実施例に係る噴射孔について、噴射孔中心軸線107aを含み、径方向中心側の周縁部分107A及び径方向外周側の周縁部分107Bを通る断面を示す。なお、図5では、噴射孔107の内周面は円筒面であり、噴射孔の中心軸線107aは図5上において円錐面112Aに垂直である。
図5の断面上において、斜線部107SAは、径方向中心側の周縁部分107Aの内側に形成される径方向中心側の曲面部107AEと、内周面107Fのうち径方向中心側の曲面部107AEに接続される内周面部分(径方向中心側内周面部分)107FAの延長線107FAbと、径方向中心側の周縁部分107Aと径方向外周側の周縁部分107Bとを結ぶ直線107ABLと、で囲まれる部分(範囲)を示す。また、斜線部107SBは、径方向外周側の周縁部分107Bの内側に形成される径方向外周側の曲面部107BEと、内周面107Fのうち径方向外周側の曲面部107BEに接続される内周面部分(径方向外周側内周面部分)107FBの延長線107FBbと、直線107ABLと、で囲まれる部分(範囲)を示す。
本実施例では、曲率半径の関係から、斜線部107SAの面積は斜線部107SBの面積よりも大きい。なお、曲面部107Eの表面が曲率を有する円弧形状の面ではない、他の曲面形状で構成される場合であっても、斜線部107SAの面積及び斜線部107SBの面積が上述した関係を満たすような曲面部として構成されていればよい。
さらに、本実施例では、曲率半径の関係から、図5の断面図上において、点107Aと点107FAaとを接続する曲線(円弧)の長さは、点107Bと点107FBaとを接続する曲線(円弧)の長さよりも長い。ここで、点107FAaは内周面部分107FAと曲面部107AEとの接続点であり、内周面部分107FAの上流側端部である。点107FBaは内周面部分107BAと曲面部107BEとの接続点であり、内周面部分107BAの上流側端部である。なお、曲面部107Eの表面が曲率を有する円弧形状の面ではない、他の曲面形状で構成される場合であっても、点107Aと点107FAaとを結ぶ曲線の長さが、点107Bと点107FBaとを結ぶ曲線の長さよりも長くなるように構成されていればよい。
噴射孔107の入口開口周縁107Iの全周に曲率を設けることで、噴射孔107の径方向外周側から噴射孔107の中心に向かう燃料の内向き流速を、噴射孔107の入口開口周縁107Iの全周において連続とすることができる。内向き流速に不連続な部分があると、そこで流れの剥離が発生しやすくなるが、連続であれば剥離を抑えることができる。
図6、図7A及び図7Bを用いて、噴射孔107内の流速の釣り合いについて説明する。
図6は、噴射孔107内の燃料の流れを図示したものである。
107aは噴射孔107の中心軸線(噴射孔中心軸線)を示している。本実施例では、噴射孔107の断面が円形(円形状)を成しており、中心軸線107aは噴射孔107の断面が成す円形の中心を通る軸線である。噴射孔107の内周面107Fが円筒形状に形成される場合、中心軸線107aはこの円筒形状の中心を通る直線となる。
301Aは、外周側(径方向外周側)から噴射孔107に流入する燃料について、噴射孔107に流入する前の流速ベクトルを示す。302Aは、燃料噴射弁101の中心軸線101a側(径方向中心側)から噴射孔107に流入する燃料について、噴射孔107に流入する前の流速ベクトルを示している。301Bは径方向外周側から噴射孔107に流入する際の流速ベクトルを示し、302Bは径方向中心側から噴射孔107に流入する際の流速ベクトルを示している。303Aは噴射孔107の中心軸線107aと同軸方向に向かう燃料流速ベクトルを、303Bは噴射孔107の中心軸線107aに垂直な方向の燃料流速ベクトルを示している。
なお、以下の説明では、曲面部107Eは曲率を有する曲面として説明するが、上述したように、曲面部107Eは曲率を有する曲面に限定されるものではない。
噴射孔107の入口開口周縁107Iにおいて、径方向中心側の周縁部分107Aの内側に形成される曲面部107AEの曲率半径を径方向外周側の周縁部分107Bの内側に形成される曲面部107BEの曲率半径よりも大きくすることで、流速ベクトル302Bで示す燃料流れの流速を増加することができる。このため、流速ベクトル301Bで示す燃料流れの流速(絶対値)と流速302Bで示す燃料流れの流速(絶対値)との差を小さくすることができる。
以下、流速ベクトル302A,302Bで示す燃料流れ或いはその流速を、それぞれ燃料流れ302A,302B或いは流速302A,302Bとして説明する。また、流速ベクトル301A,301Bで示す燃料流れ或いはその流速を、それぞれ燃料流れ301A,301B或いは流速301A,301Bとして説明する。
燃料流れ301Bおよび燃料流れ302Bは、それぞれの流速が噴射孔107内に流入する際に互いに打ち消し合い、矢印301B,302Bで示されるように、噴射孔107の入口開口周縁107I部で剥離することなく噴射孔107に流れ込むことができる。このため、噴射孔107から噴射される際に燃料流れに発生する、噴射孔107の中心軸線107aに垂直な流速成分303Bを抑えることができ、中心軸線107aと同軸方向の流速成分303Aを大きくすることができる。
図7Aは、本実施例に係る噴射孔107内の燃料の流れをシミュレーションした結果を示す図である。図7Bは、本発明との比較例における噴射孔107’内の燃料の流れをシミュレーションした結果を示す図である。図7Bに示す107’、107A’、107B’、108’及び112’は、本実施例の噴射孔107、半径方向中心側の周縁部分107A、半径方向外周側の周縁部分107B、弁体108及び噴射孔形成部材112に対応する比較例の構成を示している。
本実施例では、燃料流れ302Bの流速を高めて燃料流れ301Bの流速に近づけることで、燃料流れ302Bと燃料流れ301Bとは相互に噴射孔107の内周面107Fに沿って流れるように干渉し合うようになる。これにより、流れの剥離を起こすことなく、或いは流れの剥離の発生を抑制して、噴射孔107に燃料を流入させることが可能となる。
本発明との比較例である図7Bは、半径方向中心側の周縁部分107A’側に燃料流速の遅い領域SF1が大きな範囲に発生し、半径方向外周側の周縁部分107B’側に燃料流れの剥離領域SF2が大きな範囲に発生している。一方、本実施例では、図7Aに示すように、半径方向中心側の周縁部分107A側における燃料流速が高まり、半径方向外周側の周縁部分107B側における燃料流れの剥離領域SF0の発生が非常に小さい範囲に抑制されている。
つまり本実施例では、内向き流速の連続性を確保し、かつ、内向き流速の釣り合いを確保することができるため、流れの剥離を抑制する効果が極めて高く、噴射孔107内に効率よく燃料を供給することができるようになる。このため、噴射孔107内部の燃料圧力を高めることができる。
ここで、図8を用いて、噴射孔107に流入する燃料の流速の関係について、補足して説明する。図8は、噴射孔に流入する燃料の流速の関係を説明する概念図である。図8の下部には、図2のy軸107yにおいて、径方向外周側を0°、径方向中心側(中心軸線101a側)を180°とした角度の定義に関する説明図を示している。図8の上部には、横軸にこの角度0°~360°(0°)をとり、縦軸に噴射孔107に向かう燃料流れの流速をとり、角度に対する流速の変化を概念的に示した概念図を示している。図中のAは本発明を適応した流速分布であり、Bは噴射孔の入口開口周縁107Iの全周に亘って入口開口周縁107Iの内側に一定の曲率の丸み部(曲面部、曲線部)を設けた場合の流速分布である。
本実施例では、径方向中心側の周縁部分107Aの内側の曲率半径を径方向外周側の周縁部分107Bの内側の曲率半径よりも大きくすることで、流速302Bは速くなり、流速301Bは遅くなる。ここで、流速301Bの低下は流速302Bの増加により生じる。これにより、径方向外周側から噴射孔107に流入する燃料流れの流速301B(0°)と径方向中心側から噴射孔107に流入する燃料流れの流速302B(180°)との速度差ΔV2は、入口開口周縁107Iの全周に亘って一定の曲率の丸み部を設けた場合の速度差ΔV1よりも小さくなり、流速302Bと流速301Bとの流速差が小さくすることができる。
次に、円周方向の周縁部分107C,107Dの内側の曲率による効果について説明する。
円周方向の周縁部分107C,107Dの内側の曲率半径を径方向中心側の周縁部分107Aの曲率半径よりも小さくすることで、円周方向の周縁部分107C,107Dから噴射孔107に流入する燃料流れを少なくし、径方向中心側の周縁部分107Aおよび径方向外周側の周縁部分107Bから噴射孔107に流入する燃料流れ302B,301Bを増やすことができる。そのため、噴射孔107の中心軸線107aに垂直な流速成分303Bを抑えることができる。また、燃料流れ302Bの流速と燃料流れ301Bの流速との差が更に小さくなり、噴射孔107内での燃料流れの剥離を抑制することができ、噴射孔107内部の燃料の圧力を高めることができる。
図8に示すように、90°および270°での流速は0°、180°での流速よりも遅い。これは、もともと径方向外周側から噴射孔107に流入する燃料が多く、次に径方向中心側から噴射孔107に流入する燃料が多いことに由来しているが、先に述べた、円周方向の周縁部分107C,107Dの内側の曲率半径を径方向中心側の周縁部分107Aの内側の曲率半径よりも小さく設定したことも影響している。
曲率半径を小さくすることにより、噴射孔107に流入する燃料流れの抵抗は大きくなる。このため燃料流れの流速は低下するが、径方向外周側および径方向中心側から噴射孔107に流入する燃料の流速差を小さくすることができるため、特に径方向外周側から噴射孔107に流入する燃料の剥離を低減し、噴射孔内の圧力を高くすることができる。
本実施例では全噴射孔の入口開口の周縁に曲率をつけているが、圧力が低い噴射孔や噴射孔出口での燃料付着量が多い噴射孔に限定して曲率を設ければよい。また曲率の大きさは、噴射孔毎に異なる大きさに設定しても良い。
また、周縁部分107C,107Dの内側の曲率半径の大きさは、径方向中心側の周縁部分107Aの曲率半径の大きさよりも小さければ、周縁部分107C側と周縁部分107D側とで曲率半径を異なる大きさにしてもよい。例えば、複数の噴射孔107に流入する燃料の流速は、噴射孔107の配置で異なる場合がある。この場合、各噴射孔107へ流入する燃料の流速に応じて、周縁部分107C側と周縁部分107D側とで曲率半径の大きさを変更しても良い。
本実施例では丸みを持った曲率で説明したが、噴射孔107に流入する燃料流れの流速の釣り合いが本実施例と同様に取れれば、曲率をもった形状でなくても良い。例えば、曲率を有する円弧形状(曲面)に替えて、面取りのような構造としてもよい。噴射孔107の入口開口周縁107Iの周縁部分107A、107B,107C,107Dの内側に構成される曲面部又は面取りは、流速調整部を構成する。周縁部分107A側の流速調整部は、周縁部分107B側の流速調整部に対して、燃料流れの増速効果が大きい。また周縁部分107C,107Dの流速調整部は、周縁部分107Aの流速調整部に対して、燃料流れの増速効果が小さくなるようにする。
一般的には、流速調整部は曲率を有する円弧形状(曲面)とすることで、噴射孔107の入口開口周縁107Iと内周面107Fとの間を滑らかに接続することができると共に、その設計或いは製造を行い易い。このため、設計及び製造の観点からは、流速調整部は曲率を有する円弧形状(曲面)で構成することが好ましい。
複数の噴射孔107の入口開口面107Gからシート部113に至るまでの中心軸線101aを中心とする径方向の全領域において、中心軸線101aを中心とする周方向に形成される燃料流路の断面積(円錐面112Aと弁体108との間に形成される燃料流の断面積)Ssは、全ての噴射孔107の入口開口面積の総和よりも大きくなるように構成される。これは、噴射孔107の入口開口面よりも上流側の燃料流路が絞りになることにより、噴射孔107に流入する燃料流れの流速が低下するのを避けるためである。
噴射孔107の中心軸線107aと燃料噴射弁101の中心軸線101aとが成す角度(噴射孔107の傾斜角度)は、燃焼室の形状に合わせて設定するものであるため、いろいろな傾斜角度に設定することができる。
図2における噴射孔107の数は6個であるが、6個に限定する必要はなく、6個よりも少ない数、或いは6個以上の数に設定しても良い。
次に図9を用いて、傾斜角度の異なる噴射孔107の曲率の設定について説明する。図9は燃料噴射弁101の中心軸線101aと噴射孔107-1の中心軸線107-1a及び噴射孔107-2の中心軸線107-2aとを含む面での断面図である。すなわち図9では、中心軸線101a、中心軸線107-1a及び中心軸線107-2aが一つの平面上に構成されるが、噴射孔107-1の傾斜角度と噴射孔107-2の傾斜角度とが異なっていれば、中心軸線101a、中心軸線107-1a及び中心軸線107-2aは一つの平面上に構成される必要はない。
107-1は傾斜角度θの小さい噴射孔であり、107-2は傾斜角度θの大きい噴射孔である。図9では、噴射孔107の傾斜角度θとして、噴射孔107-2の傾斜角度θを例示している。107-1aは噴射孔107-1の中心軸線(噴射孔中心軸線)を表し、107-2aは噴射孔107-2の中心軸線(噴射孔中心軸線)を表している。
107-1Aは噴射孔107-1の入口開口の周縁107-1Iにおける径方向中心側の周縁部分(中心側周縁部分)を表し、107-1Bは入口開口周縁107-1Iにおける径方向外周側の周縁部分(外周側周縁部分)を表している。107-2Aは噴射孔107-2の入口開口の周縁107-2Iにおける径方向中心側の周縁部分(中心側周縁部分)を表し、107-2Bは入口開口周縁107-2Iにおける径方向外周側の周縁部分(外周側周縁部分)を表している。
噴射孔107-1の入口開口周縁107-1Iにおいて、径方向中心側の周縁部分107-1Aの内側の曲線部107-1AEの曲率(曲率半径)と径方向外周側の周縁部分107-1Bの内側の曲線部107-1BEの曲率(曲率半径)との関係は、上述した径方向中心側の周縁部分107Aの曲率(曲率半径)と径方向外周側の周縁部分107Bの曲率(曲率半径)との関係と同様に構成される。また、噴射孔107-2の入口開口周縁107-2Iにおいて、径方向中心側の周縁部分107-2AEの内側の曲線部107-2AEの曲率(曲率半径)と径方向外周側の周縁部分107-2Bの内側の曲線部107-2BEの曲率(曲率半径)との関係は、上述した径方向中心側の周縁部分107Aの曲率(曲率半径)と径方向外周側の周縁部分107Bの曲率(曲率半径)との関係と同様に構成される。
傾斜角度θの大きい噴射孔107-2における曲線部107-2AEの曲率半径は、傾斜角度θの小さい噴射孔107-1における曲線部107-1AEの曲率半径よりも大きくなるように構成する。
次に図9で説明した構成について、効果を説明する。301-1は噴射孔107-1の径方向外周側から噴射孔107-1に向かう流速ベクトルを示している。302-1は噴射孔107-1の径方向中心側から噴射孔107-1に向かう流速ベクトルを示している。301-2は、噴射孔107-2の径方向外周側から噴射孔107-2に向かう流速ベクトルを示している。302-2は噴射孔107-2の径方向中心側から噴射孔107-2に向かう流速ベクトルを示している。
以下、流速ベクトル301-1,302-1,301-2,302-2で示す燃料流れ或いはその流速を、それぞれ燃料流れ301-1,302-1,301-2,302-2或いは流速301-1,302-1,301-2,302-2として説明する。
傾斜角度θの大きい噴射孔107-2では、傾斜角度θの小さい噴射孔107-1に対して、噴射孔107-2の入口部において、径方向外周側から噴射孔に流入する燃料流れ301-2の、中心軸線107-2aに垂直な方向の流速成分が大きくなる。このため、噴射孔107-2の周縁部分107-2Aの内側の曲率半径を噴射孔107-1の周縁部分107-1Aの内側の曲率半径よりも大きくすることにより、噴射孔107-2に流入する際の燃料流れ302-2の流路抵抗は小さくなり、径方向中心側から噴射孔107-2に流入する燃料流れ302-2の流速を大きくすることができる。これにより、燃料流れ301-2の流速と燃料流れ302-2の流速との速度差(絶対値)を小さくすることができる。
これにより、燃料流れ301-2と燃料流れ302-2とは相互に噴射孔107-2の内周面に沿って流れるように干渉し合うようになる。そして、噴射孔107-2の中心軸線107-2aに垂直な流速成分の発生及び増加を抑えることができる。よって、流れの剥離を起こすことなく噴射孔107-2に燃料を流入させることが可能となり、噴射孔内部の燃料圧力を高めることができる。
本実施例では、複数の噴射孔107-1,107-2のうち特定の噴射孔107-2で噴射孔内の圧力が低い状態を作り難くすることができる。そのため、複数の噴射孔107-1,107-2の出口周辺での燃料付着を抑制することができる。
次に、噴射孔107内の空間における圧力と燃料噴射弁に印可する圧力との関係について、図10および図11を用いて説明する。
図10は、図6と同一の断面を示した図であり、107Gは噴射孔107の入口開口面を示し、107Hは噴射孔107の出口開口面を、107Fは噴射孔107の内周面(側面)を示している。また107Jは、入口開口面107G、出口開口面107H、内周面107Fで囲まれた噴射孔107の空間体積を示している。Fuは噴射孔107から噴射された燃料が飛散した際にノズル表面に付着する付着燃料を示している。
図11は、噴射孔107の空間体積107Jの圧力と燃料が噴射孔107から流出した際にノズル表面に付着する付着燃料Fuの量との関係を示す。図11では、縦軸に付着燃料Fuの量をとり、横軸には燃料噴射弁に印可する圧力(燃圧)に対する空間体積107Jの平均燃料圧力の割合をとっている。この場合、燃圧は、燃料噴射弁101に燃料を供給する燃料配管内の圧力と考えて差し支えない。
噴射孔の入口開口周縁107Iに上述した本実施例の曲率を採用することにより、弁体108の最大リフト時において、燃料噴射弁101に印加される燃料の圧力に対して、噴射孔の内部の燃料圧力の平均値が14%以上となるように構成される。すなわち、シート部113の上流側の燃料の圧力(燃圧)に対して、噴射孔107の内部(空間体積)107Jの燃料圧力の平均値が14%以上となるように構成される。この条件は、複数の噴射孔107のうち少なくとも一つ以上の噴射孔で満たされれば良い。
弁体108の最大リフト時において、複数の噴射孔107のうち少なくとも一つの噴射孔107の内部の空間体積107Jの平均燃料圧力が、シート部113の上流側の燃料の圧力に対して14%以上の値を有するように構成することで、噴射孔107の空間体積107J内の燃料の圧力を飽和蒸気圧よりも高い状態とし、噴射孔107内でのキャビテーションの発生を抑えることができる。これにより、噴射孔107の中心軸線107aに垂直な方向の流速成分の発生が抑制され、噴射孔出口周辺(ノズル表面)への燃料付着が抑制される。
図12は、半径方向中心側の周縁部分107Aの内側に構成される曲線部107AEの曲率半径Rと、印加燃圧に対する噴射孔107の内圧の比率との関係を示す図である。図12に示すように、噴射孔107の内部(空間体積)107Jの燃料圧力の平均値がシート部113の上流側の燃料の圧力(燃圧)に対して14%以上となるように構成するためには、径方向中心側の曲面部107AEはその曲率半径が0.023mm以上となるように形成することが好ましい。
燃圧に対して、噴射孔107内の燃料の圧力が14%以上の平均燃料圧力を有するようにする目的は、ノズル表面への燃料付着量を十分に少なくし、付着燃料Fuが燃料濃度の濃い状態で燃焼するのを抑制することで、付着燃料Fuが浮遊粒子状物質の発生する起点となることを抑制することにある。そのため、少なくとも一つの噴射孔107において、燃圧の14%以上の噴射孔内圧力を有するように構成することが、ノズル表面への燃料付着量を十分に少なくするために必要となる。
本実施例の噴霧形状について、図13を用いて説明する。図13は、第1実施例における燃料噴霧の特徴を示す概念図である。
燃料を直接燃焼室に噴射する燃料噴射弁において、噴射する先の燃焼室の圧力は、エンジンの負荷に応じた吸入空気量や噴射するタイミングによって異なる。燃焼室の圧力が大気圧よりも低い条件においては、空気の抵抗が減る。このため、噴霧401は図13に図示するような下に凸の輪郭形状となる。
噴霧401の形状について、さらに詳細に説明する。噴霧401の形状は、上述したように噴射孔内の圧力を高く保つことで、噴射孔出口から噴射した際の噴射孔107の中心軸線107aと同軸方向の流速402が大きく、中心軸線107aに垂直方向の流速を小さくすることで形成する。そのため、燃料は、噴射孔107から流出した際に、中心軸線107aに垂直な方向への広がりが少なく、中心軸線107aに沿う方向に進む。そして、噴霧401は、噴射孔出口から離れた位置で、噴射孔出口から離れるに従って、中心軸線107aに垂直な方向に大きく広がるようになる。このため、噴霧401は、下に凸の噴霧輪郭形状となる。
噴霧401は、噴射孔出口付近では、中心軸線107aに垂直な方向に広がる速度成分が十分に小さいので、噴射孔出口付近のノズル表面に燃料が付着するのを抑制することができる。また、噴霧401の形状は、大気圧よりも低い燃焼室内へ噴射する際に、下に凸の噴霧輪郭形状となり、噴射孔107の出口周辺を、長距離顕微鏡等を用いて拡大して観察することで、確認することができる。
[変更例1]
第1変更例について、図14を用いて説明する。本変更例では、上述した実施例と異なる構成について説明する。特に説明しない構成は、上述した実施例と同様であるか、上述した実施例で説明した構成を適用可能である。また、構造上矛盾しない範囲において、他の変更例と組み合わせることも可能である。
第1変更例について、図14を用いて説明する。本変更例では、上述した実施例と異なる構成について説明する。特に説明しない構成は、上述した実施例と同様であるか、上述した実施例で説明した構成を適用可能である。また、構造上矛盾しない範囲において、他の変更例と組み合わせることも可能である。
図14は図9の噴射孔107-2の出口部にザグリをつけた状態を示している。
107Kはザグリを示している。ザグリ107Kは、噴射孔形成部材112の表面(ノズル表面)に凹状に形成される。噴射孔107(107-1,107-2)の出口部には、噴射孔から流出した噴霧が接触しないように、ザグリ107Kを設けると良い。ザグリ107Kは、複数の噴射孔の全てに設ける必要はなく、噴霧が干渉する恐れのある噴射孔に特定してザグリ107Kを設けると良い。特に傾斜角度θが大きい噴射孔は、噴射孔の内圧を高くし難いので、噴霧が噴射孔107の中心軸線107aに垂直な方向に広がり易い。従って、傾斜角度θが大きい噴射孔にはザグリ107Kを設けると良い。
本変更例によれば、上述した実施例と同様の効果を得られると共に、特定の噴射孔107にザグリ107Kを設けることで、噴射孔107の中心軸線107aに垂直な方向の流速成分が大きくなっても、ノズル表面への燃料付着を低減することができる。
[変更例2]
第2変更例について、図15を用いて説明する。本変更例では、上述した実施例と異なる構成について説明する。特に説明しない構成は、上述した実施例と同様であるか、上述した実施例で説明した構成を適用可能である。また、構造上矛盾しない範囲において、他の変更例と組み合わせることも可能である。
第2変更例について、図15を用いて説明する。本変更例では、上述した実施例と異なる構成について説明する。特に説明しない構成は、上述した実施例と同様であるか、上述した実施例で説明した構成を適用可能である。また、構造上矛盾しない範囲において、他の変更例と組み合わせることも可能である。
図15は、第1実施例における噴射孔の変更例(変更例2)の断面を示している。傾斜角度θが大きい側の噴射孔107-2は、出口側(下流側)に向かって、噴射孔の断面積(中心軸線107-2aに垂直な断面積)が大きくなる内周面(側面)107Lを有している。
本変更例では、断面積が広がる内周面107Lは、特定の噴射孔107-2に設けられているが、全噴射孔に設けても良い。噴射孔の出口に向かって断面積が大きくなる形状を有する場合も、入口開口周縁107-2Iの径方向中心側の周縁部分107-2A側の曲率半径を大きくする。また、複数の噴射孔で出口に向かって断面積が大きくなる形状を有する場合は、特定の孔に限定して入口開口周縁の径方向中心側の曲率半径を大きくしても良いが、上述した実施例で説明したように、噴射孔107の傾斜角度θの大きい噴射孔や燃料の圧力が低い噴射孔の周縁部分の曲率半径を大きくすると良い。
本変更例によれば、噴射孔から噴射される噴霧を広げて噴射したい場合においても、上述した実施例と同様の効果を得ることができる。
[変更例3]
第3変更例について、図16及び図17を使って説明する。本変更例では、上述した実施例と異なる構成について説明する。特に説明しない構成は、上述した実施例と同様であるか、上述した実施例で説明した構成を適用可能である。また、構造上矛盾しない範囲において、他の変更例と組み合わせることも可能である。
第3変更例について、図16及び図17を使って説明する。本変更例では、上述した実施例と異なる構成について説明する。特に説明しない構成は、上述した実施例と同様であるか、上述した実施例で説明した構成を適用可能である。また、構造上矛盾しない範囲において、他の変更例と組み合わせることも可能である。
図16は、第1実施例における噴射孔の変更例(変更例2)の断面を示している。
本変更例では、噴射孔107-1,107-2の径が出口(下流側)に向かって次第に小さくなっている。すなわち、噴射孔107-1,107-2は入口側から出口側に向かって縮径するテーパ形状を成す。噴射孔107-1,107-2の径が出口(下流側)に向かって次第に小さくなるテーパ形状において、噴射孔107が縮径する度合いはテーパ角θp(図17参照)で表わされる。
本変更例でも、噴射孔の傾斜角度θは、噴射孔107-2の方が噴射孔107-1よりも大きい。
噴射孔径の縮小率は、傾斜角度θの小さい噴射孔107-1の方を小さく、傾斜角度θの大きい噴射孔107-2の方を大きくすることが望ましい。また、噴射孔の入口開口周縁における径方向中心側の周縁部分の曲率半径は、噴射孔107-2の径方向中心側の周縁部分107-2A側の曲率半径の方が、噴射孔107-1の径方向中心側の周縁部分107-1A側に比べて大きくなるように構成される。
傾斜角度θが小さい噴射孔107-1は、傾斜角度θが大きい噴射孔107-2に比べて、噴射孔径の縮小率を小さくしている。これは、傾斜角度θの小さい側の噴射孔107-1では噴射孔内の圧力を高め易いのに対して、傾斜角度の大きい側の噴射孔107-2では噴射孔内の圧力が低下し易いため、噴射孔107-2の径の縮小率を大きくすることで噴射孔107-2の噴射孔内の圧力の低下を抑えている。噴射孔の入口開口周縁の曲率半径(または曲率)の大きさの関係は、上述した実施例と同じ構成にすることで、上述した実施例と同様の効果を得ることができる。
図17は、テーパ角度と印加燃圧に対する噴射孔107の内圧の比率との関係を示す図である。図17に示すように、噴射孔107の内部(空間体積)107Jの燃料圧力の平均値がシート部113の上流側の燃料の圧力(燃圧)に対して14%以上となるように構成するためには、噴射孔107のテーパ角度θpは6.8deg以上の角度にすることが好ましい。
上述した本実施例の燃料噴射弁は、下記特徴を有する。
(1)燃料噴射弁101は、弁体108が当接するシート部113と、シート部113の下流側に入口開口107Gを有する噴射孔107と、入口開口107Gが形成された噴射孔形成部材112と、を備える。噴射孔107は、入口側から出口側に延設される内周面107Fと、入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eと、を有する。噴射孔107の内周面107Fと、入口開口107Gの周縁107Iと、噴射孔107の中心軸線である噴射孔中心軸線107aとは、噴射孔中心軸線107aに垂直な仮想平面IPに投影した平面図上において、以下の構成を有する。
曲面部107Eは、中心側曲面部107AEと外周側曲面部107BEとを有する。中心側曲面部107AEは、入口開口107Gの周縁107Iのうち、燃料噴射弁101の中心軸線である噴射弁中心軸線101aを中心とする径方向において中心側周縁部分107Aの内側に形成される曲面部であり、外周側曲面部107BEは、入口開口107Gの周縁のうち、噴射弁中心軸線101aを中心とする径方向において外周側周縁部分107Bの内側に形成される曲面部である。中心側曲面部107AEにおける幅W107AEは、外周側曲面部107BEにおける幅W107BEよりも、大きい。
(1)燃料噴射弁101は、弁体108が当接するシート部113と、シート部113の下流側に入口開口107Gを有する噴射孔107と、入口開口107Gが形成された噴射孔形成部材112と、を備える。噴射孔107は、入口側から出口側に延設される内周面107Fと、入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eと、を有する。噴射孔107の内周面107Fと、入口開口107Gの周縁107Iと、噴射孔107の中心軸線である噴射孔中心軸線107aとは、噴射孔中心軸線107aに垂直な仮想平面IPに投影した平面図上において、以下の構成を有する。
曲面部107Eは、中心側曲面部107AEと外周側曲面部107BEとを有する。中心側曲面部107AEは、入口開口107Gの周縁107Iのうち、燃料噴射弁101の中心軸線である噴射弁中心軸線101aを中心とする径方向において中心側周縁部分107Aの内側に形成される曲面部であり、外周側曲面部107BEは、入口開口107Gの周縁のうち、噴射弁中心軸線101aを中心とする径方向において外周側周縁部分107Bの内側に形成される曲面部である。中心側曲面部107AEにおける幅W107AEは、外周側曲面部107BEにおける幅W107BEよりも、大きい。
(2)燃料噴射弁101は、弁体108が当接するシート部113と、シート部113の下流側に入口開口107Gを有する噴射孔107と、入口開口107Gが形成された噴射孔形成部材112と、を備える。噴射孔107は、入口側から出口側に延設される内周面107Fと、入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eと、を有する。噴射孔107は、噴射孔107の中心軸線である噴射孔中心軸線107aを含み、入口開口107Gの周縁107Iのうち、燃料噴射弁101の中心軸線である噴射弁中心軸線101aを中心とする径方向における中心側周縁部分107A及び外周側周縁部分107Bを通る断面において、以下の構成を有する。
曲面部107Eは、中心側周縁部分107Aの内側に形成される中心側曲面部107AEと、外周側周縁部分107Bの内側に形成される外周側曲面部107BEと、を有する。さらに曲面部107Eは、中心側曲面部107AEと、内周面107Fのうち中心側曲面部107AEに接続される内周面部分107FAの延長線107FAbと、中心側周縁部分107Aと外周側周縁部分107Bとを結ぶ直線107ABLと、で囲まれる部分の面積107SAが、外周側曲面部107BEと、内周面107Fのうち外周側曲面部107BEに接続される内周面部分107FBの延長線107FBbと、中心側周縁部分107Aと外周側周縁部分107Bとを結ぶ直線107ABLと、で囲まれる部分の面積107SBよりも、大きく構成される。
曲面部107Eは、中心側周縁部分107Aの内側に形成される中心側曲面部107AEと、外周側周縁部分107Bの内側に形成される外周側曲面部107BEと、を有する。さらに曲面部107Eは、中心側曲面部107AEと、内周面107Fのうち中心側曲面部107AEに接続される内周面部分107FAの延長線107FAbと、中心側周縁部分107Aと外周側周縁部分107Bとを結ぶ直線107ABLと、で囲まれる部分の面積107SAが、外周側曲面部107BEと、内周面107Fのうち外周側曲面部107BEに接続される内周面部分107FBの延長線107FBbと、中心側周縁部分107Aと外周側周縁部分107Bとを結ぶ直線107ABLと、で囲まれる部分の面積107SBよりも、大きく構成される。
(3)燃料噴射弁101は、弁体108が当接するシート部113と、シート部113の下流側に入口開口107Gを有する噴射孔107と、入口開口107Gが形成された噴射孔形成部材112と、を備える。噴射孔107は、入口側から出口側に延設される内周面107Fと、入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eと、を有する。噴射孔107は、噴射孔107の中心軸線である噴射孔中心軸線107aを含み、入口開口107Gの周縁107Iのうち、燃料噴射弁101の中心軸線である噴射弁中心軸線101aを中心とする径方向における中心側周縁部分107A及び外周側周縁部分107Bを通る断面において、以下の構成を有する。
曲面部107Eは、中心側周縁部分107Aの内側に形成される中心側曲面部107AEと、外周側周縁部分107Bの内側に形成される外周側曲面部107BEと、を有する。さらに曲面部107Eは、中心側周縁部分107Aと内周面107Fのうち中心側曲面部107AEに接続される内周面部分107FAの上流側端部107FAaとを接続する曲線の長さが、外周側周縁部分107Bと内周面107Fのうち外周側曲面部107BEに接続される内周面部分107FBの上流側端部107FBaとを接続する曲線の長さよりも、長く構成される。
曲面部107Eは、中心側周縁部分107Aの内側に形成される中心側曲面部107AEと、外周側周縁部分107Bの内側に形成される外周側曲面部107BEと、を有する。さらに曲面部107Eは、中心側周縁部分107Aと内周面107Fのうち中心側曲面部107AEに接続される内周面部分107FAの上流側端部107FAaとを接続する曲線の長さが、外周側周縁部分107Bと内周面107Fのうち外周側曲面部107BEに接続される内周面部分107FBの上流側端部107FBaとを接続する曲線の長さよりも、長く構成される。
(4)入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eは曲率を有する円弧形状を成し、中心側曲面部107AEの曲率半径は0.023mm以上となるように形成されるとよい。
(5)入口開口107Gの周縁107Iと内周面107Fとの間に形成される曲面部107Eは曲率を有する円弧形状を成し、中心側曲面部107AEの曲率半径は外周側曲面部107BEの曲率半径よりも大きくなるように形成されるとよい。
(6)少なくとも一つの噴射孔が(1)~(3)に記載の噴射孔107で構成される複数の噴射孔107を備え、(1)~(3)に記載の噴射孔107はシート部113の上流側の燃料の圧力に対して噴射孔内部の圧力の平均値が14%以上となるように構成されるとよい。
(7)少なくとも一つの噴射孔が(1)~(3)に記載の噴射孔107で構成される複数の噴射孔107を備えるとよい。複数の噴射孔107の入口開口107Gからシート部3に至るまでの、噴射弁中心軸線101aを中心とする径方向の全領域において、噴射弁中心軸線101aを中心とする周方向に形成される燃料流路の断面積Ssは、複数の噴射孔107の入口開口107Gの面積の総和よりも大きくなるように構成されるとよい。
(8)噴射孔107は、入口側から出口側に延設される内周面107Fの、噴射孔中心軸線107aに垂直な断面の面積が、入口側から出口側に向かって小さくなるテーパ状に構成されるとよい。
(9)テーパ状を成すテーパ角度は6.8deg以上であるとよい。
(10)複数の噴射孔を備えるとよい。この場合、複数の噴射孔107の全ては、(1)に記載の噴射孔207で構成されるとよい。
(11)(10)に記載の複数の噴射孔107の全ては、入口側から出口側に延設される内周面の、噴射孔中心軸線107aに垂直な断面の面積が、入口側から出口側に向かって小さくなるテーパ状に構成されるとよい。
(12)噴射孔中心軸線107aは、噴射孔107の内周面107Fの中心を通る軸線であり、中心側周縁部分107A及び外周側周縁部分107Bは、噴射孔中心軸線107aに平行で、且つ噴射孔中心軸線107aを通る平面上に位置するようにするとよい。
(13)曲面部107Eは、中心側周縁部分107Aと外周側周縁部分107Bとの間の周方向周縁部分107C,107Dの内側に、周方向曲面部107CE,107DEを有するようにするとよい。(1)に記載の平面図上において、中心側曲面部107AEにおける幅W107AEは、周方向曲面部107CE,107DEにおける幅W107CE,107DEよりも、大きく構成されるとよい。
(14)曲面部107Eは、入口開口107Gの全周に形成されるとよい。
101…燃料噴射弁、107…噴射孔、107a…噴射孔中心軸線、107A…中心側周縁部分、107ABL…中心側周縁部分107Aと外周側周縁部分107Bとを結ぶ直線、107AE…中心側曲面部、107B…外周側周縁部分、107BE…外周側曲面部、107E…曲面部、107F…噴射孔107の内周面、107FA…中心側曲面部107AEに接続される中心側の内周面部分、107FAa…内周面部分107FAの上流側端部、107FAb…内周面部分107FAの延長線、107FB…外周側曲面部107BEに接続される外周側の内周面部分、107FBa…内周面部分107FBの上流側端部、107FBb…内周面部分107FBの延長線、107G…噴射孔107の入口開口、107I…入口開口107Gの周縁、107SA,107SB…断面上の面積、108…弁体、112…噴射孔形成部材、113…シート部、W107AE…中心側曲面部107AEの幅、W107BE…外周側曲面部107BEにおける幅。
Claims (14)
- 弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の前記内周面と、前記入口開口の前記周縁と、前記噴射孔の中心軸線である噴射孔中心軸線と、を前記噴射孔中心軸線に垂直な仮想平面に投影した平面図上において、
前記曲面部は、中心側曲面部と外周側曲面部とを有し、
前記中心側曲面部は、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向において中心側周縁部分の内側に形成される曲面部であり、
前記外周側曲面部は、前記入口開口の前記周縁のうち、前記噴射弁中心軸線を中心とする径方向において外周側周縁部分の内側に形成される曲面部であり、
前記中心側曲面部における幅が、前記外周側曲面部における幅よりも、大きく構成される燃料噴射弁。 - 弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の中心軸線である噴射孔中心軸線を含み、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向における中心側周縁部分及び外周側周縁部分を通る断面において、
前記曲面部は、前記中心側周縁部分の内側に形成される中心側曲面部と、前記外周側周縁部分の内側に形成される外周側曲面部と、を有し、
さらに前記曲面部は、
前記中心側曲面部と、前記内周面のうち前記中心側曲面部に接続される内周面部分の延長線と、前記中心側周縁部分と前記外周側周縁部分とを結ぶ直線と、で囲まれる部分の面積が、前記外周側曲面部と、前記内周面のうち前記外周側曲面部に接続される内周面部分の延長線と、前記中心側周縁部分と前記外周側周縁部分とを結ぶ直線と、で囲まれる部分の面積よりも、大きく構成される燃料噴射弁。 - 弁体が当接するシート部と、前記シート部の下流側に入口開口を有する噴射孔と、前記入口開口が形成された噴射孔形成部材と、を備えた燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される内周面と、前記入口開口の周縁と前記内周面との間に形成される曲面部と、を有し、
前記噴射孔の中心軸線である噴射孔中心軸線を含み、前記入口開口の前記周縁のうち、燃料噴射弁の中心軸線である噴射弁中心軸線を中心とする径方向における中心側周縁部分及び外周側周縁部分を通る断面において、
前記曲面部は、前記中心側周縁部分の内側に形成される中心側曲面部と、前記外周側周縁部分の内側に形成される外周側曲面部と、を有し、
さらに前記曲面部は、
前記中心側周縁部分と前記内周面のうち前記中心側曲面部に接続される内周面部分の上流側端部とを接続する曲線の長さが、
前記外周側周縁部分と前記内周面のうち前記外周側曲面部に接続される内周面部分の上流側端部とを接続する曲線の長さよりも、長く構成される燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
前記入口開口の周縁と前記内周面との間に形成される前記曲面部は、曲率を有する円弧形状を成し、
前記中心側曲面部の曲率半径は、0.02mm以上となるように形成される燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
前記入口開口の周縁と前記内周面との間に形成される前記曲面部は、曲率を有する円弧形状を成し、
前記中心側曲面部の曲率半径は、前記外周側曲面部の曲率半径よりも大きくなるように形成される燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
少なくとも一つの噴射孔が請求項1に記載の前記噴射孔で構成される複数の噴射孔を備え、
請求項1に記載の前記噴射孔は、シート部の上流側の燃料の圧力に対して、噴射孔内部の圧力の平均値が14%以上となるように構成される燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
少なくとも一つの噴射孔が請求項1に記載の前記噴射孔で構成される複数の噴射孔を備え、
前記複数の噴射孔の入口開口から前記シート部に至るまでの、前記噴射弁中心軸線を中心とする径方向の全領域において、前記噴射弁中心軸線を中心とする周方向に形成される燃料流路の断面積が、前記複数の噴射孔の入口開口の面積の総和よりも大きい燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
前記噴射孔は、入口側から出口側に延設される前記内周面の、前記噴射孔中心軸線に垂直な断面の面積が、入口側から出口側に向かって小さくなるテーパ状に形成される燃料噴射弁。 - 請求項8に記載の燃料噴射弁において、
テーパ状を成すテーパ角度は6.8deg以上である燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
複数の噴射孔を備え、
前記複数の噴射孔の全てが、請求項1に記載の前記噴射孔で構成される燃料噴射弁。 - 請求項10に記載の燃料噴射弁において、
前記複数の噴射孔の全ては、入口側から出口側に延設される内周面の、前記噴射孔中心軸線に垂直な断面の面積が、入口側から出口側に向かって、小さくなる燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
前記噴射孔中心軸線は、前記噴射孔の前記内周面の中心を通る軸線であり、
前記中心側周縁部分及び前記外周側周縁部分は、前記噴射孔中心軸線に平行で、且つ前記噴射孔中心軸線を通る平面上に位置する燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
前記曲面部は、前記中心側周縁部分と前記外周側周縁部分との間の周方向周縁部分の内側に、周方向曲面部を有し、
前記平面図上において、前記中心側曲面部における幅は、前記周方向曲面部における幅よりも、大きく構成される燃料噴射弁。 - 請求項1に記載の燃料噴射弁において、
前記曲面部は、前記入口開口の全周に形成される燃料噴射弁。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/286,097 US20210381479A1 (en) | 2018-10-26 | 2019-10-04 | Fuel Injection Valve |
JP2020553056A JP7066000B2 (ja) | 2018-10-26 | 2019-10-04 | 燃料噴射弁 |
EP19875229.7A EP3845756A4 (en) | 2018-10-26 | 2019-10-04 | FUEL INJECTION VALVE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018201665 | 2018-10-26 | ||
JP2018-201665 | 2018-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085039A1 true WO2020085039A1 (ja) | 2020-04-30 |
Family
ID=70330965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039245 WO2020085039A1 (ja) | 2018-10-26 | 2019-10-04 | 燃料噴射弁 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210381479A1 (ja) |
EP (1) | EP3845756A4 (ja) |
JP (1) | JP7066000B2 (ja) |
WO (1) | WO2020085039A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109095A (ja) * | 1996-06-21 | 1998-01-13 | Zexel Corp | 燃料噴射ノズル |
WO2006053811A1 (de) * | 2004-11-17 | 2006-05-26 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für brennkraftmaschinen |
JP2008068360A (ja) | 2006-09-14 | 2008-03-27 | Mitsubishi Heavy Ind Ltd | ノズルボディの噴孔加工方法、噴孔加工装置、及びそれらを用いて作製された燃料噴射ノズル |
US20130270369A1 (en) * | 2012-04-16 | 2013-10-17 | Cummins Intellectual Property, Inc. | Fuel injector |
JP2015140753A (ja) * | 2014-01-30 | 2015-08-03 | 株式会社日本自動車部品総合研究所 | 燃料噴射ノズル |
JP2016003628A (ja) | 2014-06-18 | 2016-01-12 | 株式会社デンソー | 燃料噴射弁 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0809017A1 (de) * | 1996-05-22 | 1997-11-26 | Steyr-Daimler-Puch Aktiengesellschaft | Zweistufige Kraftstoffeinspritzdüse für Brennkraftmaschinen |
US6644565B2 (en) * | 1998-10-15 | 2003-11-11 | Robert Bosch Gmbh | Fuel injection nozzle for self-igniting internal combustion engines |
GB0712403D0 (en) * | 2007-06-26 | 2007-08-01 | Delphi Tech Inc | A Spray Hole Profile |
JP2009024683A (ja) * | 2007-07-24 | 2009-02-05 | Hitachi Ltd | 複数の噴孔を有するインジェクタ、当該インジェクタを備えた筒内ガソリン噴射型内燃機関とその制御方法 |
US20090294416A1 (en) * | 2008-05-28 | 2009-12-03 | Caterpillar Inc. | Laser manufacturing system having real-time feedback |
JP2010180763A (ja) * | 2009-02-04 | 2010-08-19 | Nippon Soken Inc | 燃料噴射ノズル |
JP5959892B2 (ja) * | 2012-03-26 | 2016-08-02 | 日立オートモティブシステムズ株式会社 | 火花点火式燃料噴射弁 |
JP6036354B2 (ja) * | 2013-02-04 | 2016-11-30 | 日立オートモティブシステムズ株式会社 | 燃料噴射弁 |
TWM486491U (zh) * | 2014-01-28 | 2014-09-21 | Taiwan Puritic Corp | 噴孔片結構 |
JP6264221B2 (ja) * | 2014-07-24 | 2018-01-24 | 株式会社デンソー | 燃料噴射ノズル |
JP6254122B2 (ja) * | 2015-06-24 | 2017-12-27 | 株式会社デンソー | 燃料噴射ノズル |
JP6463286B2 (ja) * | 2016-02-15 | 2019-01-30 | 株式会社Soken | 燃料噴射弁 |
DE102016211688A1 (de) * | 2016-06-29 | 2018-01-04 | Robert Bosch Gmbh | Injektor zum Einspritzen eines Fluids mit sich verjüngendem Einströmbereich einer Durchgangsöffnung |
DE112018000602T5 (de) * | 2017-02-27 | 2019-11-21 | Hitachi Automotive Systems, Ltd. | Kraftstoffeinspritzvorrichtung |
US11098686B2 (en) * | 2017-05-12 | 2021-08-24 | Hitachi Automotive Systems, Ltd. | Fuel injection valve |
US10612508B2 (en) * | 2017-06-28 | 2020-04-07 | Caterpillar Inc. | Fuel injector for internal combustion engines |
-
2019
- 2019-10-04 WO PCT/JP2019/039245 patent/WO2020085039A1/ja unknown
- 2019-10-04 US US17/286,097 patent/US20210381479A1/en active Pending
- 2019-10-04 JP JP2020553056A patent/JP7066000B2/ja active Active
- 2019-10-04 EP EP19875229.7A patent/EP3845756A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109095A (ja) * | 1996-06-21 | 1998-01-13 | Zexel Corp | 燃料噴射ノズル |
WO2006053811A1 (de) * | 2004-11-17 | 2006-05-26 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für brennkraftmaschinen |
JP2008068360A (ja) | 2006-09-14 | 2008-03-27 | Mitsubishi Heavy Ind Ltd | ノズルボディの噴孔加工方法、噴孔加工装置、及びそれらを用いて作製された燃料噴射ノズル |
US20130270369A1 (en) * | 2012-04-16 | 2013-10-17 | Cummins Intellectual Property, Inc. | Fuel injector |
JP2015140753A (ja) * | 2014-01-30 | 2015-08-03 | 株式会社日本自動車部品総合研究所 | 燃料噴射ノズル |
JP2016003628A (ja) | 2014-06-18 | 2016-01-12 | 株式会社デンソー | 燃料噴射弁 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3845756A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7066000B2 (ja) | 2022-05-12 |
JPWO2020085039A1 (ja) | 2021-09-02 |
EP3845756A4 (en) | 2022-08-10 |
US20210381479A1 (en) | 2021-12-09 |
EP3845756A1 (en) | 2021-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10704518B2 (en) | Spark-ignition direct fuel injection valve | |
JP4226604B2 (ja) | 嚢体積減少手段を有する隆起させた燃料噴射計量ディスク上に形成された斜角でないオリフィスによるスプレーパターンの制御 | |
US9739247B2 (en) | Mist forming method using fluid injection valve, fluid injection valve, and mist forming apparatus | |
US6966505B2 (en) | Spray control with non-angled orifices in fuel injection metering disc and methods | |
US20120325922A1 (en) | Method of generating spray by fluid injection valve, fluid injection valve, and spray generation apparatus | |
US20040056114A1 (en) | Spray pattern control with angular orientation in fuel injector and method | |
JP5134063B2 (ja) | 燃料噴射弁 | |
JP7049133B2 (ja) | 燃料噴射弁 | |
US6845930B2 (en) | Spray pattern and spray distribution control with non-angled orifices in fuel injection metering disc and methods | |
JP6808356B2 (ja) | 燃料噴射弁 | |
JP4196194B2 (ja) | 噴孔部材およびそれを用いた燃料噴射弁 | |
US6820826B2 (en) | Spray targeting to an arcuate sector with non-angled orifices in fuel injection metering disc and method | |
JP5610079B2 (ja) | 燃料噴射弁 | |
WO2020085039A1 (ja) | 燃料噴射弁 | |
JP2002221128A (ja) | 噴射弁 | |
JP2015078603A (ja) | 燃料噴射弁 | |
JP2010138914A (ja) | 燃料噴射弁 | |
JP5605325B2 (ja) | 燃料噴射弁 | |
US11098686B2 (en) | Fuel injection valve | |
JP5818939B1 (ja) | 燃料噴射弁及びその燃料噴射弁を備えた噴霧生成装置、並びに火花点火式内燃機関 | |
JP3112038B2 (ja) | エンジンの燃料噴射弁 | |
JP2009085055A (ja) | 内燃機関 | |
WO2018042910A1 (ja) | 燃料噴射装置 | |
JP2001065433A (ja) | エンジンの燃料噴射弁及び燃料噴射システム | |
JP2001059468A (ja) | 燃料噴射弁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19875229 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553056 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019875229 Country of ref document: EP Effective date: 20210401 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |