WO2020082671A1 - 一种丙烯酰胺纳米涂层及其制备方法 - Google Patents

一种丙烯酰胺纳米涂层及其制备方法 Download PDF

Info

Publication number
WO2020082671A1
WO2020082671A1 PCT/CN2019/078827 CN2019078827W WO2020082671A1 WO 2020082671 A1 WO2020082671 A1 WO 2020082671A1 CN 2019078827 W CN2019078827 W CN 2019078827W WO 2020082671 A1 WO2020082671 A1 WO 2020082671A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
discharge
plasma
acrylamide
coating according
Prior art date
Application number
PCT/CN2019/078827
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技有限公司 filed Critical 江苏菲沃泰纳米科技有限公司
Publication of WO2020082671A1 publication Critical patent/WO2020082671A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Definitions

  • the invention relates to the technical field of plasma chemical vapor deposition, in particular to a nano protective coating and a preparation method thereof.
  • fluorocarbon polymers many unique properties, such as high hydrophobicity and oleophobicity, chemical resistance, excellent weather resistance, etc., so they are widely used In the fields of architectural coatings, textile industry, military industry, etc.
  • fluoropolymers have many advantages, their monomers are expensive and difficult to form films using conventional coating methods.
  • CN “106868473” "Preparation method of a gradient decreasing structure liquid-proof coating” uses plasma chemical vapor deposition technology to successfully deposit fluorocarbon materials containing acrylate structure and multifunctional unsaturated hydrocarbon derivatives to the base On the surface of the material, a protective coating with a gradient decreasing structure is formed, which has good barrier protection performance.
  • a protective coating with a gradient decreasing structure is formed, which has good barrier protection performance.
  • CN102102405405A "N-substituted (meth) acrylamide compound containing fluoroalkyl group, its polymer and its use", using N-substituted (methacrylamide) compound containing fluoroalkyl liquid coating
  • a protective layer is formed on the surface of the treated sample to achieve the purpose of rust prevention and hydrophobicity, and is not restricted by the use of PFOA and PFOA analogs. It can still maintain excellent hydrophobic properties when the carbon number is below 6.
  • the thickness of the coating layer obtained by this coating method is often above the micron level, which wastes a large amount of monomers, resulting in increased costs.
  • the N-substituted (acrylamide) containing fluoroalkyl groups can be prepared by plasma technology to have a nano-thickness coating, which can ensure its excellent hydrophobicity and protective properties at low fluorocarbon number , And can avoid the waste of monomers.
  • the present invention provides an acrylamide nano-coating and a preparation method thereof.
  • the invention utilizes plasma chemical vapor deposition technology to deposit olefin derivatives containing acrylamide structure and fluorine-containing alkyl acrylamide monomer onto the surface of the substrate, forming a nano-protective coating with a composite structure on the surface of the substrate.
  • An acrylamide nano-coating characterized in that the substrate is exposed to a monomer vapor atmosphere, and a chemical reaction occurs on the surface of the substrate by plasma discharge to form a protective coating;
  • the monomer vapor is vaporized monomer 1 or monomer 2, or a mixture of monomer 1 and monomer 2;
  • the monomer 1 has the structure represented by the following formula (I); the monomer 2 has the structure represented by the following formula (II);
  • R 1 , R 2 , R 3 , R 6 , R 7 and R 8 are independently selected from hydrogen, alkyl, aryl, halogen, haloalkyl, alkenyl or haloalkenyl, and X and Y are hydrogen or halogen;
  • R 4 and R 5 are independently selected from hydrogen, alkyl, aryl, halogen, haloalkyl or have the structure represented by formula (III):
  • R 11 is a linear chain having 1 to 15 carbon atoms or containing a branched alkane subunit, and R 12 , R 13 , R 14 and R 15 are independently selected from hydrogen, alkyl, aryl, halogen or haloalkyl;
  • R 9 and R 10 are independently selected from straight chains having 1 to 15 carbon atoms, branched-chain alkyl subunits or aryl subunits; or R 9 and R 10 are connected bonds;
  • n, p, and q are integers from 0 to 20, but m and n are not 0 at the same time, and p and q are not 0 at the same time.
  • R 1 , R 2 , R 3 , R 6 , R 7 , and R 8 are groups connected to unsaturated double bonds, which may be hydrophobic groups, wherein preferably, they are independently selected from hydrogen, Alkyl, aryl, halogen, haloalkyl, alkenyl or haloalkenyl; X and Y are hydrogen, or a substituent on the carbon chain of the alkyl group, may be selected from halogen.
  • R 4 and R 5 are groups connected to the N atom.
  • R 4 and R 5 have the structure represented by formula (III), because the structure of formula (III) makes monomer 2 have a bisacrylamide functional group, which is beneficial to the single Further reaction between the body 1 and the monomer 2.
  • R 11 is a bridging group between bisacrylamide groups, which may be a straight chain having 1 to 15 carbon atoms or containing a branched alkane subunit, and R 12 , R 13 , R 14 and R 15
  • the hydrophobic group linked by the unsaturated double bond may be independently selected from hydrogen, alkyl, aryl, halogen or haloalkyl.
  • R 9 and R 10 are bridging carbon segments between the acrylamide functional group and the perfluoroalkyl group, and are independently selected from straight chains having 1 to 15 carbon atoms, branched alkyl subunits or aryl groups Subunit; or just a connected bond.
  • the bridged carbon chain is a buffer segment between the functional group and the perfluoroalkyl group.
  • the stability and easy availability of the monomer can be adjusted by the length and structure of the carbon chain.
  • R 1 , R 2 , R 3 , R 6 , R 7 , and R 8 are independently selected from hydrogen, methyl, or fluorine groups, and X and Y are fluorine.
  • R 9 and R 10 are short carbon chain bridging groups.
  • the number of carbon atoms of the bridging group is too long to easily reduce the proportion of fluorine atoms in the monomer.
  • R 9 and R 10 are independently selected from the number of carbon atoms is 1 -5 linear alkylene.
  • R 11 is a linear alkane subunit having 3 to 10 carbon atoms.
  • Monomer 1 is liquid at normal temperature and pressure.
  • Monomer 2 is a fluorine-containing acrylamide having a boiling point of less than 400 ° C at normal temperature and pressure.
  • the substrate is a solid material such as metal, optical instrument, clothing fabric, electronic device or medical device.
  • the invention also discloses a preparation method of the acrylamide nano-coating, which is characterized by comprising the following steps:
  • step (2) the monomer 1 and the monomer 2 are respectively introduced into a vacuum chamber;
  • the monomer 1 and the monomer 2 are simultaneously introduced into the vacuum chamber;
  • the monomer 1 or the monomer 2 is first introduced into the vacuum chamber, and then the mixed steam of the monomer 1 and the monomer 2 is simultaneously introduced.
  • the plasma source gas is one or a mixture of several kinds of helium, argon, nitrogen, and hydrogen.
  • volume of the plasma chamber is 1L-5000L;
  • the plasma source gas flow rate is 5-1000 sccm
  • the flow rate of the monomer vapor is 1-2000 ⁇ L / min.
  • a plasma discharge step for pretreatment of the substrate is further included.
  • the pretreatment is started to perform pretreatment on the substrate with plasma discharge.
  • the power of the plasma discharge in the pretreatment stage is 2-500W, and the continuous discharge time is 1-3600s.
  • the pretreatment phase After the pretreatment phase ends, it enters the deposition phase (the plasma discharge for pretreatment is converted to the plasma discharge for deposition).
  • the plasma discharge method and parameters of the two phases may be the same or different.
  • the power of the plasma discharge for deposition is 2-500 W, and the continuous discharge time is 600-20000s.
  • the plasma discharge (plasma discharge for pretreatment and / or plasma discharge for deposition) is radio frequency discharge, microwave discharge, intermediate frequency discharge, Penning discharge or electric spark discharge.
  • the plasma discharge (plasma discharge for pretreatment and / or plasma discharge for deposition) is a radio frequency discharge
  • the energy output method for controlling the plasma radio frequency during the radio frequency discharge is pulse or continuous output, and the plasma radio frequency
  • the pulse width is 10 ⁇ s-50ms and the repetition frequency is 20Hz-10kHz.
  • the coating of the present application is used to perform chemical corrosion-resistant hydrophobic protection treatment on the surface of the substrate.
  • the present invention has the following beneficial effects:
  • the present invention provides an acrylamide nano-coating and its preparation method:
  • Nano-thickness acrylamide coatings are prepared using plasma technology. Compared with coatings with thicknesses of several tens of microns prepared by brushing and other existing technologies, they can achieve The protective effect is reduced, and the cost of product protective treatment is reduced.
  • the coating prepared by the method of the present application has a uniform thickness, does not cause the problem of different hydrophobic effects in different parts of the coating, and the formed coating has excellent acid and alkali resistance.
  • monomer 2 alone can achieve an excellent hydrophobic coating effect; when monomer 1 is used alone and the group to which the N atom is attached has poor hydrophobicity, the obtained coating has poor hydrophobic properties. It is preferred to use monomer 1 and monomer 2 with two perfluoroalkyl groups attached to the N atom to form a hydrophobic coating. Compared with the use of a single monomer to form a hydrophobic coating, the water contact angle can be increased to 150 ° , To achieve super-hydrophobic effect.
  • the monomer 2a is then introduced, and chemical vapor deposition is performed on the surface of the substrate to prepare a nano-coating.
  • the flow rate of the two monomers was 150 ⁇ L / min, and the introduction time was 600 s and 400 s, respectively.
  • the plasma discharge for pretreatment is adjusted to the plasma discharge for deposition.
  • the plasma in the chamber is generated by radio frequency discharge, the output mode is pulse, the pulse width is 2 ⁇ s, the repetition frequency is 1000 Hz, the discharge power is 50 W, and the discharge time is 1000 s.
  • the device for generating plasma discharge for pretreatment and the device for generating plasma discharge for coating deposition may be one set or two separate devices.
  • the plasma discharge device (for example, electrode) for pretreatment is preferably arranged in the reaction chamber and around the base material, so as to facilitate the quick connection with the coating process after pretreatment; and the plasma discharge device for deposition can be arranged in the reaction chamber It is arranged outside and away from the reaction chamber, so as to selectively or as far as possible avoid the negative influence of the plasma discharge on the substrate during the coating process.
  • the flow rate of the two monomers was 150 ⁇ L / min, and the introduction time was 1000 s and 1600 s, respectively.
  • the plasma discharge for pretreatment is adjusted to the plasma discharge for deposition.
  • the plasma in the deposition stage is generated by radio frequency discharge, the output mode is pulse, the pulse width is 10 ⁇ s, the repetition frequency is 3000Hz, the discharge power is 90W, and the discharge time is 2600s.
  • the monomer 1c and the monomer 2c are simultaneously introduced to perform chemical vapor deposition on the surface of the substrate to prepare a nano-coating.
  • the flow rate of both monomers was 170 ⁇ L / min, and the introduction time was 1800 s.
  • the plasma discharge for pretreatment is adjusted to the plasma discharge for deposition.
  • the plasma in the deposition stage is generated by radio frequency discharge, the output mode is pulse, the pulse width is 5 ⁇ s, the repetition frequency is 2000Hz, the discharge power is 170W, and the discharge time is 3600s.
  • This embodiment is basically the same as Embodiment 1, except that:
  • This embodiment is basically the same as Embodiment 2 except for:
  • Example 1 Compared with Example 1, the pulse width of the deposition stage was set to 500 s, and the remaining parameters were the same.
  • the repetition frequency of the deposition stage is set to 300 Hz, and the remaining parameters are the same.
  • the discharge power in the pretreatment stage of step (2) is set to 300 W, and the remaining parameters are the same.
  • Example 1 Compared with Example 1, only the monomer 1a is passed in, the passing time is 1000s, and the remaining parameters are the same.
  • Example 1 Compared with Example 1, only monomer 1b is passed in, the passing time is 1000s, and the remaining parameters are the same.
  • Example 2 Compared with Example 2, only the monomer 2b is passed in, the passing time is 2600s, and the remaining parameters are the same.
  • Example 2 Compared with Example 2, the monomer 1b is replaced with 1e, and the monomer 2b is replaced with 2e, and the remaining parameters are the same.
  • Example 2 Compared with Example 2, the substrate PCB is replaced with an automobile rearview mirror, and other parameters are the same.
  • Example 2 Compared with Example 2, the substrate PCB is replaced with cloth, and other parameters are the same.
  • Example 2 Compared with Example 2, the substrate PCB is replaced with a speaker sound transmission network, and other parameters are the same.
  • the substrates after plating in the above embodiments were tested for coating thickness, water contact angle, and acid and alkali resistance.
  • the thickness of the nano-coating is tested using the US Filmetrics F20-UV-film thickness measuring instrument.
  • Nano-coating water contact angle is tested according to GB / T 30447-2013 standard.
  • Acid resistance, alkali resistance corrosion, refer to GB1763-79 (89) paint film chemical resistance test method standard test.
  • the nano-coating is prepared by adopting the invention, and the coating thickness is very thin, which belongs to the nanometer scale; no organic solvent, curing agent and other pollutants are used in the preparation process; the nano-composite coating is prepared by selecting a suitable monomer to obtain a super-hydrophobic effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种丙烯酰胺纳米涂层,将基材暴露于单体蒸汽氛围中,通过等离子体放电在基材表面发生化学反应形成保护涂层;单体蒸汽为汽化的单体1或者单体2,或者单体1和单体2的混合物;单体1具有如下的式(I)所示结构;单体2具有如下的式(II)所示结构;单体1:(I) 单体2: (II) 其中,R 1、R 2、R 3、R 6、R 7、R 8独立地选自氢、烷基、芳基、卤素、卤代烷基、烯基或卤代烯基,X、Y为氢或卤素;R 4、R 5独立地选自氢、烷基、芳基、卤素、卤代烷基或者具有式(III)所示结构: (III) R 11为碳原子数1-15的直链或者含有支链烷烃亚基,R 12、R 13、R 14、R 15为独立地选自氢、烷基、芳基、卤素或卤代烷基;R 9、R 10独立地选自碳原子数为1-15的直链、含有支链的烷基亚基或者含有芳基亚基;或者R 9、R 10为连接的键; m、n、p、q为0-20的整数,但m、n不同时为0,p、q不同时为0。还公开了一种丙烯酰胺纳米涂层的制备方法。

Description

一种丙烯酰胺纳米涂层及其制备方法 技术领域
本发明涉及等离子体化学气相沉积技术领域,具体涉及到一种纳米防护涂层及其制备方法。
背景技术
众所周知,氟碳材料中的氟原子低极化率和强电负性赋予了氟碳聚合物许多独特的性质,如高疏水疏油性,耐化学试剂腐蚀性,优良的耐候性等,因此广泛应用在建筑涂料、纺织工业、军工领域等领域中。虽然含氟聚合物具有很多优点,但其单体价格昂贵、且使用常规涂覆方法不易成膜。CN 106868473 A《一种梯度递减结构防液涂层的制备方法》中利用等离子体化学气相沉积技术,将含有丙烯酸酯结构的氟碳材料及多官能度不饱和烃类衍生物成功地沉积到基材表面,形成具有梯度递减结构的保护涂层,拥有良好的阻隔防护性能。但经过研究发现,当单体中全氟烷基碳原子数在6以下时,疏水性明显下降。CN 102471405 A《含有氟烷基的N-取代(甲基)丙烯酰胺化合物、其聚合物及其用途》中,利用含有氟烷基的N-取代(甲基丙烯酰胺)化合物液体涂覆在被处理样品表面形成保护层,达到防锈、疏水等目的,且不受PFOA和PFOA类似物使用的限制,在碳数6以下时仍能保持优良的疏水性能。但该涂覆方法获得的涂层厚度往往达到微米级以上,浪费大量的单体,造成 成本上升。
因此,将含有氟烷基的N-取代(丙烯酰胺),通过等离子体技术,制备具有纳米级厚度的涂层,既可以保证其在低氟代碳原子数情况下具有优异的疏水和防护性能,又可以避免单体的浪费。
发明内容
本发明是为了克服以上缺点,提供一种丙烯酰胺纳米涂层及其制备方法。本发明利用等离子体化学气相沉积技术,将含有丙烯酰胺结构的烯烃衍生物和含氟烷基丙烯酰胺单体沉积到基材表面,在基材表面形成了一种复合结构的纳米防护涂层。
本发明是通过以下技术方案实现的:
一种丙烯酰胺纳米涂层,其特征在于,是将基材暴露于单体蒸汽氛围中,通过等离子体放电在基材表面发生化学反应形成保护涂层;
所述单体蒸汽为汽化的单体1或者单体2,或者单体1和单体2的混合物;
所述单体1具有如下的式(I)所示结构;所述单体2具有如下的式(II)所示结构;
单体1:
Figure PCTCN2019078827-appb-000001
单体2:
Figure PCTCN2019078827-appb-000002
其中,R 1、R 2、R 3、R 6、R 7、R 8独立地选自氢、烷基、芳基、卤素、卤代烷基、烯基或卤代烯基,X、Y为氢或卤素;
R 4、R 5独立地选自氢、烷基、芳基、卤素、卤代烷基或者具有式(III)所示结构:
Figure PCTCN2019078827-appb-000003
R 11为碳原子数1-15的直链或者含有支链烷烃亚基,R 12、R 13、R 14、R 15为独立地选自氢、烷基、芳基、卤素或卤代烷基;
R 9、R 10独立地选自碳原子数为1-15的直链、含有支链的烷基亚基或者含有芳基亚基;或者R 9、R 10为连接的键;
m、n、p、q为0-20的整数,但m、n不同时为0,p、q不同时为0。
在本发明中,R 1、R 2、R 3、R 6、R 7、R 8是与不饱和双键连接的基团,可以是疏水性基团,其中优选地,独立地选自氢、烷基、芳基、卤素、卤代烷基、烯基或卤代烯基;X、Y是氢,或者烷基碳链上的取代基,可选自卤素。
R 4、R 5是与N原子连接的基团,优选地,R 4、R 5具有式(III)所示结构,因为,式(III)结构使得单体2具有双丙烯酰胺官能团,利于单体1、单体2的之间进一步反应。
R 11是双丙烯酰胺基团间的桥联基团,可以为碳原子数1-15的直链或者含有支链烷烃亚基,R 12、R 13、R 14、R 15是与N原子、不饱和双键连接的疏水基团,可独立地选自氢、烷基、芳基、卤素或卤代烷基。
R 9、R 10是丙烯酰胺官能团与全氟烷基之间的桥联碳链段,独立地选自碳原子数为1-15的直链、含有支链的烷基亚基或者含有芳基亚基;或者仅 是连接的键。桥联碳链是官能团与全氟烷基之间的缓冲段,可通过碳链的长度、结构来调整单体的稳定性和易获得性。进一步地,R 1、R 2、R 3、R 6、R 7、R 8独立地选自氢、甲基或氟基,X、Y为氟。
进一步地,R 9、R 10是短碳链桥联基团,桥联基团碳原子数太长容易降低单体中氟原子的比例,R 9、R 10独立地选自碳原子数为1-5的直链亚烷基。
进一步地,R 11为碳原子数为3-10的直链烷烃亚基。单体1在常温常压下为液体。
进一步地,m、n为2-10的整数。单体2是常温常压下沸点低于400℃的含氟丙烯酰胺。
进一步地,所述基材为金属、光学仪器、衣服织物、电子器件或医疗器械等固体材料。
本发明还公开了一种上述丙烯酰胺纳米涂层的制备方法,其特征在于,包括以下步骤:
(1)将基材置于等离子体室的反应腔体内,将反应腔体内的真空度抽到0.1-1000毫托;
(2)通入等离子体源气体,开启沉积用等离子体放电,将单体1和/或单体2经汽化后导入反应腔体进行化学气相沉积反应;
(3)关闭沉积用等离子体放电,通入洁净的压缩空气或者惰性气体恢复至常压,打开腔体,取出基材。
进一步地,在步骤(2)中,所述单体1和所述单体2分别通入真空腔体;
或者,所述单体1和所述单体2同时通入所述真空腔体;
或者,向所述真空腔体内先通入所述单体1或所述单体2,然后再同时通入所述单体1和所述单体2的混合蒸汽。
进一步地,步骤(2)中所述等离子体源气体为氦气、氩气、氮气和氢气中的一种或者若干种的混合物。
进一步地,所述等离子体室的容积为1L-5000L;
所述等离子体源气体流量为5-1000sccm;
所述单体蒸汽的通入流量为1-2000μL/min。
优选地,所述步骤(2)中,在通入所述等离子体源气体后以及在所述沉积用等离子体放电之前,还包括对基材进行预处理用等离子体放电工序。
步骤(2)中通入等离子体源气体后,开启预处理用等离子体放电对基材进行预处理。预处理阶段的等离子体放电的功率为2-500W,持续放电时间为1-3600s。
预处理阶段结束后进入沉积阶段(预处理用等离子体放电转换为沉积用等离子体放电),两个阶段的等离子体放电方式以及参数可以相同也可以不同。
进一步地,所述步骤(2)中,沉积用等离子体放电的功率为2-500W,持续放电时间为600-20000s。
进一步地,所述等离子体放电(预处理用等离子体放电和/或沉积用等离子体放电)方式为射频放电、微波放电、中频放电、潘宁放电或电火花放电。
进一步地,所述等离子体放电(预处理用等离子体放电和/或沉积用等离子体放电)为射频放电,射频放电过程中控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时,脉宽为10μs-50ms、重复频率为20Hz-10kHz。
进一步地,使用本申请的涂层对基材的表面进行耐化学腐蚀疏水防护处理。
采用上述技术方案,本发明具有如下有益效果:
相比于现有技术,本发明提供了一种丙烯酰胺纳米涂层及其制备方法:
(1)当单体的N原子上连有两个全氟烷基,由于氟原子电负性很强,全氟烷基之间相互排斥强,聚合物表面形成更加致密、细腻的微凸结构,可获得超疏水结构效果,接触角可达到150°以上。
(2)当单体中N原子连接疏水结构的烷基或者含氟烷基时,即使在全氟烷基碳链长度小于6情况下,涂层疏水效果仍可达到120°以上;
(3)利用等离子体技术制备出了纳米级厚度的丙烯酰胺涂层,与采用刷涂等现有技术制备厚度达几十微米的涂层相比,在减少了涂层原料用量条件下又达到了防护效果,降低了产品防护处理的成本。
(4)采用本申请的方法制备出的涂层,其厚薄程度均一,不会出现涂层不同部位疏水效果不同的问题,并且形成的涂层具有优异的耐酸碱性能。
本申请单独使用单体2就可以达到优异的疏水涂层效果;当单独使用单体1且N原子所连的基团疏水性差时,所获得的涂层疏水性能也较差。优选同时使用单体1和N原子上连有两个全氟烷基的单体2形成疏水涂层,相对使用单独一种单体形成的疏水涂层而言,水接触角可提高到150°,达到超疏水效果。
具体实施方式
实施例1
一种丙烯酰胺纳米涂层及其制备方法经过如下步骤:
(1)将5cm×5cm的金属铝块放置于100L等离子体真空反应腔体内,对反应腔体连续抽真空使真空度达到0.1毫托。
(2)通入氦气,流量为100sccm,开启射频方式的等离子体放电对金属铝块进行预处理(即开启射频方式的预处理用等离子体放电),预处理阶段放电功率为80W,持续放电100s。
(3)接着先通入单体1a结束后,再通入单体2a,在基材表面进行化学气相沉积制备纳米涂层。涂层制备过程中两种单体流量均为150μL/min,通入时间分别为600s和400s。预处理用等离子体放电调整为沉积用等离子体放电。该沉积阶段腔体内等离子体的产生采用射频放电方式,输出方式为脉冲,脉冲宽度为2μs,重复频率为1000Hz,放电功率为50W,放电时间为1000s。
(4)涂层制备结束后,通入氮气,使反应腔体恢复至常压,打开腔体,取出金属铝块。
(5)对样品涂层防护性能进行检测,检测内容包括涂层厚度、疏水性(水接触角)、耐化学腐蚀情况。
Figure PCTCN2019078827-appb-000004
其中,生成预处理用等离子体放电的装置和生成涂层的沉积用等离子体放电的装置可以是一套,也可以为两套独立装置。预处理用等离子体放电装置(例如电极)优选地设置在反应腔体内,且围绕基材设置,从而便于预处理后快速与涂层工艺衔接;而沉积用等离子体放电装置可以布设在反应腔体之外且远离反应腔体设置,从而可选择地 或尽可能地避免涂层过程中等离子体放电对基材的消极影响。
实施例2
一种丙烯酰胺纳米涂层及其制备方法经过如下步骤:
(1)将电子手表的PCB放置于1000L等离子体真空反应腔体内,对反应腔体连续抽真空使真空度达到10毫托。
(2)通入氩气,流量为200sccm,开启射频等离子体放电对电子手表的PCB进行预处理(即开启射频方式的预处理用等离子体放电),预处理用等离子体放电功率为500W,持续放电100s。
(3)通入单体1b,结束后再通入单体2b,在基材表面进行化学气相沉积制备纳米涂层。
涂层制备过程中两种单体流量均为150μL/min,通入时间分别为1000s和1600s。预处理用等离子体放电调整为沉积用等离子体放电。
沉积阶段腔体内等离子体的产生采用射频放电方式,输出方式为脉冲,脉冲宽度为10μs,重复频率为3000Hz,放电功率为90W,放电时间为2600s。
(4)涂层制备结束后,通入氮气,使反应腔体恢复至常压,打开腔体,取出PCB板。
(5)对样品涂层防护性能进行检测,检测内容包括涂层厚度、疏水性(水接触角)、耐化学腐蚀情况。
Figure PCTCN2019078827-appb-000005
实施例3
一种丙烯酰胺纳米涂层及其制备方法经过如下步骤:
(1)将镁合金放置于4000L等离子体真空反应腔体内,对反应腔体连续抽真空使真空度达到100毫托。
(2)通入氩气,流量为200sccm,开启射频等离子体放电对镁合金基材进行预处理(即开启射频方式的预处理用等离子体放电),预处理阶段放电功率为150W,持续放电100s。
(3)同时通入单体1c和单体2c,在基材表面进行化学气相沉积制备纳米涂层。涂层制备过程中两种单体流量均为170μL/min,通入时间分别为1800s。预处理用等离子体放电调整为沉积用等离子体放电。
沉积阶段腔体内等离子体的产生采用射频放电方式,输出方式为脉冲,脉冲宽度为5μs,重复频率为2000Hz,放电功率为170W,放电时间为3600s。
(4)涂层制备结束后,通入氮气,使反应腔体恢复至常压,打开腔体,取出镁合金。
(5)对样品涂层防护性能进行检测,检测内容包括涂层厚度、疏水性(水接触角)、耐化学腐蚀情况。
Figure PCTCN2019078827-appb-000006
实施例4
本实施例与实施例1基本相同,不同之处在于:
将单体1a改为单体1d,单体2a改为单体2d,将步骤(3)通入时间分别更换为1600s和1800s,放电时间更换为3400s。其余参数相同。
Figure PCTCN2019078827-appb-000007
实施例5
本实施例与实施例2相比基本相同,不同之处在于:
将单体1a改为单体1e,单体2a改为单体2e。将步骤(3)通入时间分别更换为1600s和2100s,放电时间更换为3700s。其余参数相同。
Figure PCTCN2019078827-appb-000008
实施例6
与实施例1相比,将沉积阶段脉冲宽度设置为500μs,其余参 数相同。
实施例7
与实施例2相比,将沉积阶段重复频率设置为300Hz,其余参数相同。
实施例8
与实施例3相比,步骤(2)预处理阶段放电功率设为300w,其余参数相同。
实施例9
与实施例1相比,只通入单体1a,通入时间为1000s,其余参数相同。
实施例10
与实施例1相比,只通入单体1b,通入时间为1000s,其余参数相同。
实施例11
与实施例2相比,只通入单体2b,通入时间为2600s,其余参数相同。
实施例12
与实施例2相比,将单体1b换成1e,单体2b换成2e,其余参数相同。
实施例13
与实施例2相比,将基材PCB板更换为汽车后视镜,其他参数相同。
实施例14
与实施例2相比,将基材PCB板更换为布料,其他参数相同。
实施例15
与实施例2相比,将基材PCB板更换为音箱透音网,其他参数相同。
上述各实施例施镀后的基材,进行涂层厚度、水接触角、耐酸耐碱测试。
纳米涂层厚度,使用美国FilmetricsF20-UV-薄膜厚度测量仪进行检测。
纳米涂层水接触角,根据GB/T 30447-2013标准进行测试。
耐酸、耐碱锈蚀,参照GB1763-79(89)漆膜耐化学试剂性测定法标准进行测试。
表1
Figure PCTCN2019078827-appb-000009
注:实施例13、14、15由于均为非金属,不做耐酸、耐碱测试。
采用本发明制备得到纳米涂层,涂层厚度非常薄,属于纳米尺 度;制备过程中不使用有机溶剂、固化剂等污染物;选择合适的单体制备纳米复合涂层可获得超疏水效果。最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种丙烯酰胺纳米涂层,其特征在于,将基材暴露于单体蒸汽氛围中,通过等离子体放电在基材表面发生化学反应形成保护涂层;
    所述单体蒸汽为汽化的单体1或者单体2,或者单体1和单体2的混合物;所述单体1具有如下的式(I)所示结构;所述单体2具有如下的式(II)所示结构;
    单体1:
    Figure PCTCN2019078827-appb-100001
    单体2:
    Figure PCTCN2019078827-appb-100002
    其中,R 1、R 2、R 3、R 6、R 7、R 8独立地选自氢、烷基、芳基、卤素、卤代烷基、烯基或卤代烯基,X、Y为氢或卤素;
    R 4、R 5独立地选自氢、烷基、芳基、卤素、卤代烷基或者具有式(III)所示结构:
    Figure PCTCN2019078827-appb-100003
    R 11为碳原子数1-15的直链或者含有支链烷烃亚基,R 12、R 13、R 14、R 15为独立地选自氢、烷基、芳基、卤素或卤代烷基;
    R 9、R 10独立地选自碳原子数为1-15的直链、含有支链的烷基亚基或者含有芳基亚基;或者R 9、R 10为连接的键;
    m、n、p、q为0-20的整数,但m、n不同时为0,p、q不同时为0。
  2. 如权利要求1所述的丙烯酰胺纳米涂层,其特征在于,R 1、R 2、R 3、R 6、R 7、R 8独立地选自氢、甲基或氟基,X、Y为氟。
  3. 如权利要求1所述的丙烯酰胺纳米涂层,其特征在于,R 9、R 10独立地选自碳原子数为1-5的直链亚烷基。
  4. 如权利要求1所述的丙烯酰胺纳米涂层,其特征在于,R 11为碳原子数为3-10的直链烷烃亚基。
  5. 如权利要求1所述的丙烯酰胺纳米涂层,其特征在于,m、n为2-10的整数。
  6. 如权利要求1所述丙烯酰胺纳米涂层,其特征在于,所述基材为金属、光学仪器、衣服织物、电子器件或医疗器械。
  7. 如权利要求1-6任一项所述丙烯酰胺纳米涂层的制备方法,其特征在于,包括以下步骤:
    (1)将基材置于等离子体室的反应腔体内,将反应腔体内的真空度抽到0.1-1000毫托;
    (2)通入等离子体源气体,开启沉积用等离子体放电,将单体1和/或单体2经汽化后导入反应腔体进行化学气相沉积反应;
    (3)关闭沉积用等离子体放电,通入洁净的压缩空气或者惰性气体恢复至常压,打开腔体,取出基材。
  8. 如权利要求7所述丙烯酰胺纳米涂层的制备方法,其特征在于,步骤(2)中所述单体1和所述单体2分别通入真空腔体;
    或者,所述单体1和所述单体2同时通入所述真空腔体;
    或者,向所述真空腔体内先通入所述单体1或所述单体2,然后再同时通入所述单体1和所述单体2的混合蒸汽。
  9. 如权利要求7所述丙烯酰胺纳米涂层的制备方法,其特征在于,步骤(2)中所述等离子体源气体为氦气、氩气、氮气和氢气中的一种或者若干种的混合物。
  10. 如权利要求7所述丙烯酰胺纳米涂层的制备方法,其特征在于,所述等离子体室的容积为1L-5000L;
    所述等离子体源气体流量为5-1000sccm;
    所述单体蒸汽的通入流量为1-2000μL/min。
  11. 如权利要求7所述丙烯酰胺纳米涂层的制备方法,其特征在于,所述步骤(2)中,在通入所述等离子体源气体后以及在所述沉积用等离子体放电之前,还包括对基材进行预处理用等离子体放电工序。
  12. 如权利要求11所述丙烯酰胺纳米涂层的制备方法,其特征在于,所述预处理用等离子体放电的功率为2-500W,持续放电时间为1-3600s。
  13. 如权利要求7所述丙烯酰胺纳米涂层的制备方法,其特征在于,所述步骤(2)中,所述沉积用等离子体放电的功率为2-500W,持续放电时间为600-20000s。
  14. 如权利要求7或11所述丙烯酰胺纳米涂层的制备方法,其特征在于,所述等离子体放电方式为射频放电、微波放电、中频放电、潘宁放电或电火花放电。
  15. 如权利要求7或者11所述丙烯酰胺纳米涂层的制备方法,其特征在于,所述等离子体放电方式为射频放电,射频放电过程中控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时,脉宽为10μs-50ms、重复频率为20Hz-10kHz。
PCT/CN2019/078827 2018-10-24 2019-03-20 一种丙烯酰胺纳米涂层及其制备方法 WO2020082671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811245255.9 2018-10-24
CN201811245255.9A CN109267040B (zh) 2018-10-24 2018-10-24 一种丙烯酰胺纳米涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2020082671A1 true WO2020082671A1 (zh) 2020-04-30

Family

ID=65194402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078827 WO2020082671A1 (zh) 2018-10-24 2019-03-20 一种丙烯酰胺纳米涂层及其制备方法

Country Status (3)

Country Link
CN (1) CN109267040B (zh)
TW (1) TWI717869B (zh)
WO (1) WO2020082671A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267040B (zh) * 2018-10-24 2020-03-31 江苏菲沃泰纳米科技有限公司 一种丙烯酰胺纳米涂层及其制备方法
CN110903763A (zh) * 2019-12-09 2020-03-24 佛山市思博睿科技有限公司 超疏水防水液、其制备方法及其防水透音网的制备方法
CN114438477A (zh) * 2020-11-02 2022-05-06 江苏菲沃泰纳米科技股份有限公司 循环镀膜方法、膜层以及产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398305A (zh) * 2000-12-12 2003-02-19 柯尼卡株式会社 薄膜形成方法、具有薄膜的物品、光学膜、介电体覆盖电极及等离子体放电处理装置
WO2011078167A1 (ja) * 2009-12-24 2011-06-30 三井化学東セロ株式会社 ガスバリア性膜及び積層体
CN102471405A (zh) * 2009-08-20 2012-05-23 Agc清美化学股份有限公司 含有氟烷基的n-取代(甲基)丙烯酰胺化合物、其聚合物及其用途
CN103132045A (zh) * 2011-11-28 2013-06-05 英作纳米科技(北京)有限公司 医疗用品的涂层制备方法及其产品
CN106868473A (zh) * 2017-01-23 2017-06-20 无锡荣坚五金工具有限公司 一种梯度递减结构防液涂层的制备方法
CN108531892A (zh) * 2018-04-09 2018-09-14 苏州睿研纳米医学科技有限公司 亲水复合涂层的制备方法及亲水复合涂层
CN109267040A (zh) * 2018-10-24 2019-01-25 江苏菲沃泰纳米科技有限公司 一种丙烯酰胺纳米涂层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0406049D0 (en) * 2004-03-18 2004-04-21 Secr Defence Surface coatings
US8120854B2 (en) * 2006-12-28 2012-02-21 3M Innovative Properties Company Interference films having acrylamide layer and method of making same
CN106622892B (zh) * 2016-11-30 2023-07-28 江苏菲沃泰纳米科技股份有限公司 一种电火花等离子体引发聚合表面涂层装置及方法
CN107058981B (zh) * 2017-01-23 2018-09-21 江苏菲沃泰纳米科技有限公司 一种低粘附、耐蚀涂层的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398305A (zh) * 2000-12-12 2003-02-19 柯尼卡株式会社 薄膜形成方法、具有薄膜的物品、光学膜、介电体覆盖电极及等离子体放电处理装置
CN102471405A (zh) * 2009-08-20 2012-05-23 Agc清美化学股份有限公司 含有氟烷基的n-取代(甲基)丙烯酰胺化合物、其聚合物及其用途
WO2011078167A1 (ja) * 2009-12-24 2011-06-30 三井化学東セロ株式会社 ガスバリア性膜及び積層体
CN103132045A (zh) * 2011-11-28 2013-06-05 英作纳米科技(北京)有限公司 医疗用品的涂层制备方法及其产品
CN106868473A (zh) * 2017-01-23 2017-06-20 无锡荣坚五金工具有限公司 一种梯度递减结构防液涂层的制备方法
CN108531892A (zh) * 2018-04-09 2018-09-14 苏州睿研纳米医学科技有限公司 亲水复合涂层的制备方法及亲水复合涂层
CN109267040A (zh) * 2018-10-24 2019-01-25 江苏菲沃泰纳米科技有限公司 一种丙烯酰胺纳米涂层及其制备方法

Also Published As

Publication number Publication date
CN109267040A (zh) 2019-01-25
TWI717869B (zh) 2021-02-01
TW202016346A (zh) 2020-05-01
CN109267040B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
JP7336019B2 (ja) 撥水ナノ膜及びその製造方法、応用、並びに製品
WO2020082671A1 (zh) 一种丙烯酰胺纳米涂层及其制备方法
WO2018214452A1 (zh) 一种基材运动式等离子体放电制备纳米涂层的设备及方法
WO2020082675A1 (zh) 一种高粘附性耐老化纳米涂层及其制备方法
TWI728517B (zh) 一種環氧奈米塗層及其製備方法
Darmanin et al. A one-step electrodeposition of homogeneous and vertically aligned nanotubes with parahydrophobic properties (high water adhesion)
WO2020082678A1 (zh) 一种耐磨自交联的纳米涂层及其制备方法
WO2019037445A1 (zh) 一种高绝缘性纳米防护涂层的制备方法
BR112019010010B1 (pt) Método para preparação de um revestimento à prova de água e resistente ao rompimento elétrico
WO2018214446A1 (zh) 一种小功率连续放电制备多功能性纳米防护涂层的方法
CN112980223B (zh) 一种复合涂层、制备方法及器件
Fernandes et al. Plasma-polymerised coatings used as pre-treatment for aluminium alloys
CN109354903A (zh) 一种高透明低色差纳米涂层及其制备方法
TWI745769B (zh) 一種防靜電防液奈米塗層及其製備方法
ES2219922T3 (es) Polimerizacion por plasma sobre una superficie de material.
WO2020082680A1 (zh) 一种聚氨酯纳米涂层及其制备方法
TWI647328B (zh) 選擇性抑制有機鍍膜形成的方法與選擇性調整有機鍍膜厚度的方法
CN114438477A (zh) 循环镀膜方法、膜层以及产品
WO2024109516A1 (zh) 一种疏水疏油膜层及其制备方法
WO2021232608A1 (zh) 防水膜层及其制备方法、应用和产品
JPS58180503A (ja) 薄膜作成法
WO2024109517A1 (zh) 一种疏水疏油膜层及其制备方法
JP2023528674A (ja) 保護コーティングおよびその製造方法
Huang et al. An optical emission analysis of CH 2 F 2 plasma polymerized nano-film growth
Yuliang et al. Pulsed Plasma Polymerizations: Film Chemistry Control and Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876567

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 06.12.21.

122 Ep: pct application non-entry in european phase

Ref document number: 19876567

Country of ref document: EP

Kind code of ref document: A1