WO2020082680A1 - 一种聚氨酯纳米涂层及其制备方法 - Google Patents

一种聚氨酯纳米涂层及其制备方法 Download PDF

Info

Publication number
WO2020082680A1
WO2020082680A1 PCT/CN2019/079115 CN2019079115W WO2020082680A1 WO 2020082680 A1 WO2020082680 A1 WO 2020082680A1 CN 2019079115 W CN2019079115 W CN 2019079115W WO 2020082680 A1 WO2020082680 A1 WO 2020082680A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
plasma
preparation
discharge
coating
Prior art date
Application number
PCT/CN2019/079115
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技有限公司 filed Critical 江苏菲沃泰纳米科技有限公司
Publication of WO2020082680A1 publication Critical patent/WO2020082680A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Definitions

  • the invention relates to the technical field of plasma chemical vapor deposition, in particular to a polyurethane nano-coating and a preparation method thereof.
  • polyurethane is produced by the reaction of polyisocyanate and polyol, and its structural unit contains more urethane bonds. Because the coating formed by the polyurethane coating contains amide groups, ester groups, etc., hydrogen bonds are easily formed between the molecules, so its abrasion resistance and adhesion to the substrate are very good. By adjusting the molecular force structure, the tensile strength, chemical resistance and fatigue resistance of the coating can be improved.
  • CN103103648648A "Preparation method of hydrophilic modified polyisocyanate curing agent for water-based polyurethane and application of such polyisocyanate curing agent" stirring polyethylene glycol, diisocyanate, catalyst and organic solvent in a reaction kettle, The hydrophobic polymer diol with double-ended hydroxyl groups is added, and finally the diisocyanate and the catalyst are added. After a series of post-treatment steps, the polyisocyanate curing agent product is obtained. The method has complicated steps and generates a large amount of organic volatile gas, which pollutes the environment.
  • CN106096258 "A method for analyzing the hydrophobicity of the surface of fluorine-containing polyurethanes" theoretical calculations show that the fluorine-containing segments of the fluorinated polyurethane will migrate spontaneously to the surface and enrich the fluorine element on the surface of the material, so that the fluorine-containing polyurethane has excellent Water-based.
  • CN201710049153 "Preparation method of liquid-proof coating with gradient increasing structure” realizes effective regulation of the hydrophobicity of the material surface and long-term resistance to underwater energization by constructing a liquid-proof coating with varying composition gradients, but due to lack of coating components
  • the strong polar group similar to polyurethane has low adhesion to the surface of the substrate.
  • the introduction of polycyanate and polyol on the surface of the substrate is one of the effective methods to improve the binding force, crosslinking degree and strength of the plasma nano-coating.
  • the present invention is to overcome the above shortcomings and provide an environmentally safe polyurethane nano-coating and a preparation method thereof.
  • the invention not only improves the adhesion between the halogen-containing acrylate composite coating and the substrate, but also makes the coating have the function of hydrophobic and liquid-proof.
  • a polyurethane nano-coating characterized in that the substrate is exposed to a monomer vapor atmosphere, and a chemical reaction occurs on the surface of the substrate by plasma discharge to form a protective coating;
  • the monomer vapor is vaporized monomer 1 having the structure represented by formula (I), and / or monomer 2 having the structure represented by formula (II), and / or monomer having the structure represented by formula (III) Body 3 (that is, the monomer vapor is one or a mixture of several of vaporized monomer 1, monomer 2, and monomer 3);
  • Monomer 2 Monohydric or polyhydric alcohol
  • R 1 , R 2 and R 3 are independently selected from the group consisting of bonds, aliphatic alkyl subunits, aryl subunits, haloalkyl subunits or alicyclic alkane subunits;
  • R 4 , R 5 and R 6 are independently selected from hydrogen, alkyl, aryl, halogen or haloalkyl; X is halogen.
  • R 1 , R 2 and R 3 are the bridging groups between the polyisocyanate functional groups.
  • the aliphatic alkyl subunit and the halogenated alkyl subunit are selected, the molecule is more pliable, which makes the coating tough; the aryl subunit, The cycloaliphatic alkane subunit can improve the wear resistance of the coating.
  • R 4 , R 5 and R 6 are groups connected to the carbon-carbon double bond.
  • the group has an important influence on the reaction characteristics of the double bond and the hydrophobic properties of the coating. You can choose hydrogen, alkyl, aryl, halogen or Haloalkyl.
  • the monomer 2 is a fluorine-containing polyol, and the hydroxyl content and the number of fluorine groups in the structural formula can be adjusted in a wide range, preferably x is an integer of 2-100, y is an integer of 1-100, and z is 0- An integer of 30, m is an integer of 0-20, and n is an integer of 2-15.
  • R 1 , R 2 , and R 3 are short-chain alkyl subunits or groups having a cyclic structure, and are independently selected from the group consisting of a bond, a linear alkyl subunit having 1 to 6 carbon atoms, or a phenyl subgroup base.
  • monomer 2 is a low-viscosity fluorine-containing diol or triol, x is 6, 7, 8 or 9; y is 2 or 3; z is 5, 6, 7 or 8.
  • monomer 3 is a fluorinated alkyl group-containing acrylate
  • m is an integer of 4-10
  • n is an integer of 2-6
  • X is fluorine.
  • the invention also discloses a method for preparing the polyurethane nano coating, which includes the following steps:
  • the volume of the reaction chamber of the plasma chamber is 1-2000L, and the temperature of the reaction chamber is controlled at 30-60 ° C.
  • the plasma source gas is one or a mixture of helium, argon, nitrogen, and hydrogen, and the flow rate of the plasma source gas is 5-300 sccm.
  • the monomer vapor is introduced into the reaction chamber under a pressure of 0.1-1000 mTorr, and the flow rate of the monomer vapor when entering the reaction chamber is 10-1000 ⁇ L / min;
  • the monomer is atomized and volatilized by the feed pump to form the monomer vapor.
  • the monomer vapor includes monomer 1, monomer 2 and monomer 3;
  • the monomer 1 and the monomer 2 are firstly introduced into the reaction chamber separately or simultaneously. After the vapor deposition is completed, the monomer 3 is introduced, or not.
  • the monomer vapor includes monomer 1 and monomer 2; the molar ratio of monomer 1 and monomer 2 may be 1: 1000-1000: 1.
  • the molar ratio of monomer 1 and monomer 2 is 1: 1.
  • a plasma discharge step for pretreatment of the substrate is further included.
  • Step (2) After the plasma source gas is introduced, the plasma discharge is turned on to pretreat the substrate.
  • the power of the plasma pretreatment discharge in this pretreatment stage is 2-300, and the continuous discharge time is 1-500s.
  • the pretreatment phase After the pretreatment phase ends, it enters the deposition phase (the plasma discharge for pretreatment is converted to the plasma discharge for deposition).
  • the plasma discharge method and parameters of the two phases may be the same or different.
  • the power of the plasma discharge for deposition is 2-500W, and the continuous discharge time is 600-18000s.
  • the plasma discharge (plasma discharge for pretreatment and / or plasma discharge for deposition) is radio frequency discharge, microwave discharge, intermediate frequency discharge, Penning discharge or electric spark discharge.
  • the polyurethane coating of the present invention adopts plasma vapor deposition technology, and there is no waste liquid, waste solids, and waste gas generated, which is safe and environmentally friendly.
  • the invention is composed of a fluorinated polyurethane coating and a fluorine-containing acrylate to form a nano-composite coating.
  • the hardness, adhesive force and chemical resistance of the composite coating are greatly improved.
  • the monomer 1a and the monomer 2a are passed through the chemical vapor deposition on the surface of the substrate to prepare a nano-coating, and after the end, the monomer 3a is passed through to prepare a composite coating.
  • the flow rates of monomer 1a and monomer 2a were 100 ⁇ L / min, and the passing time was 1000s; after the completion, the flow rate of monomer 3a was 200 ⁇ L / min and the passing time was 600s.
  • the plasma discharge for pretreatment is adjusted to the plasma discharge for deposition.
  • the plasma in the deposition stage is generated by radio frequency discharge, the output mode is pulse, the pulse width is 2 ⁇ s, and the repetition frequency is 2000 Hz.
  • the plasma discharge device for pretreatment and the plasma discharge device for deposition may be one set or two separate sets.
  • the plasma discharge device (for example, electrode) for pretreatment is preferably arranged in the reaction chamber and around the base material, so as to facilitate the quick connection with the coating process after pretreatment;
  • the plasma discharge device for deposition can be arranged in the reaction chamber It is placed outside and away from the reaction chamber, so that the negative impact of plasma discharge on the substrate during the coating process can be selectively or as far as possible avoided.
  • the monomer 1b and the monomer 2b are firstly passed through chemical vapor deposition on the surface of the substrate to prepare a nano-coating, and after the end, the monomer 3b is passed through to prepare a composite coating.
  • the flow rate of monomer 1 and monomer 2 was 200 ⁇ L / min, and the passing time was 1000 s; after the end, the flow rate of monomer 3 was 100 ⁇ L / min and the passing time was 800 s.
  • the plasma discharge for pretreatment is adjusted to the plasma discharge for deposition. In the deposition stage, the plasma is generated in the cavity by radio frequency discharge, the output is pulse, the pulse width is 2 ⁇ s, and the repetition frequency is 5000 Hz.
  • the monomer 1c and the monomer 2c are firstly passed through chemical vapor deposition on the surface of the substrate to prepare a nano-coating, and after the end, the monomer 3c is passed through to prepare a composite coating.
  • the flow rate of monomer 1c and monomer 2c were 100 ⁇ L / min, and the inflow time was 2000s; after the end, the flow rate of monomer 3c was 150 ⁇ L / min, and the inflow time was 1000s.
  • the plasma discharge for pretreatment is adjusted to the plasma discharge for deposition. In this deposition stage, the plasma in the chamber is generated by radio frequency discharge, the output mode is pulse, the pulse width is 8 ⁇ s, and the repetition frequency is 5000 Hz.
  • step (3) the time for monomer 1d and 2d was changed to 2500s.
  • the 3d time for the monomer is set to 1200s, and other conditions are the same.
  • step (3) the time for introducing monomers 1e and 2e is changed to 3000s, and the time for introducing monomers 3e is set to 1500s, and other conditions are the same.
  • Example 1 Compared with Example 1, the time for introducing monomer 1 and monomer 2 in step (3) was changed to 300 ⁇ L / min, and other conditions were not changed.
  • the pulse width in step (3) was changed to 2 ms, and other conditions were not changed.
  • the monomer (3b) is not introduced in step (3), and the monomer 1b and monomer 2b are replaced with 1800s, and other conditions are not changed.
  • step (3) monomers 1b and 2b are not introduced, and the entry time of monomer 3b is changed to 1800s, and other conditions are not changed.
  • step (3) monomers 1e and 2e are not introduced, and the monomer 3e access time is changed to 4500s (the sum of the three monomer access times).
  • the substrates after the plating in the above examples were subjected to the measurement of coating thickness, water contact angle, pencil hardness level, adhesion, and chemical corrosion resistance.
  • the thickness of the nano-coating is tested using the US Filmetrics-F20-UV-film thickness measuring instrument.
  • Nano-coating water contact angle is tested according to GB / T 30447-2013 standard.
  • the pencil hardness test method is based on the ASTM D3363 pencil hardness standard.
  • Adhesion test method according to GB / T 9286-1998 standard for 100 grid knife scratch test.
  • Example 3 is glass, and no chemical resistance test is performed.
  • the invention is to obtain a composite nano-coating combining the strong adhesion of polyurethane to the base material and the fluorocarbon material's strong hydrophobic function characteristics, and the coating has improved comprehensive indexes such as hydrophobicity, adhesion and hardness.
  • a high-fluorination polyol monomer 2 and monomer 1 are selected to prepare a coating, and a nano-coating with excellent comprehensive performance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种聚氨酯纳米涂层的制备方法,包括将基材置于等离子体室的反应腔体内,通入等离子体源气体,开启沉积用等离子体放电,将单体蒸汽导入反应腔体进行化学气相沉积反应,关闭沉积用等离子体放电,通入洁净压缩空气或惰性气体恢复至常压,打开腔体,取出基材,其中单体为多氰酸酯、一元醇或多元醇和/或丙烯酸酯。还公开了通过这种方法制备得到的聚氨酯纳米涂层。

Description

一种聚氨酯纳米涂层及其制备方法 技术领域
本发明涉及等离子体化学气相沉积技术领域,具体涉及到一种聚氨酯纳米涂层及其制备方法。
背景技术
众所周知,聚氨酯是由多异氰酸酯与多元醇反应生成的,其结构单元中含有较多的氨基甲酸酯键。聚氨酯涂料形成的涂层中因含有酰胺基、酯基等,分子间容易形成氢键,因此其耐磨性和对基材的粘接力都很好。通过调节分子力结构,可使涂层的拉伸性、耐化学腐蚀性、耐疲劳得到改善。CN 103387648 A《用于水性聚氨酯的亲水改性多异氰酸酯固化剂的制备方法及该种多异氰酸酯固化剂的应用》将聚乙二醇、二异氰酸酯、催化剂和有机溶剂在反应釜中搅拌反应,再加入双端羟基的疏水性聚合物二醇,最后加入二异氰酸酯和催化剂,经过一系列的后处理步骤得到多异氰酸酯固化剂产物。该方法步骤复杂,且产生了大量的有机挥发性气体,污染环境。CN106096258《一种含氟聚氨酯表面疏水性的分析方法》理论计算表明,氟化聚氨酯的含氟链段会自发向表面迁移并使氟元素富集于材料的表面,使含氟聚氨酯具有优良的拒水性。CN201710049153《一种梯度递增结构防液涂层的制备方法》通过构建成分梯度变化的防液涂层,实现对材料表面的疏水性和长时耐水下通电的有效调 控,但涂层成分间由于缺少类似聚氨酯具有的强极性基团,与基材表面粘接力较低。在基材表面引入多氰酸酯和多元醇,是提高等离子体纳米涂层的结合力、交联度及强度的有效方法之一。
发明内容
本发明是为了克服以上缺点,提供一种环保安全的一种聚氨酯纳米涂层及其制备方法。本发明既提高了含卤素丙烯酸酯复合涂层与基体的粘接力,又使涂层具有疏水防液的功能。
本发明是通过以下技术方案实现的:
一种聚氨酯纳米涂层,其特征在于,将基材暴露于单体蒸汽氛围中,通过等离子体放电手段在基材表面发生化学反应形成保护涂层;
所述单体蒸汽为汽化的具有式(I)所示结构的单体1、和/或具有式(II)所示结构的单体2、和/或具有式(III)所示结构的单体3(即单体蒸汽为汽化的单体1、单体2和单体3中的一种或者若干种的混合物);
单体1:多氰酸酯
O=C=N-R 1-R 2-N=C=O,或者
Figure PCTCN2019079115-appb-000001
单体2:一元醇或多元醇
C xH 2x+1-y-z(OH) yF z          (II)
单体3:丙烯酸酯
Figure PCTCN2019079115-appb-000002
其中,R 1、R 2、R 3独立地选自键、脂肪族烷基亚基、芳基亚基、卤代烷基亚基或者脂环烷烃亚基;
R 4、R 5、R 6独立地选自氢、烷基、芳基、卤素或卤代烷基;X为卤素。
R 1、R 2、R 3是多异氰酸酯官能团之间的桥联基团,当选择脂肪族烷基亚基、卤代烷基亚基时分子较为柔顺,使涂层具有韧性;选择芳基亚基、脂环族烷烃亚基则可以提高涂层的耐磨性。
R 4、R 5、R 6是与碳碳双键相连的基团,基团对双键的反应特性、涂层的疏水性能有重要的影响,可选择氢、烷基、芳基、卤素或卤代烷基。
所述的单体2是含氟多元醇,结构式中羟基含量和氟基数量可在较大范围中进行调整,优选x为2-100的整数,y为1-100的整数,z为0-30的整数,m为0-20整数,n为2-15的整数。
优选地,R 1、R 2、R 3为短链烷基亚基或环状结构的基团,独立地选自键、碳数为1-6的直链烷基亚基、或者苯基亚基。
优选地,单体2为粘性较低的含氟二元醇或者三元醇,x为6、7、8或9;y为2或3;z为5、6、7或8。
优选地,单体3是含氟化烷基的丙烯酸酯,m为4-10的整数,n为2-6的整数,X为氟。
另外,本发明还公开了一种上述聚氨酯纳米涂层的制备方法,其包括以下步骤:
(1)将基材置于等离子体室的反应腔体内,反应腔体内的真空度为5-3000毫托;
(2)通入等离子体源气体,开启沉积用等离子体放电,将所述单体蒸汽导入反应腔体进行化学气相沉积反应;
(3)关闭沉积用等离子体放电,通入洁净的压缩空气或者惰性气体恢复至常压,打开腔体,取出基材。
进一步地,所述步骤(1)中等离子体室反应腔体的容积为1-2000L,反应腔体的温度控制在30-60℃。
进一步地,步骤(2)中所述等离子体源气体为氦气、氩气、氮气、氢气中的一种或者若干种的混合物,通入等离子体源气体流量为5-300sccm。
进一步地,所述步骤(2)中,所述单体蒸汽在0.1-1000毫托压力下引入反应腔体,所述单体蒸汽的通入所述反应腔体时的流量为10-1000μL/min;
其中,将单体通过加料泵进行雾化、挥发形成所述单体蒸汽。
进一步地,所述步骤(2)中,所述单体蒸汽包括单体1、单体2和单体3;
先将单体1和单体2分别或者同时通入所述反应腔体,气相沉积结束后通入单体3,也可以不通入。
优选地,所述步骤(2)中,所述单体蒸汽包括单体1和单体2;单体1和单体2通入摩尔比可以是1:1000-1000:1。
优选地,所述步骤(2)中,单体1和单体2通入摩尔比是1: 1。
优选地,所述步骤(2)中,在通入所述等离子体源气体后以及在所述沉积用等离子体放电之前,还包括对基材进行预处理用等离子体放电工序。
步骤(2)通入等离子体源气体后,开启等离子体放电对基材进行预处理。该预处理阶段的等离子体预处理放电的功率为2-300,持续放电时间为1-5500s。
预处理阶段结束后进入沉积阶段(预处理用等离子体放电转换为沉积用等离子体放电),两个阶段的等离子体放电方式以及参数可以相同也可以不同。
优选地,所述步骤(2)中,沉积用等离子体放电的功率为2-500W,持续放电时间为600-18000s。
优选地,所述等离子体放电(预处理用等离子体放电和/或沉积用等离子体放电)方式为射频放电、微波放电、中频放电、潘宁放电或电火花放电。
相比于现有技术,本发明获得了以下有益的技术效果:
1、环保性。本发明的聚氨酯涂层采用了等离子体气相沉积技术,无废液、废固、废气产生,安全环保。
2、经济性。采用含氟多元醇原料成本低,涂层厚度小,工艺时间短,单体使用量少,整体成本下降。
3、功能性。本发明是由氟化聚氨酯涂层与含氟丙烯酸酯构成纳米复合涂层,复合涂层的硬度、粘接力、耐化学腐蚀能力都得到了很大的改善。
具体实施方式
实施例1
一种聚氨酯纳米涂层的制备方法:
(1)将5cm×5cm的金属铁块放置于1000L等离子体真空反应腔体内,对反应腔体连续抽真空使真空度达到10毫托。
(2)通入氦气,流量为300sccm,开启射频等离子体放电对金属铁块进行预处理(即开启射频方式的预处理用等离子体放电),该预处理阶段放电功率为50W,持续放电1000s。
(3)接着先通入单体1a、单体2a在基材表面进行化学气相沉积制备纳米涂层,结束后,通入单体3a制备复合涂层。涂层制备过程中单体1a、单体2a流量均为100μL/min,通入时间为1000s;结束后通入单体3a,流量为200μL/min,通入时间分别为600s。预处理用等离子体放电调整为沉积用等离子体放电。该沉积阶段腔体内等离子体的产生采用射频放电方式,输出方式为脉冲,脉冲宽度为2μs,重复频率为2000Hz。
(4)涂层制备结束后,通入氮气,使反应腔体恢复至常压,打开腔体,取出金属铁块。
(5)对样品涂层防护性能进行检测,检测内容包括涂层厚度、疏水性(水接触角)、耐化学腐蚀情况。
Figure PCTCN2019079115-appb-000003
Figure PCTCN2019079115-appb-000004
其中,预处理用等离子体放电装置和沉积用等离子体放电装置可以是一套,也可以为独立的两套装置。预处理用等离子体放电装置(例如电极)优选地设置在反应腔体内,且围绕基材设置,从而便于预处理后快速与涂层工艺衔接;沉积用等离子体放电装置可以布设在反应腔体之外且远离反应腔体设置,从而可选择地或尽可能地避免涂层过程中等离子体放电对基材的消极影响。
实施例2
一种聚氨酯纳米涂层的制备方法:
(1)将手机主板放置于1000L等离子体真空反应腔体内,对反应腔体连续抽真空使真空度达到20毫托。
(2)通入氦气,流量为100sccm,开启射频等离子体放电对手机主板进行预处理(即开启射频方式的预处理用等离子体放电),该预处理阶段放电功率为20W,持续放电200s。
(3)接着先通入单体1b、单体2b在基材表面进行化学气相沉积制备纳米涂层,结束后,通入单体3b制备复合涂层。涂层制备 过程中单体1、单体2流量均为200μL/min,通入时间为1000s;结束后通入单体3,流量为100μL/min,通入时间分别为800s。预处理用等离子体放电调整为沉积用等离子体放电,该沉积阶段腔体内等离子体的产生采用射频放电方式,输出方式为脉冲,脉冲宽度为2μs,重复频率为5000Hz。
(4)涂层制备结束后,通入氮气,使反应腔体恢复至常压,打开腔体,取出手机主板。
Figure PCTCN2019079115-appb-000005
实施例3
一种聚氨酯纳米涂层的制备方法:
(1)将8cm×5cm的玻璃放置于5000L等离子体真空反应腔 体内,对反应腔体连续抽真空使真空度达到40毫托。
(2)通入氦气,流量为30sccm,开启射频等离子体放电对玻璃进行预处理(即开启射频方式的预处理用等离子体放电),该预处理阶段放电功率为20W,持续放电500s。
(3)接着先通入单体1c、单体2c在基材表面进行化学气相沉积制备纳米涂层,结束后,通入单体3c制备复合涂层。
涂层制备过程中单体1c、单体2c流量均为100μL/min,通入时间为2000s;结束后通入单体3c,流量为150μL/min,通入时间分别为1000s。预处理用等离子体放电调整为沉积用等离子体放电。该沉积阶段腔体内等离子体的产生采用射频放电方式,输出方式为脉冲,脉冲宽度为8μs,重复频率为5000Hz。
(4)涂层制备结束后,通入氮气,使反应腔体恢复至常压,打开腔体,取出手机。
Figure PCTCN2019079115-appb-000006
实施例4
与实施例1相比,将单体1a改为单体1d,单体2a改为单体2d,单体3a改成3d,步骤(3)中通入单体1d、2d时间更换为2500s,通入单体3d时间设定为1200s,其他条件相同。
Figure PCTCN2019079115-appb-000007
实施例5
与实施例2相比,将单体1b改为单体1e,单体2b改为单体2e,3b改为单体3e。
步骤(3)中通入单体1e、2e时间更换为3000s,通入单体3e时间设定为1500s,其他条件相同。
Figure PCTCN2019079115-appb-000008
实施例6
与实施例1相比,步骤(3)中不通入单体3a,其他条件不改变。
实施例7
与实施例1相比,将步骤(3)通入单体1、单体2的时间改为300μL/min,其他条件不改变。
实施例8
与实施例1相比,将步骤(3)中脉冲宽度更换为2ms,其他条件不改变。
实施例9
与实施例2相比,将步骤(3)中单体3b流量更换为200μL/min, 其他条件不改变。
实施例10
与实施例2相比,步骤(3)不通入单体3b,将单体1b、单体2b的通入是更换为1800s,其他条件不改变。
对比实施例1
与实施例9相比,步骤(3)中单体1b、2b均不通入,单体3b通入时间更换为1800s,其他条件不改变。
对比实施例2
与实施例5相比,步骤(3)中单体1e、2e均不通入,单体3e通入时间更换为4500s(三种单体通入时间总和)。
将上述各实施例施镀后的基材,进行涂层厚度、水接触角、铅笔硬度等级、附着力、耐化学腐蚀的测量。
纳米涂层厚度,使用美国Filmetrics-F20-UV-薄膜厚度测量仪进行检测。
纳米涂层水接触角,根据GB/T 30447-2013标准进行测试。
铅笔硬度等级测试方法,根据ASTM D3363铅笔硬度标准进行测试。
附着力测试方法,根据GB/T 9286-1998标准进行百格刀划格试验。
耐化学腐蚀,根据GB1763-79(89)漆膜耐化学试剂性测定法进行测试。
表1
Figure PCTCN2019079115-appb-000009
Figure PCTCN2019079115-appb-000010
注:实施例3为玻璃,不进行耐化学腐蚀测试。
本发明是结合聚氨酯对基材的强附着力和氟碳材料具有强疏水的功能特性获得复合纳米涂层,该涂层在疏水性、附着力、硬度等综合指标获得提升。同时,即使在不使用单体3的情况下,选择氟化程度高的多元醇单体2与单体1制备涂层,也可获得综合性能优异的纳米涂层。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种聚氨酯纳米涂层,其特征在于,将基材暴露于单体蒸汽氛围中,通过等离子体放电在基材表面发生化学反应形成保护涂层;所述单体蒸汽为汽化的具有式(I)所示结构的单体1、和/或具有式(II)所示结构的单体2、和/或具有式(III)所示结构的单体3;
    单体1:多氰酸酯
    O=C=N-R 1R 2N=C=O或者,
    Figure PCTCN2019079115-appb-100001
    单体2:一元醇或多元醇
    C xH 2x+1-y-z(OH) yF z              (II)
    单体3:丙烯酸酯
    Figure PCTCN2019079115-appb-100002
    其中,R 1、R 2、R 3独立地选自键、脂肪族烷基亚基、芳基亚基、卤代烷基亚基或脂环烷烃亚基;R 4、R 5、R 6独立地选自氢、烷基、芳基、卤素或卤代烷基;X为卤素;
    所述的单体结构式x为2-100的整数,y为1-100的整数,z为0-30的整数,m为0-20整数,n为2-15的整数。
  2. 根据权利要求1所述的聚氨酯纳米涂层,其特征在于,R 1、R 2、R 3独立地选自键、碳数为1-6的直链烷基亚基或亚基,X为氟。
  3. 根据权利要求1所述的聚氨酯纳米涂层,其特征在于,x为6、7、8或9;y为2或3;z为5、6、7或8;m为4-10的整数;n为2-6的整数。
  4. 一种权利要求1-3任一项所述聚氨酯纳米涂层的制备方法,其特征在于,所述的纳米涂层制备方法包括以下步骤:
    (1)将基材置于等离子体室的反应腔体内,反应腔体内的真空度为5-3000毫托;
    (2)通入等离子体源气体,开启沉积用等离子体放电,将所述单体蒸汽导入反应腔体进行化学气相沉积反应;
    (3)关闭沉积用等离子体放电,通入洁净的压缩空气或者惰性气体恢复至常压,打开腔体,取出基材。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(1)中等离子体室的容积为1-2000L,等离子体室的温度控制在30-60℃。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中等离子体源气体是氦气、氩气、氮气、氢气中的一种或者若干种的混合物,通入等离子体源气体流量为5-300sccm。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中,通入单体时将单体通过加料泵进行雾化、挥发,由低压0.1-1000毫托引入反应腔体,所述通入单体蒸汽的流量为10-1000μL/min。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述单体蒸汽包括单体1、单体2和单体3;先将单体1和单体2分别或者同时通入所述反应腔体,气相沉积结束后再通入单体3,也可以不通入
  9. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述单体蒸汽包括单体1和单体2;
    单体1和单体2通入摩尔比是1:1000-1000:1。
  10. 根据权利要求9所述的制备方法,其特征在于,所述步骤(2)中,单体1和单体2通入摩尔比为1:1。
  11. 根据权利要求4所述的制备方法,其特征在于,所述步骤(2)中,在通入所述等离子体源气体后以及在所述沉积用等离子体放电之前,还包括对基材进行预处理用等离子体放电工序。
  12. 根据权利要求11所述的制备方法,其特征在于,所述预处理用等离子体放电的功率为2-300W,持续放电时间为1-5500s。
  13. 根据权利要求4所述的制备方法,其特征在于,所述步骤(2)中,沉积用等离子体放电的功率为2-500W,持续放电时间为600-18000s。
  14. 如权利要求4或11所述的制备方法,其特征在于,所述等离子体放电方式为射频放电、微波放电、中频放电、潘宁放电或电火花放电。
PCT/CN2019/079115 2018-10-24 2019-03-21 一种聚氨酯纳米涂层及其制备方法 WO2020082680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811242690.6 2018-10-24
CN201811242690.6A CN109267039B (zh) 2018-10-24 2018-10-24 一种聚氨酯纳米涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2020082680A1 true WO2020082680A1 (zh) 2020-04-30

Family

ID=65193297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079115 WO2020082680A1 (zh) 2018-10-24 2019-03-21 一种聚氨酯纳米涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN109267039B (zh)
WO (1) WO2020082680A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267039B (zh) * 2018-10-24 2019-11-29 江苏菲沃泰纳米科技有限公司 一种聚氨酯纳米涂层及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224428A1 (en) * 2006-03-24 2007-09-27 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and production method of transparent barrier sheet
CN102317496A (zh) * 2009-02-16 2012-01-11 三菱树脂株式会社 阻气性层压膜的制造方法
CN103160786A (zh) * 2013-03-07 2013-06-19 苏州睿研纳米医学科技有限公司 一种纳米涂层的制备方法及由其制备的抗菌纳米涂层
CN105949836A (zh) * 2016-05-13 2016-09-21 无锡荣坚五金工具有限公司 一种栅控等离子体引发气相聚合表面涂层的装置及方法
CN106868473A (zh) * 2017-01-23 2017-06-20 无锡荣坚五金工具有限公司 一种梯度递减结构防液涂层的制备方法
CN107058981A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种低粘附、耐蚀涂层的制备方法
CN107058979A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种防水耐电击穿涂层的制备方法
CN107058982A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种具有多层结构防液涂层的制备方法
CN107573250A (zh) * 2017-09-06 2018-01-12 广州科迩博新材料科技有限公司 一种含氟接触抗菌聚氨酯及其制备方法
CN109267039A (zh) * 2018-10-24 2019-01-25 江苏菲沃泰纳米科技有限公司 一种聚氨酯纳米涂层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2211160C (en) * 1995-02-01 2002-10-01 Schneider (Usa) Inc. Process for hydrophilicization of hydrophobic polymers
US8808532B2 (en) * 2011-01-20 2014-08-19 Medtronic Minimed, Inc Electrode compositions for use with analyte sensors
CN106835075B (zh) * 2017-01-23 2018-04-20 江苏菲沃泰纳米科技有限公司 一种梯度递增结构防液涂层的制备方法
CN112680722A (zh) * 2017-08-23 2021-04-20 江苏菲沃泰纳米科技股份有限公司 一种高绝缘性纳米防护涂层的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224428A1 (en) * 2006-03-24 2007-09-27 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and production method of transparent barrier sheet
CN102317496A (zh) * 2009-02-16 2012-01-11 三菱树脂株式会社 阻气性层压膜的制造方法
CN103160786A (zh) * 2013-03-07 2013-06-19 苏州睿研纳米医学科技有限公司 一种纳米涂层的制备方法及由其制备的抗菌纳米涂层
CN105949836A (zh) * 2016-05-13 2016-09-21 无锡荣坚五金工具有限公司 一种栅控等离子体引发气相聚合表面涂层的装置及方法
CN106868473A (zh) * 2017-01-23 2017-06-20 无锡荣坚五金工具有限公司 一种梯度递减结构防液涂层的制备方法
CN107058981A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种低粘附、耐蚀涂层的制备方法
CN107058979A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种防水耐电击穿涂层的制备方法
CN107058982A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种具有多层结构防液涂层的制备方法
CN107573250A (zh) * 2017-09-06 2018-01-12 广州科迩博新材料科技有限公司 一种含氟接触抗菌聚氨酯及其制备方法
CN109267039A (zh) * 2018-10-24 2019-01-25 江苏菲沃泰纳米科技有限公司 一种聚氨酯纳米涂层及其制备方法

Also Published As

Publication number Publication date
CN109267039A (zh) 2019-01-25
CN109267039B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN111303673B (zh) 疏水性表面涂层及其制备方法
CN109354941B (zh) 一种高粘附性耐老化纳米涂层及其制备方法
Darmanin et al. A one-step electrodeposition of homogeneous and vertically aligned nanotubes with parahydrophobic properties (high water adhesion)
WO2020082677A1 (zh) 一种含硅共聚物纳米涂层及其制备方法
EP1816231A1 (en) Fluorocarbon film and process for producing the same
WO2020082679A1 (zh) 一种环氧纳米涂层及其制备方法
CN109267038B (zh) 一种耐磨自交联的纳米涂层及其制备方法
CN109354903B (zh) 一种高透明低色差纳米涂层及其制备方法
WO2020082680A1 (zh) 一种聚氨酯纳米涂层及其制备方法
TWI717869B (zh) 一種丙烯醯胺奈米塗層及其製備方法
KR101809653B1 (ko) 발수성 및 발유성을 갖는 고분자 박막 및 이의 제조 방법
TWI745769B (zh) 一種防靜電防液奈米塗層及其製備方法
Wydeven et al. Etching of plasma‐polymerized tetrafluoroethylene, polytetrafluoroethylene, and sputtered polytetrafluoroethylene induced by atomic oxygen [O (3P)]
Tay et al. Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma
Weichart et al. Plasma polymerization of silicon organic membranes for gas separation
CZ2001431A3 (cs) Způsob výroby elektrického izolátoru
WO1999027156A1 (en) Plasma polymerization on surface of material
Yang et al. Plasma polymerization and deposition of linear, cyclic and aromatic fluorocarbons on (100)-oriented single crystal silicon substrates
DE3541721C2 (zh)
JP2005276642A (ja) イオン注入により作製した電解質膜電極接合体
WO2018163746A1 (ja) 硬化性組成物、塗料、電線および樹脂物品
Huang et al. An optical emission analysis of CH 2 F 2 plasma polymerized nano-film growth
KR100542003B1 (ko) 불소계 폴리이소시아네이트와 이를 포함하는 고경도 및고발수성 코팅 조성물
Patel et al. Interpenetrating polymer network from castor oil‐based polyurethanes and poly (methyl methacrylate). XV
CN118240474A (zh) 一种复合涂层、制备方法及器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876221

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 16/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19876221

Country of ref document: EP

Kind code of ref document: A1