WO2020082540A1 - 柔性oled面板及其制作方法 - Google Patents

柔性oled面板及其制作方法 Download PDF

Info

Publication number
WO2020082540A1
WO2020082540A1 PCT/CN2018/120980 CN2018120980W WO2020082540A1 WO 2020082540 A1 WO2020082540 A1 WO 2020082540A1 CN 2018120980 W CN2018120980 W CN 2018120980W WO 2020082540 A1 WO2020082540 A1 WO 2020082540A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bending structure
bending
oled panel
area
Prior art date
Application number
PCT/CN2018/120980
Other languages
English (en)
French (fr)
Inventor
赵加湘
程文锦
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/331,146 priority Critical patent/US11196012B2/en
Publication of WO2020082540A1 publication Critical patent/WO2020082540A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to a display technology, in particular to a flexible OLED panel and a manufacturing method thereof.
  • OLED Organic Light-emitting Diode
  • flexible bending OLED panels mainly include static bending and dynamic bending. Among them, the bending of the panel can only be performed in the vertical or horizontal direction, and the bending direction is relatively limited, and the bending radius is large.
  • the embodiments of the present application provide a flexible OLED panel and a manufacturing method thereof to solve the technical problem that the bending direction of the existing flexible OLED panel is relatively limited and the bending radius is large.
  • An embodiment of the present application provides a flexible OLED panel, which includes a display area for setting a pixel structure, wherein the display area includes:
  • a plurality of first bending structures extending along the first direction is used to reduce bending stress perpendicular to the first direction in the display area;
  • a plurality of second bending structures which extend along the second direction, are used to reduce bending stress perpendicular to the second direction in the display area; the second bending structure and the first bending structure Cross-arrange and form multiple display sub-areas; and
  • the display unit is arranged in the display sub-area and includes at least one sub-pixel
  • the display area includes:
  • a buffer layer provided on the flexible substrate
  • An active layer provided on the buffer layer
  • a first insulating layer provided on the active layer
  • a first gate metal layer provided on the first insulating layer
  • a second insulating layer provided on the first gate metal layer
  • a second gate metal layer provided on the second insulating layer
  • a first interlayer dielectric layer disposed on the second gate metal layer
  • a second interlayer dielectric layer, provided on the first interlayer dielectric layer and filling the groove, the second interlayer dielectric layer is made of organic material
  • first bending structure and the second bending structure both include a portion of the groove and the second interlayer dielectric layer corresponding to the groove;
  • the display area includes an intermediate area provided in the middle of the display area and an edge area located around the intermediate area;
  • the density of the display sub-regions located in the middle region is greater than the density of the display sub-regions located in the edge region.
  • the groove of the first bending structure extends along the extending direction of the first bending structure
  • the groove of the second bending structure extends along the The extending direction of the second bending structure extends.
  • the display area further includes a source-drain metal layer disposed on the second interlayer dielectric layer, wherein the arrangement corresponding to the first bending structure and the second bending structure
  • the connection traces of the source-drain metal layer in the region are all concave and convex.
  • the flexible OLED panel includes a first metal line passing through the first bending structure and disposed in the same layer as the source-drain metal layer, and passing through the second bending A second metal line disposed in a different layer from the source-drain metal layer of the structure, wherein the first metal trace includes the connection trace corresponding to the first bending structure setting area, the second metal The trace includes the connection trace corresponding to the second bending structure setting area.
  • the source-drain metal layer includes a titanium metal sub-layer, an aluminum metal sub-layer, and a titanium metal sub-layer that are sequentially stacked.
  • the number of sub-pixels of each display unit located in the middle region is smaller than the number of sub-pixels of each display unit located in the edge region.
  • An embodiment of the present application further provides a flexible OLED panel, including a display area for setting a pixel structure, the display area including:
  • a plurality of first bending structures extending along the first direction is used to reduce bending stress perpendicular to the first direction in the display area;
  • a plurality of second bending structures which extend along the second direction, are used to reduce bending stress perpendicular to the second direction in the display area; the second bending structure and the first bending structure Cross-arrange and form multiple display sub-areas; and
  • the display unit is disposed in the display sub-area and includes at least one sub-pixel.
  • the display area includes:
  • a buffer layer provided on the flexible substrate
  • An active layer provided on the buffer layer
  • a first insulating layer provided on the active layer
  • a first gate metal layer provided on the first insulating layer
  • a second insulating layer provided on the first gate metal layer
  • a second gate metal layer provided on the second insulating layer
  • a first interlayer dielectric layer disposed on the second gate metal layer
  • a second interlayer dielectric layer, provided on the first interlayer dielectric layer and filling the groove, the second interlayer dielectric layer is made of organic material
  • first bending structure and the second bending structure both include a portion of the groove and the second interlayer dielectric layer corresponding to the groove.
  • the groove of the first bending structure extends along the extending direction of the first bending structure
  • the groove of the second bending structure extends along the The extending direction of the second bending structure extends.
  • the display area further includes a source-drain metal layer disposed on the second interlayer dielectric layer, wherein the arrangement corresponding to the first bending structure and the second bending structure
  • the connection traces of the source-drain metal layer in the region are all concave and convex.
  • the shape of the connecting trace may be one of zigzag, wavy, pulse, and concave-convex zigzag.
  • the flexible OLED panel includes a first metal line passing through the first bending structure and disposed in the same layer as the source-drain metal layer, and passing through the second bending A second metal line disposed in a different layer from the source-drain metal layer of the structure, wherein the first metal trace includes the connection trace corresponding to the first bending structure setting area, the second metal The trace includes the connection trace corresponding to the second bending structure setting area.
  • the extension directions of the first metal line and the second bending structure are parallel
  • the extension directions of the second metal line and the first bending structure are parallel
  • the first metal line includes an EVDD line (capacitor and Vdd connected electrode) and Vdata line
  • the second metal line includes Scan line, xScan line and EM line.
  • the source-drain metal layer includes a titanium metal sub-layer, an aluminum metal sub-layer, and a titanium metal sub-layer that are sequentially stacked.
  • the display area includes an intermediate area provided in the middle of the display area and an edge area located around the intermediate area;
  • the density of the display sub-regions located in the middle region is greater than the density of the display sub-regions located in the edge region.
  • the number of sub-pixels of each display unit located in the middle region is smaller than the number of sub-pixels of each display unit located in the edge region.
  • the widths of the first bending structure and the second bending structure are greater than 5 microns, such as 6 microns, 7 microns, 8 microns, 9 microns, and 10 microns.
  • the present application also relates to a method for manufacturing a flexible OLED panel, the OLED panel includes a display area for setting a pixel structure, the display area includes a first bending structure for bending, and a second bending structure for bending A bending structure and a display unit provided in a display sub-region formed by the intersection of the first bending structure and the second bending structure; the manufacturing method includes:
  • S101 Provide glass substrate
  • S102 Form a flexible substrate, a buffer layer, an active layer, a first insulating layer, a first gate metal layer, a second insulating layer, a second gate metal layer, and a first interlayer dielectric on the glass substrate in this order Floor;
  • S104 Form a second interlayer dielectric layer on the first interlayer dielectric layer, the second interlayer dielectric layer fills the groove to form the first and second bending structures ,
  • the second interlayer dielectric layer is made of organic materials
  • S105 Perform a patterning process on the second interlayer dielectric layer on the installation area of the first and second bending structures, so that the surface of the second interlayer dielectric layer is formed into an uneven shape;
  • S106 forming a source-drain metal layer on the second interlayer dielectric layer, so that the connection traces of the source-drain metal layer corresponding to the installation areas of the first bending structure and the second bending structure are concave and convex shape;
  • S109 Form a pixel definition layer on the anode.
  • a half-tone mask is used to pair the second interlayer dielectric layer corresponding to the installation area of the first bending structure and the second bending structure Perform photolithography process.
  • the groove is formed by one or two photolithography processes.
  • the groove of the first bending structure extends along the extending direction of the first bending structure
  • the groove of the second bending structure Extending along the extending direction of the second bending structure.
  • the flexible OLED panel includes a first metal wire passing through the first bending structure and arranged in the same layer as the source-drain metal layer, and passing A second metal line with a second bending structure and a different layer from the source-drain metal layer, wherein the first metal wiring includes the connection wiring corresponding to the first bending structure, the second The metal trace includes the connection trace corresponding to the second bending structure.
  • the source-drain metal layer includes a titanium metal sublayer, an aluminum metal sublayer, and a titanium metal sublayer that are sequentially stacked.
  • the display area includes an intermediate area provided at an intermediate position of the display area and an edge area located around the intermediate area;
  • the density of the display sub-regions located in the middle region is greater than the density of the display sub-regions located in the edge region.
  • the number of sub-pixels of each display unit located in the middle region is smaller than the number of sub-pixels of each display unit located in the edge region.
  • the widths of the first bending structure and the second bending structure are greater than 5 microns, such as 6 microns, 7 microns, 8 microns, 9 microns, and 10 microns, etc. .
  • the flexible OLED panel and manufacturing method of the present application are provided with a first bending structure extending in the first direction and a second bending extending in the second direction in the display area Structure, when the flexible OLED panel is bent, the first bending structure and the second bending structure reduce the bending stress, thereby achieving the bending of the entire panel, and the bending effect includes bending and twisting in the vertical direction and the horizontal direction Solved the technical problem that the bending direction of the existing flexible OLED panel is relatively limited and the bending radius is large.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a flexible OLED panel of this application.
  • FIG. 2 is a first schematic structural view of a display area of a first embodiment of a flexible OLED panel of this application;
  • FIG. 3 is a second schematic structural view of the display area of the first embodiment of the flexible OLED panel of the present application.
  • FIG. 4 is a schematic structural diagram of a display area of a second embodiment of a flexible OLED panel of the present application.
  • FIG. 5 is a flowchart of an embodiment of a method for manufacturing a flexible OLED panel of this application.
  • step 102 is a schematic structural diagram of step 102 of an embodiment of a method for manufacturing a flexible OLED panel of the present application
  • step 103 is a schematic structural diagram of step 103 in an embodiment of a method for manufacturing a flexible OLED panel of the present application
  • FIG. 8 is a schematic structural view of step 104 of the embodiment of the method for manufacturing a flexible OLED panel of the present application.
  • step 105 is a schematic structural view of step 105 of the embodiment of the method for manufacturing a flexible OLED panel of the present application.
  • step 106 is a schematic structural view of step 106 of an embodiment of a method for manufacturing a flexible OLED panel of the present application
  • FIG. 11 is a schematic structural diagram of step 107 in an embodiment of a method for manufacturing a flexible OLED panel of the present application.
  • step 108 is a schematic structural view of step 108 of an embodiment of a method for manufacturing a flexible OLED panel of the present application
  • FIG. 13 is a schematic structural diagram of step 109 in an embodiment of a method for manufacturing a flexible OLED panel of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a flexible OLED panel of the present application
  • FIG. 2 is a first structural schematic diagram of a display area of an embodiment of a flexible OLED panel of the present application.
  • a flexible OLED panel 100 includes a display area 10 for setting a pixel structure and a non-display area 20 around the display area 10, the display area 10 includes a plurality of first bending structures 11 ⁇ Multiple second bending structure 12 and display unit 13. It should be noted that the display unit 13 includes a pixel self-emitting structure and a pixel driving circuit structure that drives the pixel self-emitting structure.
  • the first bending structure 11 extends along the first direction X.
  • the first bending structure 11 is used to reduce the bending stress perpendicular to the first direction X in the display area 13.
  • the second bending structure 12 extends along the second direction Y.
  • the second bending structure 12 is used to reduce the bending stress perpendicular to the second direction Y in the display area 13.
  • the second bending structure 12 crosses the first bending structure 11 and forms a plurality of display sub-regions a.
  • the display unit 13 is disposed in the display sub-region a, and the display unit 13 includes at least one sub-pixel 13a.
  • first direction X and the second direction Y are arranged orthogonal to each other.
  • first direction X and the second direction Y may also be cross-set in other ways, for example, the first direction and the second direction are cross-set at an angle of 45 °, and so on. Therefore, there is no limitation in this application.
  • the display unit 13 includes only one sub-pixel 13a as an example, but it is not limited to this.
  • the display unit may also be a pixel formed by three sub-pixels, or a repeated combination of pixels composed of at least two pixels, and so on.
  • one sub-pixel 13a is used as the display unit 13, so that the density of the first bending structure 11 and the second bending structure 12 (the number of the first bending structure and the second bending structure per unit area) reaches The maximum, so that the bending radius of the OLED panel reaches the maximum. That is, the more sub-pixels 13 a the display unit 13 includes, the smaller the density of the first bending structure 11 and the second bending line 12.
  • the sub-pixel 13a in this embodiment includes a driving circuit structure of the sub-pixel, and the driving circuit structure includes a thin film transistor.
  • the first bending structure 11 and the second bending structure 12 are provided in the display area 10 of the flexible OLED panel 100 to reduce the bending stress generated when the OLED panel 100 is bent, thereby achieving the entire panel 100 Bending effects such as vertical, horizontal, and twisting.
  • FIG. 3 is a second structural schematic diagram of the display area of the first embodiment of the flexible OLED panel of the present application.
  • the display area 10 includes a flexible substrate 101, a buffer layer 102 provided on the flexible substrate 101, an active layer 103 provided on the buffer layer 102, a first insulating layer 104 provided on the active layer 103, and a first The first gate metal layer 105 on the insulating layer 104, the second insulating layer 106 provided on the first gate metal layer 105, the second gate metal layer 107 provided on the second insulating layer 106, are provided on the first The first interlayer dielectric layer 108 on the second gate metal layer 107, the through buffer layer 102, the first insulation layer 104, and the second insulation corresponding to the first bending structure 11 and / or the second bending structure 12
  • the first bending structure 11 and the second bending structure 12 have the same structure, that is, the first bending structure 11 and the second bending structure 12 each include a flexible substrate 101, a groove 109, and Second interlayer dielectric layer 110.
  • the structures of the first bending structure 11 and the second bending structure 12 may also be different, as long as the bending can be achieved.
  • the display unit 13 includes a flexible substrate 101, an active layer 103, a first insulating layer 104, a first gate metal layer 105, a second insulating layer 106, a second gate metal layer 107, a first interlayer dielectric layer 108, The second interlayer dielectric layer 110, the source-drain metal layer 111, the flat layer 112, the anode 113, the pixel definition layer 114, the spacer 115, and the organic light-emitting layer (not shown in the figure).
  • the second interlayer dielectric layer 110 is made of organic material.
  • the second interlayer dielectric layer 110 made of an organic material fills the groove 109 to improve the bending resistance of the first bending structure 11 and the second bending structure 12.
  • the groove 109 of the first bending structure 11 extends along the extending direction of the first bending structure 11, and the groove 109 of the second bending structure 12 extends along the The extension direction extends.
  • Such an arrangement enables the first bending structure 11 and the second bending structure 12 to form grid-shaped grooves 109 in the display area 10, and the second interlayer dielectric layer 110 fills the grooves 109 to form a net-shaped bending Structure the network to cover the entire display area 10, and further improve the bending performance of the flexible OLED panel 100.
  • the widths of the first bending structure 11 and the second bending structure 12 can be set to be greater than 5 microns, such as 6 microns, 7 microns, 8 microns, 9 microns, and 10 microns.
  • the width of the first bending structure 11 and the second bending structure 12 can be further reduced.
  • connection traces 1111 of the source-drain metal layer 111 corresponding to the regions where the first bending structure 11 and the second bending structure 12 are disposed are all convex and concave.
  • Such an arrangement improves the bending performance of the connection trace 1111 and reduces the stress damage of the connection trace 1111.
  • the shape of the connecting trace 1111 may be one of zigzag, wavy, pulse, and concave-convex zigzag.
  • the source-drain metal layer 111 includes a titanium metal sublayer, an aluminum metal sublayer, and a titanium metal sublayer that are sequentially stacked.
  • the source / drain metal layer 111 adopts a Ti / Al / Ti structure, which further improves the bending performance of the connection trace 1111.
  • the flexible OLED panel 100 includes a first metal line passing through the first bending structure 11 and arranged in the same layer as the source-drain metal layer 111, and a source and drain passing through the second bending structure 12 A second metal line provided in a different layer of the metal layer 111.
  • the first metal trace includes a connection trace 1111 corresponding to the area where the first bending structure 11 is disposed.
  • the second metal trace includes a connection trace 1111 corresponding to the area where the second bending structure 12 is disposed.
  • the extending directions of the first metal wire and the second bending structure 12 are parallel.
  • the extending direction of the second metal wire and the first bending structure 11 are parallel.
  • the first metal line includes an EVDD line (the electrode on the side where the capacitor is connected to Vdd) and a Vdata line.
  • the second metal wire includes Scan wire, xScan wire and EM wire.
  • FIG. 4 is a schematic structural diagram of a display area of a second embodiment of a flexible OLED panel of the present application.
  • the display area 30 includes an intermediate area 30a where the intermediate position of the display area 30 is set and an edge area 30b around the intermediate area 30a;
  • the density of the display sub-region c located in the middle region 30a is greater than the density of the display sub-region c located in the edge region 30b.
  • this second embodiment is based on the above situation
  • this setting effectively reduces the density of the first bending structure 31 and the second bending structure 32 under the premise of ensuring the full bending of the panel, and reduces the cost.
  • the number of sub-pixels 33a of each display unit 33 located in the middle region 30a is smaller than the number of sub-pixels 33a of each display unit 33 located in the edge region 30b.
  • the manufacturing method is used for manufacturing the flexible OLED panel 100 of the first embodiment and the second embodiment, the OLED panel 100 includes a structure for setting a pixel
  • the display area 10 includes a first bending structure 11 for bending, a second bending structure 12 for bending, and a cross formed by the first bending structure 11 and the second bending structure 12
  • the display unit 13 in the display sub-area; the manufacturing method includes:
  • Step S101 providing a glass substrate
  • Step S102 forming a flexible substrate 101, a buffer layer 102, an active layer 103, a first insulating layer 104, a first gate metal layer 105, a second insulating layer 106, and a second gate metal layer 107 on a glass substrate in this order And the first interlayer dielectric layer 108;
  • Step S103 forming a groove 109 in the installation area corresponding to the first bending structure 11 and the installation area of the second bending structure 12, respectively;
  • Step S104 forming a second interlayer dielectric layer 110 on the first interlayer dielectric layer 108, the second interlayer dielectric layer 110 fills the groove 109 to form the first bending structure 11 and the second bending structure 12,
  • the second interlayer dielectric layer 110 is made of organic materials;
  • Step S105 Perform a patterning process on the second interlayer dielectric layer 110 located on the installation area of the first bending structure 11 and the second bending structure 12 to form the surface of the second interlayer dielectric layer 110 in the area Bumpy
  • Step S106 forming a source-drain metal layer 111 on the second interlayer dielectric layer 110, so that the connection trace 1111 of the source-drain metal layer 111 corresponding to the installation area of the first bending structure 11 and the second bending structure 12 is formed It is concave and convex;
  • Step S107 forming a flat layer 112 on the source-drain metal layer 111;
  • Step S108 forming an anode 113 on the area of the flat layer 112 corresponding to the display unit 13;
  • Step S109 A pixel definition layer 114 and a spacer 115 are formed on the anode 113.
  • step S105 a half-tone mask is used to perform the second interlayer dielectric layer 110 corresponding to the installation area of the first bending structure 11 and the second bending structure 12 Lithography process.
  • step S103 the groove 109 is formed by one or two photolithography processes.
  • the structure of the flexible OLED panel manufactured by the manufacturing method of the flexible OLED panel of this embodiment is the same as the structure of the first embodiment or the second embodiment described above. For example, the manufacturing method of this embodiment will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种柔性OLED面板及其制作方法,柔性OLED面板包括一用于设置像素结构的显示区,显示区包括沿着第一方向延伸的多条第一弯折结构、沿着第二方向延伸的多条第二弯折结构和显示单元;第二弯折结构与第一弯折结构交叉设置且形成多个显示子区;显示单元设置在显示子区内,显示单元包括至少一个子像素。

Description

柔性OLED面板及其制作方法 技术领域
本申请涉及一种显示技术,特别涉及一种柔性OLED面板及其制作方法。
背景技术
随着柔性有机发光二极管(Organic Light-emitting Diode,OLED)面板因其广色域、高对比度、大视角、反应速率快、轻薄等优势。在手机、手表、Pad等应用领域,随着消费者对大屏的钟爱,屏幕的屏占比要求越来越高。
目前柔性弯折OLED面板主要有静态弯折和动态弯折。其中面板的弯折只能进行垂直方向或水平方向的弯折,其弯折的方向较为局限,且弯折半径较大。
故需要提供一种柔性OLED面板及其制作方法,以解决上述技术问题。
技术问题
本申请实施例提供一种柔性OLED面板及其制作方法,以解决现有的柔性OLED面板的弯折方向较为局限且弯折半径较大的技术问题。
技术解决方案
本申请实施例提供一种柔性OLED面板,其包括一用于设置像素结构的显示区,其中,所述显示区包括:
多条第一弯折结构,沿着第一方向延伸,用于降低所述显示区中垂直于所述第一方向的弯折应力;
多条第二弯折结构,沿着第二方向延伸,用于降低所述显示区中垂直于所述第二方向的弯折应力;所述第二弯折结构与所述第一弯折结构交叉设置且形成多个显示子区;以及
显示单元,设置在所述显示子区内,包括至少一个子像素;
所述显示区包括:
柔性衬底;
缓冲层,设置所述柔性衬底上;
有源层,设置在所述缓冲层上;
第一绝缘层,设置在所述有源层上;
第一栅极金属层,设置在所述第一绝缘层上;
第二绝缘层,设置在所述第一栅极金属层上;
第二栅极金属层,设置在所述第二绝缘层上;
第一层间介质层,设置在所述第二栅极金属层上;
凹槽,对应设置在所述第一弯折结构的设置区域和所述第二弯折结构的设置区域,且贯穿所述缓冲层、第一绝缘层、第二绝缘层和第一层间介质层;以及
第二层间介质层,设置在所述第一层间介质层上并填充所述凹槽,所述第二层间介质层为有机材料制成;
其中所述第一弯折结构和所述第二弯折结构均包括所述凹槽和所述第二层间介质层中对应于所述凹槽的部分;
所述显示区包括设置在所述显示区中间位置的中间区域和位于所述中间区域四周的边缘区域;
位于所述中间区域的显示子区的密度大于位于所述边缘区域的显示子区的密度。
在本申请的柔性OLED面板中,所述第一弯折结构的所述凹槽沿着所述第一弯折结构的延伸方向延伸,所述第二弯折结构的所述凹槽沿着所述第二弯折结构的延伸方向延伸。
在本申请的柔性OLED面板中,所述显示区还包括设置在所述第二层间介质层上的源漏金属层,其中对应于所述第一弯折结构和第二弯折结构的设置区域的所述源漏金属层的连接走线均呈凹凸起伏状。
在本申请的柔性OLED面板中,所述柔性OLED面板包括穿过所述第一弯折结构的且与所述源漏金属层同层设置的第一金属线和穿过所述第二弯折结构的与所述源漏金属层异层设置的第二金属线,其中所述第一金属走线包括对应于所述第一弯折结构设置区域的所述连接走线,所述第二金属走线包括对应于所述第二弯折结构设置区域的所述连接走线。
在本申请的柔性OLED面板中,所述源漏金属层包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。
在本申请的柔性OLED面板中,位于所述中间区域的每个显示单元的子像素的数量小于位于所述边缘区域的每个显示单元的子像素的数量。
本申请实施例还提供一种柔性OLED面板,包括一用于设置像素结构的显示区,所述显示区包括:
多条第一弯折结构,沿着第一方向延伸,用于降低所述显示区中垂直于所述第一方向的弯折应力;
多条第二弯折结构,沿着第二方向延伸,用于降低所述显示区中垂直于所述第二方向的弯折应力;所述第二弯折结构与所述第一弯折结构交叉设置且形成多个显示子区;以及
显示单元,设置在所述显示子区内,包括至少一个子像素。
在本申请的柔性OLED面板中,所述显示区包括:
柔性衬底;
缓冲层,设置所述柔性衬底上;
有源层,设置在所述缓冲层上;
第一绝缘层,设置在所述有源层上;
第一栅极金属层,设置在所述第一绝缘层上;
第二绝缘层,设置在所述第一栅极金属层上;
第二栅极金属层,设置在所述第二绝缘层上;
第一层间介质层,设置在所述第二栅极金属层上;
凹槽,对应设置在所述第一弯折结构的设置区域和所述第二弯折结构的设置区域,且贯穿所述缓冲层、第一绝缘层、第二绝缘层和第一层间介质层;以及
第二层间介质层,设置在所述第一层间介质层上并填充所述凹槽,所述第二层间介质层为有机材料制成;
其中所述第一弯折结构和所述第二弯折结构均包括所述凹槽和所述第二层间介质层中对应于所述凹槽的部分。
在本申请的柔性OLED面板中,所述第一弯折结构的所述凹槽沿着所述第一弯折结构的延伸方向延伸,所述第二弯折结构的所述凹槽沿着所述第二弯折结构的延伸方向延伸。
在本申请的柔性OLED面板中,所述显示区还包括设置在所述第二层间介质层上的源漏金属层,其中对应于所述第一弯折结构和第二弯折结构的设置区域的所述源漏金属层的连接走线均呈凹凸起伏状。
可选的,连接走线的形状可以是锯齿状、波浪状、脉冲状和凹凸折线状中的一种。
在本申请的柔性OLED面板中,所述柔性OLED面板包括穿过所述第一弯折结构的且与所述源漏金属层同层设置的第一金属线和穿过所述第二弯折结构的与所述源漏金属层异层设置的第二金属线,其中所述第一金属走线包括对应于所述第一弯折结构设置区域的所述连接走线,所述第二金属走线包括对应于所述第二弯折结构设置区域的所述连接走线。
其中,所述第一金属线和所述第二弯折结构的延伸方向平行,所述第二金属线和所述第一弯折结构的延伸方向平行,第一金属线包括EVDD线(电容与Vdd相连一侧的电极)和Vdata线,所述第二金属线包括Scan线、xScan线和EM线。
在本申请的柔性OLED面板中,所述源漏金属层包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。
在本申请的柔性OLED面板中,所述显示区包括设置在所述显示区中间位置的中间区域和位于所述中间区域四周的边缘区域;
位于所述中间区域的显示子区的密度大于位于所述边缘区域的显示子区的密度。
在本申请的柔性OLED面板中,位于所述中间区域的每个显示单元的子像素的数量小于位于所述边缘区域的每个显示单元的子像素的数量。
在本申请的柔性OLED面板中,所述第一弯折结构和所述第二弯折结构的宽度均大于5微米,比如6微米、7微米、8微米、9微米和10微米等。
本申请还涉及一种柔性OLED面板的制作方法,所述OLED面板包括用于设置像素结构的显示区,所述显示区包括用于弯折的第一弯折结构、用于弯折的第二弯折结构以及设置在所述第一弯折结构和第二弯折结构交叉形成的显示子区内的显示单元;所述制作方法包括:
S101:提供玻璃基板;
S102:在所述玻璃基板上依次形成柔性衬底、缓冲层、有源层、第一绝缘层、第一栅极金属层、第二绝缘层、第二栅极金属层和第一层间介质层;
S103:分别在对应于所述第一弯折结构的设置区域和所述第二弯折结构的设置区域形成凹槽;
S104:在所述第一层间介质层上形成第二层间介质层,所述第二层间介质层填充所述凹槽内,以形成所述第一弯折结构和第二弯折结构,所述第二层间介质层为有机材料制成;
S105:对位于所述第一弯折结构和第二弯折结构的设置区域上的第二层间介质层进行图形化处理,以使所述第二层间介质层的表面形成凹凸状;
S106:在所述第二层间介质层上形成源漏金属层,以使对应于所述第一弯折结构和第二弯折结构的设置区域的源漏金属层的连接走线呈凹凸起伏状;
S107:在所述源漏金属层上形成平坦层;
S108:在所述平坦层上对应于所述显示单元的区域形成阳极;
S109:在所述阳极上形成像素定义层。
在本申请的柔性OLED面板的制作方法中,所述S105中,采用半色调掩模板对对应于所述第一弯折结构和第二弯折结构的设置区域的所述第二层间介质层进行光刻工艺处理。
在本申请的柔性OLED面板的制作方法中,所述S103中,所述凹槽采用一次或两次光刻工艺形成。
在本申请的柔性OLED面板的制作方法中,所述第一弯折结构的所述凹槽沿着所述第一弯折结构的延伸方向延伸,所述第二弯折结构的所述凹槽沿着所述第二弯折结构的延伸方向延伸。
在本申请的柔性OLED面板的制作方法中,所述柔性OLED面板包括穿过所述第一弯折结构的且与所述源漏金属层同层设置的第一金属线和穿过所述第二弯折结构的与所述源漏金属层异层设置的第二金属线,其中所述第一金属走线包括对应于所述第一弯折结构的所述连接走线,所述第二金属走线包括对应于所述第二弯折结构的所述连接走线。
在本申请的柔性OLED面板的制作方法中,所述源漏金属层包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。
在本申请的柔性OLED面板的制作方法中,所述显示区包括设置在所述显示区中间位置的中间区域和位于所述中间区域四周的边缘区域;
位于所述中间区域的显示子区的密度大于位于所述边缘区域的显示子区的密度。
在本申请的柔性OLED面板的制作方法中,位于所述中间区域的每个显示单元的子像素的数量小于位于所述边缘区域的每个显示单元的子像素的数量。
在本申请的柔性OLED面板的制作方法中,所述第一弯折结构和所述第二弯折结构的宽度均大于5微米,比如6微米、7微米、8微米、9微米和10微米等。
有益效果
相较于现有技术的柔性OLED面板及制作方法,本申请的柔性OLED面板及制作方法通过在显示区设置沿第一方向延伸的第一弯折结构和沿第二方向延伸的第二弯折结构,当柔性OLED面板弯折时,第一弯折结构和第二弯折结构降低了弯折应力,从而实现整个面板的弯折,弯折效果包括竖直方向、水平方向的弯折和扭曲;解决了现有的柔性OLED面板的弯折方向较为局限且弯折半径较大的技术问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面对实施例中所需要使用的附图作简单的介绍。下面描述中的附图仅为本申请的部分实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1为本申请的柔性OLED面板的第一实施例的结构示意图;
图2为本申请的柔性OLED面板的第一实施例的显示区的第一结构示意图;
图3为本申请的柔性OLED面板的第一实施例的显示区的第二结构示意图;
图4为本申请的柔性OLED面板的第二实施例的显示区的结构示意图;
图5为本申请的柔性OLED面板的制作方法的实施例的流程图;
图6为本申请的柔性OLED面板的制作方法的实施例的完成步骤102的结构示意图;
图7为本申请的柔性OLED面板的制作方法的实施例完成步骤103的结构示意图;
图8为本申请的柔性OLED面板的制作方法的实施例完成步骤104的结构示意图;
图9为本申请的柔性OLED面板的制作方法的实施例完成步骤105的结构示意图;
图10为本申请的柔性OLED面板的制作方法的实施例完成步骤106的结构示意图;
图11为本申请的柔性OLED面板的制作方法的实施例完成步骤107的结构示意图;
图12为本申请的柔性OLED面板的制作方法的实施例完成步骤108的结构示意图;
图13为本申请的柔性OLED面板的制作方法的实施例完成步骤109的结构示意图。
本发明的实施方式
请参照附图中的图式,其中相同的组件符号代表相同的组件。以下的说明是基于所例示的本申请具体实施例,其不应被视为限制本申请未在此详述的其它具体实施例。
请参照图1和图2,图1为本申请的柔性OLED面板的实施例的结构示意图;图2为本申请的柔性OLED面板的实施例的显示区的第一结构示意图。
本申请第一实施例的一种柔性OLED面板100,其包括一用于设置像素结构的显示区10和位于显示区10周围的非显示区20,显示区10包括多条第一弯折结构11、多条第二弯折结构12和显示单元13。需要说明的是,显示单元13包括像素自发光结构和驱动像素自发光结构的像素驱动电路结构。
第一弯折结构11沿着第一方向X延伸。第一弯折结构11用于降低显示区13中垂直于第一方向X的弯折应力。第二弯折结构12沿着第二方向Y延伸。第二弯折结构12用于降低显示区13中垂直于第二方向Y的弯折应力。第二弯折结构12与第一弯折结构11交叉设置且形成多个显示子区a。显示单元13设置在显示子区a内,显示单元13包括至少一个子像素13a。
在本第一实施例中,第一方向X和第二方向Y相互正交设置。当然第一方向X和第二方向Y也可以是其他方式的交叉设置,比如第一方向和第二方向以45°角交叉设置,等等。因此在本申请中并不作限制。
另外,在本第一实施例中,需要说明的是,柔性OLED面板100上产生的弯折应力都可以分解为垂直第一方向X和第二方向Y的弯折应力。在本第一实施例以显示单元13只包括一个子像素13a为例进行说明,但并不限于此。比如显示单元也可以是由三个子像素形成的像素,亦或者是至少两个像素组成的像素重复组合,等等。
本第一实施例以一个子像素13a作为显示单元13,使得第一弯折结构11和第二弯折结构12的密度(单位面积内第一弯折结构和第二弯折结构的数量)达到最大,使得OLED面板的弯折半径达到最大。也就是,显示单元13包括的子像素13a越多,则第一弯折结构11和第二弯折性线12的密度越小。其中,本实施例中的子像素13a包括子像素的驱动电路结构,驱动电路结构包括薄膜晶体管。
本第一实施例通过在柔性OLED面板100的显示区10设置第一弯折结构11和第二弯折结构12,降低OLED面板100弯折时产生的弯折应力,进而实现整面面板100进行竖直方向、水平方向和扭曲等的弯折效果。
请参照图3,图3为本申请的柔性OLED面板的第一实施例的显示区的第二结构示意图。显示区10包括柔性衬底101、设置柔性衬底101上的缓冲层102、设置在缓冲层102上的有源层103、设置在有源层103上的第一绝缘层104、设置在第一绝缘层104上的第一栅极金属层105、设置在第一栅极金属层105上的第二绝缘层106、设置在第二绝缘层106上的第二栅极金属层107、设置在第二栅极金属层107上的第一层间介质层108、对应设置在第一弯折结构11和/或第二弯折结构12处的贯穿缓冲层102、第一绝缘层104、第二绝缘层106和第一层间介质层108的凹槽109、设置在第一层间介质层108上并填充凹槽109的第二层间介质层110、设置在第二层间介质层110上的源漏金属层111、设置在源漏金属层111上的平坦层112、设置在平坦层112对应于显示单元13区域的阳极113、设置在阳极113上的像素定义层114和设置在像素定义层114上的间隔部115。
其中,第一弯折结构11和第二弯折结构12的结构一致,即第一弯折结构11和第二弯折结构12均包括柔性衬底101、凹槽109和覆盖填充凹槽109的第二层间介质层110。当然在本申请中,第一弯折结构11和第二弯折结构12的结构也可以不同,只要能实现弯折即可。
显示单元13包括柔性衬底101、有源层103、第一绝缘层104、第一栅极金属层105、第二绝缘层106、第二栅极金属层107、第一层间介质层108、第二层间介质层110、源漏金属层111、平坦层112、阳极113、像素定义层114、间隔部115和有机发光层(图中未标示)。
在本第一实施例中,第二层间介质层110为有机材料制成。有机材料制成的第二层间介质层110填充凹槽109,以提高了第一弯折结构11和第二弯折结构12的抗弯折性能。
在本第一实施例中,第一弯折结构11的凹槽109沿着第一弯折结构11的延伸方向延伸,第二弯折结构12的凹槽109沿着第二弯折结构12的延伸方向延伸。这样的设置,使得第一弯折结构11和第二弯折结构12在显示区10中形成网格状的凹槽109,而第二层间介质层110填充凹槽109形成网线状的弯折结构网络,以覆盖整个显示区10,进一步,提高了柔性OLED面板100的弯折性能。
另外,第一弯折结构11和第二弯折结构12的宽度均可以设置大于5微米,比如6微米、7微米、8微米、9微米和10微米等。当然随着技术工艺的提高了第一弯折结构11和第二弯折结构12的宽度可以进一步的缩小。
在本第一实施例中,对应于第一弯折结构11和第二弯折结构12的设置区域的源漏金属层111的连接走线1111均呈凹凸起伏状。这样的设置,提高了连接走线1111的弯折性能,降低了连接走线1111的应力损伤。可选的,连接走线1111的形状可以是锯齿状、波浪状、脉冲状和凹凸折线状中的一种。
另外,源漏金属层111包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。源漏金属层111采用Ti/Al/Ti的结构,进一步提高了连接走线1111的弯折性能。
在本第一实施例中,柔性OLED面板100包括穿过第一弯折结构11的且与源漏金属层111同层设置的第一金属线和穿过第二弯折结构12的与源漏金属层111异层设置的第二金属线。其中第一金属走线包括对应于第一弯折结构11设置区域的连接走线1111。第二金属走线包括对应于第二弯折结构12设置区域的连接走线1111。
其中,第一金属线和第二弯折结构12的延伸方向平行。第二金属线和第一弯折结构11的延伸方向平行。第一金属线包括EVDD线(电容与Vdd相连一侧的电极)和Vdata线。第二金属线包括Scan线、xScan线和EM线。
请参照图4,图4为本申请的柔性OLED面板的第二实施例的显示区的结构示意图。在本第二实施例中和第一实施例的不同之处在于:显示区30包括设置显示区30中间位置的中间区域30a和位于中间区域30a四周的边缘区域30b;
位于中间区域30a的显示子区c的密度大于位于边缘区域30b的显示子区c的密度。
在柔性OLED面板进行整个面的弯折时,显示区30的中间区域30a受到的弯折应力大于显示区30的边缘区域30b受到的弯折应力,因此本第二实施例为根据上述的情况进行了调整的设置,这样的设置,在保证实现面板全面弯折的前提下,有效了降低第一弯折结构31和第二弯折结构32的密度,降低成本。
在本第二实施例中,具体的,位于中间区域30a的每个显示单元33的子像素33a的数量小于位于边缘区域30b的每个显示单元33的子像素33a的数量。
请参照图5-图13,本申请的一种柔性OLED面板的制作方法,该制作方法用于制作第一实施例和第二实施例的柔性OLED面板100,OLED面板100包括用于设置像素结构的显示区10,显示区10包括用于弯折的第一弯折结构11、用于弯折的第二弯折结构12以及设置在第一弯折结构11和第二弯折结构12交叉形成的显示子区内的显示单元13;制作方法包括:
步骤S101:提供玻璃基板;
步骤S102:在玻璃基板上依次形成柔性衬底101、缓冲层102、有源层103、第一绝缘层104、第一栅极金属层105、第二绝缘层106、第二栅极金属层107和第一层间介质层108;
步骤S103:分别在对应于第一弯折结构11的设置区域和第二弯折结构12的设置区域形成凹槽109;
步骤S104:在第一层间介质层108上形成第二层间介质层110,第二层间介质层110填充凹槽109内,以形成第一弯折结构11和第二弯折结构12,第二层间介质层110为有机材料制成;
步骤S105:对位于第一弯折结构11和第二弯折结构12的设置区域上的第二层间介质层110进行图形化处理,以使该区域的第二层间介质层110的表面形成凹凸状;
步骤S106:在第二层间介质层110上形成源漏金属层111,以使对应于第一弯折结构11和第二弯折结构12的设置区域的源漏金属层111的连接走线1111呈凹凸起伏状;
步骤S107:在源漏金属层111上形成平坦层112;
步骤S108:在平坦层112上对应于显示单元13的区域形成阳极113;
步骤S109:在阳极113上形成像素定义层114和间隔部115。
在本实施例的柔性OLED面板的制作方法中,步骤S105中,采用半色调掩模板对对应于第一弯折结构11和第二弯折结构12的设置区域的第二层间介质层110进行光刻工艺处理。
在本实施例的柔性OLED面板的制作方法中,步骤S103中,凹槽109采用一次或两次光刻工艺形成。
本实施例的柔性OLED面板的制作方法制作的柔性OLED面板的结构与上述第一实施例或第二实施例的结构一致,具体请参考本申请的柔性OLED面板的第一实施例和第二实施例,本实施例的制作方法不再赘述。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (20)

  1. 一种柔性OLED面板,包括一用于设置像素结构的显示区,其中,所述显示区包括:
    多条第一弯折结构,沿着第一方向延伸,用于降低所述显示区中垂直于所述第一方向的弯折应力;
    多条第二弯折结构,沿着第二方向延伸,用于降低所述显示区中垂直于所述第二方向的弯折应力;所述第二弯折结构与所述第一弯折结构交叉设置且形成多个显示子区;以及
    显示单元,设置在所述显示子区内,包括至少一个子像素;
    所述显示区包括:
    柔性衬底;
    缓冲层,设置所述柔性衬底上;
    有源层,设置在所述缓冲层上;
    第一绝缘层,设置在所述有源层上;
    第一栅极金属层,设置在所述第一绝缘层上;
    第二绝缘层,设置在所述第一栅极金属层上;
    第二栅极金属层,设置在所述第二绝缘层上;
    第一层间介质层,设置在所述第二栅极金属层上;
    凹槽,对应设置在所述第一弯折结构的设置区域和所述第二弯折结构的设置区域,且贯穿所述缓冲层、第一绝缘层、第二绝缘层和第一层间介质层;以及
    第二层间介质层,设置在所述第一层间介质层上并填充所述凹槽,所述第二层间介质层为有机材料制成;
    其中所述第一弯折结构和所述第二弯折结构均包括所述凹槽和所述第二层间介质层中对应于所述凹槽的部分;
    所述显示区包括设置在所述显示区中间位置的中间区域和位于所述中间区域四周的边缘区域;
    位于所述中间区域的显示子区的密度大于位于所述边缘区域的显示子区的密度。
  2. 根据权利要求1所述的柔性OLED面板,其中,所述第一弯折结构的所述凹槽沿着所述第一弯折结构的延伸方向延伸,所述第二弯折结构的所述凹槽沿着所述第二弯折结构的延伸方向延伸。
  3. 根据权利要求1所述的柔性OLED面板,其中,所述显示区还包括设置在所述第二层间介质层上的源漏金属层,其中对应于所述第一弯折结构和第二弯折结构的设置区域的所述源漏金属层的连接走线均呈凹凸起伏状。
  4. 根据权利要求3所述的柔性OLED面板,其中,所述柔性OLED面板包括穿过所述第一弯折结构的且与所述源漏金属层同层设置的第一金属线和穿过所述第二弯折结构的与所述源漏金属层异层设置的第二金属线,其中所述第一金属走线包括对应于所述第一弯折结构设置区域的所述连接走线,所述第二金属走线包括对应于所述第二弯折结构设置区域的所述连接走线。
  5. 根据权利要求3所述的柔性OLED面板,其中,所述源漏金属层包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。
  6. 根据权利要求1所述的柔性OLED面板,其中,位于所述中间区域的每个显示单元的子像素的数量小于位于所述边缘区域的每个显示单元的子像素的数量。
  7. 一种柔性OLED面板,包括一用于设置像素结构的显示区,其中,所述显示区包括:
    多条第一弯折结构,沿着第一方向延伸,用于降低所述显示区中垂直于所述第一方向的弯折应力;
    多条第二弯折结构,沿着第二方向延伸,用于降低所述显示区中垂直于所述第二方向的弯折应力;所述第二弯折结构与所述第一弯折结构交叉设置且形成多个显示子区;以及
    显示单元,设置在所述显示子区内,包括至少一个子像素。
  8. 根据权利要求7所述的柔性OLED面板,其中,所述显示区包括:
    柔性衬底;
    缓冲层,设置所述柔性衬底上;
    有源层,设置在所述缓冲层上;
    第一绝缘层,设置在所述有源层上;
    第一栅极金属层,设置在所述第一绝缘层上;
    第二绝缘层,设置在所述第一栅极金属层上;
    第二栅极金属层,设置在所述第二绝缘层上;
    第一层间介质层,设置在所述第二栅极金属层上;
    凹槽,对应设置在所述第一弯折结构的设置区域和所述第二弯折结构的设置区域,且贯穿所述缓冲层、第一绝缘层、第二绝缘层和第一层间介质层;以及
    第二层间介质层,设置在所述第一层间介质层上并填充所述凹槽,所述第二层间介质层为有机材料制成;
    其中所述第一弯折结构和所述第二弯折结构均包括所述凹槽和所述第二层间介质层中对应于所述凹槽的部分。
  9. 根据权利要求8所述的柔性OLED面板,其中,所述第一弯折结构的所述凹槽沿着所述第一弯折结构的延伸方向延伸,所述第二弯折结构的所述凹槽沿着所述第二弯折结构的延伸方向延伸。
  10. 根据权利要求8所述的柔性OLED面板,其中,所述显示区还包括设置在所述第二层间介质层上的源漏金属层,其中对应于所述第一弯折结构和第二弯折结构的设置区域的所述源漏金属层的连接走线均呈凹凸起伏状。
  11. 根据权利要求10所述的柔性OLED面板,其中,所述柔性OLED面板包括穿过所述第一弯折结构的且与所述源漏金属层同层设置的第一金属线和穿过所述第二弯折结构的与所述源漏金属层异层设置的第二金属线,其中所述第一金属走线包括对应于所述第一弯折结构设置区域的所述连接走线,所述第二金属走线包括对应于所述第二弯折结构设置区域的所述连接走线。
  12. 根据权利要求10所述的柔性OLED面板,其中,所述源漏金属层包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。
  13. 根据权利要求8所述的柔性OLED面板,其中,所述显示区包括设置在所述显示区中间位置的中间区域和位于所述中间区域四周的边缘区域;
    位于所述中间区域的显示子区的密度大于位于所述边缘区域的显示子区的密度。
  14. 根据权利要求13所述的柔性OLED面板,其中,位于所述中间区域的每个显示单元的子像素的数量小于位于所述边缘区域的每个显示单元的子像素的数量。
  15. 一种柔性OLED面板的制作方法,其中,所述OLED面板包括用于设置像素结构的显示区,所述显示区包括用于弯折的第一弯折结构、用于弯折的第二弯折结构以及设置在所述第一弯折结构和第二弯折结构交叉形成的显示子区内的显示单元;所述制作方法包括:
    S101:提供玻璃基板;
    S102:在所述玻璃基板上依次形成柔性衬底、缓冲层、有源层、第一绝缘层、第一栅极金属层、第二绝缘层、第二栅极金属层和第一层间介质层;
    S103:分别在对应于所述第一弯折结构的设置区域和所述第二弯折结构的设置区域形成凹槽;
    S104:在所述第一层间介质层上形成第二层间介质层,所述第二层间介质层填充所述凹槽内,以形成所述第一弯折结构和第二弯折结构,所述第二层间介质层为有机材料制成;
    S105:对位于所述第一弯折结构和第二弯折结构的设置区域上的第二层间介质层进行图形化处理,以使所述第二层间介质层的表面形成凹凸状;
    S106:在所述第二层间介质层上形成源漏金属层,以使对应于所述第一弯折结构和第二弯折结构的设置区域的源漏金属层的连接走线呈凹凸起伏状。
  16. 根据权利要求15所述的柔性OLED面板的制作方法,其中,所述S105中,采用半色调掩模板对对应于所述凹槽区域的所述第二层间介质层进行光刻工艺处理。
  17. 根据权利要求15所述的柔性OLED面板的制作方法,其中,所述第一弯折结构的所述凹槽沿着所述第一弯折结构的延伸方向延伸,所述第二弯折结构的所述凹槽沿着所述第二弯折结构的延伸方向延伸。
  18. 根据权利要求15所述的柔性OLED面板的制作方法,其中,所述柔性OLED面板包括穿过所述第一弯折结构的且与所述源漏金属层同层设置的第一金属线和穿过所述第二弯折结构的与所述源漏金属层异层设置的第二金属线,其中所述第一金属走线包括对应于所述第一弯折结构的所述连接走线,所述第二金属走线包括对应于所述第二弯折结构的所述连接走线。
  19. 根据权利要求15所述的柔性OLED面板的制作方法,其中,所述源漏金属层包括依次层叠设置的钛金属子层、铝金属子层和钛金属子层。
  20. 根据权利要求15所述的柔性OLED面板的制作方法,其中,所述显示区包括设置在所述显示区中间位置的中间区域和位于所述中间区域四周的边缘区域;
    位于所述中间区域的显示子区的密度大于位于所述边缘区域的显示子区的密度。
PCT/CN2018/120980 2018-10-26 2018-12-13 柔性oled面板及其制作方法 WO2020082540A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/331,146 US11196012B2 (en) 2018-10-26 2018-12-13 Flexible organic light-emitting panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811259376.9A CN109300964B (zh) 2018-10-26 2018-10-26 柔性oled面板及其制作方法
CN201811259376.9 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020082540A1 true WO2020082540A1 (zh) 2020-04-30

Family

ID=65157959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120980 WO2020082540A1 (zh) 2018-10-26 2018-12-13 柔性oled面板及其制作方法

Country Status (3)

Country Link
US (1) US11196012B2 (zh)
CN (1) CN109300964B (zh)
WO (1) WO2020082540A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112204B (zh) * 2019-06-05 2022-07-29 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
CN110620132B (zh) * 2019-08-30 2021-12-03 武汉华星光电半导体显示技术有限公司 一种显示面板
CN110931530B (zh) * 2019-11-26 2022-07-12 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111129027B (zh) * 2019-12-03 2022-10-04 武汉华星光电半导体显示技术有限公司 柔性显示器的结构及其制作方法
CN111524902A (zh) * 2020-04-22 2020-08-11 深圳市华星光电半导体显示技术有限公司 一种柔性显示面板及其制备方法
CN111584554B (zh) * 2020-05-06 2022-05-31 武汉华星光电半导体显示技术有限公司 柔性阵列基板及显示面板
CN111627330B (zh) * 2020-05-11 2022-04-01 Oppo广东移动通信有限公司 显示模组、电子设备以及显示屏组件
CN111627926B (zh) * 2020-05-19 2022-05-31 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示装置
CN112002702B (zh) * 2020-08-06 2022-09-27 武汉华星光电半导体显示技术有限公司 柔性显示面板及可卷曲显示装置
CN112038355B (zh) * 2020-08-28 2022-05-31 武汉华星光电半导体显示技术有限公司 一种阵列基板及显示装置
CN112259582B (zh) * 2020-10-15 2023-01-24 武汉华星光电半导体显示技术有限公司 柔性显示面板及电子设备
CN113629113A (zh) * 2021-07-29 2021-11-09 武汉华星光电半导体显示技术有限公司 显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123416A1 (ja) * 2007-03-30 2008-10-16 Pioneer Corporation 発光装置
KR20150112715A (ko) * 2014-03-28 2015-10-07 엘지디스플레이 주식회사 플렉서블 표시 장치 및 플렉서블 표시 장치의 제조 방법
CN106449702A (zh) * 2016-09-20 2017-02-22 上海天马微电子有限公司 一种有机发光显示面板以及制作方法
CN107833906A (zh) * 2017-11-08 2018-03-23 武汉天马微电子有限公司 一种柔性显示装置及其制造方法
CN107968152A (zh) * 2016-10-20 2018-04-27 上海和辉光电有限公司 柔性显示器件及其制造方法
CN108448009A (zh) * 2018-04-19 2018-08-24 京东方科技集团股份有限公司 一种oled封装结构、掩膜版以及喷墨打印装置
CN108461393A (zh) * 2018-05-07 2018-08-28 京东方科技集团股份有限公司 显示基板的制备方法、显示基板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295610B1 (ko) * 2013-12-27 2021-08-30 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
CN105845701A (zh) * 2015-01-16 2016-08-10 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置及其制作方法
KR101821782B1 (ko) * 2016-03-11 2018-01-25 삼성디스플레이 주식회사 디스플레이 장치 제조방법 및 디스플레이 장치
CN108022942B (zh) * 2016-10-31 2020-06-30 上海和辉光电有限公司 一种阵列基板和有机发光显示面板
KR102417112B1 (ko) * 2017-09-28 2022-07-06 삼성디스플레이 주식회사 디스플레이 장치
CN108288637B (zh) * 2018-01-24 2021-03-02 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法及柔性显示面板
CN108461531B (zh) * 2018-04-09 2019-09-06 京东方科技集团股份有限公司 柔性阵列基板及其制备方法和柔性显示面板
CN108628042A (zh) * 2018-05-09 2018-10-09 厦门天马微电子有限公司 曲面显示面板和曲面显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123416A1 (ja) * 2007-03-30 2008-10-16 Pioneer Corporation 発光装置
KR20150112715A (ko) * 2014-03-28 2015-10-07 엘지디스플레이 주식회사 플렉서블 표시 장치 및 플렉서블 표시 장치의 제조 방법
CN106449702A (zh) * 2016-09-20 2017-02-22 上海天马微电子有限公司 一种有机发光显示面板以及制作方法
CN107968152A (zh) * 2016-10-20 2018-04-27 上海和辉光电有限公司 柔性显示器件及其制造方法
CN107833906A (zh) * 2017-11-08 2018-03-23 武汉天马微电子有限公司 一种柔性显示装置及其制造方法
CN108448009A (zh) * 2018-04-19 2018-08-24 京东方科技集团股份有限公司 一种oled封装结构、掩膜版以及喷墨打印装置
CN108461393A (zh) * 2018-05-07 2018-08-28 京东方科技集团股份有限公司 显示基板的制备方法、显示基板及显示装置

Also Published As

Publication number Publication date
US20210184140A1 (en) 2021-06-17
US11196012B2 (en) 2021-12-07
CN109300964A (zh) 2019-02-01
CN109300964B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2020082540A1 (zh) 柔性oled面板及其制作方法
CN109192878B (zh) 柔性oled显示面板
US9716131B2 (en) AMOLED backplane structure and manufacturing method thereof
US11812648B2 (en) Pixel array and display device
US9261750B2 (en) Array substrate, method for fabricating the same and liquid crystal panel
CN104965370B (zh) 阵列基板及其制造方法、显示装置
WO2021217841A1 (zh) 柔性显示面板及其制作方法
US11444105B2 (en) Array substrate and manufacturing method thereof
WO2017219702A1 (zh) 一种显示基板、其制作方法及显示装置
CN103839965A (zh) 有机发光二极管显示装置及其制造方法
WO2020155287A1 (zh) 显示面板及显示装置
WO2020220511A1 (zh) 有机发光显示面板
CN114730800B (zh) 像素阵列及显示装置
WO2018040560A1 (zh) 阵列基板、显示面板及显示装置
CN101750814A (zh) 液晶显示设备及其制造方法
CN111708237B (zh) 一种阵列基板、显示面板及显示装置
CN113193024A (zh) 显示面板及其制备方法、显示装置
US10411188B2 (en) Mask plate for vapor deposition of organic light-emitting diode (OLED) devices and OLED device thereof
WO2022027932A1 (en) Display panel and display apparatus
WO2020082531A1 (zh) 阵列基板、该阵列基板的制备方法及显示面板
WO2021027140A1 (zh) 阵列基板及其制作方法
WO2022047763A1 (zh) 触控显示面板、触控显示装置和制造方法
WO2022027576A1 (en) Display panel, display apparatus, and method of fabricating display panel
US20220302230A1 (en) Array substrate and display apparatus
US20220302236A1 (en) Array substrate and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938041

Country of ref document: EP

Kind code of ref document: A1