WO2020080225A1 - 多孔質セラミックス積層体及びその製造方法 - Google Patents

多孔質セラミックス積層体及びその製造方法 Download PDF

Info

Publication number
WO2020080225A1
WO2020080225A1 PCT/JP2019/039844 JP2019039844W WO2020080225A1 WO 2020080225 A1 WO2020080225 A1 WO 2020080225A1 JP 2019039844 W JP2019039844 W JP 2019039844W WO 2020080225 A1 WO2020080225 A1 WO 2020080225A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
porous
metal oxide
less
layer
Prior art date
Application number
PCT/JP2019/039844
Other languages
English (en)
French (fr)
Inventor
義総 奈須
中山 篤
康輔 魚江
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP19874322.1A priority Critical patent/EP3868733A4/en
Priority to US17/283,485 priority patent/US20210395157A1/en
Priority to CN201980066601.3A priority patent/CN112805264A/zh
Priority to JP2020553116A priority patent/JPWO2020080225A1/ja
Publication of WO2020080225A1 publication Critical patent/WO2020080225A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4582Porous coatings, e.g. coating containing porous fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0421Rendering the filter material hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0428Rendering the filter material hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0457Specific fire retardant or heat resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0464Impregnants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc

Definitions

  • the present invention relates to a porous ceramic laminate and a method for manufacturing the same.
  • Porous ceramics are microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, ion exchange membranes, gas separation membranes, and other membranes that have the functions of separating, concentrating, and filtering fluids such as gases and liquids. , Used in various fields.
  • Patent Document 1 discloses a ceramic porous asymmetric membrane composed of an inorganic support and one or more inorganic coating layers that cover the support, and one or more inorganic coating layers that cover the support.
  • a ceramic porous body including a thin layered inorganic porous body is disclosed.
  • a slurry film containing alumina having an average particle diameter of 3 or 5 ⁇ m is formed on a porous support having an average pore diameter of 11.0 or 14.2 ⁇ m, followed by firing to form the porous support.
  • a porous layer is formed on top.
  • Patent Document 2 discloses an asymmetric membrane including a support layer and a porous layer formed on the inner surface or the outer surface of the support layer.
  • a support layer having an open pore diameter of 1 to 2 ⁇ m is prepared using alumina particles having an average particle diameter of 5 ⁇ m or particles of other inorganic substances, and a liquid in which fine alumina powder having an average particle diameter of 0.5 ⁇ m is dispersed is prepared. It is used to form a porous layer on the surface of the support layer.
  • an object of the present invention is to provide a porous ceramics laminate capable of reducing pressure loss of fluid.
  • a porous ceramics laminate having a first porous layer and a second porous layer laminated on the first porous layer in contact with or via air, A part of the second porous layer is in contact with and laminated on the first porous layer, Both the first porous layer and the second porous layer include a metal oxide, The ratio Da / Db of the average pore diameter Da of the first porous layer to the average pore diameter Db of the second porous layer is 10 or more, A porous ceramics laminate, wherein the ratio of the portion where the distance between the first porous layer and the second porous layer is less than 1 ⁇ m is 70% or less.
  • the first porous layer contains, as the metal oxide, a metal oxide A and a metal oxide B having a melting point higher than that of the metal oxide A
  • the second porous layer contains, as the metal oxide, a metal oxide C having a melting point higher than that of the metal oxide A
  • [5] The method for producing a porous ceramic laminate according to any one of [1] to [4], A step of applying a water-repellent agent or an oil-repellent agent on at least one surface of the first porous layer, A step of applying a slurry containing the metal oxide, a solvent and a thickener contained in the second porous layer on the surface of the first porous layer coated with the water repellent or the oil repellent, as well as, A method comprising: heat treating the first porous layer coated with the slurry.
  • the porous ceramic laminate of the present invention can reduce the pressure loss of fluids such as gas and liquid.
  • FIG. 7 is a drawing-substituting photograph showing a cross-sectional SEM observation image of Example 1.
  • 7 is a drawing-substituting photograph showing a cross-sectional SEM observation image of Comparative Example 1.
  • 8 is a drawing-substituting photograph showing an analysis procedure of Lc and Ld in Example 2.
  • 7 is a drawing-substituting photograph showing a cross-sectional SEM observation image of a region in contact with both the first porous layer and the second porous layer and including the metal oxide A and the metal oxide C in Example 2.
  • porous ceramics laminate having a first porous layer and a second porous layer laminated on the first porous layer in contact with or via air. Then, a part of the second porous layer is laminated on the first porous layer in contact therewith, and the first porous layer and the second porous layer both include a metal oxide.
  • the ratio Da / Db of the average pore diameter Da of the first porous layer to the average pore diameter Db of the second porous layer is 10 or more, preferably 30 or more, and the first porous layer and the second porous layer It has been found that a porous ceramics laminate in which the ratio of the portion having a distance from the porous layer of less than 1 ⁇ m is 70% or less, preferably 50% or less can reduce the pressure loss of fluid.
  • the porous ceramics laminate of the present invention has the first porous layer and the second porous layer which is laminated on the first porous layer in contact with or through the air. A part of the second porous layer is in contact with and laminated on the first porous layer. That is, a part of the second porous layer is laminated on the first porous layer so as to be in contact therewith, and the other part of the second porous layer is provided with the first porous layer through air. Stacked on top of the layers.
  • the ratio Da / Db of the average pore diameter Da of the first porous layer to the average pore diameter Db of the second porous layer is 10 or more.
  • the ratio Da / Db is preferably 30 or more and 60 or less, more preferably 33 or more and 60 or less, still more preferably 35 or more and 60 or less, and still more preferably 40 or more and 60 or less.
  • the average particle size is 3 or 5 ⁇ m using a slurry containing alumina to form the porous layer on the porous support, and considering the particle size of the alumina,
  • the average pore diameter of the porous layer is considered to be about 1 ⁇ m, and as described above, the average pore diameter of the porous support is 11.0 or 14.2 ⁇ m. Therefore, the ratio of the average pore diameter of the support to the average pore diameter of the porous layer in Patent Document 1 is considered to be about 14 at the maximum.
  • the open pore diameter of the support layer is 1 to 2 ⁇ m and the pore diameter of the porous layer is 0.2 ⁇ m
  • the open pore of the support layer with respect to the pore diameter of the porous layer is The ratio of pore sizes is 10 at the maximum.
  • Da and Db are not limited as long as the ratio Da / Db is in the above range, but Da is, for example, 1.5 ⁇ m or more and 600 ⁇ m or less, preferably 5 ⁇ m or more and 300 ⁇ m or less, and more preferably It is 9 ⁇ m or more and 60 ⁇ m or less, and Db is, for example, 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.05 ⁇ m or more and 5 ⁇ m or less, more preferably 0.15 ⁇ m or more and 1 ⁇ m or less, and further preferably 0. It is 0.25 ⁇ m or more and 1 ⁇ m or less.
  • the ratio of the portion (hereinafter, also referred to as a proximity portion) in which the distance between the first porous layer and the second porous layer is less than 1 ⁇ m is 70% or less, preferably, It is 50% or less. It is also important to set the ratio of the adjacent portions to a predetermined value or less in order to reduce the pressure loss of the fluid.
  • the method of calculating the ratio of the close locations is as follows. First, the porous ceramics laminate of the present invention is observed in a cross section parallel to the stacking direction of the first porous layer and the second porous layer. In the cross section, the ratio of the portion where the distance between the first porous layer and the second porous layer is less than 1 ⁇ m is measured.
  • the distance is the distance from the surface of the first porous layer to the surface of the second porous layer closest to the surface of the first porous layer. That is, in the cross section, the total length of the surface of the second porous layer whose distance to the first porous layer is less than 1 ⁇ m is Lc, and the distance to the first porous layer is 1 ⁇ m or more.
  • the total length of the surface of the second porous layer is measured as Ld, and the ratio of Lc to the total of Lc and Ld is calculated.
  • FIG. 1 shows a schematic view of the cross section in a preferred embodiment of the present invention. In FIG.
  • 1, 1 is the first porous layer
  • 2 is the second porous layer
  • 3 is air
  • 4 is the stacking direction of the second porous layer 2
  • 5 is the first porous layer 1 and the porous layer 1.
  • the distance of the second porous layer 2 is shown, and the length of 5 is 1 ⁇ m
  • 6 is a range in which the distance between the first porous layer 1 and the second porous layer 2 is less than 1 ⁇ m
  • 7 is the first 1 range in which the distance between the porous layer 1 and the second porous layer 2 is 1 ⁇ m or more
  • 8 is in contact with both the first porous layer and the second porous layer
  • region containing the said metal oxide C is shown.
  • a region that is in contact with both the first porous layer and the second porous layer and that includes the metal oxide A and the metal oxide C is referred to as a “third region”.
  • the total length of the surface of the second porous layer 2 indicated by the thick solid line corresponds to Lc
  • the total length of the surfaces of the second porous layer 2 indicated by the normal solid line corresponds to Ld.
  • the distance between the first porous layer and the second porous layer in contact with the third region is regarded as 0.
  • the ratio of the adjacent portions that is, the ratio of Lc to the total of Lc and Ld is 70% or less, preferably 50% or less, more preferably 45% or less, and It is preferably 40% or less, more preferably 30% or less, and particularly preferably 15% or less.
  • the ratio of Lc to the total of Lc and Ld is preferably 5% or more, more preferably 8% or more, still more preferably 10 from the viewpoint of the adhesive strength between the first porous layer and the second porous layer. % Or more.
  • an image is acquired so that the total length of the surface of the second porous layer is 100 times or more the average pore diameter of the first porous layer, and Lc of Lc with respect to the sum of Lc and Ld is obtained.
  • the ratio may be measured.
  • the thickness of the first porous layer is, for example, 500 ⁇ m or more and 3000 ⁇ m or less, preferably 1400 ⁇ m or more and 2800 ⁇ m or less.
  • the thickness of the second porous layer is, for example, 3 ⁇ m or more and 30 ⁇ m or less, preferably 3 ⁇ m or more and 15 ⁇ m or less, and more preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the second porous layer may be laminated on at least one side surface of the first porous layer, and is preferably laminated only on one side surface of the first porous layer.
  • the shape of the porous ceramics laminate of the present invention is not particularly limited, and may be planar, cylindrical, or honeycomb, and is preferably cylindrical.
  • the second porous layer may be laminated on either the outer peripheral surface or the inner peripheral surface of the first porous layer. It is preferable that the second porous layer is laminated only on the outer peripheral surface or the inner peripheral surface of the porous layer, and it is more preferable that the second porous layer is laminated only on the outer peripheral surface of the first porous layer.
  • Both the first porous layer and the second porous layer contain a metal oxide.
  • the term “metal” is used to mean a semimetal such as Si or Ge.
  • the first porous layer preferably contains, as the metal oxide, a metal oxide A and a metal oxide B having a melting point higher than that of the metal oxide A, and the second porous layer is The metal oxide preferably contains a metal oxide C having a melting point higher than that of the metal oxide A.
  • the metal oxide B and the metal oxide C may be the same or different.
  • the porous layer of the present invention wherein the first porous layer contains the metal oxide A and the metal oxide B as the metal oxide, and the second porous layer contains the metal oxide C as the metal oxide.
  • the ceramic laminated body includes a third region.
  • the third region improves the adhesive strength between the first porous layer and the second porous layer.
  • the number of the third regions measured by the method of Examples described later is 2 or more and 40 or less, preferably 2 or more and 20 or less, and more preferably 5 or more and 20 or less, and Preferably, it is 7 or more and 12 or less.
  • the porosity of the third region is usually smaller than the porosity of the first porous layer, and the average pore size of the third region is usually smaller than the average pore size of the first porous layer. . Further, the porosity of the third region is usually smaller than the porosity of the second porous layer, and the average pore size of the third region is usually the average pore size of the second porous layer. Smaller than
  • the metal oxide A preferably has a melting point of 95 ° C. or higher and 1600 ° C. or lower.
  • the metal oxide A specifically, B 2 O 3 , SiO 2 , GeO 2 , Al 2 O 3 , V 2 O 5 , As 2 O 5 , Sb 2 O 5 , ZrO 2 , TiO 2 , ZnO, PbO, ThO 2, BeO , CdO, Ta 2 O 5, Nb 2 O 5, WO 3, ScO 2, La 2 O 3, Y 2 O 3, SnO 2, Ga 2 O 3, In 2 O 3, PbO 2, MgO, Li 2 O , BaO, CaO, SrO, Na 2 O, K 2 O, Rb 2 O, HgO, Cs 2 O, Ag 2 O, TeO 2, Tl 2 O , and the like, preferably SiO 2 may be mentioned.
  • examples of the metal oxide A include those containing at least one of the above-mentioned oxides as constituent components, and particularly glass containing at least one of the above-mentioned oxides as constituent components is preferable, and quartz is particularly preferable. Glass containing a silicon oxide (especially SiO 2 ) such as glass, borosilicate glass, and alumina silicate glass is preferable.
  • the metal oxide B and the metal oxide C may be the same or different, and both preferably have a melting point of 2000 ° C. or higher and 2800 ° C. or lower. Specific examples of the metal oxide B and the metal oxide C include Al 2 O 3 , ZrO 2 , MgO, Cr 2 O 3 , and Y 2 O 3 , and preferably Al 2 O 3. Can be mentioned.
  • the surface roughness Ra of the surface of the second porous layer in the porous ceramics laminate of the present invention is the surface roughness of the first porous layer, the particle diameter of the metal oxide forming the second porous layer, and the like. However, it is, for example, 0.5 ⁇ m or more and 7 ⁇ m or less, preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the surface roughness Ra of the first porous layer before laminating the second porous layer is, for example, 5 ⁇ m or more and 15 ⁇ m or less, preferably 7 ⁇ m or more and 10 ⁇ m or less.
  • the surface roughness of the surface of the second porous layer in the porous ceramics laminate of the present invention can be smaller than the surface roughness of the first porous layer before the second porous layer is stacked.
  • the porous ceramics laminate of the present invention can reduce pressure loss of fluid.
  • the permeance practically sufficient that is, the permeance evaluated in Examples described later can be 3.0 ⁇ 10 ⁇ 6 m 3 / (m 2 ⁇ sec ⁇ Pa). It is preferably 7.0 ⁇ 10 ⁇ 6 m 3 / (m 2 ⁇ sec ⁇ Pa) or more.
  • the permeance is preferably 0.8 ⁇ 10 ⁇ 5 m 3 / (m 2 ⁇ sec ⁇ Pa) or more, more preferably 1.0 ⁇ 10 ⁇ 5 m 3 / (m 2 ⁇ sec ⁇ Pa) or more. And is, for example, 5.0 ⁇ 10 ⁇ 5 m 3 / (m 2 ⁇ sec ⁇ Pa) or less.
  • the ratio Da / Db of the average pore diameter Da of the first porous layer to the average pore diameter Db of the second porous layer is 10 or more, and preferably Is 30 or more.
  • the constituent components of the second porous layer are taken into the pores of the first porous layer having a large average pore diameter. Therefore, it is difficult to form the second porous layer on the first porous layer in a smooth layer shape.
  • the method for producing a porous ceramics laminate of the present invention comprises a step of applying a water repellent or an oil repellent to at least one surface of the first porous layer, the step of applying the water repellent or the oil repellent to the surface.
  • the slurry since the slurry is not taken into the pores of the first porous layer, it has a small average pore size on the first porous layer having a large average pore size.
  • the second porous layer can be laminated.
  • the water-repellent agent or the oil-repellent agent may have at least one function of water repellency and oil repellency, and may be a water and oil repellent agent having both water repellency and oil repellency.
  • Examples of the water repellent or the oil repellent include paraffin water repellents, fluorine water repellents, polysiloxane water repellents, and the like.
  • the method of applying the water repellent or the oil repellent to at least one surface of the first porous layer is not particularly limited, and spray coating, dip coating, bar coating, suction coating, ultrasonic spraying, brush coating, Examples include squeegee application and wiping application.
  • the metal oxide contained in the second porous layer preferably contains the metal oxide C.
  • the concentration of the metal oxide in the slurry is, for example, 2% by mass or more and 15% by mass or less, preferably 4% by mass or more and 13% by mass or less.
  • the concentration means the total concentration of a plurality of types of metal oxides.
  • the average particle size of the metal oxide contained in the second porous layer is, for example, 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the thickener examples include methylcellulose, hydroxyethylmethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, polyalkylene oxide, polyvinyl alcohol, sodium polyacrylate, polyvinylpyrrolidone, polyacrylamide, polydimethylaminoethyl methacrylate and the like.
  • concentration of the thickener in the slurry is, for example, 0.5% by mass or more and 5% by mass or less, and preferably 1% by mass or more and 3% by mass or less.
  • the method of applying the slurry to the surface of the first porous layer coated with the water repellent or the oil repellent is not particularly limited, and may be a dip coating method, a spray coating method, a roll coating method, a bar coating method. , A spin coating method, a slit coating method, a brush coating method and the like.
  • the temperature of the heat treatment is, for example, 95 ° C. or higher, preferably 265 ° C. or higher, more preferably 500 ° C. or higher, still more preferably 1000 ° C. or higher.
  • the temperature of the heat treatment is, for example, 1600 ° C. or lower, preferably 1400 ° C. or lower.
  • the temperature of the heat treatment is preferably the softening temperature of the metal oxide A or higher, and specifically, the temperature of the heat treatment is preferably 1000 ° C or higher and 1500 ° C or lower, and 1100 ° C or higher and 1400 ° C or lower. Is more preferable.
  • the melt containing the metal oxide A is partially transferred from the first porous layer to the second porous layer. Phenomena can flow in. As a result, the third region is partially formed in the porous ceramics laminate of the present invention obtained after the heat treatment.
  • the holding time at the temperature of the heat treatment is, for example, 30 minutes or more and 10 hours or less, preferably 1 hour or more and 8 hours or less, and more preferably 3 hours or more and 7 hours or less.
  • the porous ceramics laminate of the present invention can be used as a microfiltration membrane.
  • the porous ceramic laminate of the present invention in which the functional film is laminated by further laminating a functional film on the second porous layer in the porous ceramic laminate of the present invention is an ultrafiltration membrane, It can also be used as a base material for membranes such as nanofiltration membranes, reverse osmosis membranes, ion exchange membranes and gas separation membranes.
  • the ceramic laminates obtained in the following examples and comparative examples were evaluated by the following methods.
  • Examples 1 to 4 As the first porous layer, an alumina base material A-12 containing alumina and SiO 2 manufactured by Hagi Glass Co., Ltd. was used.
  • the base material A-12 had a cylindrical shape with an inner diameter of 8.6 mm, an outer diameter of 11.5 mm and a length of 5 cm.
  • a water- and oil-repellent spray “AMEDAS” manufactured by Columbus Co., Ltd. was spray-coated on the outer peripheral surface of the base material A-12 and dried.
  • the water / oil repellent spray contains a fluororesin and a petroleum hydrocarbon.
  • the average particle size of the alumina powder AKP-3000 was 0.7 ⁇ m.
  • the upper and lower ends of the base material A-12 were sealed so that the slurry did not enter the inner peripheral surface of the base material A-12, and the base material A-12 was dip-coated with the slurry. Then, the base material A-12 having the outer peripheral surface coated with the slurry was heat-treated at 1200 ° C. for 3 hours.
  • Example 1 was repeated except that the substrate A-12 was directly dip-coated with the same slurry as in Example 1 without applying the water / oil repellent spray, and the heat treatment temperature was set to 1100 ° C.
  • Example 5 Example 1 was repeated except that the first porous layer had a pore size of 4.8 ⁇ m and the slurry had a thickener concentration of 1.5% by weight.
  • Comparative example 2 The procedure of Example 5 was repeated, except that the water / oil repellent spray was not applied.
  • Example 5 was performed in the same manner as in Example 5, except that the first porous layer had a pore size of 1.8 ⁇ m.
  • FIG. 2 shows a cross-sectional SEM observation image of Example 1
  • FIG. 3 shows a cross-sectional SEM observation image of Comparative Example 1
  • FIG. 4 shows an analysis procedure of Lc and Ld in Example 2
  • FIG. 3A shows a cross-sectional SEM observation image of the third region in Example 2.
  • Example 1 in which the water-repellent and oil-repellent spray was applied to the base material A-12, which is the first porous layer, and then the dip coating was performed with the slurry.
  • the second porous layer composed of alumina was formed on the surface of the substrate.
  • Comparative Example 1 in which the water- and oil-repellent spray was not used as shown in FIG. 3, alumina was taken in deep in the pores of the first porous layer, and thus the first porous layer was formed. It was not possible to form the second porous layer on the above.
  • FIG. 3 in Comparative Example 1 in which the water- and oil-repellent spray was not used, as shown in FIG. 3, alumina was taken in deep in the pores of the first porous layer, and thus the first porous layer was formed. It was not possible to form the second porous layer on the above.
  • FIG. 3 in Comparative Example 1 in which the water- and oil-repellent spray was not used
  • a black solid line indicates a range where the distance to the first porous layer is less than 1 ⁇ m
  • a white solid line indicates a range where the distance to the first porous layer is 1 ⁇ m or more.
  • the range shown by the black solid line corresponds to the range shown as 6 in FIG. 1
  • the range shown by the white solid line corresponds to the range shown as 7 in FIG.
  • Example 4 is 70% or less in Examples 1 to 5, and the permeance when air is passed through the porous ceramic laminate is 3 It was not less than 0.0 ⁇ 10 ⁇ 6 m 3 / (m 2 ⁇ sec ⁇ Pa), preferably not less than 7.0 ⁇ 10 ⁇ 6 m 3 / (m 2 ⁇ sec ⁇ Pa). Further, as shown in FIG. 5, in Example 2, the glass component in the first porous layer was melted and exuded into the second porous layer and solidified at a portion surrounded by a white solid line, It was observed that the third region was formed, and the first porous layer and the second porous layer adhered well, which is consistent with the result of the film strength shown in Table 1. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

流体の圧力損失を低減できる多孔質セラミックス積層体を提供する。本発明は、第1多孔質層と、前記第1多孔質層の上に接して又は空気を介して積層された第2多孔質層とを有する多孔質セラミックス積層体であって、前記第2多孔質層の一部は、前記第1多孔質層の上に接して積層されており、前記第1多孔質層及び前記第2多孔質層はいずれも金属酸化物を含み、前記第2多孔質層の平均細孔径Dbに対する前記第1多孔質層の平均細孔径Daの比Da/Dbが10以上であり、前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合が70%以下である、多孔質セラミックス積層体である。

Description

多孔質セラミックス積層体及びその製造方法
 本発明は多孔質セラミックス積層体及びその製造方法に関する。
 多孔質セラミックスは、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜、イオン交換膜、ガス分離膜等、気体、液体等の流体の分離、濃縮、濾過等の機能を有する膜として、様々な分野で利用されている。
 例えば、特許文献1には、無機質支持体と、前記支持体を被覆する1層以上の無機質被覆層から成るセラミック多孔質非対称膜であって、前記支持体を被覆する1層以上の無機質被覆層のうちの少なくとも1層として、薄層状の無機多孔質体を含むセラミック多孔体が開示されている。特許文献1では、平均細孔径が11.0又は14.2μmの多孔質支持体に、平均粒子径が3又は5μmのアルミナを含むスラリー膜を製膜し、焼成して、前記多孔質支持体上に多孔質層を形成している。また、特許文献2には、支持層と、その支持層の内面或いは外面に形成される多孔質層からなる非対称膜が開示されている。特許文献2では、平均粒子径5μmのアルミナ粒子やその他の無機物質の粒子を用いて連通気孔径1~2μmの支持層を作成し、平均粒径0.5μmのアルミナ微粉末が分散した液を用いて前記支持層の表面に多孔質層を形成している。
特開平11-292653号公報 特開昭62-186908号公報
 多孔質セラミックスを用いて、流体の分離等を行う場合、分離等の機能を十分に発揮しつつ、前記セラミックス多孔体中に流体が流れやすいこと、すなわち流体の圧力損失が小さいことが重要であるが、前記特許文献1及び2では、流体の圧力損失を低減することが難しいと考えられる。
 そこで、本発明は、流体の圧力損失を低減できる多孔質セラミックス積層体を提供することを目的とする。
 上記課題を達成した本発明は以下の通りである。
 [1]第1多孔質層と、前記第1多孔質層の上に接して又は空気を介して積層された第2多孔質層とを有する多孔質セラミックス積層体であって、
 前記第2多孔質層の一部は、前記第1多孔質層の上に接して積層されており、
 前記第1多孔質層及び前記第2多孔質層はいずれも金属酸化物を含み、
 前記第2多孔質層の平均細孔径Dbに対する前記第1多孔質層の平均細孔径Daの比Da/Dbが10以上であり、
 前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合が70%以下である、多孔質セラミックス積層体。
 [2]前記Da/Dbが30以上である、[1]に記載の多孔質セラミックス積層体。
 [3]前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合が50%以下である、[1]又は[2]に記載の多孔質セラミックス積層体。
 [4]前記第1多孔質層は、前記金属酸化物として、金属酸化物A及び前記金属酸化物Aの融点よりも高い融点を有する金属酸化物Bを含み、
 前記第2多孔質層は、前記金属酸化物として、前記金属酸化物Aの融点よりも高い融点を有する金属酸化物Cを含み、
 前記第1多孔質層と前記第2多孔質層の両方に接し、かつ、前記金属酸化物A及び前記金属酸化物Cを含む領域を含む、[1]~[3]のいずれかに記載の多孔質セラミックス積層体。
 [5][1]~[4]のいずれかに記載の多孔質セラミックス積層体の製造方法であって、
 前記第1多孔質層の少なくとも一方の表面に、撥水剤又は撥油剤を塗布する工程、
 前記撥水剤又は前記撥油剤が塗布された前記第1多孔質層の表面に、前記第2多孔質層に含まれる前記金属酸化物と溶剤と増粘剤とを含むスラリーを塗布する工程、及び、
 前記スラリーが塗布された前記第1多孔質層を熱処理する工程を含む、方法。
 本発明の多孔質セラミックス積層体は、気体、液体等の流体の圧力損失を低減できる。
本発明の好ましい態様における多孔質セラミックス積層体の断面を表す模式図である。 実施例1の断面SEM観察像を示す図面代用写真である。 比較例1の断面SEM観察像を示す図面代用写真である。 実施例2におけるLc及びLdの解析要領を示す図面代用写真である。 実施例2において、第1多孔質層と第2多孔質層の両方に接し、かつ、金属酸化物A及び金属酸化物Cを含む領域を捉えた断面SEM観察像を示す図面代用写真である。
 本発明者らが検討した結果、第1多孔質層と、前記第1多孔質層の上に接して又は空気を介して積層された第2多孔質層とを有する多孔質セラミックス積層体であって、前記第2多孔質層の一部は、前記第1多孔質層の上に接して積層されており、前記第1多孔質層及び前記第2多孔質層はいずれも金属酸化物を含み、前記第2多孔質層の平均細孔径Dbに対する前記第1多孔質層の平均細孔径Daの比Da/Dbが10以上、好ましくは30以上であり、前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合が70%以下、好ましくは50%以下である、多孔質セラミックス積層体が、流体の圧力損失を低減できることを見出した。
 本発明の多孔質セラミックス積層体は、前記第1多孔質層と、前記第1多孔質層の上に接して又は空気を介して積層された第2多孔質層とを有する。前記第2多孔質層の一部は、前記第1多孔質層の上に接して積層されている。すなわち、前記第2多孔質層の一部は、前記第1多孔質層の上に接して積層されており、前記第2多孔質層のその他の部分は、空気を介して前記第1多孔質層の上に積層されている。
 本発明の多孔質セラミックス積層体では、前記第2多孔質層の平均細孔径Dbに対する前記第1多孔質層の平均細孔径Daの比Da/Dbが10以上である。このように、DaとDbの差を大きくすることが、本発明の多孔質セラミックス積層体を透過する流体の圧力損失を低減するために重要である。前記比Da/Dbは、好ましくは30以上、60以下であり、より好ましくは33以上、60以下であり、更に好ましくは35以上、60以下であり、一層好ましくは40以上、60以下である。なお、前記特許文献1では、平均粒子径が3又は5μmのアルミナを含むスラリーを用いて、前記多孔質支持体上に前記多孔質層を形成しており、前記アルミナの粒子径から考えて、前記多孔質層の平均細孔径は1μm程度と考えられ、前述した通り、前記多孔質支持体の平均細孔径は11.0又は14.2μmである。従って、前記特許文献1における前記多孔質層の平均細孔径に対する前記支持体の平均細孔径の比は、最大でも14程度であると考えられる。また、特許文献2では、前記支持層の連通気孔径が1~2μmであり、前記多孔質層の気孔径が0.2μmであるため、前記多孔質層の気孔径に対する前記支持層の連通気孔径の比は最大でも10である。
 前記比Da/Dbが前記範囲である限り、Da及びDbのそれぞれの値は限定されないが、Daは例えば1.5μm以上、600μm以下であり、好ましくは5μm以上、300μm以下であり、より好ましくは9μm以上、60μm以下であり、Dbは例えば0.01μm以上、10μm以下であり、好ましくは0.05μm以上、5μm以下であり、より好ましくは0.15μm以上、1μm以下であり、更に好ましくは0.25μm以上、1μm以下である。
 本発明の多孔質セラミックス積層体では、前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分(以下、近接箇所とも呼ぶ)の割合が70%以下、好ましくは、50%以下である。前記近接箇所の割合を所定以下とすることも、流体の圧力損失を低減するために重要である。前記近接箇所の割合の算出方法は以下の通りである。まず、本発明の多孔質セラミックス積層体を、前記第1多孔質層と前記第2多孔質層の積層方向に平行な断面で観察する。前記断面において、前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合を測定する。前記距離は、前記第1多孔質層の表面から、前記第1多孔質層の表面と最も近い第2多孔質層の表面までの距離である。すなわち、前記断面において、前記第1多孔質層との距離が1μm未満である前記第2多孔質層の表面の合計長さをLc、前記第1多孔質層との距離が1μm以上である前記第2多孔質層の表面の合計長さをLdとしてそれぞれ測定し、LcとLdの合計に対するLcの割合を求める。図1に、本発明の好ましい態様における前記断面の模式図を示す。図1において、1は前記第1多孔質層、2は前記第2多孔質層、3は空気、4は前記第2多孔質層2の積層方向、5は前記第1多孔質層1と前記第2多孔質層2の距離を示し、5の長さは1μmであり、6は前記第1多孔質層1と前記第2多孔質層2の距離が1μm未満である範囲、7は前記第1多孔質層1と前記第2多孔質層2の距離が1μm以上である範囲、8は前記第1多孔質層と前記第2多孔質層の両方に接し、かつ、前記金属酸化物A及び前記金属酸化物Cを含む領域を示す。以下、前記第1多孔質層と前記第2多孔質層の両方に接し、かつ、前記金属酸化物A及び前記金属酸化物Cを含む領域を「第3の領域」と呼ぶ。前記第1多孔質層1と前記第2多孔質層2との距離が1μm未満である範囲6において、太い実線で示した前記第2多孔質層2の表面の長さの合計がLcに当たり、前記第1多孔質層1と前記第2多孔質層2との距離が1μm以上である範囲7において、通常の実線で示した前記第2多孔質層2の表面の長さの合計がLdに当たる。本発明の多孔質セラミックス積層体が、第3の領域を含む場合には、前記第3の領域に接する前記第1多孔質層と前記第2多孔質層との距離は0とみなす。本発明の多孔質セラミックス積層体では、前記近接箇所の割合、すなわち、LcとLdの合計に対するLcの割合は70%以下、好ましくは50%以下であり、より好ましくは45%以下であり、更に好ましくは40%以下であり、一層好ましくは30%以下であり、特に好ましくは15%以下である。LcとLdの合計に対するLcの割合は、前記第1多孔質層と前記第2多孔質層の接着強度の観点から、5%以上が好ましく、より好ましくは8%以上であり、更に好ましくは10%以上である。
 前記断面では、前記第2多孔質層の表面の合計長さが、前記第1多孔質層の平均細孔径の100倍以上となるように画像を取得して、LcとLdの合計に対するLcの割合を測定すればよい。
 前記第1多孔質層の厚みは、例えば500μm以上、3000μm以下であり、好ましくは1400μm以上、2800μm以下である。前記第2多孔質層の厚みは、例えば3μm以上、30μm以下であり、好ましくは3μm以上、15μm以下であり、より好ましくは3μm以上、10μm以下である。前記第2多孔質層は、前記第1多孔質層の少なくとも片側面に積層されていればよく、前記第1多孔質層の片側面のみに積層されていることが好ましい。本発明の多孔質セラミックス積層体の形状は特に限定されず、平面状、円筒状、又はハニカム状であってもよく、円筒状であることが好ましい。本発明の多孔質セラミックス積層体が円筒状である場合、前記第2多孔質層は、前記第1多孔質層の外周面又は内周面のいずれに積層されていてもよく、前記第1多孔質層の外周面のみ又は内周面のみに積層されていることが好ましく、前記第1多孔質層の外周面のみに前記第2多孔質層が積層されていることがより好ましい。
 前記第1多孔質層及び前記第2多孔質層はいずれも金属酸化物を含む。なお、本発明において、金属とは、Si、Ge等の半金属を含む意味で用いる。前記第1多孔質層は、前記金属酸化物として、金属酸化物A及び前記金属酸化物Aの融点よりも高い融点を有する金属酸化物Bを含むことが好ましく、前記第2多孔質層は、前記金属酸化物として、前記金属酸化物Aの融点よりも高い融点を有する金属酸化物Cを含むことが好ましい。前記金属酸化物B及び前記金属酸化物Cは同一であってもよく異なっていてもよい。
 前記第1多孔質層が前記金属酸化物として前記金属酸化物A及び前記金属酸化物Bを含み、前記第2多孔質層が前記金属酸化物として前記金属酸化物Cを含む本発明の多孔質セラミックス積層体は、第3の領域を含むことが好ましい。前記第3の領域によって、前記第1多孔質層と前記第2多孔質層との接着強度が向上する。後記する実施例の方法で測定した第3の領域の個数は2個以上、40個以下であり、2個以上、20個以下が好ましく、より好ましくは5個以上、20個以下であり、更に好ましくは、7個以上、12個以下である。
 前記第3の領域の気孔率は、通常、前記第1多孔質層の気孔率より小さく、また前記第3の領域の平均細孔径は、通常、前記第1多孔質層の平均細孔径より小さい。また、前記第3の領域の気孔率は、通常、前記第2多孔質層の気孔率より小さく、また前記第3の領域の平均細孔径は、通常、前記第2多孔質層の平均細孔径より小さい。
 前記金属酸化物Aは融点が95℃以上、1600℃以下であることが好ましい。前記金属酸化物Aとしては、具体的には、B23、SiO2、GeO2、Al23、V25、As25、Sb25、ZrO2、TiO2、ZnO、PbO、ThO2、BeO、CdO、Ta25、Nb25、WO3、ScO2、La23、Y23、SnO2、Ga23、In23、PbO2、MgO、Li2O、BaO、CaO、SrO、Na2O、K2O、Rb2O、HgO、Cs2O、Ag2O、TeO2、Tl2O等が挙げられ、好ましくはSiO2が挙げられる。つまり、前記金属酸化物Aは、前記した酸化物の少なくとも1種を構成成分とするものが挙げられ、特に前記した酸化物の少なくとも1つを構成成分とするガラスであることが好ましく、特に石英ガラス、ホウケイ酸ガラス、アルミナケイ酸塩ガラス等のケイ素の酸化物(特にSiO2)を含むガラスであることが好ましい。前記金属酸化物B及び前記金属酸化物Cは、同一であっても異なっていてもよく、いずれも融点が2000℃以上、2800℃以下であることが好ましい。前記金属酸化物B及び前記金属酸化物Cとしては、具体的には、Al23、ZrO2、MgO、Cr23、Y23等が挙げられ、好ましくはAl23が挙げられる。
 本発明の多孔質セラミックス積層体における前記第2多孔質層表面の表面粗さRaは、前記第1多孔質層の表面粗さ、前記第2多孔質層を構成する金属酸化物の粒径等により変化するが、例えば0.5μm以上、7μm以下であり、好ましくは1μm以上、5μm以下である。なお、前記第2多孔質層を積層する前の前記第1多孔質層の表面粗さRaは、例えば5μm以上、15μm以下であり、好ましくは7μm以上、10μm以下である。本発明の多孔質セラミックス積層体における前記第2多孔質層表面の表面粗さは、前記第2多孔質層を積層する前の前記第1多孔質層の表面粗さよりも小さくできる。
 本発明の多孔質セラミックス積層体は、流体の圧力損失を低減することができる。本発明の多孔質セラミックス積層体は、実用上十分なパーミアンス、すなわち後記する実施例で評価されるパーミアンスを3.0×10-63/(m2・sec・Pa)にできることはもとより、好ましくは7.0×10-63/(m2・sec・Pa)以上とすることができる。前記パーミアンスは、好ましくは0.8×10-53/(m2・sec・Pa)以上であり、より好ましくは1.0×10-53/(m2・sec・Pa)以上であり、例えば5.0×10-53/(m2・sec・Pa)以下である。
 本発明の多孔質セラミックス積層体では、上述の通り、前記第2多孔質層の平均細孔径Dbに対する、前記第1多孔質層の平均細孔径Daの比Da/Dbが10以上であり、好ましくは30以上である。通常、このような大きな平均細孔径の差を有する2つの層を積層させようとすると、大きな平均細孔径を有する第1多孔質層の細孔内に、第2多孔質層の構成成分が取り込まれるため、第2多孔質層を第1多孔質層の上に平滑な層状に形成することが難しい。
 本発明の多孔質セラミックス積層体の製造方法は、前記第1多孔質層の少なくとも一方の表面に、撥水剤又は撥油剤を塗布する工程、前記撥水剤又は前記撥油剤が塗布された前記第1多孔質層の表面に、前記第2多孔質層に含まれる前記金属酸化物と溶剤と増粘剤を含むスラリーを塗布する工程、及び前記スラリーが塗布された前記第1多孔質層を熱処理する工程を含む。本発明の方法によれば、前記スラリーが前記第1多孔質層の細孔内に取り込まれることがないため、大きな平均細孔径を有する第1多孔質層の上に、小さな平均細孔径を有する第2多孔質層を積層することができる。
 前記撥水剤又は前記撥油剤は、撥水及び撥油の少なくとも一方の機能を有していればよく、撥水及び撥油の両方の機能を有する撥水撥油剤であってもよい。前記撥水剤又は前記撥油剤としては、パラフィン系撥水撥油剤、フッ素系撥水撥油剤、ポリシロキサン系撥水撥油剤等が挙げられる。前記第1多孔質層の少なくとも一方の表面に、前記撥水剤又は前記撥油剤の塗布する方法は特に限定されず、スプレーコート、ディップコート、バーコート、吸引コート、超音波噴霧、刷毛塗り、スキージ塗布、拭き付け塗布等が挙げられる。
 前記溶剤としては、水、有機系溶剤等が挙げられる。前記第2多孔質層に含まれる金属酸化物は、好ましくは前記金属酸化物Cを含む。前記金属酸化物のスラリー中の濃度は、例えば2質量%以上、15質量%以下であり、好ましくは4質量%以上、13質量%以下である。前記第2多孔質層が複数種の金属酸化物を含む場合には、前記濃度は複数種の金属酸化物の合計濃度を意味する。前記第2多孔質層に含まれる金属酸化物の平均粒径は、例えば0.1μm以上、50μm以下である。
 前記増粘剤としては、メチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、ポリアルキレンオキサイド、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリアクリルアミド、ポリジメチルアミノエチルメタクリレート等が挙げられる。前記増粘剤のスラリー中の濃度は、例えば0.5質量%以上、5質量%以下であり、好ましくは1質量%以上、3質量%以下である。
 前記撥水剤又は前記撥油剤が塗布された前記第1多孔質層の表面に、前記スラリーを、塗布する方法は特に限定されず、ディップコート法、スプレーコート法、ロールコート法、バーコート法、スピンコート法、スリットコート法、刷毛塗り等が挙げられる。
 前記熱処理の温度は、例えば95℃以上であり、好ましくは265℃以上であり、より好ましくは500℃以上であり、更に好ましくは1000℃以上である。前記熱処理の温度は例えば1600℃以下であり、好ましくは1400℃以下である。前記熱処理の温度が前記金属酸化物Aの軟化温度以上であることが好ましく、具体的には、前記熱処理の温度が1000℃以上、1500℃以下であることが好ましく、1100℃以上、1400℃以下であることがより好ましい。前記熱処理の温度が前記金属酸化物Aの軟化温度以上であることによって、前記熱処理において、前記金属酸化物Aを含む溶融物が前記第1多孔質層から前記第2多孔質層へ部分的に流れ込む現象が生じうる。その結果、前記熱処理後に得られる本発明の多孔質セラミックス積層体において、部分的に第3の領域が形成される。前記熱処理の温度での保持時間は、例えば30分以上、10時間以下であり、好ましくは1時間以上、8時間以下であり、より好ましくは3時間以上、7時間以下である。
 本発明の多孔質セラミックス積層体は、精密濾過膜として用いることができる。本発明の多孔質セラミックス積層体における前記第2多孔質層の上に、さらに機能膜を積層することで、前記機能膜が積層された本発明の多孔質セラミックス積層体は、限外濾過膜、ナノ濾過膜、逆浸透膜、イオン交換膜、ガス分離膜等の膜の基材としても用いることができる。
 本願は、2018年10月15日に出願された日本国特許出願第2018-194512号に基づく優先権の利益を主張するものである。2018年10月15日に出願された日本国特許出願第2018-194512号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記実施例及び下記比較例で得られたセラミックス積層体は以下の方法で評価した。
 (1)パーミアンスの測定
 円筒形の多孔質セラミックス積層体試料の外側から空気を1.0m3/hの一定流速で流し、前記試料の内側から空気を透過させた。前記試料の透過前後の圧力差を測定した。測定した結果を用いて、下記式によってパーミアンスを算出した。
Figure JPOXMLDOC01-appb-M000001
 (2)Lc及びLdの測定、及び第3の領域の確認
 円筒形の多孔質セラミックス積層体を、軸方向に垂直な断面で切断し、切断面が観察できるように樹脂に埋め込み、研磨して、走査型電子顕微鏡(SEM、Scanning Electron Microscope)にて観察した。前記第2多孔質層の、前記第1多孔質層側表面の合計長さが円周方向に2mm以上となるように画像を取得し、前記第2多孔質層の、前記第1多孔質層側表面のうち、前記第1多孔質層との距離が1μm未満である範囲の合計長さLcと、前記第1多孔質層との距離が1μm以上である範囲の合計長さLdをそれぞれ測定し、LcとLdの合計に対するLcの割合を算出した。また、前記SEMの観察像の前記した2mmの範囲に何箇所の第3の領域が存在するかをカウントした。
 (3)細孔径の測定
 多孔質セラミックス積層体試料を120℃で4時間乾燥した後、オートポアIV9520(micromeritics社製)を用いて、水銀圧入法により測定した。第2多孔質層を積層する前の第1多孔質層、及び、下記実施例の多孔質セラミックス積層体試料を測定すると、横軸を細孔径とするlog微分細孔容積分布において、第2多孔質層を積層する前の第1多孔質層では1つのピークが観測され、下記実施例の多孔質セラミックス積層体では2つのピークが観測された。第2多孔質層を積層する前の第1多孔質層で観測されたピーク位置をDaとした。下記実施例の多孔質セラミックス積層体で観測された2つのピークのうち、低細孔径側のピーク位置をDbとした。
 (4)表面粗さの測定方法
 多孔質セラミックス積層体試料の235μm×220μmの外周面を、KEYENCE社製レーザー顕微鏡VK-9510を用いて、10倍の対物レンズで、Z方向0.5μmピッチで測定し、算術平均表面粗さRaを測定した。なお、下記実施例における第2多孔質層を積層させる前の第1多孔質層表面の表面粗さRaは9.3μmであった。
 (5)膜強度の評価
 多孔質セラミックス積層体試料の外周面に5mm×5mmのサイズのスリーエム社製スコッチメンディングテープを貼り付けて剥がした際に、際だって剥離が見られなかったものを○とし、際だった剥離が見られたものを×とした。
 (6)第2多孔質層の膜厚の測定
 円筒形の多孔質セラミックス積層体を、軸方向に垂直な断面で切断し、切断面が観察できるように樹脂に埋め込み、研磨して、走査型電子顕微鏡(SEM、Scanning Electron Microscope)にて観察した。前記第2多孔質層の前記第1多孔質層の、前記第1多孔質層側表面に該当する線が円周方向に250μm以上となるように画像を取得し、第2多孔質層の面積を求め、円周方向の長さで割ることにより膜厚を算出した。
 実施例1~4
 第1多孔質層として、アルミナとSiO2を含む萩ガラス社製アルミナ基材A-12を用いた。前記基材A-12の形状は、内径が8.6mm、外径が11.5mm、長さが5cmの円筒形であった。株式会社コロンブス製の撥水撥油スプレー「AMEDAS」を前記基材A-12の外周面にスプレー塗布し、乾燥させた。前記撥水撥油スプレーはフッ素樹脂と石油系炭化水素を含む。次に、住友化学株式会社製のアルミナ粉末AKP-3000と、増粘剤として信越化学工業株式会社製のヒドロキシプロピルメチルセルロース65SH-30000を、表1に記載した濃度で水に混合してスラリーを用意した。なお、前記アルミナ粉末AKP-3000の平均粒径は0.7μmであった。前記基材A-12の内周面に前記スラリーが入り込まないように、前記基材A-12の上端及び下端を封止して、前記スラリーで前記基材A-12をディップコートした。その後、前記外周面に前記スラリーが塗布された前記基材A-12を1200℃で3時間熱処理した。
 比較例1
 撥水撥油スプレーを塗布することなく前記基材A-12をそのまま前記実施例1と同じスラリーでディップコートしたこと及び熱処理温度を1100℃にしたこと以外は、実施例1と同様にした。
 実施例5
 第一多孔質層として細孔径が4.8μmのものを用いたこと、及び、スラリーの増粘剤濃度が1.5重量%であること以外は、実施例1と同様にした。
 比較例2
 撥水撥油スプレーを塗布していないこと以外は、実施例5と同様にした。
 比較例3
 第一多孔質層として細孔径が1.8μmのものを用いた以外は、実施例5と同様にした。
 結果を表1に示す。また、図2に実施例1の断面SEM観察像を示し、図3に比較例1の断面SEM観察像を示し、図4には実施例2におけるLc及びLdの解析要領を示し、図5には実施例2における第3の領域を捉えた断面SEM観察像を示す。
Figure JPOXMLDOC01-appb-T000002
 図2に示すように、第1多孔質層である前記基材A-12に撥水撥油スプレーを塗布してから前記スラリーでディップコートした実施例1では、前記第1多孔質層の上に、アルミナで構成される第2多孔質層が形成されていた。一方、撥水撥油スプレーを用いなかった比較例1では、図3に示すように、前記第1多孔質層の細孔の奥の方までアルミナが取り込まれており、前記第1多孔質層の上に第2多孔質層を形成することができなかった。また、図4は、実施例2における第1多孔質層及び第2多孔質層の積層方向に平行な断面を示しており、前記第2多孔質層の、前記第1多孔質層側表面のうち、前記第1多孔質層との距離が1μm未満である範囲を黒色の実線で示し、前記第1多孔質層との距離が1μm以上である範囲を白色の実線で示している。前記黒色の実線で示した範囲は、図1において6と示した範囲に相当し、前記白色の実線で示した範囲は、図1において7と示した範囲に相当する。図4に示す要領で測定したLcとLdから求められるLc/(Lc+Ld)の割合は、実施例1~5では70%以下であり、多孔質セラミックス積層体に空気を流したときのパーミアンスが3.0×10-63/(m2・sec・Pa)以上、好ましくは7.0×10-63/(m2・sec・Pa)以上であった。また、図5に示す通り、実施例2では、白の実線で囲まれた箇所で前記第1多孔質層中のガラス成分が溶融して前記第2多孔質層中に染み出して固化し、第3の領域が形成されている様子が観察され、前記第1多孔質層と前記第2多孔質層が良好に接着しており、このことは表1に示した膜強度の結果とも整合している。また、比較例2は、Lc/(Lc+Ld)の割合が70%を超えていたため、比較例3はDa/Dbの値が10よりも小さく、且つLc/(Lc+Ld)の割合が70%を超えていたため、いずれもパーミアンスの値が低下した。
 1 第1多孔質層
 2 第2多孔質層
 3 空気
 4 第2多孔質層の積層方向
 5 第1多孔質層1と第2多孔質層2の距離
 6 第1多孔質層1と第2多孔質層2の距離が1μm未満である範囲
 7 第1多孔質層1と第2多孔質層2の距離が1μm以上である範囲
 8 第3の領域

Claims (5)

  1.  第1多孔質層と、前記第1多孔質層の上に接して又は空気を介して積層された第2多孔質層とを有する多孔質セラミックス積層体であって、
     前記第2多孔質層の一部は、前記第1多孔質層の上に接して積層されており、
     前記第1多孔質層及び前記第2多孔質層はいずれも金属酸化物を含み、
     前記第2多孔質層の平均細孔径Dbに対する前記第1多孔質層の平均細孔径Daの比Da/Dbが10以上であり、
     前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合が70%以下である、多孔質セラミックス積層体。
  2.  前記Da/Dbが30以上である、請求項1に記載の多孔質セラミックス積層体。
  3.  前記第1多孔質層と前記第2多孔質層との距離が1μm未満である部分の割合が50%以下である、請求項1に記載の多孔質セラミックス積層体。
  4.  前記第1多孔質層は、前記金属酸化物として、金属酸化物A及び前記金属酸化物Aの融点よりも高い融点を有する金属酸化物Bを含み、
     前記第2多孔質層は、前記金属酸化物として、前記金属酸化物Aの融点よりも高い融点を有する金属酸化物Cを含み、
     前記第1多孔質層と前記第2多孔質層の両方に接し、かつ、前記金属酸化物A及び前記金属酸化物Cを含む領域を含む、請求項1~3のいずれかに記載の多孔質セラミックス積層体。
  5.  請求項1~4のいずれかに記載の多孔質セラミックス積層体の製造方法であって、
     前記第1多孔質層の少なくとも一方の表面に、撥水剤又は撥油剤を塗布する工程、
     前記撥水剤又は前記撥油剤が塗布された前記第1多孔質層の表面に、前記第2多孔質層に含まれる前記金属酸化物と溶剤と増粘剤とを含むスラリーを塗布する工程、及び、
     前記スラリーが塗布された前記第1多孔質層を熱処理する工程を含む、方法。
PCT/JP2019/039844 2018-10-15 2019-10-09 多孔質セラミックス積層体及びその製造方法 WO2020080225A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19874322.1A EP3868733A4 (en) 2018-10-15 2019-10-09 POROUS LAMINATED CERAMIC AND METHOD FOR MAKING IT
US17/283,485 US20210395157A1 (en) 2018-10-15 2019-10-09 Porous ceramic laminate and method for producing same
CN201980066601.3A CN112805264A (zh) 2018-10-15 2019-10-09 多孔质陶瓷层叠体以及其制造方法
JP2020553116A JPWO2020080225A1 (ja) 2018-10-15 2019-10-09 多孔質セラミックス積層体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194512 2018-10-15
JP2018-194512 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080225A1 true WO2020080225A1 (ja) 2020-04-23

Family

ID=70284566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039844 WO2020080225A1 (ja) 2018-10-15 2019-10-09 多孔質セラミックス積層体及びその製造方法

Country Status (5)

Country Link
US (1) US20210395157A1 (ja)
EP (1) EP3868733A4 (ja)
JP (1) JPWO2020080225A1 (ja)
CN (1) CN112805264A (ja)
WO (1) WO2020080225A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113604A1 (ja) * 2020-11-26 2022-06-02 Agc株式会社 液体分離膜及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651245A (en) * 1979-10-03 1981-05-08 Nissan Motor Co Ltd Coating of solid catalyst carrier
JPH11292653A (ja) * 1998-04-02 1999-10-26 Noritake Co Ltd セラミック多孔体及びその製造方法
JP2002309300A (ja) * 2001-04-12 2002-10-23 Soft 99 Corp 皮革用撥水艶出しクロス
JP2007045691A (ja) * 2005-08-12 2007-02-22 Research Institute Of Innovative Technology For The Earth メソポーラス複合体およびその製造方法
JP2018194512A (ja) 2017-05-22 2018-12-06 日立オートモティブシステムズ株式会社 電子制御装置の検査方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143535A (ja) * 1989-10-26 1991-06-19 Toto Ltd セラミックス製非対称膜及びその製造方法
JP4094830B2 (ja) * 2000-11-24 2008-06-04 日本碍子株式会社 多孔質ハニカムフィルター及びその製造方法
JP2009235487A (ja) * 2008-03-27 2009-10-15 Toshiba Corp 多孔質材料、及び多孔質材料の製造方法
WO2012111792A1 (ja) * 2011-02-17 2012-08-23 京セラ株式会社 炭素膜付き複合体およびその製造方法
WO2017014130A1 (ja) * 2015-07-23 2017-01-26 昭和電工株式会社 多孔質膜、水処理膜及び多孔質膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651245A (en) * 1979-10-03 1981-05-08 Nissan Motor Co Ltd Coating of solid catalyst carrier
JPH11292653A (ja) * 1998-04-02 1999-10-26 Noritake Co Ltd セラミック多孔体及びその製造方法
JP2002309300A (ja) * 2001-04-12 2002-10-23 Soft 99 Corp 皮革用撥水艶出しクロス
JP2007045691A (ja) * 2005-08-12 2007-02-22 Research Institute Of Innovative Technology For The Earth メソポーラス複合体およびその製造方法
JP2018194512A (ja) 2017-05-22 2018-12-06 日立オートモティブシステムズ株式会社 電子制御装置の検査方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113604A1 (ja) * 2020-11-26 2022-06-02 Agc株式会社 液体分離膜及びその製造方法

Also Published As

Publication number Publication date
US20210395157A1 (en) 2021-12-23
CN112805264A (zh) 2021-05-14
JPWO2020080225A1 (ja) 2021-09-16
EP3868733A1 (en) 2021-08-25
EP3868733A4 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP6723265B2 (ja) 水及びガス分離のための炭素含有膜
US7396382B2 (en) Functionalized inorganic membranes for gas separation
JP5935945B2 (ja) セラミックフィルタ
AU2007310057B2 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
EP2832429B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
US5186833A (en) Composite metal-ceramic membranes and their fabrication
WO2012128217A1 (ja) ハニカム形状セラミック製分離膜構造体
EP2258465A1 (en) Ceramic filter
EP2594329B1 (en) Ceramic filter
US9555377B2 (en) Ceramic separation membrane and dehydration method
EP2832430A1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP6807823B2 (ja) 酸化処理されたSiCを用いた水処理用セラミック分離膜及びその製造方法
US11607650B2 (en) Thin metal/ceramic hybrid membrane sheet and filter
WO2020080225A1 (ja) 多孔質セラミックス積層体及びその製造方法
JP2001300273A (ja) セラミックフィルタ
WO2021215205A1 (ja) 多孔質セラミックス積層体及びその製造方法
JP2004521732A5 (ja)
JP4398105B2 (ja) セラミック膜フィルター
JP4514560B2 (ja) 筒状セラミック多孔質体及びその製造方法ならびにこれを用いたセラミックフィルター
CN108883997B (zh) 整体型基材及其制造方法
JP2004089838A (ja) 分離膜モジュール及びその製造方法
WO2012111792A1 (ja) 炭素膜付き複合体およびその製造方法
JP4960286B2 (ja) ナノ濾過膜の製造方法
WO2016093192A1 (ja) 分離膜構造体及びその製造方法
JP5226048B2 (ja) セラミックス分離膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019874322

Country of ref document: EP

Effective date: 20210517