WO2020079958A1 - 接合体および弾性波素子 - Google Patents
接合体および弾性波素子 Download PDFInfo
- Publication number
- WO2020079958A1 WO2020079958A1 PCT/JP2019/033089 JP2019033089W WO2020079958A1 WO 2020079958 A1 WO2020079958 A1 WO 2020079958A1 JP 2019033089 W JP2019033089 W JP 2019033089W WO 2020079958 A1 WO2020079958 A1 WO 2020079958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- piezoelectric material
- bonding layer
- layer
- material substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 166
- 239000000463 material Substances 0.000 claims abstract description 90
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000001301 oxygen Substances 0.000 claims abstract description 53
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 14
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052878 cordierite Inorganic materials 0.000 claims description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052863 mullite Inorganic materials 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 239000006104 solid solution Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 101
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 239000010408 film Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 15
- 238000010897 surface acoustic wave method Methods 0.000 description 15
- 238000001994 activation Methods 0.000 description 13
- 230000004913 activation Effects 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 13
- 230000003472 neutralizing effect Effects 0.000 description 13
- 238000005498 polishing Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 235000019687 Lamb Nutrition 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- -1 Ta 2 O 5 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
- H10N30/073—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/704—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
- H10N30/706—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
- H10N30/708—Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
Definitions
- the present invention relates to a bonded body of a piezoelectric material substrate and a support substrate made of a metal oxide.
- acoustic wave devices that can function as filter elements and oscillators used in mobile phones, acoustic wave devices such as Lamb wave elements and thin film resonators (FBARs) using piezoelectric thin films (FBAR: Film Bulk Acoustic Resonator) are known.
- FBAR thin film resonators
- FBAR Film Bulk Acoustic Resonator
- an acoustic wave device there is known an acoustic wave device in which a supporting substrate and a piezoelectric substrate for propagating a surface acoustic wave are bonded to each other, and a comb-shaped electrode capable of exciting the surface acoustic wave is provided on the surface of the piezoelectric substrate.
- Patent Document 2 epoxy-based and acrylic-based resins are used for the filling layer and the adhesive layer, and by making the bonding surface of the piezoelectric substrate a rough surface, the reflection of bulk waves is suppressed and spurious is reduced. There is.
- FAB Fast Atom Beam
- Patent Document 4 describes that the piezoelectric material substrate is directly bonded to the support substrate made of ceramics (alumina, aluminum nitride, silicon nitride) instead of the silicon substrate via the intermediate layer.
- the material of this intermediate layer is silicon, silicon oxide, silicon nitride, or aluminum nitride.
- a bonding layer having a high insulating property is formed by making the composition of the bonding layer a silicon oxide having a low oxygen ratio (Patent Document 5).
- An object of the present invention is to firmly and stably bond a piezoelectric material substrate on a supporting substrate made of metal oxide via a bonding layer made of silicon oxide having a low oxygen ratio.
- the present invention is A supporting substrate made of a metal oxide, Piezoelectric material substrate, A bonding layer provided between the support substrate and the piezoelectric material substrate, wherein the bonding layer has a composition of Si (1-x) O x (0.008 ⁇ x ⁇ 0.408), and An amorphous layer is provided between the bonding layer and the supporting substrate, and an oxygen ratio in the amorphous layer is higher than an oxygen ratio in the supporting substrate.
- the present invention also relates to an acoustic wave device, characterized by comprising the above-mentioned bonded body and an electrode provided on a piezoelectric material substrate.
- a piezoelectric material substrate can be firmly and stably bonded onto a supporting substrate made of a metal oxide via a bonding layer made of a silicon oxide having a low oxygen ratio.
- (A) shows a state in which the bonding layer 2 is provided on the piezoelectric material substrate 4, (b) shows a state in which the surface 2b of the bonding layer 2A is activated by the neutralizing beam A, (c). Shows the state where the surface 1a of the support substrate 1 is activated by the neutralizing beam A.
- (A) shows a state in which the piezoelectric material substrate 4 and the support substrate 1 are bonded together, (b) shows a state in which the piezoelectric material substrate 4A is thinned by processing, and (c) shows the piezoelectric material substrate 4A. The state where the electrode 6 is provided on the upper side is shown.
- (A) shows a state in which the intermediate layer 11 and the bonding layer 2 are provided on the piezoelectric material substrate 4, and (b) shows a state in which the surface 2b of the bonding layer 2A is activated by the neutralizing beam A.
- (C) show a state in which the surface 1a of the supporting substrate 1 is activated by the neutralizing beam A.
- (A) shows a state in which the piezoelectric material substrate 4 and the support substrate 1 are bonded together,
- (b) shows a state in which the piezoelectric material substrate 4A is thinned by processing, and
- (c) shows the piezoelectric material substrate 4A. The state where the electrode 6 is provided on the upper side is shown.
- 1 and 2 are schematic diagrams for explaining a manufacturing example in which a supporting substrate is directly bonded to a piezoelectric material substrate.
- the bonding layer 2 is formed on the main surface 4 a of the piezoelectric material substrate 4.
- Reference numeral 4b is a main surface on the opposite side of the piezoelectric material substrate 4.
- the surface 2a of the bonding layer 2 is irradiated with a neutralizing beam as indicated by an arrow A to activate the surface of the bonding layer 2 to form an activation surface 2b.
- the main surface 1a of the supporting substrate 1 is irradiated with the neutralizing beam A to be activated, and the supporting substrate 1 having the activated surface is obtained.
- 1b is a main surface opposite to the activation surface.
- a bonded body 5 is obtained by directly bonding the activated surface of the bonding layer and the activated surface 1a of the support substrate 1.
- the amorphous layer 10 can be generated along the bonding interface between the activation surface 1a of the supporting substrate 1 and the bonding layer 2B. .
- the surface 4b of the piezoelectric material substrate 4 of the bonded body 1 is further polished to reduce the thickness of the piezoelectric material substrate 4A as shown in FIG. obtain.
- 4c is a polishing surface.
- the acoustic wave element 7 is manufactured by forming a predetermined electrode 6 on the polished surface 4c of the piezoelectric material substrate 4A.
- the intermediate layer 11 is provided between the piezoelectric material substrate 4 and the bonding layers 2, 2A and 2B.
- the intermediate layer 11 and the bonding layer 2 are sequentially formed on the main surface 4 a of the piezoelectric material substrate 4.
- the surface 2a of the bonding layer 2 is irradiated with a neutralizing beam as indicated by an arrow A, and the surface of the bonding layer 2A is activated to form an activation surface 2b.
- the main surface 1a of the supporting substrate 1 is activated by irradiating it with the neutralizing beam A, and the supporting substrate 1 having the activated surface is obtained.
- 1b is a main surface opposite to the activation surface.
- a bonded body 15 is obtained by directly bonding the activated surface of the bonding layer and the activated surface 1a of the support substrate 1.
- the amorphous layer 10 can be generated along the bonding interface between the activation surface 1a of the supporting substrate 1 and the bonding layer 2B. .
- the surface 2b of the piezoelectric material substrate 2 of the bonded body 1 is further polished to reduce the thickness of the piezoelectric material substrate 4A as shown in FIG. obtain.
- 4c is a polishing surface.
- the acoustic wave element 17 is manufactured by forming a predetermined electrode 9 on the polished surface 4c of the piezoelectric material substrate 4A.
- the supporting substrate is made of metal oxide.
- the metal oxide may be a single metal oxide or a composite oxide of a plurality of kinds of metals.
- This metal oxide is preferably selected from the group consisting of sialon, sapphire, cordierite, mullite and alumina.
- the alumina is preferably translucent alumina.
- the relative density of the supporting substrate is preferably 95.5% or more, and may be 100%. Relative density is measured by the Archimedes method.
- the method for manufacturing the supporting substrate is not particularly limited, but a sintered body is preferable.
- Sialon is a ceramic obtained by sintering a mixture of silicon nitride and alumina, and has the following composition. Si 6-z Al z O z N 8-z That is, sialon has a composition in which alumina is mixed in silicon nitride, and z represents the mixing ratio of alumina. More preferably, z is 0.5 or more. Further, z is more preferably 4.0 or less.
- Sapphire is a single crystal having a composition of Al 2 O 3
- alumina is a polycrystal having a composition of Al 2 O 3
- Cordierite is a ceramic having a composition of 2MgO ⁇ 2Al2O3 ⁇ 5SiO2.
- Mullite is a ceramic having a composition in the range of 3Al 2 O 3 ⁇ 2SiO 2 ⁇ 2Al 2 O 3 ⁇ SiO 2.
- the material of the piezoelectric material substrate is not limited as long as it has necessary piezoelectricity, but a single crystal having a composition of LiAO 3 is preferable.
- A is one or more elements selected from the group consisting of niobium and tantalum. Therefore, LiAO 3 may be lithium niobate, lithium tantalate, or a lithium niobate-lithium tantalate solid solution.
- a bonding layer provided between the supporting substrate and the piezoelectric material substrate which has a composition of Si (1-x) O x (0.008 ⁇ x ⁇ 0.408), is formed.
- the bonding layer made of the silicon oxide Si (1-x) O x having such a composition the insulating property of the bonding layer can be increased.
- x is set to 0.008 or more, preferably 0.010 or more, more preferably 0.020 or more, and particularly preferably 0.024 or more. Further, when x is larger than 0.408, the bonding strength is lowered and the piezoelectric material substrate is easily peeled off. Therefore, x is set to 0.408 or less, and more preferably 0.225 or less.
- the electrical resistivity of the bonding layer is preferably 4.8 ⁇ 10 3 ⁇ ⁇ cm or more, more preferably 5.8 ⁇ 10 3 ⁇ ⁇ cm or more, and 6.2 ⁇ 10 3 ⁇ ⁇ cm or more. Is particularly preferable.
- the electrical resistivity of the bonding layer is generally 1.0 ⁇ 10 8 ⁇ ⁇ cm or less.
- the thickness of the bonding layer is not particularly limited, it is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 0.5 ⁇ m from the viewpoint of manufacturing cost.
- the method for forming the bonding layer is not limited, but examples thereof include a sputtering method, a chemical vapor deposition method (CVD), and vapor deposition.
- CVD chemical vapor deposition method
- Specific manufacturing conditions of the bonding layer are appropriately selected because they depend on chamber specifications, but in the preferred example, the total pressure is 0.28 to 0.34 Pa and the oxygen partial pressure is 1.2 ⁇ 10 ⁇ 3 to 5.7 ⁇ .
- the temperature is set to 10 ⁇ 2 Pa and the film forming temperature is set to room temperature.
- B-doped Si can be exemplified as the Si target.
- the amount of B (boron) as an impurity at the interface between the bonding layer and the supporting substrate 1 is controlled to be about 5 ⁇ 10 18 atoms / cm 3 to 5 ⁇ 10 19 atoms / cm 3. is doing. As a result, the insulating property of the bonding layer can be more reliably ensured.
- the activation surface of the bonding layer and the activation surface of the supporting substrate are directly bonded.
- the arithmetic mean roughness Ra of the activated surface of the bonding layer is preferably 1 nm or less, more preferably 0.3 nm or less.
- the arithmetic mean roughness Ra of the activated surface of the support substrate is preferably 1 nm or less, more preferably 0.3 nm or less. This further improves the bonding strength between the supporting substrate and the bonding layer.
- the bonded body of the present invention further includes an amorphous layer formed between the bonding layer and the supporting substrate, and the oxygen ratio in the amorphous layer is higher than the oxygen ratio in the supporting substrate. That is, although an amorphous layer is formed along the activation surface of the supporting substrate, the oxygen diffusion in this amorphous layer progresses so that it is higher than the oxygen ratio of the metal oxide forming the supporting substrate. It was found that the oxygen ratio in the crystalline layer may be higher. Moreover, when the diffusion of oxygen progresses in this way, the bonding strength of the piezoelectric material substrate to the supporting substrate increases, and even when the piezoelectric material substrate is thinned by processing, the piezoelectric material substrate is peeled off. I found that is hard to occur.
- the composition of the amorphous layer is mainly composed of the metal constituting the supporting substrate, oxygen (O) and argon (Ar).
- the composition of the amorphous layer is such that silicon (Si), aluminum (Al), nitrogen (N), oxygen (O), and argon (Ar) that form the supporting substrate.
- the main component "Containing as a main component” means that the total atomic ratio of these atoms is 95 atomic% or more when the total atomic ratio is 100 atomic%, and is 97 atomic% or more. Is more preferable.
- the composition of the amorphous layer is the same as the composition of the material of the supporting substrate, the oxygen ratio is higher than that of the material of the supporting substrate, and it contains argon.
- the oxygen ratio in the amorphous layer is higher than the oxygen ratio in the supporting substrate.
- the difference in oxygen ratio is preferably 0.5 atom% or more, and more preferably 1.0 atom% or more. Further, in reality, it is preferable that the difference in oxygen ratio is 7.0 atomic% or less.
- the atomic ratio of argon (Ar) in the amorphous layer is preferably 1.0 atom% or more, and more preferably 1.5 atom% or more.
- the atomic ratio of argon (Ar) in the amorphous layer is preferably 5.0 atom% or less, more preferably 4.8 atom% or less.
- the material of the intermediate layer is not particularly limited as long as it is a material that bonds to the bonding layer and the piezoelectric material substrate, but SiO 2 , Ta 2 O 5 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 3 , Bi 2 O. 3 , Al 2 O 3 , MgO, AlN, and Si 3 N 4 are preferable.
- the material of the intermediate layer is preferably a high sonic velocity material.
- the sound velocity of such a high sonic material is preferably 6000 m / s or more, more preferably 10,000 m / s or more.
- There is no particular upper limit to the sound velocity of the material of the intermediate layer but in practice it is difficult to exceed 30000 m / s, so it is often 30000 m / s or less, and even 25000 m / s or less.
- Examples of such a high sonic velocity material include AlN and Si 3 N 4 .
- the sound velocity of the material is calculated from the density (JIS C2141), Young's modulus (JIS R1602), and Poisson's ratio (JIS R1602) measured by the JIS method.
- the material of the intermediate layer is preferably a high heat conductive material.
- the thermal conductivity of such a high thermal conductive material is preferably 100 W / (mK) or more, more preferably 900 W / (mK) or more, and 1000 W / (mK). Particularly preferred.
- There is no particular upper limit on the thermal conductivity of the material of the intermediate layer but in reality it is difficult to exceed 5000 W / (mK), so 5000 W / (mK) or less, or even 3000 W / (mK).
- Examples of such a high heat conductive material include AlN and Si 3 N 4 .
- the thermal conductivity of the material shall be measured according to JIS R1611.
- the application of the bonded body of the present invention is not particularly limited, and can be suitably applied to, for example, an acoustic wave element or an optical element.
- acoustic wave devices surface acoustic wave devices, Lamb wave devices, thin film resonators (FBARs), etc. are known.
- an IDT (Interdigital Transducer) electrode also called a comb-shaped electrode or a comb-shaped electrode
- an electric field is generated between the electrodes, a surface acoustic wave is excited, and propagates on the piezoelectric material substrate. Then, the propagated surface acoustic wave can be taken out as an electric signal from the output-side IDT electrode provided in the propagation direction.
- the piezoelectric material substrate may have a metal film on the bottom surface.
- the metal film plays a role of increasing the electromechanical coupling coefficient in the vicinity of the back surface of the piezoelectric material substrate when a Lamb wave element is manufactured as an acoustic wave device.
- the Lamb wave element has a structure in which the comb-teeth electrode is formed on the surface of the piezoelectric material substrate and the metal film of the piezoelectric material substrate is exposed by the cavity provided in the supporting substrate.
- Examples of the material of such a metal film include aluminum, aluminum alloy, copper, gold and the like.
- the bottom surface of the piezoelectric material substrate may have a metal film and an insulating film.
- the metal film plays a role of an electrode when a thin film resonator is manufactured as an acoustic wave device.
- the thin film resonator has a structure in which electrodes are formed on the front and back surfaces of the piezoelectric material substrate and the insulating film serves as a cavity to expose the metal film of the piezoelectric material substrate.
- Examples of the material of such a metal film include molybdenum, ruthenium, tungsten, chromium, aluminum and the like.
- examples of the material of the insulating film include silicon dioxide, phosphorus silica glass, boron phosphorus silica glass, and the like.
- examples of the optical element include an optical switching element, a wavelength conversion element, and an optical modulation element.
- examples of the optical element include an optical switching element, a wavelength conversion element, and an optical modulation element.
- a periodic domain inversion structure can be formed in the piezoelectric material substrate.
- the object of the present invention is an acoustic wave device and the material of the piezoelectric material substrate is lithium tantalate, 36 to 47 from the Y axis to the Z axis around the X axis which is the propagation direction of the surface acoustic wave. It is preferable to use the direction rotated by (for example, 42 °) because propagation loss is small.
- the piezoelectric material substrate is made of lithium niobate
- the piezoelectric material substrate should be rotated by 60 to 68 ° (eg, 64 °) from the Y axis to the Z axis about the X axis which is the propagation direction of the surface acoustic wave. It is preferable to use it because the propagation loss is small.
- the size of the piezoelectric material substrate is not particularly limited, but is, for example, 50 to 150 mm in diameter and 0.2 to 60 ⁇ m in thickness.
- the surface of the bonding layer and the surface of the supporting substrate are flattened to obtain a flat surface.
- a method for flattening each surface there are lap polishing, chemical mechanical polishing (CMP), and the like.
- the flat surface preferably has Ra ⁇ 1 nm, and more preferably 0.3 nm or less.
- Methods for cleaning the surface include wet cleaning, dry cleaning, and scrub cleaning. Scrub cleaning is preferable in order to obtain a clean surface easily and efficiently. In this case, it is particularly preferable to use Sunwash LH540 as a cleaning liquid and then to wash with a scrubbing machine using a mixed solution of acetone and IPA.
- each flat surface is activated by irradiating the surface of the bonding layer and the surface of the supporting substrate with a neutralizing beam.
- the surface activation is performed by the neutralizing beam
- the atomic species forming the beam are preferably an inert gas (argon, nitrogen, etc.).
- the voltage upon activation by beam irradiation is preferably 0.5 to 2.0 kV, and the current is preferably 50 to 200 mA.
- the temperature at this time is room temperature, but specifically, it is preferably 40 ° C. or lower, more preferably 30 ° C. or lower. Moreover, the temperature at the time of joining is particularly preferably 20 ° C. or higher and 25 ° C. or lower. The pressure at the time of joining is preferably 100 to 20000N.
- Examples 1, 2, 3 and Comparative Examples 1, 2 According to the method described with reference to FIGS. 1 and 2, the bonded bodies 5 and 5A of each example shown in Tables 1 and 2 were produced. Specifically, a lithium tantalate substrate (LT substrate) having an OF portion, a diameter of 4 inches, and a thickness of 250 ⁇ m was used as the piezoelectric material substrate 4.
- the LT substrate has a propagation direction of a surface acoustic wave (SAW) as X and a cutting angle of 46 ° Y-cut X-propagation L which is a rotating Y-cut plate.
- a T substrate was used.
- the surface 4a of the piezoelectric material substrate 4 was mirror-polished so that the arithmetic average roughness Ra was 0.3 nm.
- Ra is measured by an atomic force microscope (AFM) in a visual field of 10 ⁇ m ⁇ 10 ⁇ m.
- the bonding layer 2 was formed on the surface 4a of the piezoelectric material substrate 4 by the DC sputtering method. Boron-doped Si was used as the target. Also, oxygen gas was introduced as an oxygen source. At this time, by changing the oxygen gas introduction amount, the total pressure of the atmosphere in the chamber and the oxygen partial pressure were changed, thereby changing the oxygen ratio of the bonding layer 2.
- the thickness of the bonding layer 2 was 100 to 200 nm.
- the arithmetic average roughness Ra of the surface 2a of the bonding layer 2 was 0.2 to 0.6 nm.
- the bonding layer 2 was subjected to chemical mechanical polishing (CMP) to have a film thickness of 80 to 190 nm and Ra of 0.08 to 0.4 nm.
- CMP chemical mechanical polishing
- the surfaces 1a and 1b of the support substrate 1 are finished by chemical mechanical polishing (CMP), and each arithmetic average roughness Ra is 0.2 nm.
- the flat surface 2b of the bonding layer 2A and the surface 1a of the supporting substrate 1 were washed and cleaned to remove the dirt, and then introduced into a vacuum chamber.
- the bonding surfaces 1 a and 2 b of each substrate were irradiated with a high-speed atomic beam (accelerating voltage 1 kV, Ar flow rate 27 sccm) for 120 seconds.
- the beam irradiation surface (activation surface) 2b of the bonding layer 2A and the activation surface 1a of the support substrate 1 were brought into contact with each other, and then pressure was applied for 2 minutes at 10,000 N to bond them (see FIG. 2 (a)).
- the obtained bonded body 5 of each example was heated at 100 ° C. for 20 hours.
- the surface 4b of the piezoelectric material substrate 4 was ground and polished so that the thickness was changed from the initial 250 ⁇ m to 1 ⁇ m (see FIG. 2B).
- FIB Frecused Ion Beam
- Elemental analysis by EDS was performed using the following apparatus to measure the ratio of oxygen atoms and argon atoms in the bonding layer, the supporting substrate, and the amorphous layer.
- measuring device Perform elemental analysis using an elemental analyzer (JEOL JEM-ARM200F).
- Measurement condition The sample thinned by the FIB (Focused Ion Beam) method is observed at an acceleration voltage of 200 kV.
- joint strength The joint strength of the joint bodies 5 and 5A of each example was measured by the crack opening method. However, when the bonding strength exceeds 1.75 J / m 2 , peeling does not occur in the vicinity of the bonding layer 2B and the bonded bodies 5 and 5A undergo bulk breakage.
- Example 4 Comparative Example 3
- the material of the supporting substrate was changed to sapphire, and the FAB irradiation amount was also changed.
- Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 3.
- Example 3 the oxygen ratio in the amorphous layer was slightly lower than the oxygen ratio in the supporting substrate, but the bonding strength was low.
- Example 4 the oxygen ratio in the amorphous layer was higher than the oxygen ratio in the supporting substrate, but the bonding strength was significantly improved, and peeling did not occur during polishing of the piezoelectric material substrate.
- Example 5 Comparative Example 4
- the material of the supporting substrate was changed to cordierite, and the FAB irradiation amount was also changed.
- Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 4.
- Example 4 the oxygen ratio in the amorphous layer was the same as the oxygen ratio in the supporting substrate, but the bonding strength was low.
- Example 5 the oxygen ratio in the amorphous layer was higher than the oxygen ratio in the supporting substrate, but the bonding strength was remarkably improved, and peeling did not occur during polishing of the piezoelectric material substrate.
- Example 6 Comparative Example 5
- the material of the supporting substrate was changed to mullite, and the FAB irradiation amount was also changed.
- Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 5.
- Example 5 the oxygen ratio in the amorphous layer was slightly lower than the oxygen ratio in the supporting substrate, but the bonding strength was low.
- Example 6 the oxygen ratio in the amorphous layer was higher than that in the supporting substrate, but the bonding strength was remarkably improved, and peeling did not occur during polishing of the piezoelectric material substrate.
- Example 7 Comparative Example 6
- the material of the supporting substrate was changed to translucent alumina, and the FAB irradiation amount was also changed.
- Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 6.
- Example 6 the oxygen ratio in the amorphous layer was slightly lower than the oxygen ratio in the supporting substrate, but the bonding strength was low.
- Example 7 the oxygen ratio in the amorphous layer was higher than the oxygen ratio in the supporting substrate, but the bonding strength was remarkably improved, and peeling did not occur during polishing of the piezoelectric material substrate.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
金属酸化物からなる支持基板、
圧電性材料基板、
前記支持基板と前記圧電性材料基板との間に設けられた接合層であって、がSi(1-x)Ox(0.008≦x≦0.408)の組成を有する接合層、および
前記接合層と前記支持基板との間に設けられた非晶質層を備えており、前記非晶質層における酸素比率が、前記支持基板における酸素比率よりも高いことを特徴とする。
図1、図2は、支持基板を圧電性材料基板に直接接合する製造例を説明するための模式図である。
Si6-zAlzOzN8-z
すなわち、サイアロンは、窒化珪素中にアルミナが混合された組成を有しており、zがアルミナの混合比率を示している。zは、0.5以上が更に好ましい。また、zは、4.0以下が更に好ましい。
接合層の成膜方法は限定されないが、スパッタリング(sputtering)法、化学的気相成長法(CVD)、蒸着を例示できる。ここで、特に好ましくは、スパッタターゲットをSiとした反応性スパッタリングの際に、チャンバー内に流す酸素ガス量を調整することによって、接合層の酸素比率(x)をコントロールすることが可能である。
本発明の接合体の用途は特に限定されず、例えば、弾性波素子や光学素子に好適に適用できる。
また圧電性材料基板がニオブ酸リチウムからなる場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に60~68°(例えば64°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。更に、圧電性材料基板の大きさは、特に限定されないが、例えば、直径50~150mm,厚さが0.2~60μmである。
まず、接合層の表面、支持基板の表面(接合面)を平坦化して平坦面を得る。ここで、各表面を平坦化する方法は、ラップ(lap)研磨、化学機械研磨加工(CMP)などがある。また、平坦面は、Ra≦1nmが好ましく、0.3nm以下にすると更に好ましい。
次いで、研磨剤の残渣や加工変質層の除去のため、接合層、支持基板の表面を洗浄する。表面を洗浄する方法は、ウエット洗浄、ドライ洗浄、スクラブ洗浄などがあるが、簡便かつ効率的に清浄表面を得るためには、スクラブ洗浄が好ましい。この際には、洗浄液としてサンウオッシュLH540を用いた後に、アセトンとIPAの混合溶液を用いてスクラブ洗浄機にて洗浄することが特に好ましい。
ビーム照射による活性化時の電圧は0.5~2.0kVとすることが好ましく、電流は50~200mAとすることが好ましい。
図1および図2を参照しつつ説明した方法に従って、表1、表2に示す各例の接合体5、5Aを作製した。
具体的には、OF部を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を、圧電性材料基板4として使用した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬L
T基板を用いた。圧電性材料基板4の表面4aは、算術平均粗さRaが0.3nmとなるように鏡面研磨しておいた。ただし、Raは、原子間力顕微鏡(AFM)によって10μm×10μmの視野で測定する。
次いで、圧電性材料基板4の表面4bを厚みが当初の250μmから1μmになるように研削及び研磨した(図2(b)参照)。
(非晶質層の確認)
非晶質層の存在は以下のようにして観察した。
測定装置:
透過型電子顕微鏡(日立ハイテクノロジーズ製 H-9500)を用いて微構造観察する。
測定条件:
FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kVにて観察する。
以下の装置を用い、EDS(エネルギー分散型X線分光器)による元素分析を行い、接合層、支持基板、非晶質層中の酸素原子、アルゴン原子の比率を測定した。
測定装置:
元素分析装置(日本電子 JEM-ARM200F)を用いて元素分析を行う。
測定条件:
FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kVにて観察する。
各例の接合体5、5Aについて、クラックオープニング法によって接合強度を測定した。ただし、接合強度が1.75J/m2を超えると、接合層2B付近での剥離が生じず、接合体5、5Aがバルク破壊を起こす。
実施例1、2、3では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、いずれも接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
実施例1において、支持基板の材質をサファイアに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表3に示す。
実施例4では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
実施例1において、支持基板の材質をコージェライトに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表4に示す。
実施例5では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
実施例1において、支持基板の材質をムライトに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表5に示す。
実施例6では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
実施例1において、支持基板の材質を透光性アルミナに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表6に示す。
実施例7では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
Claims (5)
- 金属酸化物からなる支持基板、
圧電性材料基板、
前記支持基板と前記圧電性材料基板との間に設けられた接合層であって、Si(1-x)Ox(0.008≦x≦0.408)の組成を有する接合層、および
前記接合層と前記支持基板との間に設けられた非晶質層を備えており、前記非晶質層における酸素比率が、前記支持基板における酸素比率よりも高いことを特徴とする、接合体。 - 前記金属酸化物が、サイアロン、サファイア、コージェライト、ムライトおよびアルミナからなる群より選ばれることを特徴とする、請求項1記載の接合体。
- 前記圧電性材料基板が、ニオブ酸リチウム、タンタル酸リチウムおよびニオブ酸リチウム-タンタル酸リチウム固溶体からなる群より選ばれることを特徴とする、請求項1または2記載の接合体。
- 前記接合層と前記圧電性材料基板との間に設けられた中間層を備えていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の接合体。
- 請求項1~4のいずれか一つの請求項に記載の接合体、および
前記圧電性材料基板上に設けられた電極
を備えていることを特徴とする、弾性波素子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019004571.7T DE112019004571T5 (de) | 2018-10-17 | 2019-08-23 | Verbundener Körper und Akustikwellenelement |
CN201980067455.6A CN112868178A (zh) | 2018-10-17 | 2019-08-23 | 接合体及弹性波元件 |
KR1020217011211A KR102596121B1 (ko) | 2018-10-17 | 2019-08-23 | 접합체 및 탄성파 소자 |
JP2020552558A JP7133031B2 (ja) | 2018-10-17 | 2019-08-23 | 接合体および弾性波素子 |
US17/231,162 US11984870B2 (en) | 2018-10-17 | 2021-04-15 | Bonded body and acoustic wave element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-195657 | 2018-10-17 | ||
JP2018195657 | 2018-10-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/231,162 Continuation US11984870B2 (en) | 2018-10-17 | 2021-04-15 | Bonded body and acoustic wave element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020079958A1 true WO2020079958A1 (ja) | 2020-04-23 |
Family
ID=70284558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033089 WO2020079958A1 (ja) | 2018-10-17 | 2019-08-23 | 接合体および弾性波素子 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11984870B2 (ja) |
JP (1) | JP7133031B2 (ja) |
KR (1) | KR102596121B1 (ja) |
CN (1) | CN112868178A (ja) |
DE (1) | DE112019004571T5 (ja) |
TW (1) | TWI829762B (ja) |
WO (1) | WO2020079958A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220127927A (ko) * | 2021-03-10 | 2022-09-20 | 엔지케이 인슐레이터 엘티디 | 접합체 |
WO2023182246A1 (ja) * | 2022-03-23 | 2023-09-28 | 京セラ株式会社 | 接合基板 |
WO2024106120A1 (ja) * | 2022-11-14 | 2024-05-23 | 株式会社村田製作所 | 弾性波装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023078587A (ja) * | 2021-11-26 | 2023-06-07 | I-PEX Piezo Solutions株式会社 | 膜構造体及びその製造方法 |
US11463070B2 (en) * | 2022-01-18 | 2022-10-04 | Shenzhen Newsonic Technologies Co., Ltd. | FBAR structure and manufacturing method of same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004343359A (ja) * | 2003-05-14 | 2004-12-02 | Fujitsu Media Device Kk | 弾性表面波素子の製造方法 |
WO2017134980A1 (ja) * | 2016-02-02 | 2017-08-10 | 信越化学工業株式会社 | 複合基板および複合基板の製造方法 |
WO2018180827A1 (ja) * | 2017-03-31 | 2018-10-04 | 日本碍子株式会社 | 接合体および弾性波素子 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5814727U (ja) | 1981-07-22 | 1983-01-29 | 川辺 史郎 | 部品の取り付け構造 |
US7105980B2 (en) | 2002-07-03 | 2006-09-12 | Sawtek, Inc. | Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics |
JP4442671B2 (ja) * | 2007-09-21 | 2010-03-31 | セイコーエプソン株式会社 | 接合膜付き基材、接合方法および接合体 |
CN102624352B (zh) | 2010-10-06 | 2015-12-09 | 日本碍子株式会社 | 复合基板的制造方法以及复合基板 |
JP5835329B2 (ja) * | 2011-07-29 | 2015-12-24 | 株式会社村田製作所 | 圧電デバイス、および、圧電デバイスの製造方法 |
JP2014086400A (ja) | 2012-10-26 | 2014-05-12 | Mitsubishi Heavy Ind Ltd | 高速原子ビーム源およびそれを用いた常温接合装置 |
JP2014200040A (ja) * | 2013-03-29 | 2014-10-23 | セイコーエプソン株式会社 | 振動片の周波数調整方法、振動子の製造方法、振動片、発振器、電子機器および移動体 |
WO2017163729A1 (ja) * | 2016-03-25 | 2017-09-28 | 日本碍子株式会社 | 接合体および弾性波素子 |
CN109475699B (zh) | 2016-07-14 | 2021-11-05 | 赛诺菲-安万特德国有限公司 | 具有受控的针护罩和盖套筒的药物输送装置 |
JP6621384B2 (ja) * | 2016-07-20 | 2019-12-18 | 信越化学工業株式会社 | 弾性表面波デバイス用複合基板の製造方法 |
US11595019B2 (en) * | 2018-04-20 | 2023-02-28 | Taiyo Yuden Co., Ltd. | Acoustic wave resonator, filter, and multiplexer |
-
2019
- 2019-08-23 CN CN201980067455.6A patent/CN112868178A/zh active Pending
- 2019-08-23 DE DE112019004571.7T patent/DE112019004571T5/de active Pending
- 2019-08-23 WO PCT/JP2019/033089 patent/WO2020079958A1/ja active Application Filing
- 2019-08-23 JP JP2020552558A patent/JP7133031B2/ja active Active
- 2019-08-23 KR KR1020217011211A patent/KR102596121B1/ko active IP Right Grant
- 2019-09-23 TW TW108134155A patent/TWI829762B/zh active
-
2021
- 2021-04-15 US US17/231,162 patent/US11984870B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004343359A (ja) * | 2003-05-14 | 2004-12-02 | Fujitsu Media Device Kk | 弾性表面波素子の製造方法 |
WO2017134980A1 (ja) * | 2016-02-02 | 2017-08-10 | 信越化学工業株式会社 | 複合基板および複合基板の製造方法 |
WO2018180827A1 (ja) * | 2017-03-31 | 2018-10-04 | 日本碍子株式会社 | 接合体および弾性波素子 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220127927A (ko) * | 2021-03-10 | 2022-09-20 | 엔지케이 인슐레이터 엘티디 | 접합체 |
KR102539925B1 (ko) | 2021-03-10 | 2023-06-02 | 엔지케이 인슐레이터 엘티디 | 접합체 |
WO2023182246A1 (ja) * | 2022-03-23 | 2023-09-28 | 京セラ株式会社 | 接合基板 |
WO2024106120A1 (ja) * | 2022-11-14 | 2024-05-23 | 株式会社村田製作所 | 弾性波装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112019004571T5 (de) | 2021-06-02 |
US20210234529A1 (en) | 2021-07-29 |
KR102596121B1 (ko) | 2023-10-30 |
CN112868178A (zh) | 2021-05-28 |
JPWO2020079958A1 (ja) | 2021-09-02 |
KR20210058929A (ko) | 2021-05-24 |
US11984870B2 (en) | 2024-05-14 |
JP7133031B2 (ja) | 2022-09-07 |
TW202027414A (zh) | 2020-07-16 |
TWI829762B (zh) | 2024-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101972728B1 (ko) | 접합체 및 탄성파 소자 | |
WO2020079958A1 (ja) | 接合体および弾性波素子 | |
JP7069338B2 (ja) | 接合体および弾性波素子 | |
TWI737811B (zh) | 接合體 | |
JP6644208B1 (ja) | 接合体および弾性波素子 | |
KR20210006995A (ko) | 접합체 및 탄성파 소자 | |
JPWO2019188350A1 (ja) | 接合体および弾性波素子 | |
JP6621574B1 (ja) | 接合体および弾性波素子 | |
WO2021002047A1 (ja) | 接合体および弾性波素子 | |
WO2021002046A1 (ja) | 接合体および弾性波素子 | |
WO2019188325A1 (ja) | 接合体および弾性波素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19873203 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020552558 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217011211 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19873203 Country of ref document: EP Kind code of ref document: A1 |