WO2020079958A1 - 接合体および弾性波素子 - Google Patents

接合体および弾性波素子 Download PDF

Info

Publication number
WO2020079958A1
WO2020079958A1 PCT/JP2019/033089 JP2019033089W WO2020079958A1 WO 2020079958 A1 WO2020079958 A1 WO 2020079958A1 JP 2019033089 W JP2019033089 W JP 2019033089W WO 2020079958 A1 WO2020079958 A1 WO 2020079958A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
piezoelectric material
bonding layer
layer
material substrate
Prior art date
Application number
PCT/JP2019/033089
Other languages
English (en)
French (fr)
Inventor
雄大 鵜野
万佐司 後藤
知義 多井
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020217011211A priority Critical patent/KR102596121B1/ko
Priority to JP2020552558A priority patent/JP7133031B2/ja
Priority to CN201980067455.6A priority patent/CN112868178A/zh
Priority to DE112019004571.7T priority patent/DE112019004571T5/de
Publication of WO2020079958A1 publication Critical patent/WO2020079958A1/ja
Priority to US17/231,162 priority patent/US11984870B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers

Definitions

  • the present invention relates to a bonded body of a piezoelectric material substrate and a support substrate made of a metal oxide.
  • acoustic wave devices that can function as filter elements and oscillators used in mobile phones, acoustic wave devices such as Lamb wave elements and thin film resonators (FBARs) using piezoelectric thin films (FBAR: Film Bulk Acoustic Resonator) are known.
  • FBAR thin film resonators
  • FBAR Film Bulk Acoustic Resonator
  • an acoustic wave device there is known an acoustic wave device in which a supporting substrate and a piezoelectric substrate for propagating a surface acoustic wave are bonded to each other, and a comb-shaped electrode capable of exciting the surface acoustic wave is provided on the surface of the piezoelectric substrate.
  • Patent Document 2 epoxy-based and acrylic-based resins are used for the filling layer and the adhesive layer, and by making the bonding surface of the piezoelectric substrate a rough surface, the reflection of bulk waves is suppressed and spurious is reduced. There is.
  • FAB Fast Atom Beam
  • Patent Document 4 describes that the piezoelectric material substrate is directly bonded to the support substrate made of ceramics (alumina, aluminum nitride, silicon nitride) instead of the silicon substrate via the intermediate layer.
  • the material of this intermediate layer is silicon, silicon oxide, silicon nitride, or aluminum nitride.
  • a bonding layer having a high insulating property is formed by making the composition of the bonding layer a silicon oxide having a low oxygen ratio (Patent Document 5).
  • An object of the present invention is to firmly and stably bond a piezoelectric material substrate on a supporting substrate made of metal oxide via a bonding layer made of silicon oxide having a low oxygen ratio.
  • the present invention is A supporting substrate made of a metal oxide, Piezoelectric material substrate, A bonding layer provided between the support substrate and the piezoelectric material substrate, wherein the bonding layer has a composition of Si (1-x) O x (0.008 ⁇ x ⁇ 0.408), and An amorphous layer is provided between the bonding layer and the supporting substrate, and an oxygen ratio in the amorphous layer is higher than an oxygen ratio in the supporting substrate.
  • the present invention also relates to an acoustic wave device, characterized by comprising the above-mentioned bonded body and an electrode provided on a piezoelectric material substrate.
  • a piezoelectric material substrate can be firmly and stably bonded onto a supporting substrate made of a metal oxide via a bonding layer made of a silicon oxide having a low oxygen ratio.
  • (A) shows a state in which the bonding layer 2 is provided on the piezoelectric material substrate 4, (b) shows a state in which the surface 2b of the bonding layer 2A is activated by the neutralizing beam A, (c). Shows the state where the surface 1a of the support substrate 1 is activated by the neutralizing beam A.
  • (A) shows a state in which the piezoelectric material substrate 4 and the support substrate 1 are bonded together, (b) shows a state in which the piezoelectric material substrate 4A is thinned by processing, and (c) shows the piezoelectric material substrate 4A. The state where the electrode 6 is provided on the upper side is shown.
  • (A) shows a state in which the intermediate layer 11 and the bonding layer 2 are provided on the piezoelectric material substrate 4, and (b) shows a state in which the surface 2b of the bonding layer 2A is activated by the neutralizing beam A.
  • (C) show a state in which the surface 1a of the supporting substrate 1 is activated by the neutralizing beam A.
  • (A) shows a state in which the piezoelectric material substrate 4 and the support substrate 1 are bonded together,
  • (b) shows a state in which the piezoelectric material substrate 4A is thinned by processing, and
  • (c) shows the piezoelectric material substrate 4A. The state where the electrode 6 is provided on the upper side is shown.
  • 1 and 2 are schematic diagrams for explaining a manufacturing example in which a supporting substrate is directly bonded to a piezoelectric material substrate.
  • the bonding layer 2 is formed on the main surface 4 a of the piezoelectric material substrate 4.
  • Reference numeral 4b is a main surface on the opposite side of the piezoelectric material substrate 4.
  • the surface 2a of the bonding layer 2 is irradiated with a neutralizing beam as indicated by an arrow A to activate the surface of the bonding layer 2 to form an activation surface 2b.
  • the main surface 1a of the supporting substrate 1 is irradiated with the neutralizing beam A to be activated, and the supporting substrate 1 having the activated surface is obtained.
  • 1b is a main surface opposite to the activation surface.
  • a bonded body 5 is obtained by directly bonding the activated surface of the bonding layer and the activated surface 1a of the support substrate 1.
  • the amorphous layer 10 can be generated along the bonding interface between the activation surface 1a of the supporting substrate 1 and the bonding layer 2B. .
  • the surface 4b of the piezoelectric material substrate 4 of the bonded body 1 is further polished to reduce the thickness of the piezoelectric material substrate 4A as shown in FIG. obtain.
  • 4c is a polishing surface.
  • the acoustic wave element 7 is manufactured by forming a predetermined electrode 6 on the polished surface 4c of the piezoelectric material substrate 4A.
  • the intermediate layer 11 is provided between the piezoelectric material substrate 4 and the bonding layers 2, 2A and 2B.
  • the intermediate layer 11 and the bonding layer 2 are sequentially formed on the main surface 4 a of the piezoelectric material substrate 4.
  • the surface 2a of the bonding layer 2 is irradiated with a neutralizing beam as indicated by an arrow A, and the surface of the bonding layer 2A is activated to form an activation surface 2b.
  • the main surface 1a of the supporting substrate 1 is activated by irradiating it with the neutralizing beam A, and the supporting substrate 1 having the activated surface is obtained.
  • 1b is a main surface opposite to the activation surface.
  • a bonded body 15 is obtained by directly bonding the activated surface of the bonding layer and the activated surface 1a of the support substrate 1.
  • the amorphous layer 10 can be generated along the bonding interface between the activation surface 1a of the supporting substrate 1 and the bonding layer 2B. .
  • the surface 2b of the piezoelectric material substrate 2 of the bonded body 1 is further polished to reduce the thickness of the piezoelectric material substrate 4A as shown in FIG. obtain.
  • 4c is a polishing surface.
  • the acoustic wave element 17 is manufactured by forming a predetermined electrode 9 on the polished surface 4c of the piezoelectric material substrate 4A.
  • the supporting substrate is made of metal oxide.
  • the metal oxide may be a single metal oxide or a composite oxide of a plurality of kinds of metals.
  • This metal oxide is preferably selected from the group consisting of sialon, sapphire, cordierite, mullite and alumina.
  • the alumina is preferably translucent alumina.
  • the relative density of the supporting substrate is preferably 95.5% or more, and may be 100%. Relative density is measured by the Archimedes method.
  • the method for manufacturing the supporting substrate is not particularly limited, but a sintered body is preferable.
  • Sialon is a ceramic obtained by sintering a mixture of silicon nitride and alumina, and has the following composition. Si 6-z Al z O z N 8-z That is, sialon has a composition in which alumina is mixed in silicon nitride, and z represents the mixing ratio of alumina. More preferably, z is 0.5 or more. Further, z is more preferably 4.0 or less.
  • Sapphire is a single crystal having a composition of Al 2 O 3
  • alumina is a polycrystal having a composition of Al 2 O 3
  • Cordierite is a ceramic having a composition of 2MgO ⁇ 2Al2O3 ⁇ 5SiO2.
  • Mullite is a ceramic having a composition in the range of 3Al 2 O 3 ⁇ 2SiO 2 ⁇ 2Al 2 O 3 ⁇ SiO 2.
  • the material of the piezoelectric material substrate is not limited as long as it has necessary piezoelectricity, but a single crystal having a composition of LiAO 3 is preferable.
  • A is one or more elements selected from the group consisting of niobium and tantalum. Therefore, LiAO 3 may be lithium niobate, lithium tantalate, or a lithium niobate-lithium tantalate solid solution.
  • a bonding layer provided between the supporting substrate and the piezoelectric material substrate which has a composition of Si (1-x) O x (0.008 ⁇ x ⁇ 0.408), is formed.
  • the bonding layer made of the silicon oxide Si (1-x) O x having such a composition the insulating property of the bonding layer can be increased.
  • x is set to 0.008 or more, preferably 0.010 or more, more preferably 0.020 or more, and particularly preferably 0.024 or more. Further, when x is larger than 0.408, the bonding strength is lowered and the piezoelectric material substrate is easily peeled off. Therefore, x is set to 0.408 or less, and more preferably 0.225 or less.
  • the electrical resistivity of the bonding layer is preferably 4.8 ⁇ 10 3 ⁇ ⁇ cm or more, more preferably 5.8 ⁇ 10 3 ⁇ ⁇ cm or more, and 6.2 ⁇ 10 3 ⁇ ⁇ cm or more. Is particularly preferable.
  • the electrical resistivity of the bonding layer is generally 1.0 ⁇ 10 8 ⁇ ⁇ cm or less.
  • the thickness of the bonding layer is not particularly limited, it is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 0.5 ⁇ m from the viewpoint of manufacturing cost.
  • the method for forming the bonding layer is not limited, but examples thereof include a sputtering method, a chemical vapor deposition method (CVD), and vapor deposition.
  • CVD chemical vapor deposition method
  • Specific manufacturing conditions of the bonding layer are appropriately selected because they depend on chamber specifications, but in the preferred example, the total pressure is 0.28 to 0.34 Pa and the oxygen partial pressure is 1.2 ⁇ 10 ⁇ 3 to 5.7 ⁇ .
  • the temperature is set to 10 ⁇ 2 Pa and the film forming temperature is set to room temperature.
  • B-doped Si can be exemplified as the Si target.
  • the amount of B (boron) as an impurity at the interface between the bonding layer and the supporting substrate 1 is controlled to be about 5 ⁇ 10 18 atoms / cm 3 to 5 ⁇ 10 19 atoms / cm 3. is doing. As a result, the insulating property of the bonding layer can be more reliably ensured.
  • the activation surface of the bonding layer and the activation surface of the supporting substrate are directly bonded.
  • the arithmetic mean roughness Ra of the activated surface of the bonding layer is preferably 1 nm or less, more preferably 0.3 nm or less.
  • the arithmetic mean roughness Ra of the activated surface of the support substrate is preferably 1 nm or less, more preferably 0.3 nm or less. This further improves the bonding strength between the supporting substrate and the bonding layer.
  • the bonded body of the present invention further includes an amorphous layer formed between the bonding layer and the supporting substrate, and the oxygen ratio in the amorphous layer is higher than the oxygen ratio in the supporting substrate. That is, although an amorphous layer is formed along the activation surface of the supporting substrate, the oxygen diffusion in this amorphous layer progresses so that it is higher than the oxygen ratio of the metal oxide forming the supporting substrate. It was found that the oxygen ratio in the crystalline layer may be higher. Moreover, when the diffusion of oxygen progresses in this way, the bonding strength of the piezoelectric material substrate to the supporting substrate increases, and even when the piezoelectric material substrate is thinned by processing, the piezoelectric material substrate is peeled off. I found that is hard to occur.
  • the composition of the amorphous layer is mainly composed of the metal constituting the supporting substrate, oxygen (O) and argon (Ar).
  • the composition of the amorphous layer is such that silicon (Si), aluminum (Al), nitrogen (N), oxygen (O), and argon (Ar) that form the supporting substrate.
  • the main component "Containing as a main component” means that the total atomic ratio of these atoms is 95 atomic% or more when the total atomic ratio is 100 atomic%, and is 97 atomic% or more. Is more preferable.
  • the composition of the amorphous layer is the same as the composition of the material of the supporting substrate, the oxygen ratio is higher than that of the material of the supporting substrate, and it contains argon.
  • the oxygen ratio in the amorphous layer is higher than the oxygen ratio in the supporting substrate.
  • the difference in oxygen ratio is preferably 0.5 atom% or more, and more preferably 1.0 atom% or more. Further, in reality, it is preferable that the difference in oxygen ratio is 7.0 atomic% or less.
  • the atomic ratio of argon (Ar) in the amorphous layer is preferably 1.0 atom% or more, and more preferably 1.5 atom% or more.
  • the atomic ratio of argon (Ar) in the amorphous layer is preferably 5.0 atom% or less, more preferably 4.8 atom% or less.
  • the material of the intermediate layer is not particularly limited as long as it is a material that bonds to the bonding layer and the piezoelectric material substrate, but SiO 2 , Ta 2 O 5 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 3 , Bi 2 O. 3 , Al 2 O 3 , MgO, AlN, and Si 3 N 4 are preferable.
  • the material of the intermediate layer is preferably a high sonic velocity material.
  • the sound velocity of such a high sonic material is preferably 6000 m / s or more, more preferably 10,000 m / s or more.
  • There is no particular upper limit to the sound velocity of the material of the intermediate layer but in practice it is difficult to exceed 30000 m / s, so it is often 30000 m / s or less, and even 25000 m / s or less.
  • Examples of such a high sonic velocity material include AlN and Si 3 N 4 .
  • the sound velocity of the material is calculated from the density (JIS C2141), Young's modulus (JIS R1602), and Poisson's ratio (JIS R1602) measured by the JIS method.
  • the material of the intermediate layer is preferably a high heat conductive material.
  • the thermal conductivity of such a high thermal conductive material is preferably 100 W / (mK) or more, more preferably 900 W / (mK) or more, and 1000 W / (mK). Particularly preferred.
  • There is no particular upper limit on the thermal conductivity of the material of the intermediate layer but in reality it is difficult to exceed 5000 W / (mK), so 5000 W / (mK) or less, or even 3000 W / (mK).
  • Examples of such a high heat conductive material include AlN and Si 3 N 4 .
  • the thermal conductivity of the material shall be measured according to JIS R1611.
  • the application of the bonded body of the present invention is not particularly limited, and can be suitably applied to, for example, an acoustic wave element or an optical element.
  • acoustic wave devices surface acoustic wave devices, Lamb wave devices, thin film resonators (FBARs), etc. are known.
  • an IDT (Interdigital Transducer) electrode also called a comb-shaped electrode or a comb-shaped electrode
  • an electric field is generated between the electrodes, a surface acoustic wave is excited, and propagates on the piezoelectric material substrate. Then, the propagated surface acoustic wave can be taken out as an electric signal from the output-side IDT electrode provided in the propagation direction.
  • the piezoelectric material substrate may have a metal film on the bottom surface.
  • the metal film plays a role of increasing the electromechanical coupling coefficient in the vicinity of the back surface of the piezoelectric material substrate when a Lamb wave element is manufactured as an acoustic wave device.
  • the Lamb wave element has a structure in which the comb-teeth electrode is formed on the surface of the piezoelectric material substrate and the metal film of the piezoelectric material substrate is exposed by the cavity provided in the supporting substrate.
  • Examples of the material of such a metal film include aluminum, aluminum alloy, copper, gold and the like.
  • the bottom surface of the piezoelectric material substrate may have a metal film and an insulating film.
  • the metal film plays a role of an electrode when a thin film resonator is manufactured as an acoustic wave device.
  • the thin film resonator has a structure in which electrodes are formed on the front and back surfaces of the piezoelectric material substrate and the insulating film serves as a cavity to expose the metal film of the piezoelectric material substrate.
  • Examples of the material of such a metal film include molybdenum, ruthenium, tungsten, chromium, aluminum and the like.
  • examples of the material of the insulating film include silicon dioxide, phosphorus silica glass, boron phosphorus silica glass, and the like.
  • examples of the optical element include an optical switching element, a wavelength conversion element, and an optical modulation element.
  • examples of the optical element include an optical switching element, a wavelength conversion element, and an optical modulation element.
  • a periodic domain inversion structure can be formed in the piezoelectric material substrate.
  • the object of the present invention is an acoustic wave device and the material of the piezoelectric material substrate is lithium tantalate, 36 to 47 from the Y axis to the Z axis around the X axis which is the propagation direction of the surface acoustic wave. It is preferable to use the direction rotated by (for example, 42 °) because propagation loss is small.
  • the piezoelectric material substrate is made of lithium niobate
  • the piezoelectric material substrate should be rotated by 60 to 68 ° (eg, 64 °) from the Y axis to the Z axis about the X axis which is the propagation direction of the surface acoustic wave. It is preferable to use it because the propagation loss is small.
  • the size of the piezoelectric material substrate is not particularly limited, but is, for example, 50 to 150 mm in diameter and 0.2 to 60 ⁇ m in thickness.
  • the surface of the bonding layer and the surface of the supporting substrate are flattened to obtain a flat surface.
  • a method for flattening each surface there are lap polishing, chemical mechanical polishing (CMP), and the like.
  • the flat surface preferably has Ra ⁇ 1 nm, and more preferably 0.3 nm or less.
  • Methods for cleaning the surface include wet cleaning, dry cleaning, and scrub cleaning. Scrub cleaning is preferable in order to obtain a clean surface easily and efficiently. In this case, it is particularly preferable to use Sunwash LH540 as a cleaning liquid and then to wash with a scrubbing machine using a mixed solution of acetone and IPA.
  • each flat surface is activated by irradiating the surface of the bonding layer and the surface of the supporting substrate with a neutralizing beam.
  • the surface activation is performed by the neutralizing beam
  • the atomic species forming the beam are preferably an inert gas (argon, nitrogen, etc.).
  • the voltage upon activation by beam irradiation is preferably 0.5 to 2.0 kV, and the current is preferably 50 to 200 mA.
  • the temperature at this time is room temperature, but specifically, it is preferably 40 ° C. or lower, more preferably 30 ° C. or lower. Moreover, the temperature at the time of joining is particularly preferably 20 ° C. or higher and 25 ° C. or lower. The pressure at the time of joining is preferably 100 to 20000N.
  • Examples 1, 2, 3 and Comparative Examples 1, 2 According to the method described with reference to FIGS. 1 and 2, the bonded bodies 5 and 5A of each example shown in Tables 1 and 2 were produced. Specifically, a lithium tantalate substrate (LT substrate) having an OF portion, a diameter of 4 inches, and a thickness of 250 ⁇ m was used as the piezoelectric material substrate 4.
  • the LT substrate has a propagation direction of a surface acoustic wave (SAW) as X and a cutting angle of 46 ° Y-cut X-propagation L which is a rotating Y-cut plate.
  • a T substrate was used.
  • the surface 4a of the piezoelectric material substrate 4 was mirror-polished so that the arithmetic average roughness Ra was 0.3 nm.
  • Ra is measured by an atomic force microscope (AFM) in a visual field of 10 ⁇ m ⁇ 10 ⁇ m.
  • the bonding layer 2 was formed on the surface 4a of the piezoelectric material substrate 4 by the DC sputtering method. Boron-doped Si was used as the target. Also, oxygen gas was introduced as an oxygen source. At this time, by changing the oxygen gas introduction amount, the total pressure of the atmosphere in the chamber and the oxygen partial pressure were changed, thereby changing the oxygen ratio of the bonding layer 2.
  • the thickness of the bonding layer 2 was 100 to 200 nm.
  • the arithmetic average roughness Ra of the surface 2a of the bonding layer 2 was 0.2 to 0.6 nm.
  • the bonding layer 2 was subjected to chemical mechanical polishing (CMP) to have a film thickness of 80 to 190 nm and Ra of 0.08 to 0.4 nm.
  • CMP chemical mechanical polishing
  • the surfaces 1a and 1b of the support substrate 1 are finished by chemical mechanical polishing (CMP), and each arithmetic average roughness Ra is 0.2 nm.
  • the flat surface 2b of the bonding layer 2A and the surface 1a of the supporting substrate 1 were washed and cleaned to remove the dirt, and then introduced into a vacuum chamber.
  • the bonding surfaces 1 a and 2 b of each substrate were irradiated with a high-speed atomic beam (accelerating voltage 1 kV, Ar flow rate 27 sccm) for 120 seconds.
  • the beam irradiation surface (activation surface) 2b of the bonding layer 2A and the activation surface 1a of the support substrate 1 were brought into contact with each other, and then pressure was applied for 2 minutes at 10,000 N to bond them (see FIG. 2 (a)).
  • the obtained bonded body 5 of each example was heated at 100 ° C. for 20 hours.
  • the surface 4b of the piezoelectric material substrate 4 was ground and polished so that the thickness was changed from the initial 250 ⁇ m to 1 ⁇ m (see FIG. 2B).
  • FIB Frecused Ion Beam
  • Elemental analysis by EDS was performed using the following apparatus to measure the ratio of oxygen atoms and argon atoms in the bonding layer, the supporting substrate, and the amorphous layer.
  • measuring device Perform elemental analysis using an elemental analyzer (JEOL JEM-ARM200F).
  • Measurement condition The sample thinned by the FIB (Focused Ion Beam) method is observed at an acceleration voltage of 200 kV.
  • joint strength The joint strength of the joint bodies 5 and 5A of each example was measured by the crack opening method. However, when the bonding strength exceeds 1.75 J / m 2 , peeling does not occur in the vicinity of the bonding layer 2B and the bonded bodies 5 and 5A undergo bulk breakage.
  • Example 4 Comparative Example 3
  • the material of the supporting substrate was changed to sapphire, and the FAB irradiation amount was also changed.
  • Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 3.
  • Example 3 the oxygen ratio in the amorphous layer was slightly lower than the oxygen ratio in the supporting substrate, but the bonding strength was low.
  • Example 4 the oxygen ratio in the amorphous layer was higher than the oxygen ratio in the supporting substrate, but the bonding strength was significantly improved, and peeling did not occur during polishing of the piezoelectric material substrate.
  • Example 5 Comparative Example 4
  • the material of the supporting substrate was changed to cordierite, and the FAB irradiation amount was also changed.
  • Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 4.
  • Example 4 the oxygen ratio in the amorphous layer was the same as the oxygen ratio in the supporting substrate, but the bonding strength was low.
  • Example 5 the oxygen ratio in the amorphous layer was higher than the oxygen ratio in the supporting substrate, but the bonding strength was remarkably improved, and peeling did not occur during polishing of the piezoelectric material substrate.
  • Example 6 Comparative Example 5
  • the material of the supporting substrate was changed to mullite, and the FAB irradiation amount was also changed.
  • Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 5.
  • Example 5 the oxygen ratio in the amorphous layer was slightly lower than the oxygen ratio in the supporting substrate, but the bonding strength was low.
  • Example 6 the oxygen ratio in the amorphous layer was higher than that in the supporting substrate, but the bonding strength was remarkably improved, and peeling did not occur during polishing of the piezoelectric material substrate.
  • Example 7 Comparative Example 6
  • the material of the supporting substrate was changed to translucent alumina, and the FAB irradiation amount was also changed.
  • Others were manufactured in the same manner as in Example 1 to prepare bonded bodies 5 and 5A, and the oxygen ratio, the argon ratio and the bonding strength of each part were measured. The results are shown in Table 6.
  • Example 6 the oxygen ratio in the amorphous layer was slightly lower than the oxygen ratio in the supporting substrate, but the bonding strength was low.
  • Example 7 the oxygen ratio in the amorphous layer was higher than the oxygen ratio in the supporting substrate, but the bonding strength was remarkably improved, and peeling did not occur during polishing of the piezoelectric material substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】金属酸化物からなる支持基板上に、酸素比率の低い珪素酸化物からなる接合層を介して圧電性材料基板を強固に安定して接合することである。 【解決手段】接合体は5、5A、金属酸化物からなる支持基板1、圧電性材料基板4、4A、支持基板と圧電性材料基板との間に設けられた接合層2Bであって、Si(1-x)(0.008≦x≦0.408)の組成を有する接合層2B、および接合層と支持基板との間に設けられた非晶質層10を備える。非晶質層10における酸素比率が、支持基板1における酸素比率よりも高い。

Description

接合体および弾性波素子
 本発明は、圧電性材料基板と、金属酸化物からなる支持基板との接合体に関するものである。
 携帯電話等に使用されるフィルタ素子や発振子として機能させることができる弾性表面波デバイスや、圧電薄膜を用いたラム波素子や薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などの弾性波デバイスが知られている。こうした弾性波デバイスとしては、支持基板と弾性表面波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けたものが知られている。このように圧電基板よりも小さな熱膨張係数を持つ支持基板を圧電基板に貼付けることにより、温度が変化したときの圧電基板の大きさの変化を抑制し、弾性表面波デバイスとしての周波数特性の変化を抑制している。
 圧電基板とシリコン基板とを接合するのに際して、圧電基板表面に酸化珪素膜を形成し、酸化珪素膜を介して圧電基板とシリコン基板とを直接接合することが知られている(特許文献1)。この接合の際には、酸化珪素膜表面とシリコン基板表面とにプラズマビームを照射して表面を活性化し、直接接合を行う(プラズマ活性化法)。
 また、圧電基板の表面を粗面とし、その粗面上に充填層を設けて平坦化し、この充填層を接着層を介してシリコン基板に接着することが知られている(特許文献2)。この方法では、充填層、接着層にはエポキシ系、アクリル系の樹脂を使用しており、圧電基板の接合面を粗面にすることで、バルク波の反射を抑制し、スプリアスを低減している。
 また、いわゆるFAB(Fast Atom Beam)方式の直接接合法が知られている(特許文献3)。この方法では、中性化原子ビームを常温で各接合面に照射して活性化し、直接接合する。
 一方、特許文献4では、圧電性材料基板を、シリコン基板ではなく、セラミックス(アルミナ、窒化アルミニウム、窒化珪素)からなる支持基板に対して、中間層を介して直接接合することが記載されている。この中間層の材質は、珪素、酸化珪素、窒化珪素、窒化アルミニウムとされている。
米国特許第7213314B2 特許第5814727 特開2014-086400 特許第3774782 PCT/JP2018/011256
 接合体の用途によっては、接合層における電気抵抗を高くすることで絶縁性を高めることが望まれている。例えば、弾性波素子の場合には、接合層の絶縁性を高くすることで、ノイズや損失を低減できる。このため、本出願人は、接合層の組成を酸素比率の低い珪素酸化物とすることによって、絶縁性の高い接合層を形成することを開示した(特許文献5)。
 しかし、金属酸化物からなる支持基板上に、酸素比率の低い珪素酸化物からなる接合層を介して圧電性材料基板を強固に安定して接合することは困難な場合があり、圧電性材料基板を研磨加工などの加工に供するときに剥離が生ずることがあった。
 本発明の課題は、金属酸化物からなる支持基板上に、酸素比率の低い珪素酸化物からなる接合層を介して圧電性材料基板を強固に安定して接合することである。
 本発明は、
 金属酸化物からなる支持基板、
 圧電性材料基板、
 前記支持基板と前記圧電性材料基板との間に設けられた接合層であって、がSi(1-x)(0.008≦x≦0.408)の組成を有する接合層、および
 前記接合層と前記支持基板との間に設けられた非晶質層を備えており、前記非晶質層における酸素比率が、前記支持基板における酸素比率よりも高いことを特徴とする。
 また、本発明は、前記接合体、および圧電性材料基板上に設けられた電極を備えていることを特徴とする、弾性波素子に係るものである。
 本発明によれば、金属酸化物からなる支持基板上に、酸素比率の低い珪素酸化物からなる接合層を介して圧電性材料基板を強固に安定して接合することができる。
(a)は、圧電性材料基板4上に接合層2を設けた状態を示し、(b)は、接合層2Aの表面2bを中性化ビームAによって活性化した状態を示し、(c)は、支持基板1の表面1aを中性化ビームAによって活性化した状態を示す。 (a)は、圧電性材料基板4と支持基板1を接合した状態を示し、(b)は、圧電性材料基板4Aを加工によって薄くした状態を示し、(c)は、圧電性材料基板4A上に電極6を設けた状態を示す。 (a)は、圧電性材料基板4上に中間層11および接合層2を設けた状態を示し、(b)は、接合層2Aの表面2bを中性化ビームAによって活性化した状態を示し、(c)は、支持基板1の表面1aを中性化ビームAによって活性化した状態を示す。 (a)は、圧電性材料基板4と支持基板1を接合した状態を示し、(b)は、圧電性材料基板4Aを加工によって薄くした状態を示し、(c)は、圧電性材料基板4A上に電極6を設けた状態を示す。
 以下、適宜図面を参照しつつ、本発明を詳細に説明する。
 図1、図2は、支持基板を圧電性材料基板に直接接合する製造例を説明するための模式図である。
 図1(a)に示すように、圧電性材料基板4の主面4a上に接合層2を成膜する。4bは圧電性材料基板4の反対側の主面である。次いで、図1(b)に示すように、矢印Aのように中性化ビームを接合層2の表面2aに照射し、接合層2の表面を活性化して活性化面2bとする。一方、図1(c)に示すように、支持基板1の主面1aに中性化ビームAを照射することによって活性化し、活性化面が形成された支持基板1を得る。1bは活性化面と反対側の主面である。
 次いで、図2(a)に示すように、接合層の活性化面と支持基板1の活性化面1aとを直接接合することによって、接合体5を得る。ここで、中性化ビームAの出力や照射時間などを制御することで、支持基板1の活性化面1aと接合層2Bとの接合界面に沿って非晶質層10を生成させることができる。
 好適な実施形態においては、接合体1の圧電性材料基板4の表面4bを更に研磨加工し、図2(b)に示すように圧電性材料基板4Aの厚さを小さくし、接合体5Aを得る。4cは研磨面である。
 図2(c)では、圧電性材料基板4Aの研磨面4c上に所定の電極6を形成することによって、弾性波素子7を作製している。
 図3、図4の実施形態では、圧電性材料基板4と接合層2、2A、2Bとの間に中間層11を設けている。
 すなわち、図3(a)に示すように、圧電性材料基板4の主面4a上に中間層11、接合層2を順に成膜する。次いで、図3(b)に示すように、矢印Aのように中性化ビームを接合層2の表面2aに照射し、接合層2Aの表面を活性化して活性化面2bとする。一方、図3(c)に示すように、支持基板1の主面1aに中性化ビームAを照射することによって活性化し、活性化面が形成された支持基板1を得る。1bは活性化面と反対側の主面である。
 次いで、図4(a)に示すように、接合層の活性化面と支持基板1の活性化面1aとを直接接合することによって、接合体15を得る。ここで、中性化ビームAの出力や照射時間などを制御することで、支持基板1の活性化面1aと接合層2Bとの接合界面に沿って非晶質層10を生成させることができる。
 好適な実施形態においては、接合体1の圧電性材料基板2の表面2bを更に研磨加工し、図4(b)に示すように圧電性材料基板4Aの厚さを小さくし、接合体15Aを得る。4cは研磨面である。
 図4(c)では、圧電性材料基板4Aの研磨面4c上に所定の電極9を形成することによって、弾性波素子17を作製している。
 本発明では、支持基板は金属酸化物からなる。この金属酸化物は、単一金属の酸化物であってよく、あるいは複数種の金属の複合酸化物であってもよい。この金属酸化物は、好ましくは、サイアロン、サファイア、コージェライト、ムライトおよびアルミナからなる群より選ばれる。アルミナは好ましくは透光性アルミナである。
 支持基板の相対密度は、接合強度の観点からは、95.5%以上が好ましく、100%であってもよい。相対密度はアルキメデス法によって測定する。また、支持基板の製法は特に限定されないが、焼結体であることが好ましい。
 サイアロンは、窒化珪素とアルミナとの混合物を焼結して得られるセラミックスであり、以下のような組成を有する。
  Si6-zAlz8-z
 すなわち、サイアロンは、窒化珪素中にアルミナが混合された組成を有しており、zがアルミナの混合比率を示している。zは、0.5以上が更に好ましい。また、zは、4.0以下が更に好ましい。
 サファイアはAlの組成を有する単結晶であり、アルミナはAlの組成を有する多結晶である。コージェライトは、2MgO・2Al2O3・5SiO2の組成を有するセラミックスである。ムライトは、3Al2O3・2SiO2~2Al2O3・SiO2の範囲の組成を有するセラミックスである。
 圧電性材料基板の材質は、必要な圧電性を有する限り限定されないが、LiAOの組成を有する単結晶が好ましい。ここで、Aは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である。このため、LiAOは、ニオブ酸リチウムであってよく、タンタル酸リチウムであってよく、ニオブ酸リチウム-タンタル酸リチウム固溶体であってよい。
 本発明では、支持基板と圧電性材料基板との間に設けられた接合層であって、Si(1-x)(0.008≦x≦0.408)の組成を有する接合層を有する。
 この組成は、SiO(x=0.667に対応する)に比べて酸素比率がかなり低くされている組成である。このような組成の珪素酸化物Si(1-x)からなる接合層によって支持基板に対して圧電性材料基板を接合すると、接合層における絶縁性を高くすることができる。
 接合層を構成するSi(1-x)の組成において、xが0.008未満であると、接合層における電気抵抗が低くなり、所望の絶縁性が得られない。このため、xを0.008以上とするが、0.010以上が好ましく、0.020以上が更に好ましく、0.024以上が特に好ましい。またxが0.408より大きいと、接合強度が下がり、圧電性材料基板の剥離が生じ易くなるので、xを0.408以下とするが、0.225以下とすることが更に好ましい。
 接合層の電気抵抗率は4.8×10Ω・cm以上であることが好ましく、5.8×10Ω・cm以上であることが更に好ましく、6.2×10Ω・cm以上が特に好ましい。一方、接合層の電気抵抗率は、一般に1.0×10Ω・cm以下となる。
 接合層の厚さは、特に限定されないが、製造コストの観点からは0.01~10μmが好ましく、0.01~0.5μmが更に好ましい。
 接合層の成膜方法は限定されないが、スパッタリング(sputtering)法、化学的気相成長法(CVD)、蒸着を例示できる。ここで、特に好ましくは、スパッタターゲットをSiとした反応性スパッタリングの際に、チャンバー内に流す酸素ガス量を調整することによって、接合層の酸素比率(x)をコントロールすることが可能である。
 接合層の具体的な製造条件はチャンバー仕様によるので適宜選択するが、好適例では、全圧を0.28~0.34Paとし、酸素分圧を1.2×10―3~5.7×10-2Paとし、成膜温度を常温とする。また、SiターゲットとしてはBドープSiを例示できる。後述するように、接合層と支持基板1との界面には、不純物としてのB(ボロン)量が、5×1018atoms/cm~5×1019atoms/cm程度になるように制御している。これにより、接合層における絶縁性をより確実に担保することができる。
 好適な実施形態においては、接合層の活性化面と支持基板の活性化面とが直接接合されている。言い換えると、接合層と支持基板との界面に沿って接合界面がある。この場合には、接合層の活性化面の算術平均粗さRaが1nm以下であることが好ましく、0.3nm以下であることが更に好ましい。また、支持基板の活性化面の算術平均粗さRaが1nm以下であることが好ましく、0.3nm以下であることが更に好ましい。これによって支持基板と接合層との接合強度が一層向上する。
 本発明の接合体は、更に、接合層と支持基板との間に生成する非晶質層を備えており、非晶質層における酸素比率が、支持基板における酸素比率よりも高い。すなわち、支持基板の活性化面に沿って非晶質層が生じているが、この非晶質層における酸素拡散が進展することで、支持基板を構成する金属酸化物の酸素比率よりも、非晶質層における酸素比率のほうが高くなる場合のあることを見いだした。しかも、このように酸素の拡散が進行した場合に、圧電性材料基板の支持基板への接合強度が高くなり、例えば圧電性材料基板を加工によって薄くしたような場合にも圧電性材料基板の剥離が生じにくいことを見いだした。
 好適な実施形態においては、非晶質層の組成は、支持基板を構成する金属、酸素(O)およびアルゴン(Ar)を主成分とする。ただし、支持基板がサイアロンからなる場合には、非晶質層の組成は、支持基板を構成する珪素(Si)、アルミニウム(Al)、窒素(N)、酸素(O)およびアルゴン(Ar)を主成分とする。「主成分とする」とは、全原子比率を100原子%としたときに、これらの原子の原子比率の合計が95原子%以上であることを意味しており、97原子%以上であることが更に好ましい。特に好ましくは、非晶質層の組成は、支持基板の材質の組成と同種であり、かつ酸素比率が支持基板の材質よりも高く、かつアルゴンを含有している。
 本発明では、非晶質層における酸素比率が、支持基板における酸素比率よりも高い。この酸素比率の差は、接合強度の向上という観点からは、0.5原子%以上であることが好ましく、1.0原子%以上であることが更に好ましい。また、この酸素比率の差は、現実的には7.0原子%以下であることが好ましい。
 また、接合強度の向上という観点からは、非晶質層におけるアルゴン(Ar)の原子比率は、1.0原子%以上であることが好ましく、1.5原子%以上であることが更に好ましい。また、非晶質層におけるアルゴン(Ar)の原子比率は、5.0原子%以下であることが好ましく、4.8原子%以下であることが更に好ましい。
 中間層の材質は、接合層および圧電性材料基板と接合する材質であれば特に限定されないが、SiO、Ta、TiO、ZrO、HfO、Nb、Bi、Al、MgO、AlN、Siが好ましい。
 特に、高周波数向け(3.5~6GHzの5G通信の周波数帯向け等)では、弾性波の周波数を向上させる必要があり、この場合は中間層の材質は高音速材料であることが好ましい。こうした高音速材料の音速は、6000m/s以上であることが好ましく、10000m/s以上であることが更に好ましい。中間層の材質の音速の上限は特にないが、実際上は30000m/sを超えることは難しいので、30000m/s以下、さらには25000m/s以下であることが多い。こうした高音速材料としては、AlN、Siを例示できる。また、材質の音速はJIS法で測定した密度(JIS C2141)、ヤング率(JIS R1602)、ポアソン比(JIS R1602)から算出するものとする。
 また、高周波数向け(3.5~6GHzの5G通信の周波数帯向け等)では、ハイパワーの信号が入力されるため、放熱性を向上させる必要がある。この場合は、中間層の材質を高熱伝導材料とすることが好ましい。こうした高熱伝導材料の熱伝導率は、100W/(m・K)以上であることが好ましく、900W/(m・K)以上であることが更に好ましく、1000W/(m・K)であることが特に好ましい。中間層の材質の熱伝導率の上限は特にないが、実際上は5000W/(m・K)を超えることは難しいので、5000W/(m・K)以下、さらには3000W/(m・K)以下であることが多い。こうした高熱伝導材料としては、AlN、Siを例示できる。また、材質の熱伝導率はJIS R1611に従って測定するものとする。
 以下、本発明の各構成要素について更に説明する。
 本発明の接合体の用途は特に限定されず、例えば、弾性波素子や光学素子に好適に適用できる。
 弾性波素子としては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などが知られている。例えば、弾性表面波デバイスは、圧電性材料基板の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電性材料基板上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。
 圧電性材料基板の底面に金属膜を有していてもよい。金属膜は、弾性波デバイスとしてラム波素子を製造した際に、圧電性材料基板の裏面近傍の電気機械結合係数を大きくする役割を果たす。この場合、ラム波素子は、圧電性材料基板の表面に櫛歯電極が形成され、支持基板に設けられたキャビティによって圧電性材料基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えばアルミニウム、アルミニウム合金、銅、金などが挙げられる。なお、ラム波素子を製造する場合、底面に金属膜を有さない圧電性性材料層を備えた複合基板を用いてもよい。
 また、圧電性材料基板の底面に金属膜と絶縁膜を有していてもよい。金属膜は、弾性波デバイスとして薄膜共振子を製造した際に、電極の役割を果たす。この場合、薄膜共振子は、圧電性材料基板の表裏面に電極が形成され、絶縁膜をキャビティにすることによって圧電性材料基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えば、モリブデン、ルテニウム、タングステン、クロム、アルミニウムなどが挙げられる。また、絶縁膜の材質としては、例えば、二酸化ケイ素、リンシリカガラス、ボロンリンシリカガラスなどが挙げられる。
 また、光学素子としては、光スイッチング素子、波長変換素子、光変調素子を例示できる。また、圧電性材料基板中に周期分極反転構造を形成することができる。
 本発明の対象が弾性波素子であり、圧電性材料基板の材質がタンタル酸リチウムである場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に36~47°(例えば42°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。
また圧電性材料基板がニオブ酸リチウムからなる場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に60~68°(例えば64°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。更に、圧電性材料基板の大きさは、特に限定されないが、例えば、直径50~150mm,厚さが0.2~60μmである。
 本発明の接合体を得るためには、以下の方法が好ましい。
 まず、接合層の表面、支持基板の表面(接合面)を平坦化して平坦面を得る。ここで、各表面を平坦化する方法は、ラップ(lap)研磨、化学機械研磨加工(CMP)などがある。また、平坦面は、Ra≦1nmが好ましく、0.3nm以下にすると更に好ましい。
 次いで、研磨剤の残渣や加工変質層の除去のため、接合層、支持基板の表面を洗浄する。表面を洗浄する方法は、ウエット洗浄、ドライ洗浄、スクラブ洗浄などがあるが、簡便かつ効率的に清浄表面を得るためには、スクラブ洗浄が好ましい。この際には、洗浄液としてサンウオッシュLH540を用いた後に、アセトンとIPAの混合溶液を用いてスクラブ洗浄機にて洗浄することが特に好ましい。
 次いで、接合層の表面および支持基板の表面に中性化ビームを照射することで、各平坦面を活性化する。
 中性化ビームによる表面活性化を行う際には、特許文献3に記載のような装置を使用して中性化ビームを発生させ、照射することが好ましい。すなわち、ビーム源として、サドルフィールド型の高速原子ビーム源を使用する。そして、チャンバーに不活性ガスを導入し、電極へ直流電源から高電圧を印加する。これにより、電極(正極)と筺体(負極)との間に生じるサドルフィールド型の電界により、電子eが運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビームを構成する原子種は、不活性ガス(アルゴン、窒素等)が好ましい。
 ビーム照射による活性化時の電圧は0.5~2.0kVとすることが好ましく、電流は50~200mAとすることが好ましい。
 次いで、真空雰囲気で、活性化面同士を接触させ、接合する。この際の温度は常温であるが、具体的には40℃以下が好ましく、30℃以下が更に好ましい。また、接合時の温度は20℃以上、25℃以下が特に好ましい。接合時の圧力は、100~20000Nが好ましい。
(実施例1、2、3、比較例1、2)
 図1および図2を参照しつつ説明した方法に従って、表1、表2に示す各例の接合体5、5Aを作製した。
 具体的には、OF部を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を、圧電性材料基板4として使用した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬L
T基板を用いた。圧電性材料基板4の表面4aは、算術平均粗さRaが0.3nmとなるように鏡面研磨しておいた。ただし、Raは、原子間力顕微鏡(AFM)によって10μm×10μmの視野で測定する。
 次いで、圧電性材料基板4の表面4aに、直流スパッタリング法によって接合層2を成膜した。ターゲットにはボロンドープのSiを使用した。また、酸素源として酸素ガスを導入した。この際、酸素ガス導入量を変化させることによって、チャンバー内の雰囲気の全圧と酸素分圧を変化させ、これによって接合層2の酸素比率を変化させた。接合層2の厚さは100~200nmとした。接合層2の表面2aの算術平均粗さRaは0.2~0.6nmであった。次いで、接合層2を化学機械研磨加工(CMP)し、膜厚を80~190nmとし、Raを0.08~0.4nmとした。
 一方、支持基板1として、オリエンテーションフラット(OF)部を有し、直径が4インチ,厚さが500μmのサイアロン(z=2.5)からなる支持基板1を用意した。支持基板1の表面1a、1bは、化学機械研磨加工(CMP)によって仕上げ加工されており、各算術平均粗さRaは0.2nmとなっている。
 次いで、接合層2Aの平坦面2bと支持基板1の表面1aとを洗浄し、汚れを取った後、真空チャンバーに導入した。10-6Pa台まで真空引きした後、それぞれの基板の接合面1a、2bに高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120sec間照射した。ついで、接合層2Aのビーム照射面(活性化面)2bと支持基板1の活性化面1aとを接触させた後、10000Nで2分間加圧して接合した(図2(a)参照)。次いで、得られた各例の接合体5を100℃で20時間加熱した。
 次いで、圧電性材料基板4の表面4bを厚みが当初の250μmから1μmになるように研削及び研磨した(図2(b)参照)。
 得られた各例の接合体5、5Aについて、以下の特性を評価した。
(非晶質層の確認)
 非晶質層の存在は以下のようにして観察した。
測定装置:
 透過型電子顕微鏡(日立ハイテクノロジーズ製 H-9500)を用いて微構造観察する。
 測定条件:
 FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kVにて観察する。
(接合層、支持基板、非晶質層中の酸素原子、アルゴン原子の比率)
 以下の装置を用い、EDS(エネルギー分散型X線分光器)による元素分析を行い、接合層、支持基板、非晶質層中の酸素原子、アルゴン原子の比率を測定した。
 測定装置:
 元素分析装置(日本電子 JEM-ARM200F)を用いて元素分析を行う。
 測定条件:
 FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kVにて観察する。
(接合強度)
 各例の接合体5、5Aについて、クラックオープニング法によって接合強度を測定した。ただし、接合強度が1.75J/mを超えると、接合層2B付近での剥離が生じず、接合体5、5Aがバルク破壊を起こす。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 比較例1、2では、非晶質層における酸素比率が支持基板における酸素比率よりも少し低いが、いずれも接合強度は低かった。
 実施例1、2、3では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、いずれも接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
(実施例4、比較例3)
 実施例1において、支持基板の材質をサファイアに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例3では、非晶質層における酸素比率が支持基板における酸素比率よりも少し低いが、接合強度は低かった。
 実施例4では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
(実施例5、比較例4)
 実施例1において、支持基板の材質をコージェライトに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 比較例4では、非晶質層における酸素比率が支持基板における酸素比率と同じであるが、接合強度は低かった。
 実施例5では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
(実施例6、比較例5)
 実施例1において、支持基板の材質をムライトに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 比較例5では、非晶質層における酸素比率が支持基板における酸素比率よりも少し低いが、接合強度は低かった。
 実施例6では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。
(実施例7、比較例6)
 実施例1において、支持基板の材質を透光性アルミナに変更し、またFAB照射量も変更した。その他は実施例1と同様にして接合体5、5Aを作製し、各部分の酸素比率、アルゴン比率および接合強度を測定した。この結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 比較例6では、非晶質層における酸素比率が支持基板における酸素比率よりも少し低いが、接合強度は低かった。
 実施例7では、非晶質層における酸素比率が支持基板における酸素比率よりも高いが、接合強度が著しく向上しており、圧電性材料基板の研磨時にも剥離が生じなかった。

 

Claims (5)

  1.  金属酸化物からなる支持基板、
     圧電性材料基板、
     前記支持基板と前記圧電性材料基板との間に設けられた接合層であって、Si(1-x)(0.008≦x≦0.408)の組成を有する接合層、および
     前記接合層と前記支持基板との間に設けられた非晶質層を備えており、前記非晶質層における酸素比率が、前記支持基板における酸素比率よりも高いことを特徴とする、接合体。
  2.  前記金属酸化物が、サイアロン、サファイア、コージェライト、ムライトおよびアルミナからなる群より選ばれることを特徴とする、請求項1記載の接合体。
  3.  前記圧電性材料基板が、ニオブ酸リチウム、タンタル酸リチウムおよびニオブ酸リチウム-タンタル酸リチウム固溶体からなる群より選ばれることを特徴とする、請求項1または2記載の接合体。
  4.  前記接合層と前記圧電性材料基板との間に設けられた中間層を備えていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の接合体。
  5.  請求項1~4のいずれか一つの請求項に記載の接合体、および
     前記圧電性材料基板上に設けられた電極
    を備えていることを特徴とする、弾性波素子。
PCT/JP2019/033089 2018-10-17 2019-08-23 接合体および弾性波素子 WO2020079958A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217011211A KR102596121B1 (ko) 2018-10-17 2019-08-23 접합체 및 탄성파 소자
JP2020552558A JP7133031B2 (ja) 2018-10-17 2019-08-23 接合体および弾性波素子
CN201980067455.6A CN112868178A (zh) 2018-10-17 2019-08-23 接合体及弹性波元件
DE112019004571.7T DE112019004571T5 (de) 2018-10-17 2019-08-23 Verbundener Körper und Akustikwellenelement
US17/231,162 US11984870B2 (en) 2018-10-17 2021-04-15 Bonded body and acoustic wave element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195657 2018-10-17
JP2018195657 2018-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/231,162 Continuation US11984870B2 (en) 2018-10-17 2021-04-15 Bonded body and acoustic wave element

Publications (1)

Publication Number Publication Date
WO2020079958A1 true WO2020079958A1 (ja) 2020-04-23

Family

ID=70284558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033089 WO2020079958A1 (ja) 2018-10-17 2019-08-23 接合体および弾性波素子

Country Status (7)

Country Link
US (1) US11984870B2 (ja)
JP (1) JP7133031B2 (ja)
KR (1) KR102596121B1 (ja)
CN (1) CN112868178A (ja)
DE (1) DE112019004571T5 (ja)
TW (1) TWI829762B (ja)
WO (1) WO2020079958A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220127927A (ko) * 2021-03-10 2022-09-20 엔지케이 인슐레이터 엘티디 접합체
WO2023182246A1 (ja) * 2022-03-23 2023-09-28 京セラ株式会社 接合基板
WO2024106120A1 (ja) * 2022-11-14 2024-05-23 株式会社村田製作所 弾性波装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023078587A (ja) * 2021-11-26 2023-06-07 I-PEX Piezo Solutions株式会社 膜構造体及びその製造方法
US11463070B2 (en) * 2022-01-18 2022-10-04 Shenzhen Newsonic Technologies Co., Ltd. FBAR structure and manufacturing method of same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343359A (ja) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk 弾性表面波素子の製造方法
WO2017134980A1 (ja) * 2016-02-02 2017-08-10 信越化学工業株式会社 複合基板および複合基板の製造方法
WO2018180827A1 (ja) * 2017-03-31 2018-10-04 日本碍子株式会社 接合体および弾性波素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814727U (ja) 1981-07-22 1983-01-29 川辺 史郎 部品の取り付け構造
US7105980B2 (en) 2002-07-03 2006-09-12 Sawtek, Inc. Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics
CN102624352B (zh) 2010-10-06 2015-12-09 日本碍子株式会社 复合基板的制造方法以及复合基板
JP2014086400A (ja) 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd 高速原子ビーム源およびそれを用いた常温接合装置
KR20190134827A (ko) * 2016-03-25 2019-12-04 엔지케이 인슐레이터 엘티디 접합체 및 탄성파 소자
US10960146B2 (en) 2016-07-14 2021-03-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device with controlled needle shield and cover sleeve
JP6621384B2 (ja) * 2016-07-20 2019-12-18 信越化学工業株式会社 弾性表面波デバイス用複合基板の製造方法
US11595019B2 (en) * 2018-04-20 2023-02-28 Taiyo Yuden Co., Ltd. Acoustic wave resonator, filter, and multiplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343359A (ja) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk 弾性表面波素子の製造方法
WO2017134980A1 (ja) * 2016-02-02 2017-08-10 信越化学工業株式会社 複合基板および複合基板の製造方法
WO2018180827A1 (ja) * 2017-03-31 2018-10-04 日本碍子株式会社 接合体および弾性波素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220127927A (ko) * 2021-03-10 2022-09-20 엔지케이 인슐레이터 엘티디 접합체
KR102539925B1 (ko) 2021-03-10 2023-06-02 엔지케이 인슐레이터 엘티디 접합체
WO2023182246A1 (ja) * 2022-03-23 2023-09-28 京セラ株式会社 接合基板
WO2024106120A1 (ja) * 2022-11-14 2024-05-23 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
TWI829762B (zh) 2024-01-21
JPWO2020079958A1 (ja) 2021-09-02
US11984870B2 (en) 2024-05-14
CN112868178A (zh) 2021-05-28
JP7133031B2 (ja) 2022-09-07
TW202027414A (zh) 2020-07-16
DE112019004571T5 (de) 2021-06-02
US20210234529A1 (en) 2021-07-29
KR102596121B1 (ko) 2023-10-30
KR20210058929A (ko) 2021-05-24

Similar Documents

Publication Publication Date Title
KR101972728B1 (ko) 접합체 및 탄성파 소자
WO2020079958A1 (ja) 接合体および弾性波素子
JP7069338B2 (ja) 接合体および弾性波素子
TWI737811B (zh) 接合體
JP6644208B1 (ja) 接合体および弾性波素子
KR20210006995A (ko) 접합체 및 탄성파 소자
JPWO2019188350A1 (ja) 接合体および弾性波素子
JP6621574B1 (ja) 接合体および弾性波素子
WO2021002047A1 (ja) 接合体および弾性波素子
WO2021002046A1 (ja) 接合体および弾性波素子
WO2019188325A1 (ja) 接合体および弾性波素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552558

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217011211

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19873203

Country of ref document: EP

Kind code of ref document: A1