WO2021002046A1 - 接合体および弾性波素子 - Google Patents

接合体および弾性波素子 Download PDF

Info

Publication number
WO2021002046A1
WO2021002046A1 PCT/JP2020/007096 JP2020007096W WO2021002046A1 WO 2021002046 A1 WO2021002046 A1 WO 2021002046A1 JP 2020007096 W JP2020007096 W JP 2020007096W WO 2021002046 A1 WO2021002046 A1 WO 2021002046A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
piezoelectric material
material substrate
bonded body
Prior art date
Application number
PCT/JP2020/007096
Other languages
English (en)
French (fr)
Inventor
浅井 圭一郎
良祐 服部
知義 多井
雄大 鵜野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020543837A priority Critical patent/JPWO2021002046A1/ja
Publication of WO2021002046A1 publication Critical patent/WO2021002046A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives

Definitions

  • the present invention relates to a joint body between a piezoelectric material substrate and a support substrate and an elastic wave element.
  • Surface acoustic wave devices that can function as filter elements and oscillators used in mobile phones, etc., and surface acoustic wave devices such as ram wave elements and thin film resonators (FBAR: Film Bulk Acoustic Resonator) that use piezoelectric thin films.
  • FBAR Film Bulk Acoustic Resonator
  • an elastic wave device a support substrate and a piezoelectric substrate that propagates an elastic surface wave are bonded to each other, and a comb-shaped electrode capable of exciting an elastic surface wave is provided on the surface of the piezoelectric substrate.
  • an intermediate layer made of Ta 2 O 5 or the like is provided between the piezoelectric single crystal substrate and the support substrate, and the surface is activated by irradiating the intermediate layer and the support substrate with a neutralizing beam, respectively, to directly join them. It has been proposed to do so (Patent Document 3).
  • Patent Document 4 proposes a structure in which a multilayer film in which a plurality of SiO 2 layers and Ta 2 O 5 layers are laminated is provided between a support substrate and a piezoelectric material substrate.
  • An object of the present invention is to provide a bonded body capable of improving the Q value of an elastic wave element.
  • the present invention is a support substrate, It is provided with a piezoelectric material substrate and a multilayer film between the support substrate and the piezoelectric material substrate.
  • the multilayer film has a structure in which a first layer having a composition of SiO x and a second layer made of a metal oxide are alternately laminated, and x in SiO x has a value larger than 2. It is characterized by that.
  • the present invention relates to an elastic wave element, characterized in that it includes the bonded body and electrodes provided on the piezoelectric material substrate.
  • the present inventor has an elastic wave element in which a multilayer film of SiO 2 / Ta 2 O 5 is inserted between a support substrate and a piezoelectric material substrate for high frequencies (3.5 to 6 GHz).
  • a multilayer film of SiO 2 / Ta 2 O 5 is inserted between a support substrate and a piezoelectric material substrate for high frequencies (3.5 to 6 GHz).
  • 5G, etc. we examined the reason why the Q value improvement is not always sufficient. As a result, it is difficult to obtain a desired Q value in the high frequency region because the quality of the multilayer film suitable for medium frequency (4G, etc.) and the quality of the multilayer film suitable for higher frequency (5G, etc.) are different. I guessed it was.
  • the present inventor conceived to change the silicon oxide constituting the first layer constituting the multilayer film to an oxygen-rich composition, and actually made such a bonded body and an elastic wave device using the same. I tried to make a prototype. As a result, it was found that the Q value was further improved. In particular, we have found that a high Q value can be obtained even in the high frequency band (5G band), and have reached the present invention.
  • (A) shows a state in which the multilayer film 2 is provided on the piezoelectric material substrate 1, (b) shows a state in which the bonding layer 4 is provided on the multilayer film 2, and (c) shows a state in which the bonding layer 4 is provided. Shows the activated state of the surface of.
  • (A) shows a state in which the surface of the support substrate 6 is activated, and (b) shows a joint 9 of the support substrate and the piezoelectric material substrate.
  • (A) shows a state in which the piezoelectric material substrate 1A of the bonded body 9A is thinned by processing, and (b) shows a state in which an electrode is provided on the bonded body 9A.
  • (A) shows the bonded body 9B obtained by directly bonding the bonding layer 4 provided on the multilayer film and the bonding layer 14 provided on the support substrate 6, and (b) is the piezoelectric of the bonded body 9B.
  • the elastic wave element 10B obtained by providing the electrode 11 on the material substrate 1A is shown.
  • (A) shows a bonded body 9C obtained by directly bonding the multilayer film 2 and the support substrate 6, and (b) shows a state in which an electrode is provided on the piezoelectric material substrate 1A of the bonded body 9C. ..
  • the piezoelectric material substrate 1 has a pair of surfaces 1a and 1b.
  • a multilayer film 2 is formed on one of the surfaces 1a.
  • the multilayer film 2 is obtained by alternately providing the first layer 2a and the second layer 2b on the piezoelectric material substrate 1.
  • a bonding layer 4 can be further provided on the surface 3 of the multilayer film 2.
  • the surface of the bonding layer 4 is irradiated with a neutralizing beam as shown by an arrow A to activate the surface of the bonding layer 4 with the activated surface 5. can do.
  • the surface of the support substrate 6 is irradiated with a neutralizing beam as shown by an arrow B to activate the surface of the support substrate 6 to form an activated surface 6a.
  • the activated surface 5 of the first bonding layer 4 and the activated surface 6a of the support substrate 6 are brought into direct contact with each other and pressure is applied to obtain FIG. 2 (b).
  • a conjugate 9 is obtained as shown.
  • the arrow C is the junction boundary.
  • the surface 1b of the piezoelectric material substrate 1 of the bonded body 9 is further polished to reduce the thickness of the piezoelectric material substrate 1A as shown in FIG. 3A, and the bonded body 9A is formed. obtain. 1c is a polished surface.
  • the elastic wave element 10A is manufactured by forming a predetermined electrode 11 on the polished surface 1c of the piezoelectric material substrate 1A.
  • the bonding layer 14 is also provided on the support substrate 6, and the activated surface 12 thereof is directly bonded to the bonding layer 14 on the multilayer film.
  • the bonded body 9B as shown in FIG. 4A is obtained.
  • the junction boundary is indicated by the arrow C.
  • the elastic wave element 10B can be obtained by providing the electrode 11 on the piezoelectric material substrate 1A of this bonded body.
  • the support substrate and the multilayer film are directly bonded.
  • the bonded body 9C as shown in FIG. 5A is obtained.
  • the junction boundary is indicated by the arrow C.
  • the elastic wave element 10C can be obtained by providing the electrode 11 on the piezoelectric material substrate 1A of this bonded body.
  • the multilayer film provided between the support substrate and the piezoelectric material substrate alternates between a first layer having a composition of SiO x (x is larger than 2) and a second layer made of a metal oxide. It has a structure laminated on.
  • x is preferably 2.03 or more, more preferably 2.05 or more, and even more preferably 2.10 or more. Further, when x exceeds 2.50, the Q value decreases, so it is preferably 2.50 or less, preferably 2.45 or less, and even more preferably 2.40 or less.
  • the metal oxide constituting the second layer is not particularly limited, but an oxide of one or more metals selected from the group consisting of tantalum, hafnium, zirconium, titanium and magnesium is preferable, and tantalum oxide, hafnium oxide, and the like. Zirconium oxide is particularly preferred.
  • the composition of these metal oxides is not particularly limited, but Ta 2 O y (4.5 ⁇ y ⁇ 5), HfO z and ZrO z (1.8 ⁇ z ⁇ 2) are particularly preferable.
  • each layer constituting the multilayer film is measured as follows. Under the conditions for performing multi-layer film formation, single-layer film formation is performed on a Si substrate with a thickness of 150 nm and the film formation conditions are changed. After that, the RBS spectrum was acquired by the Pelletron 3SDH manufactured by National Electrostatics Corporation by the RBS (Rutherford Backscattering Spectrometry) method, and the spectrum was calculated from the spectrum obtained by theoretical calculation. In the case of SiOx, it is carried out under the following measurement conditions.
  • Incident ion 4 He ++ Incident energy: 2300keV Incident angle: 0deg Scattering angles: 160 and 120deg Sample current: 7nA Beam diameter: 2mm ⁇ In-plane rotation: No irradiation amount: 60 ⁇ C
  • the film forming method for each layer of the multilayer film is not limited, but a sputtering method, a chemical vapor deposition method (CVD), and a vapor deposition can be exemplified.
  • the oxygen ratio of each layer can be controlled by adjusting the amount of oxygen gas flowing into the chamber during reactive sputtering in which the sputtering targets are Si, Ta, Hf, and Zr. is there.
  • each layer constituting the multilayer film The specific manufacturing conditions of each layer constituting the multilayer film are appropriately selected because they depend on the chamber specifications, but in a preferred example, the total pressure is 0.28 to 0.34 Pa and the oxygen partial pressure is 1.2 ⁇ 10-3 to It shall be 5.7 ⁇ 10 -2 Pa, and the film formation temperature shall be between room temperature and 200 ° C.
  • a multilayer film formed by alternately laminating the first layer and the second layer is provided between the piezoelectric material substrate and the support substrate. Further, it is preferable that the number of layers of the first layer and the number of layers of the second layer are two or more, respectively. However, even if the number of layers of the first layer and the second layer is too large, the action and effect do not change significantly. Therefore, from this viewpoint, the total number of the first layer and the second layer is preferably 10 or less, respectively.
  • one or more bonding layers can be provided between the piezoelectric material substrate and the support substrate.
  • the material of such a bonding layer include the following. Si (1-v) O v, Ta 2 O 5 , Al 2 O 3, Nb 2 O 5 , TiO 2 .
  • the bonding layer provided between the supporting substrate and the piezoelectric material substrate has a composition of Si (1-v) O v (0.008 ⁇ v ⁇ 0.408).
  • Such silicon oxide Si (1-v) of the composition O v be to further interposed bonding layer made of, it is possible to further enhance the insulating properties of the bonding layer.
  • v is preferably 0.008 or more, more preferably 0.010 or more, particularly preferably 0.020 or more, and particularly preferably 0.024 or more. Further, since the bonding strength is further improved by setting v to 0.408 or less, it is preferable to set v to 0.408 or less, and further preferably 0.225 or less.
  • each bonding layer is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 0.5 ⁇ m from the viewpoint of manufacturing cost.
  • each bonding layer is not limited, but a sputtering method, a chemical vapor deposition method (CVD), and a vapor deposition can be exemplified.
  • the oxygen ratio (v) of each bonding layer can be controlled by adjusting the amount of oxygen gas flowing into the chamber during reactive sputtering using Si as the sputtering target. ..
  • each bonding layer depends on the chamber specifications and are appropriately selected.
  • the total pressure is 0.28 to 0.34 Pa and the oxygen partial pressure is 1.2 ⁇ 10-3 to 5.7. ⁇ 10 -2 Pa, and the film formation temperature is normal temperature.
  • B-doped Si can be exemplified.
  • the oxygen concentration in the junction layer is measured by EDS under the following conditions. measuring device: Elemental analysis is performed using an elemental analyzer (JEOL JEM-ARM200F). Measurement condition: The sample sliced by the FIB (focused ion beam) method is observed at an acceleration voltage of 200 kV.
  • the support substrate may be made of a single crystal or a polycrystal.
  • the material of the support substrate is preferably selected from the group consisting of silicon, sialon, sapphire, cordierite, mullite and alumina.
  • Alumina is preferably translucent alumina.
  • the silicon may be single crystal silicon, polycrystalline silicon, or high resistance silicon.
  • Sialon is a ceramic obtained by sintering a mixture of silicon nitride and alumina, and has the following composition. Si 6-w Al w O w N 8-w That is, Sialon has a composition in which alumina is mixed in silicon nitride, and w indicates the mixing ratio of alumina. w is more preferably 0.5 or more. Further, w is more preferably 4.0 or less.
  • Sapphire is a single crystal having a composition of Al 2 O 3
  • alumina is a polycrystal having a composition of Al 2 O 3
  • Cordierite is a ceramic having a composition of 2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2.
  • Mullite is a ceramic having a composition in the range of 3Al 2 O 3 ⁇ 2SiO 2 ⁇ 2Al 2 O 3 ⁇ SiO 2.
  • Piezoelectric material The material of the substrate is not limited as long as it has the required piezoelectricity, but a single crystal having a composition of LiAO 3 is preferable.
  • A is one or more elements selected from the group consisting of niobium and tantalum. Therefore, LiAO 3 may be lithium niobate, lithium tantalate, or a lithium niobate-lithium tantalate solid solution.
  • the application of the bonded body of the present invention is not particularly limited, and for example, it can be suitably applied to elastic wave elements and optical elements.
  • the surface acoustic wave element an elastic surface wave device, a Lamb wave element, a thin film resonator (FBAR) and the like are known.
  • a surface acoustic wave device has an IDT (Interdigital Transducer) electrode (also called a comb electrode or a surface acoustic wave) on the input side that excites a surface acoustic wave and an output side that receives the surface acoustic wave on the surface of a piezoelectric material substrate.
  • IDT electrode of the above is provided.
  • a metal film may be provided on the bottom surface of the piezoelectric material substrate.
  • the metal film plays a role of increasing the electromechanical coupling coefficient near the back surface of the piezoelectric material substrate when a Lamb wave element is manufactured as an elastic wave device.
  • the Lamb wave element has a structure in which comb-tooth electrodes are formed on the surface of the piezoelectric material substrate, and the metal film of the piezoelectric material substrate is exposed by the cavity provided in the support substrate.
  • Examples of the material of such a metal film include aluminum, aluminum alloy, copper, and gold.
  • a metal film and an insulating film may be provided on the bottom surface of the piezoelectric material substrate.
  • the metal film acts as an electrode when a thin film resonator is manufactured as an elastic wave device.
  • the thin film resonator has a structure in which electrodes are formed on the front and back surfaces of the piezoelectric material substrate and the metal film of the piezoelectric material substrate is exposed by making the insulating film a cavity.
  • Examples of the material of such a metal film include molybdenum, ruthenium, tungsten, chromium, and aluminum.
  • the material of the insulating film include silicon dioxide, phosphorus silica glass, and boron phosphorus silica glass.
  • examples of the optical element include an optical switching element, a wavelength conversion element, and an optical modulation element.
  • a periodic polarization inversion structure can be formed in the piezoelectric material substrate.
  • the object of the present invention is an elastic wave element and the material of the piezoelectric material substrate is lithium tantalate, 123 to 133 from the Y axis to the Z axis centering on the X axis which is the propagation direction of the elastic surface wave. It is preferable to use the one rotated by ° (for example, 128 °) because the propagation loss is small.
  • the piezoelectric material substrate is made of lithium niobate, the one rotated by 86 to 94 ° (for example, 90 °) from the Y axis to the Z axis around the X axis, which is the propagation direction of surface acoustic waves. It is preferable to use it because the propagation loss is small.
  • the size of the piezoelectric material substrate is not particularly limited, but is, for example, 50 to 150 mm in diameter and 0.2 to 60 ⁇ m in thickness.
  • the surfaces to be bonded are flattened to obtain a flat surface.
  • methods for flattening each surface include lap polishing and chemical mechanical polishing (CMP).
  • the flat surface preferably has Ra ⁇ 1 nm, and more preferably 0.3 nm or less.
  • each surface of each bonding layer is cleaned in order to remove the residue of the abrasive and the work-altered layer.
  • Methods for cleaning the surface include wet cleaning, dry cleaning, scrub cleaning, and the like, but scrub cleaning is preferable in order to obtain a clean surface easily and efficiently.
  • each joint surface is activated by irradiating each joint surface with a neutralizing beam.
  • a neutralizing beam it is preferable to generate and irradiate the neutralized beam by using an apparatus as described in Patent Document 2. That is, a saddle field type high-speed atomic beam source is used as the beam source. Then, an inert gas is introduced into the chamber, and a high voltage is applied to the electrodes from a DC power source. As a result, the saddle field type electric field generated between the electrode (positive electrode) and the housing (negative electrode) causes the electrons e to move, and a beam of atoms and ions due to the inert gas is generated.
  • the ion beam is neutralized by the grid, so that the beam of neutral atoms is emitted from the high-speed atomic beam source.
  • the atomic species constituting the beam is preferably an inert gas (argon, nitrogen, etc.).
  • the voltage at the time of activation by beam irradiation is preferably 0.5 to 2.0 kV, and the current is preferably 50 to 200 mA.
  • the temperature at this time is room temperature, but specifically, it is preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. Further, the temperature at the time of joining is particularly preferably 20 ° C. or higher and 25 ° C. or lower.
  • the pressure at the time of joining is preferably 100 to 20000 N.
  • Example A A surface acoustic wave element was prototyped by the method described with reference to FIGS. 1 to 3. Specifically, a lithium tantalate substrate (LT substrate) having an OF portion, a diameter of 4 inches, and a thickness of 250 ⁇ m was used as the piezoelectric material substrate 1.
  • the propagation direction of the surface acoustic wave (SAW) is X
  • the cutting angle is 128 ° Y-cut X propagation L, which is a rotating Y-cut plate.
  • a T substrate was used.
  • the surface 1a of the piezoelectric material substrate 1 was mirror-polished so that the arithmetic average roughness Ra was 0.3 nm. However, Ra is measured with an atomic force microscope (AFM) in a field of view of 10 ⁇ m ⁇ 10 ⁇ m.
  • AFM atomic force microscope
  • the first layer 2a and the second layer 2b were alternately formed on the piezoelectric material substrate 1 in pairs (4 layers in total) by a sputtering method to obtain a multilayer film 2.
  • the composition of SiOx constituting the first layer was changed as shown in Table 1.
  • the composition of the second layer was hafnium oxide HfO 2 .
  • the thickness of the first layer and the thickness of the second layer were set to 150 nm, respectively.
  • the film forming methods of the first layer and the second layer are as described above.
  • each composition was adjusted by changing the oxygen ratio in the atmosphere.
  • the DC sputtering method was used, and boron-doped Si was used as the target.
  • oxygen gas was introduced as an oxygen source.
  • the arithmetic mean roughness Ra of the surface of the bonding layer 4 was 0.2 to 0.6 nm.
  • the bonding layer 4 was subjected to chemical mechanical polishing (CMP) to adjust the film thickness to 80 to 190 nm and Ra to 0.08 to 0.4 nm.
  • CMP chemical mechanical polishing
  • a support substrate 6 having an orientation flat (OF) portion and made of silicon having a diameter of 4 inches and a thickness of 500 ⁇ m was prepared.
  • the surface of the support substrate 6 is finished by chemical mechanical polishing (CMP), and the arithmetic average roughness Ra is 0.2 nm.
  • the surface of the bonding layer 4 and the surface of the Si substrate which is the support substrate 6 were irradiated with a neutralizing beam to activate the surfaces and directly bonded.
  • the surface of the bonding layer 4 and the surface of the support substrate 6 were washed to remove stains, and then introduced into a vacuum chamber. After vacuuming to 10-6 Pa, each surface was irradiated with a high-speed atomic beam (acceleration voltage 1 kV, Ar flow rate 27 sccm) for 120 seconds. Then, the beam irradiation surface (activated surface) of the bonding layer 4 and the activated surface of the support substrate 6 were brought into contact with each other, and then pressurized at 10000 N for 2 minutes for bonding. Then, the obtained conjugates of each example were heated at 100 ° C. for 20 hours.
  • the surface of the piezoelectric material substrate 1 was ground and polished so that the thickness was 1 ⁇ m from the initial 250 ⁇ m.
  • an electrode pattern for measurement was formed to obtain a surface acoustic wave element. Then, the Q values at a frequency of 5.5 GHz are measured and shown in Table 1.
  • the Q value was measured as follows. A surface acoustic wave resonator was created on the wafer, and the frequency characteristics were measured using a network analyzer. Thus obtained frequency characteristics from the resonance frequency f r, and calculates the half width Delta] f r, to obtain a Q value by obtaining f r / ⁇ f r.
  • Experiment B In Experiment A, the material of the second layer was changed from hafnium oxide to tantalum oxide Ta 2 O 5 .
  • Experiment C In Experiment A, the material of the second layer was changed from hafnium oxide to zirconium oxide (ZrO 2 ).

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】弾性波素子のQ値向上を可能とするような接合体を提供することである。 【解決手段】接合体9Aは、支持基板6、圧電性材料基板1A、および支持基板と圧電性材料基板との間の多層膜2を備える。多層膜2が、SiOの組成を有する第一層2aと、金属酸化物からなる第二層2bとが交互に積層された構造を有し、SiOにおけるxが2より大きい値を有している。

Description

接合体および弾性波素子
 本発明は、圧電性材料基板と支持基板との接合体および弾性波素子に関するものである。
 携帯電話等に使用されるフィルタ素子や発振子として機能させることができる弾性表面波デバイスや、圧電薄膜を用いたラム波素子や薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などの弾性波デバイスが知られている。こうした弾性波デバイスとしては、支持基板と弾性表面波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けたものが知られている。このように圧電基板よりも小さな熱膨張係数を持つ支持基板を圧電基板に貼付けることにより、温度が変化したときの圧電基板の大きさの変化を抑制し、弾性表面波デバイスとしての周波数特性の変化を抑制している。
 圧電基板とシリコン基板とを接合するのに際して、圧電基板表面に酸化珪素膜を形成し、酸化珪素膜を介して圧電基板とシリコン基板とを直接接合することが知られている(特許文献1)。この接合の際には、酸化珪素膜表面とシリコン基板表面とにプラズマビームを照射して表面を活性化し、直接接合を行う(プラズマ活性化法)。
 また、いわゆるFAB(Fast Atom Beam)方式の直接接合法が知られている(特許文献2)。この方法では、中性化原子ビームを常温で各接合面に照射して活性化し、直接接合する。
 また、圧電性単結晶基板と支持基板間に、Ta等からなる中間層を設け、中間層と支持基板に対してそれぞれ中性化ビームを照射する事で表面を活性化し、直接接合することが提案されている(特許文献3)。
 特許文献4では、支持基板と圧電性材料基板との間に、SiO層やTa層を複数積層した多層膜を設けた構造が提案されている。
米国特許第7213314B2 特開2014-086400 WO 2017/163722 A1 WO  2018/154950  A1
 特許文献3の弾性波素子では、中周波数向け(0.7~3.5GHzの4G向け等)ではQ値等の特性改善が見られた。しかし、高周波数向け(3.5~6GHzの5G向け等)では、Q値の改善が少ないことがわかった。
 また、特許文献4記載のように、支持基板と圧電性材料基板との間に、SiO/Taの多層膜を挿入した弾性波素子では、圧電性材料基板から支持基板へと向かって漏れる弾性波を多層膜で反射し、ロス低減を図っている。しかし、高周波数向け(3.5~6GHzの5G向け等)では、こうした弾性波素子でも、Q値向上が必ずしも十分ではないことが判明してきた。
 本発明の課題は、弾性波素子のQ値向上を可能とするような接合体を提供することである。
 本発明は、支持基板、
 圧電性材料基板、および
 前記支持基板と前記圧電性材料基板との間の多層膜を備えており、
 前記多層膜が、SiOの組成を有する第一層と、金属酸化物からなる第二層とが交互に積層された構造を有し、SiOにおけるxが2より大きい値を有していることを特徴とする。
 本発明は、前記接合体、および
 前記圧電性材料基板上に設けられた電極
を備えていることを特徴とする、弾性波素子に係るものである。
 本発明者は、特許文献4記載のように、支持基板と圧電性材料基板との間に、SiO/Taの多層膜を挿入した弾性波素子では、高周波数向け(3.5~6GHzの5G向け等)では、Q値向上が必ずしも十分ではない理由を検討した。この結果、中周波(4G等)向けに適した多層膜品質と、より高周波(5G等)向けに適した多層膜品質とが異なるために、高周波領域では所望のQ値を得ることが困難であるものと推測した。
 本発明者は、こうした推測に基づき、多層膜を構成する第一層を構成する珪素酸化物を酸素リッチな組成に変更することを想到し、こうした接合体およびこれを用いた弾性波素子を実際に試作してみた。この結果、Q値が更に改善することを見いだした。特に高周波帯(5G帯)においても、高いQ値が得られることを見いだし、本発明に到達した。
(a)は、圧電性材料基板1上に多層膜2を設けた状態を示し、(b)は、多層膜2上に接合層4を設けた状態を示し、(c)は、接合層4の表面を活性化した状態を示す。 (a)は、支持基板6の表面を活性化した状態を示し、(b)は、支持基板と圧電性材料基板との接合体9を示す。 (a)は、接合体9Aの圧電性材料基板1Aを加工によって薄くした状態を示し、(b)は、接合体9Aに電極を設けた状態を示す。 (a)は、多層膜上に設けた接合層4と、支持基板6上に設けた接合層14を直接接合して得られた接合体9Bを示し、(b)は、接合体9Bの圧電性材料基板1A上に電極11を設けて得られた弾性波素子10Bを示す。 (a)は、多層膜2と支持基板6とを直接接合して得られた接合体9Cを示し、(b)は、接合体9Cの圧電性材料基板1A上に電極を設けた状態を示す。
 以下、適宜図面を参照しつつ、本発明を詳細に説明する。
 図1(a)に示すように、圧電性材料基板1は一対の表面1aと1bとを有する。この一方の表面1aに多層膜2を成膜する。本例では、多層膜2は、圧電性材料基板1上に第一層2aと第二層2bとを交互に設けることで得られる。
 図1(b)に示すように、多層膜2の表面3に接合層4を更に設けることができる。この場合には、図1(c)に示すように、接合層4の表面に対して矢印Aのように中性化ビームを照射し、接合層4の表面を活性化して活性化面5とすることができる。
 一方、図2(a)に示すように、支持基板6の表面に対して、矢印Bのように中性化ビームを照射し、支持基板6の表面を活性化して活性化面6aとする。次いで、図2(b)に示すように、第一の接合層4の活性化面5と支持基板6の活性化面6aとを直接接触させ、圧力を加えることで、図2(b)に示すように接合体9を得る。矢印Cは接合境界である。
 好適な実施形態においては、接合体9の圧電性材料基板1の表面1bを更に研磨加工し、図3(a)に示すように圧電性材料基板1Aの厚さを小さくし、接合体9Aを得る。1cは研磨面である。図3(b)では、圧電性材料基板1Aの研磨面1c上に所定の電極11を形成することによって、弾性波素子10Aを作製している。
 好適な実施形態においては、支持基板6上にも接合層14を設け、その活性化面12を多層膜上の接合層14と直接接合する。これによって、図4(a)に示すような接合体9Bが得られる。接合境界を矢印Cによって示す。図4(b)に示すように、この接合体の圧電性材料基板1A上に電極11を設けることによって、弾性波素子10Bを得ることができる。
 また、好適な実施形態においては、支持基板と多層膜とを直接接合する。これによって、図5(a)に示すような接合体9Cが得られる。接合境界を矢印Cによって示す。図5(b)に示すように、この接合体の圧電性材料基板1A上に電極11を設けることによって、弾性波素子10Cを得ることができる。
 本発明において、支持基板と圧電性材料基板との間に設けられる多層膜は、SiOの組成(xは2より大きい)を有する第一層と、金属酸化物からなる第二層とが交互に積層された構造を有する。
 すなわち、第一層を構成するSiOにおいてxが2より大きい酸素リッチな組成を有する。xを2より大きくすることによって、弾性波素子に適用した場合にQ値が高くなる。この観点からは、xは2.03以上とすることが好ましく、2.05以上とすることが更に好ましく、2.10以上とすることが更に好ましい。また、xが2.50を超えるとかえってQ値が低下するので、2.50以下とすることが好ましいが、2.45以下とすることが好ましく、2.40以下とすることが更に好ましい。
 第二層を構成する金属酸化物は、特に限定されないが、タンタル、ハフニウム、ジルコニウム、チタンおよびマグネシウムからなる群より選ばれた一種以上の金属の酸化物が好ましく、タンタル酸化物、ハフニウム酸化物、ジルコニウム酸化物が特に好ましい。これら金属酸化物の組成は特に限定されないが、Ta(4.5≦y≦5)、HfOおよびZrO(1.8≦z≦2)が特に好ましい。
 多層膜を構成する各層の組成は、以下のようにして測定する。
 多層成膜を実施する条件にて、Si基板上に150nmの厚さで成膜条件を変更した単層成膜を実施する。その後、RBS(Rutherford Backscattering Spectrometry)法にてNational Electrostatics Corporation製 Pelletron 3SDHにてRBSスペクトルを取得し、理論計算により求めたスペクトルから算出している。SiOxの場合、以下の測定条件にて実施している。
入射イオン:4He++
入射エネルギー:2300keV
入射角:0deg
散乱角:160及び120deg
試料電流:7nA
ビーム径:2mmΦ
面内回転:無
照射量:60μC
 多層膜の各層の成膜方法は限定されないが、スパッタリング(sputtering)法、化学的気相成長法(CVD)、蒸着を例示できる。ここで、特に好ましくは、スパッタターゲットをSi、Ta、Hf、Zrとした反応性スパッタリングの際に、チャンバー内に流す酸素ガス量を調整することによって、各層の酸素比率をコントロールすることが可能である。
 多層膜を構成する各層の具体的な製造条件はチャンバー仕様によるので適宜選択するが、好適例では、全圧を0.28~0.34Paとし、酸素分圧を1.2×10―3~5.7×10-2Paとし、成膜温度を常温から200℃までの間とする。
 本発明においては、第一層と第二層とを交互に積層してなる多層膜を圧電性材料基板と支持基板との間に設ける。また、第一層の層数、第二層の層数はそれぞれ二層以上とすることが好ましい。ただし、第一層、第二層の各層数が多すぎても作用効果は大きく変わらないので、この観点からは、第一層、第二層の総数はそれぞれ10層以下が好ましい。
 好適な実施形態においては、圧電性材料基板と支持基板との間に、一層または複数層の接合層を設けることができる。こうした接合層の材質としては、以下を例示できる。
Si(1-v)v、Ta、Al3、Nb,TiO
 更に好適な実施形態においては、支持基板と圧電性材料基板との間に設けられる前記接合層が、Si(1-v)(0.008≦v≦0.408)の組成を有する。
 この組成は、SiO(v=0.667に対応する)に比べて酸素比率がかなり低くされている組成である。このような組成の珪素酸化物Si(1-v)からなる接合層を更に介在させることで、接合層における絶縁性を更に高くすることができる。
 各接合層を構成するSi(1-v)の組成において、vが0.008未満であると、接合層における電気抵抗が低くなる。このため、vを0.008以上とすることが好ましく、0.010以上が更に好ましく、0.020以上が特に好ましく、0.024以上が特に好ましい。またvを0.408以下とすることによって、接合強度が更に向上するので、vを0.408以下とすることが好ましく、0.225以下とすることが更に好ましい。
 各接合層の厚さは、特に限定されないが、製造コストの観点からは0.01~10μmが好ましく、0.01~0.5μmが更に好ましい。
 各接合層の成膜方法は限定されないが、スパッタリング(sputtering)法、化学的気相成長法(CVD)、蒸着を例示できる。ここで、特に好ましくは、スパッタターゲットをSiとした反応性スパッタリングの際に、チャンバー内に流す酸素ガス量を調整することによって、各接合層の酸素比率(v)をコントロールすることが可能である。
 各接合層の具体的な製造条件はチャンバー仕様によるので適宜選択するが、好適例では、全圧を0.28~0.34Paとし、酸素分圧を1.2×10―3~5.7×10-2Paとし、成膜温度を常温とする。また、SiターゲットとしてはBドープSiを例示できる。
 接合層の酸素濃度はEDSによって以下の条件で測定する。
測定装置:
 元素分析装置(日本電子 JEM-ARM200F)を用いて元素分析を行う。
 測定条件:
 FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kVにて観察する。
 本発明では、支持基板は、単結晶からなっていてよく、多結晶からなっていてもよい。支持基板の材質は、好ましくは、シリコン、サイアロン、サファイア、コージェライト、ムライトおよびアルミナからなる群より選ばれる。アルミナは好ましくは透光性アルミナである。
 シリコンは、単結晶シリコンでも多結晶シリコンでもよく、また高抵抗シリコンであってもよい。
 サイアロンは、窒化珪素とアルミナとの混合物を焼結して得られるセラミックスであり、以下のような組成を有する。
  Si6-wAl8-w
 すなわち、サイアロンは、窒化珪素中にアルミナが混合された組成を有しており、wがアルミナの混合比率を示している。wは、0.5以上が更に好ましい。また、wは、4.0以下が更に好ましい。
 サファイアはAlの組成を有する単結晶であり、アルミナはAlの組成を有する多結晶である。コージェライトは、2MgO・2Al2O3・5SiO2の組成を有するセラミックスである。ムライトは、3Al2O3・2SiO2~2Al2O3・SiO2の範囲の組成を有するセラミックスである。
 圧電性材料基板の材質は、必要な圧電性を有する限り限定されないが、LiAOの組成を有する単結晶が好ましい。ここで、Aは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である。このため、LiAOは、ニオブ酸リチウムであってよく、タンタル酸リチウムであってよく、ニオブ酸リチウム-タンタル酸リチウム固溶体であってよい。
 以下、本発明の各構成要素について更に説明する。
 本発明の接合体の用途は特に限定されず、例えば、弾性波素子や光学素子に好適に適用できる。
 弾性波素子としては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などが知られている。例えば、弾性表面波デバイスは、圧電性材料基板の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電性材料基板上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。
 圧電性材料基板の底面に金属膜を有していてもよい。金属膜は、弾性波デバイスとしてラム波素子を製造した際に、圧電性材料基板の裏面近傍の電気機械結合係数を大きくする役割を果たす。この場合、ラム波素子は、圧電性材料基板の表面に櫛歯電極が形成され、支持基板に設けられたキャビティによって圧電性材料基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えばアルミニウム、アルミニウム合金、銅、金などが挙げられる。なお、ラム波素子を製造する場合、底面に金属膜を有さない圧電性性材料層を備えた複合基板を用いてもよい。
 また、圧電性材料基板の底面に金属膜と絶縁膜を有していてもよい。金属膜は、弾性波デバイスとして薄膜共振子を製造した際に、電極の役割を果たす。この場合、薄膜共振子は、圧電性材料基板の表裏面に電極が形成され、絶縁膜をキャビティにすることによって圧電性材料基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えば、モリブデン、ルテニウム、タングステン、クロム、アルミニウムなどが挙げられる。また、絶縁膜の材質としては、例えば、二酸化ケイ素、リンシリカガラス、ボロンリンシリカガラスなどが挙げられる。
 また、光学素子としては、光スイッチング素子、波長変換素子、光変調素子を例示できる。また、圧電性材料基板中に周期分極反転構造を形成することができる。
 本発明の対象が弾性波素子であり、圧電性材料基板の材質がタンタル酸リチウムである場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に123~133°(例えば128°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。
また圧電性材料基板がニオブ酸リチウムからなる場合には、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に86~94°(例えば90°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。更に、圧電性材料基板の大きさは、特に限定されないが、例えば、直径50~150mm,厚さが0.2~60μmである。
 本発明の接合体を得るためには、以下の方法が好ましい。
 まず、接合すべき表面(多層膜の表面、接合層の表面、圧電性材料基板の表面、支持基板の表面)を平坦化して平坦面を得る。ここで、各表面を平坦化する方法は、ラップ(lap)研磨、化学機械研磨加工(CMP)などがある。また、平坦面は、Ra≦1nmが好ましく、0.3nm以下にすると更に好ましい。
 次いで、研磨剤の残渣や加工変質層の除去のため、各接合層の各表面を洗浄する。表面を洗浄する方法は、ウエット洗浄、ドライ洗浄、スクラブ洗浄などがあるが、簡便かつ効率的に清浄表面を得るためには、スクラブ洗浄が好ましい。この際には、洗浄液としてサンウオッシュLH540を用いた後に、アセトンとIPAの混合溶液を用いてスクラブ洗浄機にて洗浄することが特に好ましい。
 次いで、各接合面に中性化ビームを照射することで、各接合面を活性化する。
 中性化ビームによる表面活性化を行う際には、特許文献2に記載のような装置を使用して中性化ビームを発生させ、照射することが好ましい。すなわち、ビーム源として、サドルフィールド型の高速原子ビーム源を使用する。そして、チャンバーに不活性ガスを導入し、電極へ直流電源から高電圧を印加する。これにより、電極(正極)と筺体(負極)との間に生じるサドルフィールド型の電界により、電子eが運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビームを構成する原子種は、不活性ガス(アルゴン、窒素等)が好ましい。
 ビーム照射による活性化時の電圧は0.5~2.0kVとすることが好ましく、電流は50~200mAとすることが好ましい。
 次いで、真空雰囲気で、活性化された接合面同士を接触させ、接合する。この際の温度は常温であるが、具体的には40℃以下が好ましく、30℃以下が更に好ましい。また、接合時の温度は20℃以上、25℃以下が特に好ましい。接合時の圧力は、100~20000Nが好ましい。
(実験A)
 図1~図3を参照しつつ説明した方法により、弾性表面波素子を試作した。
 具体的には、OF部を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を、圧電性材料基板1として使用した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である128°YカットX伝搬L
T基板を用いた。圧電性材料基板1の表面1aは、算術平均粗さRaが0.3nmとなるように鏡面研磨しておいた。ただし、Raは、原子間力顕微鏡(AFM)によって10μm×10μmの視野で測定する。
 次いで、圧電性材料基板1上に、スパッタリング法によって、第一層2aおよび第二層2bを交互にそれぞれ2層ごと(合計4層)成膜し、多層膜2を得た。ただし、第一層を構成するSiOxの組成は表1に示すように変更した。第二層の組成はハフニウム酸化物HfOとした。第一層の厚さ、第二層の厚さはそれぞれ、150nmとした。第一層、第二層の各成膜方法は前述したようにした。また、各組成は、雰囲気中の酸素比率を変更することで調節した。
 次いで、多層膜2上に、接合層4として、Si(1-x)Ox(x=0.10) (50nm)を成膜した。具体的には、直流スパッタリング法を使用し、ターゲットにはボロンドープのSiを使用した。また、酸素源として酸素ガスを導入した。この際、酸素ガス導入量を調節することによって、チャンバー内の雰囲気の全圧と酸素分圧を調節した。接合層4の表面の算術平均粗さRaは0.2~0.6nmであった。次いで、接合層4を化学機械研磨加工(CMP)し、膜厚を80~190nmとし、Raを0.08~0.4nmとした。
 一方、支持基板6として、オリエンテーションフラット(OF)部を有し、直径が4インチ,厚さが500μmのシリコンからなる支持基板6を用意した。支持基板6の表面は、化学機械研磨加工(CMP)によって仕上げ加工されており、算術平均粗さRaは0.2nmとなっている。
 次いで、接合層4の表面及び支持基板6であるSi基板表面に中性化ビームを照射して表面を活性化して直接接合した。
 具体的には、接合層4の表面と支持基板6の表面とを洗浄し、汚れを取った後、真空チャンバーに導入した。10-6Pa台まで真空引きした後、各表面に高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120sec間照射した。ついで、接合層4のビーム照射面(活性化面)と支持基板6の活性化面とを接触させた後、10000Nで2分間加圧して接合した。次いで、得られた各例の接合体を100℃で20時間加熱した。
 次いで、圧電性材料基板1の表面を厚みが当初の250μmから1μmになるように研削及び研磨した。次いで、測定用電極パターンを形成し、弾性表面波素子を得た。そして、周波数5.5GHzでのQ値をそれぞれ測定し、表1に示す。
 ただし、Q値は以下のようにして測定した。
 ウエハー上に表面弾性波共振子を作成し、ネットワークアナライザーを用いて周波数特性を測定した。これにより得られた周波数特性から共振周波数fr、およびその半値幅Δfrを算出し、fr/Δfrを求めることでQ値を得た。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、比較例1、2ではx=1.88、1.97としたが、いずれも同程度のQ値となった。
 一方、実施例1、2、3、4、5では、x=2.01、2.05、2.13、2.21、2.45としたが、比較例1にくらべてQ値が大きく向上した。
 比較例3では、x=2.52であるが、比較例1にくらべてQ値が劣化していた。この場合には、膜密度が低下していたものと思われる。
(実験B)
 実験Aにおいて、第二層の材質を、ハフニウム酸化物からタンタル酸化物Taに変更した。第一層の材質であるSiOxの組成は実験Aと同様とした。そして、得られた素子についてQ値を測定したところ、実験Aと同様の結果を得た。
(実験C)
 実験Aにおいて、第二層の材質を、ハフニウム酸化物からジルコニウム酸化物(ZrO)に変更した。第一層の材質であるSiOxの組成は実験Aと同様とした。そして、得られた素子についてQ値を測定したところ、実験Aと同様の結果を得た。

 

Claims (8)

  1.  支持基板、
     圧電性材料基板、および
     前記支持基板と前記圧電性材料基板との間の多層膜を備えており、
     前記多層膜が、SiOの組成を有する第一層と、金属酸化物からなる第二層とが交互に積層された構造を有し、SiOにおけるxが2より大きい値を有していることを特徴とする、接合体。
  2.  前記第一層において、xが2.03≦x≦2.50を満足することを特徴とする、請求項1記載の接合体。
  3.  前記金属酸化物が、タンタル酸化物、ハフニウム酸化物およびジルコニウム酸化物からなる群より選ばれることを特徴とする、請求項1または2記載の接合体。
  4.  前記第一層の厚さおよび前記第二層の厚さがそれぞれ20nm以上、500nm以下であることを特徴とする、請求項1~3のいずれか一つの請求項に記載の接合体。
  5.  前記多層膜が、前記第一層および前記第二層をそれぞれ二層以上有することを特徴とする、請求項1~4のいずれか一つの請求項に記載の接合体。
  6.  前記圧電性材料基板と前記支持基板との間に、Si(1-v)(0.008≦v≦0.408)の組成を有する接合層を備えていることを特徴とする、請求項1~5のいずれか一つの請求項に記載の接合体。
  7.  請求項1~6のいずれか一つの請求項に記載の接合体、および
     前記圧電性材料基板上に設けられた電極
    を備えていることを特徴とする、弾性波素子。
  8.  周波数3.5~6GHzの弾性波用であることを特徴とする、請求項7記載の弾性波素子。
     

     
PCT/JP2020/007096 2019-07-03 2020-02-21 接合体および弾性波素子 WO2021002046A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020543837A JPWO2021002046A1 (ja) 2019-07-03 2020-02-21 接合体および弾性波素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124204 2019-07-03
JP2019124204 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002046A1 true WO2021002046A1 (ja) 2021-01-07

Family

ID=74100310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007096 WO2021002046A1 (ja) 2019-07-03 2020-02-21 接合体および弾性波素子

Country Status (3)

Country Link
JP (1) JPWO2021002046A1 (ja)
TW (1) TWI733368B (ja)
WO (1) WO2021002046A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526919A (ja) * 2003-06-04 2006-11-24 エプコス アクチエンゲゼルシャフト 電気音響構成素子および製造方法
WO2018016169A1 (ja) * 2016-07-20 2018-01-25 信越化学工業株式会社 弾性表面波デバイス用複合基板の製造方法
WO2018180827A1 (ja) * 2017-03-31 2018-10-04 日本碍子株式会社 接合体および弾性波素子
JP2019102883A (ja) * 2017-11-29 2019-06-24 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099983B2 (en) * 2011-02-28 2015-08-04 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator device comprising a bridge in an acoustic reflector
US11800805B2 (en) * 2016-11-11 2023-10-24 Shin-Etsu Chemical Co., Ltd. Composite substrate, surface acoustic wave device, and method for manufacturing composite substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526919A (ja) * 2003-06-04 2006-11-24 エプコス アクチエンゲゼルシャフト 電気音響構成素子および製造方法
WO2018016169A1 (ja) * 2016-07-20 2018-01-25 信越化学工業株式会社 弾性表面波デバイス用複合基板の製造方法
WO2018180827A1 (ja) * 2017-03-31 2018-10-04 日本碍子株式会社 接合体および弾性波素子
JP2019102883A (ja) * 2017-11-29 2019-06-24 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Also Published As

Publication number Publication date
JPWO2021002046A1 (ja) 2021-09-13
TWI733368B (zh) 2021-07-11
TW202107844A (zh) 2021-02-16

Similar Documents

Publication Publication Date Title
JP6375471B1 (ja) 接合体および弾性波素子
KR102222096B1 (ko) 탄성파 소자 및 그 제조 방법
WO2020079958A1 (ja) 接合体および弾性波素子
TWI737811B (zh) 接合體
JP7069338B2 (ja) 接合体および弾性波素子
JP6605184B1 (ja) 接合体および弾性波素子
JP6644208B1 (ja) 接合体および弾性波素子
JP6850401B1 (ja) 接合体および弾性波素子
KR20210006995A (ko) 접합체 및 탄성파 소자
WO2021002046A1 (ja) 接合体および弾性波素子
WO2021002047A1 (ja) 接合体および弾性波素子
KR102670208B1 (ko) 접합체 및 탄성파 소자
JP6612002B1 (ja) 接合体および弾性波素子
JP6621574B1 (ja) 接合体および弾性波素子
JPWO2018203430A1 (ja) 弾性波素子およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020543837

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835044

Country of ref document: EP

Kind code of ref document: A1