WO2020078389A1 - 显示面板及其形变感应方法、显示装置 - Google Patents

显示面板及其形变感应方法、显示装置 Download PDF

Info

Publication number
WO2020078389A1
WO2020078389A1 PCT/CN2019/111486 CN2019111486W WO2020078389A1 WO 2020078389 A1 WO2020078389 A1 WO 2020078389A1 CN 2019111486 W CN2019111486 W CN 2019111486W WO 2020078389 A1 WO2020078389 A1 WO 2020078389A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitor
lead
display panel
deformation sensing
Prior art date
Application number
PCT/CN2019/111486
Other languages
English (en)
French (fr)
Inventor
王锦谦
王铁石
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/761,976 priority Critical patent/US11016625B2/en
Publication of WO2020078389A1 publication Critical patent/WO2020078389A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the embodiments of the present disclosure relate to a display panel, a deformation sensing method thereof, and a display device.
  • the touch display panel has become the most convenient electronic device for human-machine interaction. It has the combined characteristics of touch function and display function, and can be widely applied to electronic devices that are carried around.
  • some display panels have integrated interaction methods such as voice control and force control to further improve the user experience of human-computer interaction.
  • At least one embodiment of the present disclosure provides a display panel including: a substrate, a deformation sensing unit on the substrate; the deformation sensing unit includes a first electrode, a second electrode, and a third electrode, A first capacitor is configured between the second electrode and the third electrode, a second capacitor is configured between the first electrode and the second electrode, and the first electrode and the third electrode A third capacitor is configured between the electrodes; the first capacitor, the second capacitor, and the third capacitor are configured to determine the shape of the display panel.
  • the display panel further includes a display unit including a thin film transistor, the first electrode and the source electrode and the drain electrode of the thin film transistor are disposed in the same layer, the second electrode and the third electrode It is provided on the dielectric layer covering the first electrode.
  • the dielectric layer is provided with an electrode via hole at the position of the first electrode, and the second electrode and the third electrode are respectively provided on the dielectric layer on both sides of the electrode via hole.
  • the first electrode, the second electrode, and the third electrode are respectively connected to a processing module, and the processing module inputs scans to the first electrode, the second electrode, and the third electrode, respectively Signal, detect the capacitance value of at least one capacitor, obtain the change relationship of the capacitance value, and determine the form of the display panel according to the change relationship of the capacitance value.
  • the deformation sensing unit further includes a first lead, a second lead, and a third lead; the first electrode passes through the first lead, the second electrode passes through the second lead, and the third electrode
  • the third leads are respectively connected to the processing module; the first leads are arranged on the same layer as the gate electrode of the display unit, and the first electrodes are connected to the first leads through the first connection vias;
  • the second lead is provided in the same layer and directly connected with the second electrode;
  • the third lead is provided in the same layer as the source electrode and the drain electrode of the display unit, and the third electrode is connected to the The third lead connection.
  • the deformation sensing unit includes: a first insulating layer covering the substrate; a first lead provided on the first insulating layer, the first lead being provided in the same layer as the gate electrode of the display unit; A second insulating layer covering the first lead, a first lead via hole exposing the first lead is formed on the second insulating layer; a first electrode and a first electrode provided on the second insulating layer Three leads, the first electrode is connected to the first lead through the first lead via, the first electrode and the third lead are provided on the same layer as the source electrode and the drain electrode of the display unit; The planarization layer and the dielectric layer of the first electrode and the third lead, the planarization layer and the dielectric layer are respectively provided with an electrode via and a second hole at the position of the first electrode and the third lead A lead via; a second electrode and a third electrode provided on the dielectric layer, the second electrode and the third electrode are respectively located on both sides of the electrode via, and the third electrode passes through the The second lead via is connected to the third lead; and
  • the display unit includes: an active layer provided on the substrate; a first insulating layer covering the active layer; a gate electrode provided on the first insulating layer, the gate electrode
  • the first lead of the deformation sensing unit is provided in the same layer; a second insulating layer covering the gate electrode is provided, and a first connection via exposing the active layer is formed on the second insulating layer;
  • a source electrode and a drain electrode on the second insulating layer, the source electrode and the drain electrode are respectively connected to the active layer through the first connection via, the source electrode and the drain electrode are connected to the
  • the first electrode and the third lead of the deformation sensing unit are provided in the same layer; a planarization layer covering the source electrode and the drain electrode is provided, and a second connection via hole exposing the drain electrode is formed on the planarization layer ;
  • An anode provided on the planarization layer, the anode is connected to the drain electrode through the second connection via; and a dielectric layer and a pixel definition layer covering the anode
  • the substrate is a flexible substrate.
  • At least one embodiment of the present disclosure also provides a display device including the display panel as described above.
  • At least one embodiment of the present disclosure also provides a deformation sensing method for a display panel.
  • the display panel includes a substrate, and a deformation sensing unit is provided on the substrate.
  • the deformation sensing unit includes a first electrode, a second electrode, and a second electrode. Three electrodes, configured between the second electrode and the third electrode to form a first capacitor, and configured between the first electrode and the second electrode to form a second capacitor, the first electrode and all The third electrodes are configured to form a third capacitor;
  • the deformation sensing method includes: obtaining a change relationship of each capacitance value in the deformation sensing unit; and determining the form of the display panel according to the change relationship of each capacitance value.
  • the obtaining the change relationship of the capacitance values in the deformation sensing unit includes: inputting scan signals to the first electrode, the second electrode and the third electrode respectively, and detecting the first capacitance and the third The capacitance value of the two capacitors; compare the capacitance value of each capacitor with their respective reference capacitance values, and when the difference between the two is greater than or equal to the preset change threshold, determine the nature of the change in the capacitance value of each capacitor; The changing nature of the capacitance value of each capacitor obtains the change relationship of the capacitance value.
  • the reference capacitance value is the capacitance value of each capacitance detected when the display panel is not subjected to any external force
  • each capacitor compares the capacitance value of each capacitor with its corresponding reference capacitance value.
  • determine the nature of the change of each capacitor including: compare separately Q C1 '-Q C1 ⁇ and ⁇ 1, ⁇ Q C2 '-Q C2 ⁇ and ⁇ 2, where Q C1 ' and Q C2 'are the detection capacitance values of the first capacitor and the second capacitor respectively; when ⁇ Q C1 ' -Q C1 ⁇ 1 Or ⁇ Q C2 '-Q C2 ⁇ 2, compare the size of Q C1 ' and Q C1 or the size of Q C2 'and Q C2 ; and according to the comparison result, determine the changing nature of each capacitor, where the change Properties include: increased capacitance or decreased capacitance.
  • FIG. 1A is a schematic cross-sectional structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 1B is a schematic plan view of a display panel according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view after forming an active layer pattern according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view after forming a gate electrode and a first lead pattern according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view after forming an active layer doped region pattern according to an embodiment of the present disclosure
  • FIG. 5 is a schematic cross-sectional view after forming an insulating layer pattern with via holes according to an embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional view after forming a source electrode, a drain electrode, and a first electrode pattern according to an embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional view after forming a planarization layer pattern with via holes according to an embodiment of the present disclosure
  • FIG. 8 is a schematic cross-sectional view after forming an anode pattern according to an embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view after forming a dielectric layer pattern with via holes according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view after forming a second electrode and a third electrode pattern according to an embodiment of the present disclosure
  • FIG. 11 is an enlarged view of a portion of the deformation sensing unit in FIG. 1A;
  • FIG. 12 is a schematic cross-sectional view taken along line AA 'of FIG. 1B to form a capacitance of a deformation sensing unit according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a deformation sensing unit subjected to horizontal tensile force according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of the deformation sensing unit subjected to horizontal compression force according to an embodiment of the present disclosure
  • 15 is a schematic diagram of a deformation sensing unit subjected to internal bending force according to an embodiment of the present disclosure
  • 16 is a schematic diagram of the deformation sensing unit subjected to external bending force according to an embodiment of the present disclosure
  • 17 is a schematic diagram of a deformation sensing unit subjected to vertical compression force according to an embodiment of the present disclosure
  • FIG. 19 is a flowchart of a deformation sensing method of a display panel according to another embodiment of the present disclosure.
  • the inventors of the present application have found that when the current deformation solution is applied to a display panel, it has a greater impact on the reliability and cost of the display panel.
  • the external structure of the sensor is easily damaged during use, and the product reliability is low; on the other hand, adding an external sensor requires the addition of new production equipment and processes, and the product cost is higher.
  • embodiments of the present disclosure provide a display panel integrated with a deformation sensing unit.
  • the display panel can realize both image display and deformation sensing.
  • the display panel of the embodiment of the present disclosure may be an organic light emitting diode (Organic Light Emitting Diode, OLED) display panel, an electronic paper (E-Paper), or other flexible display panels.
  • OLED Organic Light Emitting Diode
  • E-Paper electronic paper
  • the main structure of the display panel of the embodiment of the present disclosure includes a display unit for realizing image display and a deformation sensing unit for realizing deformation sensing formed on the substrate through the same preparation process.
  • the deformation sensing unit includes a The capacitance for determining the shape of the display panel enables the display panel of the embodiments of the present disclosure to simultaneously realize image display and deformation sensing functions.
  • the deformation sensing unit is used to change the capacitance value of the display panel when it receives an external force, and reflects the form of the display panel through the change relationship of the capacitance value.
  • each pixel unit may be provided with a display unit and a deformation sensing unit.
  • a display unit may be provided in a part of the pixel units, and a deformation sensing unit may be provided in another part of the pixel units.
  • a display unit and a deformation sensing unit may be provided in a part of the pixel units, and only a display unit and the like are provided in another part of the pixel units.
  • FIG. 1A is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the display unit may include a gate electrode 23, an active layer 21, a source electrode 27, a drain electrode 28, an anode 31, and a light emitting layer and a cathode (not shown).
  • the deformation sensing unit includes a third One electrode 11, a second electrode 12, and a third electrode 13.
  • the first electrode 11 is provided in the same layer as the source electrode 27 and the drain electrode 28, and is formed by a patterning process.
  • the second electrode 12 and the third electrode 13 are provided on the dielectric layer 32 covering the first electrode 11, and the second electrode 12 and The third electrodes 13 are arranged in the same layer and formed by one patterning process, and are located on both sides of the first electrode 11, respectively.
  • the first electrode 11, the second electrode 12, and the third electrode 13 form a substantially triangular layout.
  • the dielectric layer 32 is provided with electrode vias at the location of the first electrode 11, the second electrode 12 and the third electrode 13 are respectively It is provided on the dielectric layer 32 on both sides of the electrode via.
  • a first capacitor is formed between the second electrode 12 and the third electrode 13
  • a second capacitor is formed between the first electrode 11 and the second electrode 12
  • a first capacitor is formed between the first electrode 11 and the third electrode 13
  • the third capacitor The first electrode 11, the second electrode 12, and the third electrode 13 are respectively connected to the processing module in the peripheral circuit, and the processing module inputs a scan signal to the first electrode 11, the second electrode 12, and the third electrode 13, respectively, to detect the first capacitance .
  • the capacitance values of the second capacitor and the third capacitor obtain the first capacitor and the second capacitor, or obtain the first capacitor, the second capacitor, and the third capacitor, and determine the display panel according to the change of the capacitor value Shape.
  • the display panel of the embodiment of the present disclosure further includes a first lead 24, a second lead (not shown) and a third lead 29,
  • the processing module is connected to the first electrode 11 via the first lead 24, to the second electrode 12 via the second lead, and to the third electrode 13 via the third lead 29. As shown in FIGS.
  • the first lead 24 is provided in the same layer as the gate electrode 23 of the display unit, and is formed by a patterning process
  • the second lead 26 is provided in the same layer as the second electrode 12 and the third electrode 13, and passes Formed in one patterning process
  • the third lead 29 is provided in the same layer as the source electrode 27 and the drain electrode 28 of the display unit, and formed in one patterning process.
  • the first electrode 11 is connected to the first lead 24 through the first lead via
  • the second electrode 12 is directly connected to the second lead
  • the third electrode 13 is connected to the third lead 29 through the second lead via.
  • the processing module includes a first processor 51 and a second processor 52, the first electrode 11 is electrically connected to the first processor 51 through a first lead 24, the second electrode 12 and the third The electrode 13 is electrically connected to the second processor 52 through the second lead 26 and the third lead 29.
  • the first processor 51 and the second processor 52 may be integrated into one processor, and the first lead 24, the second lead 26, and the third lead 29 are connected to the same processor.
  • the technical solution of this embodiment is further described below through the preparation process of the display panel.
  • the "patterning process" mentioned in the embodiments of the present disclosure may include processes such as depositing a film layer, coating a photoresist, masking exposure, developing, etching, and stripping the photoresist.
  • the deposition may use known processes such as sputtering, evaporation, chemical vapor deposition, the coating may use a known coating process, and the etching may use a known method.
  • the “same preparation process” mentioned in the embodiments of the present disclosure includes the following patterning process for forming each pattern.
  • an active layer pattern is formed on the substrate.
  • Forming the active layer pattern includes: depositing an active layer film on the substrate; coating a layer of photoresist on the active layer film, exposing and developing the photoresist using a single-tone mask, and developing the active layer on the active layer An unexposed area is formed at the pattern position, and the photoresist is retained, and a fully exposed area is formed at other positions, without photoresist; the active layer film of the fully exposed area is etched and the remaining photoresist is stripped off, formed on the substrate 10
  • the pattern of the active layer 21 is shown in FIG. 2.
  • a flexible material may be used for the substrate, and a metal oxide or silicon material may be used for the active layer film.
  • Metal oxides include indium gallium zinc oxide (IGZO) or indium tin zinc oxide (ITZO).
  • Silicon materials include amorphous silicon and polycrystalline silicon.
  • the active layer thin film can also be made of amorphous silicon a-Si, and polycrystalline silicon can be formed by crystallization or laser annealing.
  • a light shielding layer and a buffer layer pattern may also be provided.
  • the light shielding layer is configured to block light transmitted through the substrate side to improve the electrical performance of the thin film transistor.
  • the buffer layer is configured to block the influence of ions in the substrate on the thin film transistor. For example, a light-shielding layer pattern is first formed on the substrate through a patterning process, and then a buffer layer film and an active layer film are sequentially deposited, and an active layer pattern is formed on the buffer layer through a patterning process.
  • Forming the gate electrode and the first lead pattern includes: depositing an insulating layer film and a metal film in sequence on the substrate on which the aforementioned active layer pattern is formed, patterning the metal film through a patterning process to form a first insulating layer 22, a gate electrode 23 and First lead 24 pattern.
  • the gate electrode 23 and the first lead 24 are formed on the first insulating layer 22, and the gate electrode 23 corresponds to the position of the active layer 21, as shown in FIG.
  • the metal thin film may be one or more of platinum Pt, ruthenium Ru, gold Au, silver Ag, molybdenum Mo, chromium Cr, aluminum Al, tantalum Ta, titanium Ti, tungsten W and other metals, or multiple metals Composite layer structure. Thickness is about ⁇ About
  • the first insulating layer may use silicon nitride SiNx, silicon oxide SiOx, or a composite film of SiNx / SiOx. Thickness is about ⁇ About
  • Forming the active layer doped region pattern includes: ion doping the region of the active layer 21 that is not blocked by the gate electrode 23 to form the active layer doped region pattern, as shown in FIG. 4. During the ion doping process, due to the barrier of the gate electrode, the influence of the doped ions on the channel region can be avoided. After the ion doping process, the active layer outside the channel region becomes metal.
  • Forming an insulating layer pattern with vias includes: depositing an insulating layer film on the substrate on which the foregoing pattern is formed, coating a layer of photoresist on the insulating layer film, and exposing the photoresist using a single-tone mask plate and Development, forming a fully exposed area at the position of the via pattern, the photoresist is removed, and forming an unexposed area at other positions, retaining the photoresist; etching the insulating layer film exposed in the fully exposed area and stripping the remaining light
  • a resist is formed to form a pattern of a second insulating layer 25 provided with two first connection vias K1 and one first lead via Y1.
  • the two first connection vias K1 are located at the doped regions of the active layer 21, respectively. That is, in the area where the active layer 21 is not blocked by the gate electrode 23, the second insulating layer 25 and the first insulating layer 22 in the first connection via K1 are etched away, exposing the doped region 51 of the active layer 21, 52.
  • the first lead via Y1 is located at the position of the first lead 24, and the second insulating layer 25 in the first lead via Y1 is etched away to expose the first lead 24, as shown in FIG.
  • the second insulating layer may use SiNx, SiOx, or SiNx / SiOx composite film. Thickness is about ⁇ About
  • Forming the source electrode, the drain electrode, the first electrode, and the third lead pattern includes: depositing a metal thin film on the substrate on which the foregoing pattern is formed, patterning the metal thin film through a patterning process to form the source electrode 27, the drain electrode 28, and the first electrode 11 and the third lead 29 pattern.
  • the source electrode 27 and the drain electrode 28 are respectively connected to the doped regions 51, 52 of the active layer 21 through the first connection via K1, and the first electrode 11 is connected to the first lead 24 through the first lead via Y1, as shown in FIG. 6 As shown.
  • the source electrode, the drain electrode, the first electrode and the third lead may use platinum Pt, ruthenium Ru, gold Au, silver Ag, molybdenum Mo, chromium Cr, aluminum Al, tantalum Ta, titanium Ti, tungsten W and other metals One or more, or a composite layer structure of multiple metals. Thickness is about
  • a planarization layer pattern with via holes is formed.
  • Forming the pattern of the planarization layer with vias includes: applying a flattening (PLN) film by coating on the substrate on which the foregoing pattern is formed, and developing through exposure to form second connection vias K2 and electrode vias
  • the second connection via K2 is located at the location of the drain electrode 28, the electrode via X is located at the location of the first electrode 11, and the second lead via Y2 is located at the location of the third lead 29.
  • the planarized films in the three via holes are etched away, respectively exposing the drain electrode 28, the first electrode 11 and the third lead 29, as shown in FIG.
  • a resin material can be used for the planarizing film.
  • the thickness is about 1 ⁇ m to about 3 ⁇ m.
  • an anode pattern can also be formed.
  • Forming the anode pattern includes: depositing a transparent conductive film on the substrate on which the foregoing pattern is formed, and patterning the transparent conductive film through a patterning process to form an anode 31 pattern.
  • the anode 31 is connected to the drain electrode 28 through the second connection via K2, as shown in FIG. 8.
  • the material of the transparent conductive material layer includes indium tin oxide ITO or indium zinc oxide IZO.
  • Forming the dielectric layer pattern with vias includes: depositing a dielectric layer thin film on the substrate on which the foregoing pattern is formed, patterning the dielectric layer thin film through a patterning process, forming a pixel-defining opening D, an electrode via X, and a second lead In the dielectric layer 32 pattern of the via hole Y2, the pixel-defining opening D is located at the position of the anode 31, and the dielectric layer film in the pixel-defining opening D is etched away to expose the surface of the anode 31.
  • the electrode via X and the second lead via Y2 are processed on the via that has been formed in the previous process.
  • the electrode via X is located at the position of the first electrode 11 and the second lead via Y2 is located at the position of the third lead 29
  • the dielectric layer film in the second lead via Y2 is etched away, exposing the surface of the third lead 29, as shown in FIG. 9.
  • second electrode and third electrode patterns are formed.
  • Forming the second electrode and the third electrode pattern includes: depositing a metal thin film on the substrate on which the foregoing pattern is formed, patterning the metal thin film through a patterning process, and forming the second electrode 12, the third electrode 13 and the second on the dielectric layer 32 Lead (not shown) pattern.
  • the second electrode 12 and the third electrode 13 are located on both sides of the electrode via above the first electrode 11, respectively, so that the first electrode 11, the second electrode 12, and the third electrode 13 form a substantially triangular layout.
  • the two leads are directly connected, and the third electrode 13 is connected to the third lead 29 through the second lead via Y2, as shown in FIG.
  • Forming the pixel definition layer pattern with openings includes: applying a pixel definition layer (PDL) film by coating on the substrate on which the aforementioned pattern is formed, and developing a pixel definition with pixel definition openings and electrode vias through exposure and development Layer 33 pattern, the pixel-defining opening is located at the position of the anode 31, the pixel-defining layer film in the pixel-defining opening is etched away, exposing the surface of the anode 31, and the electrode via X is at the position of the first electrode 11, as shown in FIGS. Show.
  • PDL pixel definition layer
  • the deformation sensing unit is organically integrated into the structure of the OLED display panel through the same preparation process.
  • the subsequent step may further include the step of forming a light emitting structure layer.
  • the light emitting structure layer includes a light emitting layer, a cathode, an encapsulation layer and other structural film layers.
  • the subsequent step may further include the step of forming a touch structure layer. A panel with a touch function, a deformation feeling function and a display function is formed.
  • the structure and preparation method of the subsequent process are the same as those of the related art, and will not be repeated here.
  • the first connection via K1 is configured to connect the source electrode 27 and the drain electrode 28 to the doped regions 51, 52 of the active layer 21, and the first lead via Y1 is configured to connect the first electrode 11 to the first One lead 24 is connected, the second connection via K2 is configured to connect the anode 31 to the drain electrode 28, and the electrode via X is configured to increase the amount of movement of the second electrode 12 and the third electrode 13 under external force.
  • the hole Y2 is configured to connect the third electrode 13 to the third lead 29, and the pixel defines an opening configuration to expose the anode 31.
  • FIG. 11 is an enlarged view of a portion of the deformation sensing unit in FIG. 1A.
  • a first capacitor C1 is formed between the second electrode 12 and the third electrode 13
  • a second capacitor C2 is formed between the first electrode 11 and the second electrode 12
  • the first electrode 11 and the third electrode 13 A third capacitor C3 is formed between them, and the first, second, and third capacitors are also called coupling capacitors.
  • the first lead 24, the second lead 26 and the third lead 29 are connected to the external processing module, so that the processing module passes the first lead 24, the second lead 26 and the third lead 29 to the first electrode 11 and the second electrode 12 respectively Input a scan signal with the third electrode 13 and receive the sensing signal to detect the capacitance values of the first capacitor C1, the second capacitor C2 and the third capacitor C3 to obtain the change relationship of the capacitance value, and determine the display panel according to the change relationship of the capacitance value Shape.
  • the form of the display panel includes one or any combination of the following: a horizontally stretched form, a horizontally compressed form, an inwardly bent form, an outwardly bent form, or a vertically compressed form.
  • the processing module inputs a scanning signal to each electrode, receives a sensing signal, and obtains the capacitance value of each capacitor, etc., which is a mature processing method in the related art and is well known to those skilled in the art, and will not be repeated here.
  • FIG. 12 is a schematic diagram of the deformation sensing unit forming a capacitor according to an embodiment of the present disclosure.
  • the first electrode 11, the second electrode 12, and the third electrode 13 in the deformation sensing unit can form three capacitors.
  • the first capacitor C1 is formed between the second electrode 12 and the third electrode 13
  • the second capacitor C2 is formed between the first electrode 11 and the second electrode 12
  • the third capacitor C3 is formed between the first electrode 11 and the third electrode Between the three electrodes 13.
  • the external processing module detects the capacitance value of the first to third capacitors by applying a scan signal to each electrode to obtain the change relationship of the three capacitance values. According to the change of the three capacitance values The relationship can determine the shape of the display panel.
  • the shape of the display panel includes one or any combination of the following: a horizontally stretched shape generated by the horizontal tensile force of the display panel, a horizontally compressed shape generated by the horizontal compressive force of the display panel, and an inwardly curved shape and an externally curved shape generated by the bending moment Bent form, vertical compression form caused by vertical compression force on the display panel, etc.
  • the horizontal direction refers to a direction parallel to the plane of the display panel
  • the vertical direction refers to the normal direction of the plane of the display panel.
  • the horizontal direction when the display panel is not subjected to any external force, in the horizontal direction, there is a first distance D1 between the second electrode 12 and the third electrode 13, and a first capacitor C1 is formed therebetween.
  • the scanning signal is applied to the electrode 12 and the third electrode 13, and the capacitance value of the first capacitor C1 can be detected as Q C1 , and Q C1 can be used as the reference capacitance value of the first capacitor C1.
  • the processing module can detect by applying a scan signal to the first electrode 11 and the second electrode 12
  • the capacitance value of the second capacitor C2 is Q C2
  • Q C2 can be used as the reference capacitance value of the second capacitor C2.
  • the capacitance value of the third capacitor C3 is Q C3 .
  • Q C3 can be used as the reference capacitance value of the third capacitor C3.
  • FIG. 13 is a schematic diagram of the deformation sensing unit subjected to horizontal tensile force according to an embodiment of the present disclosure. As shown in FIG. 13, when the deformation sensing unit receives the horizontal stretching force F, the horizontal stretching force F increases the distance between the second electrode 12 and the third electrode 13 from the first distance D1 to D1 ′ , D1 '> D1, and the basic distance between the first electrode 11 and the second electrode 12, the first electrode 11 and the third electrode 13 does not change.
  • the capacitance value Q C1 ′ of the first capacitor C1 detected by the processing module will be less than its reference capacitance value Q C1 , and the capacitance value Q C2 ′ of the detected second capacitor C2 is approximately equal to its reference capacitance value Q C2 ,
  • the detected capacitance value Q C3 ′ of the third capacitor C3 is approximately equal to its reference capacitance value Q C3 .
  • FIG. 14 is a schematic diagram of the deformation sensing unit subjected to horizontal compression force according to an embodiment of the present disclosure. As shown in FIG. 14, when the deformation sensing unit receives a horizontal compressive force F, the horizontal compressive force F reduces the distance between the second electrode 12 and the third electrode 13 from the first distance D1 to D1 ′, D1 ' ⁇ D1, and the basic distance between the first electrode 11 and the second electrode 12, the first electrode 11 and the third electrode 13 is unchanged.
  • the capacitance value Q C1 ′ of the first capacitor C1 detected by the processing module will be greater than its reference capacitance value Q C1 , while the capacitance value Q C2 ′ of the detected second capacitor C2 is approximately equal to its reference capacitance value Q C2 ,
  • the detected capacitance value Q C3 ′ of the third capacitor C3 is approximately equal to its reference capacitance value Q C3 .
  • FIG. 15 is a schematic diagram of the deformation sensing unit subjected to internal bending force according to an embodiment of the present disclosure.
  • the deformation sensing unit receives a bending moment M below its center, the bending moment M forms a horizontal compressive force F X in the horizontal direction, which reduces the distance between the second electrode 12 and the third electrode 13 Small, from the first distance D1 to D1 ', D1' ⁇ D1, and the bending moment M forms a vertical compressive force F Y in the vertical direction, so that the distance between the first electrode 11 and the second electrode 12 decreases, from The second interval D2 becomes D2 ', D2' ⁇ D2, and at the same time, the interval between the first electrode 11 and the third electrode 13 is reduced, from the third interval D3 to D3 ', D3' ⁇ D3.
  • the display panel Due to the bending moment, the display panel will have a concave curved shape with a low center and high sides.
  • the capacitance value Q C1 ′ of the first capacitor C1 detected by the processing module will be greater than its reference capacitance value Q C1
  • the capacitance value Q C2 ′ of the detected second capacitor C2 will be greater than its reference capacitance value Q C2
  • the capacitance value of the third capacitor C3 reached Q C3 ′ will be greater than its reference capacitance value Q C3 .
  • FIG. 16 is a schematic diagram of the deformation sensing unit subjected to external bending force according to an embodiment of the present disclosure.
  • the deformation sensing unit receives a bending moment M above its center, the bending moment M forms a horizontal tensile force F X in the horizontal direction, so that the distance between the second electrode 12 and the third electrode 13 Increase, from the first spacing D1 to D1 ', D1'> D1, and the bending moment M forms a vertical tensile force F Y in the vertical direction, so that the spacing between the first electrode 11 and the second electrode 12 increases , From the second pitch D2 to D2 ', D2'> D2, while increasing the pitch between the first electrode 11 and the third electrode 13, from the third pitch D3 to D3 ', D3'> D3.
  • the display panel Due to the bending moment, the display panel will be convexly curved with a high center and low sides.
  • the capacitance value Q C1 ′ of the first capacitor C1 detected by the processing module will be less than its reference capacitance value Q C1
  • the capacitance value Q C2 ′ of the detected second capacitor C2 will be less than its reference capacitance value Q C2
  • the capacitance value Q C3 ′ of the third capacitor C3 reached will be smaller than its reference capacitance value Q C3 .
  • FIG. 17 is a schematic diagram of the deformation sensing unit subjected to vertical compression force according to an embodiment of the present disclosure.
  • the vertical compression force F reduces the distance between the first electrode 11 and the second electrode 12 from the second distance D2 to D2 ′, D2 ' ⁇ D2, the distance between the first electrode 11 and the third electrode 13 is reduced, from the third distance D3 to D3', D3 ' ⁇ D3, and the second electrode 12 and the third electrode 13
  • the first distance D1 is unchanged.
  • the capacitance value Q C1 ′ of the first capacitor C1 detected by the processing module is substantially equal to its reference capacitance value Q C1 , and the detected capacitance value Q C2 ′ of the second capacitor C2 will be greater than its reference capacitance value Q C2 .
  • the capacitance value Q C3 ′ of the third capacitor C3 reached will be greater than its reference capacitance value Q C3 .
  • the deformation sensing unit According to the working principle of the deformation sensing unit described in FIG. 13 to FIG. 17, it can be seen that, due to the one-to-one correspondence between the shape of the display panel and the external force it receives, the external force received varies with the capacitance value of the capacitor in the deformation sensing unit The relationship is one-to-one, so by detecting the capacitance value of the capacitor in the deformation sensing unit, the shape of the display panel can be determined according to the change relationship of the capacitance value of each capacitor.
  • Table 1 shows the relationship between the change in capacitance value of the deformation sensing unit and the form of the display panel.
  • Table 1 Relationship between the change in capacitance value of the deformation sensing unit and the form of the display panel
  • the processing module detects that the capacitance value Q C1 of the first capacitor C1 decreases, and the capacitance values of the second capacitor C2 and the third capacitor C3 are basically unchanged, it means that the first capacitor between the second electrode and the third electrode If the distance D1 increases, the second distance D2 between the first electrode and the second electrode and the third distance D3 between the first electrode and the third electrode are basically unchanged, it can be determined that the deformation sensing unit is stretched in the horizontal direction Force, the display panel is in a horizontally stretched form.
  • the processing module detects that the capacitance value Q C1 of the first capacitor C1 increases, and the capacitance values of the second capacitor C2 and the third capacitor C3 are basically unchanged, it means that the first between the second electrode and the third electrode If the distance D1 decreases, the second distance D2 between the first electrode and the second electrode and the third distance D3 between the first electrode and the third electrode are basically unchanged, then it can be determined that the deformation sensing unit is subjected to a horizontal compression force , The display panel is in a horizontally compressed form.
  • the processing module detects that the capacitance values of the first capacitor C1, the second capacitor C2, and the third capacitor C3 all increase, it means that the first spacing D1, the second spacing D2, and the third spacing D3 decrease. It is determined that the deformation sensing unit is subjected to the inward bending force, and the display panel is in an inward bending form.
  • the processing module detects that the capacitance values of the first capacitor C1, the second capacitor C2, and the third capacitor C3 all decrease, it means that the first spacing D1, the second spacing D2, and the third spacing D3 all increase, and it can be determined
  • the deformation sensing unit is subjected to external bending force, and the display panel is in an external bending form.
  • the processing module detects that the capacitance value of the first capacitor C1 is basically unchanged, but the capacitance values of the second capacitor C2 and the third capacitor C3 both increase, it means that the first spacing D1 is basically unchanged, the second spacing D2 and When the third pitch D3 is reduced, it can be determined that the deformation sensing unit is subjected to vertical compression force, and the display panel is in a vertical compression form.
  • the external processing module applies a scanning signal to each electrode through a signal line to detect the capacitance value of each capacitor, and related technical means may be adopted, which will not be repeated here.
  • the embodiment of the present disclosure introduces the concept of a change threshold ⁇ , presetting the change threshold ⁇ 1 of the first capacitor C1, the change threshold ⁇ 2 of the second capacitor C2 and the change threshold ⁇ 3 of the third capacitor C3.
  • the change in capacitance value is considered to be caused by system noise.
  • ⁇ 1 (0.02 ⁇ 0.1) Q C1
  • ⁇ 2 (0.02 ⁇ 0.1) Q C2
  • a different threshold ⁇ may be set, or the threshold may be set to 0, and the embodiments of the present disclosure are not limited thereto.
  • the processing module may determine the change in the capacitance value by first determining whether the absolute value of the change amount is greater than the change threshold ⁇ , and then determining the nature of the change in the capacitance value.
  • the changing property refers to an increase in capacitance or a decrease in capacitance.
  • the processing module judges the absolute values of the changes in the three capacitance values, that is, the absolute values of ⁇ Q C1 '-Q C1 ⁇ , ⁇ Q C2 ' -Q C2 ⁇ , ⁇ Q C3 '-Q C3 ⁇ value, if ⁇ Q C1 ' -Q C1 ⁇ 1, ⁇ Q C2 '-Q C2 ⁇ ⁇ 2, ⁇ Q C3 ' -Q C3 ⁇ ⁇ 3, then the second capacitor and the first The capacitance value of the three capacitors has not changed, only the capacitance value of the first capacitor has changed, then continue to judge the size of Q C1 'and Q C1 , when Q C1 ' ⁇ Q C1 , it is determined that the deformation sensing unit is stretched horizontally Force, the display panel is horizontally stretched.
  • the second electrode and the third electrode may be arranged symmetrically with respect to the first electrode, that is, the second distance D2 between the first electrode and the second electrode is equal to the third distance between the first electrode and the third electrode
  • the distance D3 is such that, after detecting the capacitance values of the three capacitors, the processing module only needs to determine the relationship between the capacitance values of the first capacitor C1 and the second capacitor C2 to determine the shape of the display panel. It is also possible to determine the relationship between the capacitance values of the first capacitor C1 and the third capacitor C3.
  • Table 2 shows the relationship of determining the form of the display panel using capacitors C1 and C2.
  • Capacitors C1 and C2 determine the relationship of the display panel form
  • the technical solutions of the embodiments of the present disclosure can also implement judgments of other forms .
  • the shape of the inner curve you can compare the reduction of the capacitance values of the second capacitor C2 and the third capacitor C3, that is, compare the values of ⁇ Q C2 '-Q C2 ⁇ and ⁇ Q C3 ' -Q C3 ⁇ , To determine the degree of reduction of the second pitch D2 and the third pitch D3, and further determine the degree of bending of the display panel on both sides when in the inwardly curved configuration.
  • the shape of the display panel can also be determined by the shape of the two or more deformation sensing units.
  • the technical solution of the embodiments of the present disclosure can also be simplified as a structure in which two electrodes form a capacitor, and a part of the form is realized Judgment.
  • the second electrode and the third electrode may be provided to realize the judgment of horizontal stretching and horizontal compression.
  • only the first electrode and the second electrode may be provided to realize the determination of vertical compression.
  • the technical solutions of the embodiments of the present disclosure can also be extended to a structure in which four, five, or even multiple electrodes form multiple capacitors to achieve more morphological judgments.
  • the embodiments of the present disclosure provide a display panel.
  • the change relationship of the capacitance value in the deformation sensing unit is used to reflect the shape of the display panel.
  • the problem of damage to the sensor in use is avoided, the reliability of the product is maximized, and it can be prepared by using the existing production equipment, without adding new production equipment, the production cost is low, and it has a wide application prospect.
  • the display panel of the embodiment of the present disclosure can not only determine the shape of the inner and outer bends, but also determine the forms of horizontal stretching, compression, and vertical compression, which can realize more abundant input commands, can control more applications, and have a simple structure. Easy to integrate in the display panel.
  • the display panel of the embodiment of the present disclosure can be prepared not only by using the existing production equipment, but also without adding new production equipment, and the production cost is low by reasonably disposing each electrode and its lead of the deformation sensing unit in the corresponding film layer of the display panel.
  • the change of each structural film layer in the display panel is small, the integration is high, the layout is reasonable, the film layer is added less, the structure is simple, and it is easy to implement.
  • the technical solutions of the embodiments of the present disclosure are also applicable to the structure of the bottom-gate thin-film transistor.
  • the film layer forms the required capacitance.
  • the technical solutions of the embodiments of the present disclosure can also be applied to two, four, five, or even multiple electrodes The formation of one or more capacitors can achieve different forms of judgment.
  • the determination manner shown in Table 2 may be used to determine only the change relationship of the capacitance values of the first capacitor C1 and the second capacitor C2 to determine the form of the display panel.
  • the third electrode 12 is connected to the third lead 29 through the via hole, and the first electrode 11 and the third lead 29 are in the same layer, so when an external force is applied, the distance between the first electrode 11 and the third electrode 13 It is basically unchanged, so it is not necessary to consider the change of the third capacitor C3, and only the change relationship of the capacitance values of the first capacitor C1 and the second capacitor C2 is judged, that is, the processing module detects the capacitance values of the first capacitor C1 and the second capacitor C2, The change relationship of the capacitance values of the two capacitors is obtained, and the form of the display panel is determined according to the change relationship of the capacitance values of the two capacitors.
  • the display panel of the embodiment of the present disclosure includes: a substrate 10; an active layer 21 provided on the substrate 10; a first insulating layer 22 covering the active layer 21; and a first insulating layer 22 provided The gate electrode 23 and the first lead 24 on the top; the second insulating layer 25 covering the gate electrode 23 and the first lead 24; the source electrode 27, the drain electrode 28, the first electrode 11 and the first electrode provided on the second insulating layer 25 Three leads 29, the source electrode 27 and the drain electrode 28 are respectively connected to the active layer 21 through the first connection via, and the first electrode 11 is connected to the first lead 24 through the first lead via; covering the source electrode 27 and the drain electrode 28 , The planarization layer 30 of the first electrode 11 and the third lead 29; the anode 31 provided on the planarization layer 30, the anode 31 is connected to the drain electrode 28 through the second connection via; the dielectric layer 32 covering the anode 31, The positions of the anode 31, the first electrode 11 and the third lead 29 are respectively provided with pixel
  • the display unit includes: a substrate 10; an active layer 21 disposed on the substrate 10; a first insulating layer 22 covering the active layer 21; a gate electrode 23 disposed on the first insulating layer 22, and the gate electrode is sensitive to deformation
  • the first lead of the cell is provided in the same layer; the second insulating layer 25 covering the gate electrode 23; the source electrode 27 and the drain electrode 28 provided on the second insulating layer 25, the source electrode 27 and the drain electrode 28 are respectively connected through the first
  • the hole is connected to the doped region of the active layer 21, and the source electrode and the drain electrode are provided in the same layer as the first electrode and the third lead of the deformation sensing unit; the planarization layer 30 covering the source electrode 27 and the drain electrode 28;
  • the anode 31 on the chemical conversion layer 30, the anode 31 is connected to the drain electrode 28 through the second connection via; and the dielectric layer 32 and the pixel definition layer 33 covering the anode 31 are provided with a pixel definition opening exposing the anode 31.
  • the deformation sensing unit includes: a substrate 10; a first insulating layer 22 covering the substrate 10; a first lead 24 disposed on the first insulating layer 22, the first lead being provided in the same layer as the gate electrode of the display unit; covering the first The second insulating layer 25 of the lead 24; the first electrode 11 and the third lead 29 provided on the second insulating layer 25, the first electrode 11 is connected to the first lead 24 through the first lead via, the first electrode and the first The three leads are provided in the same layer as the source electrode and the drain electrode of the display unit; the planarization layer 30 and the dielectric layer 32 covering the first electrode 11 are provided with electrode vias and second holes at the positions of the first electrode 11 and the third lead 29, respectively Lead via; the second electrode 12 and the third electrode 13 provided on the dielectric layer 32, the second electrode 12 and the third electrode 13 are located on both sides of the electrode via, the third electrode 13 through the second lead via and The third lead 29 is connected; and the pixel defining layer 33 covering the second electrode 12 and the third electrode 13 is
  • the embodiments of the present disclosure provide a display panel.
  • the deformation sensing unit By integrating the deformation sensing unit in the structure of the OLED display panel, not only can the shape of the inner and outer bends be determined, but also the forms of horizontal stretching, compression, and vertical compression can be determined. It realizes richer input commands and can control more applications.
  • the deformation sensing unit Because the deformation sensing unit is built into the OLED display panel, it can be prepared not only by using existing production equipment, without adding new production equipment, and the production cost is low, and the built-in structure of the deformation sensing unit avoids the problem of sensor damage during use, maximizing The product reliability is improved.
  • each electrode and its lead of the deformation sensing unit By reasonably arranging each electrode and its lead of the deformation sensing unit in the corresponding film layer of the OLED display panel, the change of each structural film layer in the display panel is small, the integration degree is high, the layout is reasonable, the film layer increase is small, and the structure Simple, easy to implement, and has a wide range of application prospects.
  • the embodiments of the present disclosure also provide a deformation sensing method of the display panel, which is implemented based on the aforementioned display panel.
  • the display panel includes a plurality of pixel units arranged in a matrix, and each pixel unit is provided with a display unit and a deformation sensing unit formed by the same preparation process.
  • the deformation sensing unit includes a capacitor formed by more than two electrodes;
  • FIG. 18 is the present disclosure A flowchart of a deformation sensing method of a display panel according to an embodiment. As shown in FIG. 18, the deformation sensing method of the display panel according to the embodiment of the present disclosure includes the following steps.
  • the deformation sensing unit includes a first electrode, a second electrode, and a third electrode, a first capacitor is formed between the second electrode and the third electrode, and a second electrode is formed between the first electrode and the second electrode Capacitor; as shown in FIG. 19, step S1 includes the following operations.
  • Input scan signals to the first electrode, the second electrode, and the third electrode, and detect the capacitance values of the first capacitor and the second capacitor.
  • the reference capacitance value of each capacitor is the capacitance value of the detected capacitance when the display panel is not subjected to any external force.
  • step S12 includes the following steps.
  • Q C1 ′ and Q C2 ′ are the detection capacitance values of the first capacitor and the second capacitor, respectively.
  • step S2 includes the following operations.
  • the deformation sensing unit receives an inward bending force, and it is determined that the display panel is in an inwardly bending form.
  • the inward bending force refers to the bending moment that the display panel is subjected to below its center
  • the inward bending form refers to the display panel being curved in a concave shape.
  • the outward bending force means that the display panel is subjected to a bending moment above its center
  • the outward bending form means that the display panel is convexly curved.
  • the form of the display panel may also be determined according to the change relationship of the capacitance values of the first capacitor, the second capacitor, and the third capacitor, as shown in Table 1.
  • An embodiment of the present disclosure provides a deformation sensing method of a display panel, and the shape of the display panel is determined by obtaining the change relationship of the capacitance value in each deformation sensing unit.
  • the deformation sensing method of the display panel of the embodiment of the present disclosure can not only determine the shape of the inner and outer bends, but also determine the forms of horizontal stretching, compression, and vertical compression, and realize more abundant input commands and control more applications. And the judgment method is simple, which can be realized by using the integrated circuit in the existing peripheral equipment, and has a wide application prospect.
  • the embodiments of the present disclosure also provide a display device including the foregoing display panel.
  • the display device may be any product or component with display function, such as an OLED panel, a mobile phone, a tablet computer, a TV, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • connection should be understood in a broad sense, unless otherwise clearly specified and defined, for example, it may be a fixed connection or a detachable connection Or integrally connected; it can be mechanically or electrically connected; it can be directly connected or indirectly connected through an intermediary, or it can be the connection between two components.
  • Embodiments of the present disclosure provide a display panel, a deformation sensing method, and a display device.
  • the deformation sensing unit is integrated into the structure of the display panel.
  • the change relationship of the capacitance value in the deformation sensing unit reflects the shape of the display panel.
  • the built-in structure of the deformation sensing unit not only avoids the problem of damage to the sensor during use, but also maximizes the reliability of the product, and can be prepared by using the existing production equipment, without adding new production equipment, the production cost is low, and has a wide range of Application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其形变感应方法、显示装置。显示面板包括基底(10),位于基底(10)上的形变感应单元;形变感应单元包括第一电极(11)、第二电极(12)和第三电极(13),第二电极(12)与第三电极(13)之间配置为形成第一电容(C1),第一电极(11)与第二电极(12)之间配置为形成第二电容(C2),第一电极(11)与第三电极(13)之间配置为形成第三电容(C3);第一电容(C1)、第二电容(C2)和第三电容(C3)配置为确定显示面板的形态。

Description

显示面板及其形变感应方法、显示装置
相关申请的交叉引用
本申请要求于2018年10月16日向CNI PA提交的名称为“显示面板及其形变感应方法、显示装置”的中国专利申请No.201811204678.6的优先权,其全文通过引用合并于本文。
技术领域
本公开的实施例涉及一种显示面板及其形变感应方法、显示装置。
背景技术
随着显示技术的快速发展,越来越多的人机交互技术应用于显示面板中。例如,触控显示面板已成为当前最简便的人机交互的电子设备,其具有触控功能和显示功能的结合特性,可以广泛适用于随身携带的电子装置。为了进一步丰富人机交互的多样性,已有部分显示面板结合有声控、力控等交互方式,以进一步提高人机交互的使用体验。
随着柔性屏幕的出现,用户与设备的交互方式更加多样,因为“软化”后显示面板的表现力更广泛。目前,已提出一种利用屏幕弯曲实现指令输入的形变方案,允许用户通过弯曲屏幕来控制应用程序,如虚拟书本翻页或游戏等功能。该形变方案采用在显示面板上外置弯曲传感器来监测施加在屏幕上的力度,并通过不同的振动级别来模拟物理力度。
发明内容
本公开的至少一个实施例提供了一种显示面板,所述显示面板包括:基底,位于所述基底上的形变感应单元;所述形变感应单元包括第一电极、第二电极和第三电极,所述第二电极与所述第三电极之间配置为形成第一电容,所述第一电极与所述第二电极之间配置为形成第二电容,所述第一电极与所述第三电极之间配置为形成第三电容;所述第一电容、所述第二电容和所述第三电容配置为确定显示面板的形态。
例如,所述显示面板还包括显示单元,所述显示单元包括薄膜晶体管,所述第一电极与所述薄膜晶体管的源电极和漏电极同层设置,所述第二电极和所述第三电极设置在覆盖 所述第一电极的介质层上。
例如,所述介质层位于所述第一电极位置开设有电极过孔,所述第二电极和所述第三电极分别设置在所述电极过孔两侧的所述介质层上。
例如,所述第一电极、所述第二电极和所述第三电极分别与处理模块连接,所述处理模块向所述第一电极、所述第二电极和所述第三电极分别输入扫描信号,检测至少一个电容的电容值,获得所述电容值的变化关系,并根据所述电容值的变化关系确定所述显示面板的形态。
例如,所述形变感应单元还包括第一引线、第二引线和第三引线;所述第一电极通过所述第一引线、所述第二电极通过所述第二引线、所述第三电极通过所述第三引线分别与处理模块连接;所述第一引线与所述显示单元的栅电极同层设置,所述第一电极通过第一连接过孔与所述第一引线连接;所述第二引线与所述第二电极同层设置且直接连接;所述第三引线与所述显示单元的源电极和漏电极同层设置,以及所述第三电极通过第二引线过孔与所述第三引线连接。
例如,所述形变感应单元包括:覆盖所述基底的第一绝缘层;设置在所述第一绝缘层上的第一引线,所述第一引线与所述显示单元的栅电极同层设置;覆盖所述第一引线的第二绝缘层,所述第二绝缘层上开设有暴露出所述第一引线的第一引线过孔;设置在所述第二绝缘层上的第一电极和第三引线,所述第一电极通过所述第一引线过孔与第一引线连接,所述第一电极和所述第三引线与所述显示单元的源电极和漏电极同层设置;覆盖所述第一电极和所述第三引线的平坦化层和所述介质层,所述平坦化层和所述介质层在所述第一电极和第三引线位置分别开设有电极过孔和第二引线过孔;设置在所述介质层上的第二电极和第三电极,所述第二电极和所述第三电极分别位于所述电极过孔的两侧,所述第三电极通过所述第二引线过孔与所述第三引线连接;以及覆盖所述第二电极和所述第三电极的像素定义层。
例如,所述显示单元包括:设置在所述基底上的有源层;覆盖所述有源层的第一绝缘层;设置在所述第一绝缘层上的栅电极,所述栅电极与所述形变感应单元的第一引线同层设置;覆盖所述栅电极的第二绝缘层,所述第二绝缘层上开设有暴露出所述有源层的第一连接过孔;设置在所述第二绝缘层上的源电极和漏电极,所述源电极和所述漏电极分别通过所述第一连接过孔与所述有源层连接,所述源电极和所述漏电极与所述形变感应单元的第一电极和第三引线同层设置;覆盖所述源电极和所述漏电极的平坦化层,所述平坦化层 上开设有暴露出所述漏电极的第二连接过孔;设置在所述平坦化层上的阳极,所述阳极通过所述第二连接过孔与所述漏电极连接;以及覆盖所述阳极的介质层和像素定义层,所述像素定义层上开设有暴露出所述阳极的像素定义开口。
例如,所述基底为柔性基底。
本公开的至少一个实施例还提供一种显示装置,包括如所述的显示面板。
本公开的至少一个实施例还提供一种显示面板的形变感应方法,所述显示面板包括基底,所述基底上设置有形变感应单元,所述形变感应单元包括第一电极、第二电极和第三电极,所述第二电极与所述第三电极之间配置为形成第一电容,所述第一电极与所述第二电极之间配置为形成第二电容,所述第一电极与所述第三电极之间配置为形成第三电容;所述形变感应方法包括:获得形变感应单元中各电容值的变化关系;以及根据各所述电容值的变化关系确定显示面板的形态。
例如,所述获得形变感应单元中各电容值的变化关系包括:向所述第一电极、所述第二电极和所述第三电极分别输入扫描信号,检测所述第一电容和所述第二电容的电容值;将每个电容的电容值分别与各自的基准电容值比较,当两者差值大于等于预先设置的变化阈值时,判断每个电容的电容值的变化性质;以及根据每个电容的电容值的变化性质获得电容值的变化关系。
例如,所述基准电容值是显示面板不受任何外力时检测到的每个电容的电容值;所述预先设置的变化阈值包括第一电容的变化阈值Δ1和第二电容的变化阈值Δ2,Δ1=(0.02~0.1)Q C1,Δ2=(0.02~0.1)Q C2,其中,Q C1、Q C2分别为第一电容、第二电容的基准电容值。
例如,将每个电容的电容值分别与其对应的基准电容值比较,当两者差值大于等于预先设置的变化阈值时,判断每个电容的变化性质,包括:分别比较│Q C1'-Q C1│与Δ1、│Q C2'-Q C2│与Δ2,其中,Q C1'、Q C2'分别为第一电容、第二电容的检测电容值;当│Q C1'-Q C1│≥Δ1或│Q C2'-Q C2│≥Δ2时,比较Q C1'与Q C1的大小或比较Q C2'与Q C2的大小;以及根据比较结果,判断每个电容的变化性质,其中所述变化性质包括:电容增加或电容减小。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1A为根据本公开实施例的显示面板的截面结构示意图;
图1B为根据本公开实施例的显示面板的平面结构示意图;
图2为根据本公开实施例的形成有源层图案后的截面示意图;
图3为根据本公开实施例的形成栅电极和第一引线图案后的截面示意图;
图4为根据本公开实施例的形成有源层掺杂区图案后的截面示意图;
图5为根据本公开实施例的形成带有过孔的绝缘层图案后的截面示意图;
图6为根据本公开实施例的形成源电极、漏电极、第一电极图案后的截面示意图;
图7为根据本公开实施例的形成带有过孔的平坦化层图案后的截面示意图;
图8为根据本公开实施例的形成阳极图案后的截面示意图;
图9为根据本公开实施例的形成带有过孔的介质层图案后的截面示意图;
图10为根据本公开实施例的形成第二电极和第三电极图案后的截面示意图;
图11为图1A中形变感应单元部分的放大图;
图12为根据本公开实施例的形变感应单元形成电容的沿图1B的AA’线的截面示意图;
图13为根据本公开实施例形变感应单元受水平拉伸力的示意图;
图14为根据本公开实施例形变感应单元受水平压缩力的示意图;
图15为根据本公开实施例形变感应单元受内弯力的示意图;
图16为本公开实施例形变感应单元受外弯力的示意图;
图17为根据本公开实施例形变感应单元受垂直压缩力的示意图;
图18为本公开一实施例的显示面板的形变感应方法的流程图;以及
图19本公开另一实施例的显示面板的形变感应方法的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在无需做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要注意的是,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般 技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
经本申请发明人研究发现,现有这种形变方案应用于显示面板时,对显示面板的可靠性和成本影响较大。一方面,传感器外置结构很容易在使用中损坏,产品可靠性较低;另一方面,增加外置传感器需要增加新的生产设备和工艺,产品成本较高。
为了解决现有形变方案可靠性较低、成本较高的问题,本公开实施例提供了一种集成有形变感应单元的显示面板,显示面板既可以实现图像显示,又可以实现形变感应。本公开实施例的显示面板既可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示面板,也可以是电子纸(E-Paper),还可以是其它柔性显示面板。下面仅以形变感应单元集成在OLED显示面板中作为示例,说明本公开实施例的技术方案。
本公开实施例显示面板的主体结构包括在基底上通过同一次制备过程形成的用于实现图像显示的显示单元和用于实现形变感应的形变感应单元,形变感应单元包括由两个以上电极形成的用于确定显示面板形态的电容,使得本公开实施例的显示面板同时实现图像显示和形变感应功能。例如,形变感应单元用于在显示面板受到外力时改变其电容值,通过电容值的变化关系反映显示面板的形态。
通常,基底上形成有矩阵排布的多个像素单元,本公开实施例的显示单元和形变感应单元可以采用多种布局方式。例如,可以在每个像素单元均设置显示单元和形变感应单元。又如,可以在一部分像素单元中设置显示单元,在另一部分像素单元中设置形变感应单元。再如,可以在一部分像素单元中设置显示单元和形变感应单元,而在另一部分像素单元中仅设置显示单元等等。
图1A为本公开实施例显示面板的结构示意图。如图1A所示,显示单元可以包括栅电极23、有源层21、源电极27、漏电极28、阳极31以及发光层和阴极(未示出),形变感应单元包括形成三个电容的第一电极11、第二电极12和第三电极13。第一电极11与源电极27和漏电极28同层设置,且通过一次构图工艺形成,第二电极12和第三电极13设置在覆盖第一电极11的介质层32上,第二电极12和第三电极13同层设置,且通过一次构图工艺形成,分别位于第一电极11的两侧,第一电极11、第二电极12和第三电极13形 成大致三角布局。例如,进一步地,为了增加第二电极12和第三电极13在外力作用下的移动量,介质层32在第一电极11所在位置开设有电极过孔,第二电极12和第三电极13分别设置在电极过孔两侧的介质层32上。
本公开实施例中,第二电极12与第三电极13之间形成第一电容,第一电极11与第二电极12之间形成第二电容,第一电极11与第三电极13之间形成第三电容。第一电极11、第二电极12和第三电极13分别与外围电路中的处理模块连接,处理模块分别向第一电极11、第二电极12和第三电极13输入扫描信号,检测第一电容、第二电容和第三电容的电容值,获得第一电容和第二电容、或者获得第一电容、第二电容和第三电容的电容值的变化关系,根据电容值的变化关系确定显示面板的形态。为了实现处理模块分别与第一电极11、第二电极12和第三电极13的连接,本公开实施例显示面板还包括第一引线24、第二引线(未示出)和第三引线29,处理模块通过第一引线24与第一电极11连接,通过第二引线与第二电极12连接,通过第三引线29与第三电极13连接。如图1A-1B所示,第一引线24与显示单元的栅电极23同层设置,且通过一次构图工艺形成,第二引线26与第二电极12和第三电极13同层设置,且通过一次构图工艺形成,第三引线29与显示单元的源电极27和漏电极28同层设置,且通过一次构图工艺形成。第一电极11通过第一引线过孔与第一引线24连接,第二电极12与第二引线直接连接,第三电极13通过第二引线过孔与第三引线29连接。
例如,如图1B所示,所述处理模块包括第一处理器51和第二处理器52,第一电极11通过第一引线24电连接到第一处理器51,第二电极12和第三电极13通过第二引线26和第三引线29与第二处理器52电连接。还例如,第一处理器51和第二处理器52可以集成为一个处理器,第一引线24,第二引线26,第三引线29连接至同一个处理器。
下面通过显示面板的制备过程进一步说明本实施例的技术方案。本公开实施例中所说的“构图工艺”可以包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理。沉积可采用溅射、蒸镀、化学气相沉积等已知工艺,涂覆可采用已知的涂覆工艺,刻蚀可采用已知的方法。
本公开实施例所说的“同一次制备过程”包括下述形成各个图案的构图工艺。
首先,在基底上形成有源层图案。形成有源层图案包括:在基底上沉积一有源层薄膜;在有源层薄膜上涂覆一层光刻胶,采用单色调掩膜版对光刻胶进行曝光并显影,在有源层图案位置形成未曝光区域,保留光刻胶,在其它位置形成完全曝光区域,无光刻胶;对完 全曝光区域的有源层薄膜进行刻蚀并剥离剩余的光刻胶,在基底10上形成有源层21图案,如图2所示。例如,基底可以采用柔性材料,有源层薄膜可以采用金属氧化物或硅材料。厚度为约
Figure PCTCN2019111486-appb-000001
~约
Figure PCTCN2019111486-appb-000002
金属氧化物包括氧化铟镓锌(IGZO)或氧化铟锡锌(ITZO)。硅材料包括非晶硅和多晶硅。有源层薄膜也可以采用非晶硅a-Si,经过结晶化或激光退火等方式形成多晶硅。
在一示例中,也可以设置遮光层和缓冲层图案,遮光层配置来遮挡从基底一侧透过的光线,提高薄膜晶体管的电学性能,缓冲层配置来阻挡基底中离子对薄膜晶体管的影响。例如,先通过构图工艺在基底上形成遮光层图案,然后依次沉积缓冲层薄膜和有源层薄膜,通过构图工艺在缓冲层上形成有源层图案。
随后,形成栅电极和第一引线图案。形成栅电极和第一引线图案包括:在形成前述有源层图案的基底上,依次沉积绝缘层薄膜和金属薄膜,通过构图工艺对金属薄膜进行构图,形成第一绝缘层22、栅电极23和第一引线24图案。栅电极23和第一引线24形成在第一绝缘层22上,栅电极23与有源层21的位置相对应,如图3所示。例如,金属薄膜可以为铂Pt、钌Ru、金Au、银Ag、钼Mo、铬Cr、铝Al、钽Ta、钛Ti、钨W等金属中的一种或多种,或多种金属的复合层结构。厚度为约
Figure PCTCN2019111486-appb-000003
~约
Figure PCTCN2019111486-appb-000004
例如,第一绝缘层可以采用氮化硅SiNx、氧化硅SiOx或SiNx/SiOx的复合薄膜。厚度为约
Figure PCTCN2019111486-appb-000005
~约
Figure PCTCN2019111486-appb-000006
随后,形成有源层掺杂区图案。形成有源层掺杂区图案包括:对有源层21未被栅电极23遮挡的区域进行离子掺杂,形成有源层掺杂区图案,如图4所示。在离子掺杂过程中,由于有栅电极的阻挡,可以避免掺杂离子对沟道区的影响。离子掺杂处理后,沟道区以外的有源层变成金属。
随后,形成带有过孔的绝缘层图案。形成带有过孔的绝缘层图案包括:在形成前述图案的基底上,沉积绝缘层薄膜,在绝缘层薄膜上涂覆一层光刻胶,采用单色调掩膜版对光刻胶进行曝光并显影,在过孔图案位置形成完全曝光区域,光刻胶被去除,在其它位置形成形成未曝光区域,保留光刻胶;对完全曝光区域暴露出的绝缘层薄膜进行刻蚀并剥离剩余的光刻胶,形成开设有两个第一连接过孔K1和一个第一引线过孔Y1的第二绝缘层25图案,两个第一连接过孔K1分别位于有源层21的掺杂区位置,即有源层21未被栅电极23遮挡的区域,第一连接过孔K1中的第二绝缘层25和第一绝缘层22被刻蚀掉,暴露出有源层21的掺杂区51,52,第一引线过孔Y1位于第一引线24所在位置,第一引线过孔Y1中的第二绝缘层25被刻蚀掉,暴露出第一引线24,如图5所示。例如,第二绝缘层可 以采用SiNx、SiOx或SiNx/SiOx的复合薄膜。厚度为约
Figure PCTCN2019111486-appb-000007
~约
Figure PCTCN2019111486-appb-000008
随后,形成源电极、漏电极、第一电极和第三引线图案。形成源电极、漏电极、第一电极和第三引线图案包括:在形成前述图案的基底上,沉积金属薄膜,通过构图工艺对金属薄膜进行构图,形成源电极27、漏电极28、第一电极11和第三引线29图案。源电极27和漏电极28分别通过第一连接过孔K1与有源层21的掺杂区51,52连接,第一电极11通过第一引线过孔Y1与第一引线24连接,如图6所示。例如,源电极、漏电极、第一电极和第三引线可以采用铂Pt、钌Ru、金Au、银Ag、钼Mo、铬Cr、铝Al、钽Ta、钛Ti、钨W等金属中的一种或多种,或多种金属的复合层结构。厚度为约
Figure PCTCN2019111486-appb-000009
随后,形成带有过孔的平坦化层图案。形成带有过孔的平坦化层图案包括:在形成前述图案的基底上,通过涂布方式涂覆平坦化(PLN)薄膜,通过曝光显影,形成开设有第二连接过孔K2、电极过孔X和第二引线过孔Y2的平坦化层30图案。第二连接过孔K2位于漏电极28所在位置,电极过孔X位于第一电极11所在位置,第二引线过孔Y2位于第三引线29所在位置。三个过孔中的平坦化薄膜被刻蚀掉,分别暴露出漏电极28、第一电极11和第三引线29,如图7所示。例如,平坦化薄膜可以采用树脂材料。厚度为约1μm~约3μm。
随后,还可以形成阳极图案。形成阳极图案包括:在形成前述图案的基底上,沉积透明导电薄膜,通过构图工艺对透明导电薄膜进行构图,形成阳极31图案。阳极31通过第二连接过孔K2与漏电极28连接,如图8所示。例如,透明导电材料层的材料包括氧化铟锡ITO或氧化铟锌IZO。
随后,形成带有过孔的介质层图案。形成带有过孔的介质层图案包括:在形成前述图案的基底上,沉积介质层薄膜,通过构图工艺对介质层薄膜进行构图,形成开设有像素定义开口D、电极过孔X和第二引线过孔Y2的介质层32图案,像素定义开口D位于阳极31所在位置,像素定义开口D中的介质层薄膜被刻蚀掉,暴露出阳极31表面。电极过孔X和第二引线过孔Y2是在前序工艺已经形成的过孔上进行处理,电极过孔X位于第一电极11所在位置,第二引线过孔Y2位于第三引线29所在位置,第二引线过孔Y2中的介质层薄膜被刻蚀掉,暴露出第三引线29表面,如图9所示。
随后,形成第二电极和第三电极图案。形成第二电极和第三电极图案包括:在形成前述图案的基底上,沉积金属薄膜,通过构图工艺对金属薄膜进行构图,在介质层32上形成第二电极12、第三电极13和第二引线(未示出)图案。第二电极12和第三电极13分别 位于第一电极11上方的电极过孔的两侧,使得第一电极11、第二电极12和第三电极13形成大致三角形布局,第二电极12与第二引线直接连接,第三电极13通过第二引线过孔Y2与第三引线29连接,如图10所示。
随后,形成带有开口的像素定义层图案。形成带有开口的像素定义层图案包括:在形成前述图案的基底上,通过涂布方式涂覆像素定义层(PDL)薄膜,通过曝光显影,形成开设有像素定义开口和电极过孔的像素定义层33图案,像素定义开口位于阳极31所在位置,像素定义开口中的像素定义层薄膜被刻蚀掉,暴露出阳极31表面,电极过孔X位于第一电极11位置,如图1A-1B所示。
通过上述制备过程,实现了通过同一次制备过程将形变感应单元有机地集成在OLED显示面板的结构中。在一示例中,后续还可以包括形成发光结构层的步骤。发光结构层包括发光层、阴极和封装层等结构膜层。进一步地,例如,后续还可以包括形成触摸结构层的步骤。形成具有触摸功能、形变感受功能和显示功能的面板。后续工艺的结构以及制备手段与相关技术的相同,这里不再赘述。
前述制备过程中,第一连接过孔K1配置来使源电极27和漏电极28与有源层21的掺杂区51,52连接,第一引线过孔Y1配置来使第一电极11与第一引线24连接,第二连接过孔K2配置来使阳极31与漏电极28连接,电极过孔X配置来增加第二电极12和第三电极13在外力作用下的移动量,第二引线过孔Y2配置来使第三电极13与第三引线29连接,像素定义开口配置来暴露出阳极31。
图11为图1A中形变感应单元部分的放大图。如图11所示,第二电极12与第三电极13之间形成第一电容C1,第一电极11与第二电极12之间形成第二电容C2,第一电极11与第三电极13之间形成第三电容C3,第一、第二和第三电容也称之为耦合电容。第一引线24、第二引线26和第三引线29与外部的处理模块连接,使处理模块通过第一引线24、第二引线26和第三引线29分别向第一电极11、第二电极12和第三电极13输入扫描信号,并接收感应信号,检测第一电容C1、第二电容C2和第三电容C3的电容值,获得电容值的变化关系,根据电容值的变化关系来确定显示面板的形态。例如,显示面板的形态包括如下之一或任意组合:水平拉伸形态、水平压缩形态、内弯形态、外弯形态或垂直压缩形态等。
例如,处理模块分别向每个电极输入扫描信号、接收感应信号以及获得每个电容的电容值等,是相关技术中成熟的处理手段,为本领域技术人员所熟知,这里不再赘述。
图12为本公开实施例形变感应单元形成电容的示意图。如图12所示,形变感应单元中的第一电极11、第二电极12和第三电极13能够形成三个电容。例如,第一电容C1形成在第二电极12与第三电极13之间,第二电容C2形成在第一电极11与第二电极12之间,第三电容C3形成在第一电极11与第三电极13之间。当显示面板因受外力作用产生形态改变时,如弯曲、伸缩、压缩等,外力作用会使形变感应单元中的部分电极或全部电极移动,使电极之间的间距增加或减小,进而使部分电容或全部电容的电容值发生变化,外部的处理模块通过向每个电极施加扫描信号,检测第一到第三电容的电容值,获得三个电容值的变化关系,根据三个电容值的变化关系,可确定显示面板的形态。显示面板的形态包括如下之一或任意组合:显示面板受水平拉伸力产生的水平拉伸形态,显示面板受水平压缩力产生的水平压缩形态,显示面板受弯曲力矩产生的内弯形态和外弯形态,显示面板受垂直压缩力产生的垂直压缩形态等。
下面详细本公开实施例形变感应单元的工作原理。
本公开实施例中,水平方向是指与显示面板平面平行的方向,垂直方向是指显示面板平面的法线方向。如图12所示,当显示面板不受任何外力时,在水平方向,第二电极12与第三电极13之间具有第一间距D1,之间形成第一电容C1,处理模块通过向第二电极12和第三电极13施加扫描信号,可以检测到第一电容C1的电容值为Q C1,Q C1可以作为第一电容C1的基准电容值。在垂直方向上,第一电极11与第二电极12之间具有第二间距D2,之间形成第二电容C2.处理模块通过向第一电极11和第二电极12施加扫描信号,可以检测到第二电容C2的电容值为Q C2,Q C2可以作为第二电容C2的基准电容值。在垂直方向上,第一电极11与第三电极13之间具有第三间距D3,之间形成第三电容C3;处理模块通过向第一电极11和第三电极13施加扫描信号,可以检测到第三电容C3的电容值为Q C3。Q C3可以作为第三电容C3的基准电容值。
图13为本公开实施例形变感应单元受水平拉伸力的示意图。如图13所示,当形变感应单元受水平方向的拉伸力F时,水平拉伸力F使第二电极12与第三电极13之间的间距增加,从第一间距D1变为D1',D1'>D1,而第一电极11与第二电极12、第一电极11与第三电极13之间的基本间距不变。此时,处理模块检测到的第一电容C1的电容值Q C1'将小于其基准电容值Q C1,而检测到的第二电容C2的电容值Q C2'约等于其基准电容值Q C2,检测到的第三电容C3的电容值Q C3'约等于其基准电容值Q C3
图14为本公开实施例形变感应单元受水平压缩力的示意图。如图14所示,当形变感 应单元受水平方向的压缩力F时,水平压缩力F使第二电极12与第三电极13之间的间距减小,从第一间距D1变为D1',D1'<D1,而第一电极11与第二电极12、第一电极11与第三电极13之间的基本间距不变。此时,处理模块检测到的第一电容C1的电容值Q C1'将大于其基准电容值Q C1,而检测到的第二电容C2的电容值Q C2'约等于其基准电容值Q C2,检测到的第三电容C3的电容值Q C3'约等于其基准电容值Q C3
图15为本公开实施例形变感应单元受内弯力的示意图。如图15所示,当形变感应单元受向其中心下方的弯曲力矩M时,弯曲力矩M在水平方向上形成水平压缩力F X,使第二电极12与第三电极13之间的间距减小,从第一间距D1变为D1',D1'<D1,而弯曲力矩M在垂直方向上形成垂直压缩力F Y,使第一电极11与第二电极12之间的间距减小,从第二间距D2变为D2',D2'<D2,同时使第一电极11与第三电极13之间的间距减小,从第三间距D3变为D3',D3'<D3。受弯曲力矩的作用,显示面板将呈中心低、两侧高的凹形弯曲状。此时,处理模块检测到的第一电容C1的电容值Q C1'将大于其基准电容值Q C1,检测到的第二电容C2的电容值Q C2'将大于其基准电容值Q C2,检测到的第三电容C3的电容值为Q C3'将大于其基准电容值Q C3
图16为本公开实施例形变感应单元受外弯力的示意图。如图16所示,当形变感应单元受向其中心上方的弯曲力矩M时,弯曲力矩M在水平方向上形成水平拉伸力F X,使第二电极12与第三电极13之间的间距增大,从第一间距D1变为D1',D1'>D1,而弯曲力矩M在垂直方向上形成垂直拉伸力F Y,使第一电极11与第二电极12之间的间距增大,从第二间距D2变为D2',D2'>D2,同时使第一电极11与第三电极13之间的间距增大,从第三间距D3变为D3',D3'>D3。受弯曲力矩的作用,显示面板将呈中心高、两侧低的凸形弯曲状。此时,处理模块检测到的第一电容C1的电容值Q C1'将小于其基准电容值Q C1,检测到的第二电容C2的电容值Q C2'将小于其基准电容值Q C2,检测到的第三电容C3的电容值Q C3'将小于其基准电容值Q C3
图17为本公开实施例形变感应单元受垂直压缩力的示意图。如图17所示,当形变感应单元受垂直方向的压缩力F时,垂直压缩力F使第一电极11与第二电极12之间的间距减小,从第二间距D2变为D2',D2'<D2,使第一电极11与第三电极13之间的间距减小,从第三间距D3变为D3',D3'<D3,而第二电极12与第三电极13之间的第一间距D1不变。此时,处理模块检测到的第一电容C1的电容值Q C1'基本等于其基准电容值Q C1,检测到的第二电容C2的电容值Q C2'将大于其基准电容值Q C2,检测到的第三电容C3的电容值Q C3' 将大于其基准电容值Q C3
根据图13到图17所述的形变感应单元的工作原理可以看出,由于显示面板所呈现的形态与其所受的外力一一对应,而所受的外力与形变感应单元中电容的电容值变化关系一一对应,因此通过检测形变感应单元中电容的电容值,根据各个电容电容值的变化关系即可确定显示面板的形态。
表1为形变感应单元电容值变化关系与显示面板形态的关系。
表1:形变感应单元电容值变化关系与显示面板形态的关系
Q C1 Q C2 Q C3 D1 D2 D3 形态
减小 不变 不变 增加 不变 不变 水平拉伸
增加 不变 不变 减小 不变 不变 水平压缩
增加 增加 增加 减小 减小 减小 内弯
减小 减小 减小 增加 增加 增加 外弯
不变 增加 增加 不变 减小 减小 垂直压缩
如表1所示,可以看出如下内容:
1、当处理模块检测出第一电容C1的电容值Q C1减小、而第二电容C2和第三电容C3的电容值基本不变时,意味着第二电极与第三电极之间的第一间距D1增加、第一电极与第二电极之间的第二间距D2和第一电极与第三电极之间的第三间距D3基本不变,则可以判定形变感应单元受水平方向的拉伸力,显示面板处于水平拉伸形态。
2、当处理模块检测出第一电容C1的电容值Q C1增加、而第二电容C2和第三电容C3的电容值基本不变时,意味着第二电极与第三电极之间的第一间距D1减小、第一电极与第二电极之间的第二间距D2和第一电极与第三电极之间的第三间距D3基本不变,则可以判定形变感应单元受水平方向的压缩力,显示面板处于水平压缩形态。
3、当处理模块检测出第一电容C1、第二电容C2和第三电容C3的电容值均增加时,意味着第一间距D1、第二间距D2和第三间距D3均减小,则可以判定形变感应单元受内弯力,显示面板处于内弯形态。
4、当处理模块检测出第一电容C1、第二电容C2和第三电容C3的电容值均减小时,意味着第一间距D1、第二间距D2和第三间距D3均增加,则可以判定形变感应单元受外 弯力,显示面板处于外弯形态。
5、当处理模块检测出第一电容C1的电容值基本不变、而第二电容C2和第三电容C3的电容值均增加时,意味着第一间距D1基本不变、第二间距D2和第三间距D3均减小,则可以判定形变感应单元受垂直方向的压缩力,显示面板处于垂直压缩形态。
本公开实施例中,外部的处理模块通过信号线向各个电极施加扫描信号来检测各个电容的电容值,可以采用相关技术手段,这里不再赘述。为了提高判断电容值变化的准确性,本公开实施例引入变化阈值Δ的概念,预先设置第一电容C1的变化阈值Δ1、第二电容C2的变化阈值Δ2和第三电容C3的变化阈值Δ3。当电容值的变化量小于变化阈值Δ时,认为电容值的变化是由系统噪声引起的,只有当电容值的变化量大于等于变化阈值Δ时,才认为电容值的变化是由外力引起的。本公开实施例中,设置Δ1=(0.02~0.1)Q C1,Δ2=(0.02~0.1)Q C2,Δ3=(0.02~0.1)Q C3。例如,可以设置不同的阈值Δ,也可以将阈值设置为0,本公开的实施例并不限于此。
在一示例中,处理模块进行电容值变化判断可以采用先判断变化量绝对值是否大于变化阈值Δ、然后判断电容值变化性质的方式。本实施例中,变化性质是指电容增加或电容减小。例如,处理模块检测到三个电容的电容值后,判断三个电容值变化量的绝对值,即分别判断绝对值│Q C1'-Q C1│、│Q C2'-Q C2│、│Q C3'-Q C3│的值,如果│Q C1'-Q C1│≥Δ1、│Q C2'-Q C2│<Δ2、│Q C3'-Q C3│<Δ3,则认为第二电容和第三电容的电容值没有变化,只有第一电容的电容值有变化,则继续判断Q C1'与Q C1的大小,当Q C1'<Q C1时,便判定形变感应单元受水平方向的拉伸力,显示面板为水平拉伸形态。
在一示例中,可以设置第二电极和第三电极相对于第一电极位置对称,即第一电极与第二电极之间的第二间距D2等于第一电极与第三电极之间的第三间距D3,这样,处理模块检测到三个电容的电容值后,只需判断第一电容C1和第二电容C2的电容值变化关系,即可确定显示面板的形态。也可以判断第一电容C1和第三电容C3的电容值变化关系。表2为利用电容C1和C2确定显示面板形态的关系。
表2:电容C1和C2确定显示面板形态的关系
Q C1 Q C2 D1 D2 形态
减小 不变 增加 不变 水平拉伸
增加 不变 减小 不变 水平压缩
增加 增加 减小 减小 内弯
减小 减小 增加 增加 外弯
不变 增加 不变 减小 垂直压缩
虽然前述说明仅说明了水平拉伸、水平压缩、内弯、外弯或垂直压缩等形态的判断,但基于本公开实施例的技术构思,本公开实施例的技术方案还可以实现其它形态的判断。例如,对于内弯形态,可以通过比较第二电容C2与第三电容C3两者电容值的减小量,即比较│Q C2'-Q C2│与│Q C3'-Q C3│的值,来判断第二间距D2和第三间距D3的减小程度,进而确定显示面板在内弯形态时两侧的弯曲程度。又如,通过二个以上形变感应单元的形态,还可以判断显示面板的扭曲形态。
虽然前述说明以三个电极形成三个电容的结构进行了说明,但基于本公开实施例的技术构思,本公开实施例的技术方案还可以简化为二个电极形成一个电容的结构,实现部分形态的判断。例如,可以仅设置第二电极和第三电极,实现水平拉伸和水平压缩的判断。又如,可以仅设置第一电极和第二电极,实现垂直压缩的判断。同时,本公开实施例的技术方案还可以扩展为四个、五个甚至多个电极形成多个电容的结构,以实现更多形态的判断。
本公开实施例提供了一种显示面板,通过将形变感应单元集成在显示面板的结构中,利用形变感应单元中电容值的变化关系反映显示面板的形态,所形成的形变感应单元内置结构,不仅避免了使用中传感器损坏的问题,最大限度地提高了产品可靠性,而且利用现有生产设备即可制备,不需增加新的生产设备,生产成本低,具有广泛的应用前景。本公开实施例显示面板不仅能够确定内弯和外弯形态,而且可以确定水平拉伸、压缩以及垂直压缩等形态,可以实现更丰富的输入指令,可以控制更多的应用程序,且结构简洁,易于集成在显示面板中。本公开实施例显示面板通过将形变感应单元的各个电极及其引线合理地设置在显示面板的相应膜层中,不仅利用现有生产设备即可制备,不需增加新的生产设备,生产成本低,而且对显示面板中各结构膜层的改变较小,集成度高,布局合理,膜层增加少,结构简单,易于实现。
虽然前述说明以顶栅薄膜晶体管结构进行了说明,但基于本公开实施例的技术构思,本公开实施例的技术方案也适用于底栅薄膜晶体管结构,各个电极和引线也可以根据需要设置在其它膜层,形成所需的电容。虽然前述说明以三个电极形成三个电容的结构进行了 说明,但基于本公开实施例的技术构思,本公开实施例的技术方案还可以应用于二个、四个、五个甚至多个电极形成一个或多个电容的结构,可以实现不同形态的判断。
本公开实施例显示面板判断形态时,可以采用表2所示判断方式,仅判断第一电容C1和第二电容C2电容值的变化关系,来确定显示面板的形态。这是由于第三电极12通过过孔与第三引线29连接,而第一电极11与第三引线29处于同层,因此在受到外力时,第一电极11与第三电极13之间的距离基本不变,因此可以不需考虑第三电容C3的变化,仅判断第一电容C1和第二电容C2电容值的变化关系,即处理模块检测第一电容C1和第二电容C2的电容值,获得两个电容电容值的变化关系,根据两个电容电容值的变化关系来确定显示面板的形态。
如图1A到图10所示,本公开实施例显示面板包括:基底10;设置在基底10上的有源层21;覆盖有源层21的第一绝缘层22;设置在第一绝缘层22上的栅电极23和第一引线24;覆盖栅电极23和第一引线24的第二绝缘层25;设置在第二绝缘层25上的源电极27、漏电极28、第一电极11和第三引线29,源电极27和漏电极28分别通过第一连接过孔与有源层21连接,第一电极11通过第一引线过孔与第一引线24连接;覆盖源电极27、漏电极28、第一电极11和第三引线29的平坦化层30;设置在平坦化层30上的阳极31,阳极31通过第二连接过孔与漏电极28连接;覆盖阳极31的介质层32,在阳极31、第一电极11和第三引线29位置分别开设有像素定义开口、电极过孔和第二引线过孔;设置在介质层32上的第二电极12和第三电极13,第二电极12和第三电极13分别位于电极过孔的两侧,第三电极13通过第二引线过孔与第三引线29连接;覆盖第二电极12和第三电极13的像素定义层33,其上开设有暴露出阳极31的像素定义开口。
例如,显示单元包括:基底10;设置在基底10上的有源层21;覆盖有源层21的第一绝缘层22;设置在第一绝缘层22上的栅电极23,栅电极与形变感应单元的第一引线同层设置;覆盖栅电极23的第二绝缘层25;设置在第二绝缘层25上的源电极27和漏电极28,源电极27和漏电极28分别通过第一连接过孔与有源层21的掺杂区连接,源电极和漏电极与形变感应单元的第一电极和第三引线同层设置;覆盖源电极27和漏电极28的平坦化层30;设置在平坦化层30上的阳极31,阳极31通过第二连接过孔与漏电极28连接;以及覆盖阳极31的介质层32和像素定义层33,其上开设有暴露出阳极31的像素定义开口。
例如,形变感应单元包括:基底10;覆盖基底10的第一绝缘层22;设置在第一绝缘层22上的第一引线24,第一引线与显示单元的栅电极同层设置;覆盖第一引线24的第二 绝缘层25;设置在第二绝缘层25上的第一电极11和第三引线29,第一电极11通过第一引线过孔与第一引线24连接,第一电极和第三引线与显示单元的源电极和漏电极同层设置;覆盖第一电极11的平坦化层30和介质层32,在第一电极11和第三引线29位置分别开设有电极过孔和第二引线过孔;设置在介质层32上的第二电极12和第三电极13,第二电极12和第三电极13分别位于电极过孔的两侧,第三电极13通过第二引线过孔与第三引线29连接;以及覆盖第二电极12和第三电极13像素定义层33。
本公开的实施例提供了一种显示面板,通过将形变感应单元集成在OLED显示面板的结构中,不仅能够确定内弯和外弯形态,而且可以确定水平拉伸、压缩以及垂直压缩等形态,实现了更丰富的输入指令,可以控制更多的应用程序。由于形变感应单元内置在OLED显示面板中,不仅利用现有生产设备即可制备,不需增加新的生产设备,生产成本低,而且形变感应单元内置结构避免了使用中传感器损坏的问题,最大限度地提高了产品可靠性。通过将形变感应单元的各个电极及其引线合理地设置在OLED显示面板的相应膜层中,对显示面板中各结构膜层的改变较小,集成度高,布局合理,膜层增加少,结构简单,易于实现,具有广泛的应用前景。
基于本公开实施例的技术构思,本公开实施例还提供了一种显示面板的形变感应方法,基于前述的显示面板实现。显示面板包括矩阵排布的多个像素单元,每个像素单元设置有通过同一次制备过程形成的显示单元和形变感应单元,形变感应单元包括由二个以上电极形成的电容;图18为本公开一实施例的显示面板的形变感应方法的流程图。如图18所示,本公开实施例显示面板的形变感应方法包括如下步骤。
S1、获得形变感应单元中电容值的变化关系。
S2、根据所述电容值的变化关系确定显示面板的形态。
例如,所述形变感应单元包括第一电极、第二电极和第三电极,所述第二电极与第三电极之间形成第一电容,所述第一电极与第二电极之间形成第二电容;如图19所示,步骤S1包括如下操作。
S11、向所述第一电极、第二电极和第三电极分别输入扫描信号,检测所述第一电容和第二电容的电容值。
S12、将每个电容的电容值分别与其基准电容值比较,当两者差值大于等于预先设置的变化阈值时,判断所述电容电容值的变化性质。
S13、根据每个电容电容值的变化性质获得所述第一电容和第二电容电容值的变化关 系。
例如,每个电容的基准电容值,是显示面板不受任何外力时,检测到的电容的电容值。预先设置的变化阈值包括第一电容的变化阈值Δ1、第二电容的变化阈值Δ2,Δ1=(0.02~0.1)Q C1,Δ2=(0.02~0.1)Q C2,Q C1、Q C2分别为第一电容、第二电容的基准电容值。
例如,步骤S12包括如下步骤。
S121、分别比较│Q C1'-Q C1│与Δ1、│Q C2'-Q C2│与Δ2。
S122、当│Q C1'-Q C1│≥Δ1或│Q C2'-Q C2│≥Δ2时,比较Q C1'与Q C1的大小或比较Q C2'与Q C2的大小。
S123、根据比较结果,判断每个电容的变化性质,所述变化性质包括:电容增加或电容减小。
例如,Q C1'、Q C2'分别为第一电容、第二电容的检测电容值。
例如,步骤S2包括如下操作。
当所述第一电容的电容值Q C1减小、而第二电容的电容值基本不变时,判定所述形变感应单元受水平方向的拉伸力,确定显示面板处于水平拉伸形态。
当所述第一电容的电容值Q C1增加、而第二电容的电容值基本不变时,判定所述形变感应单元受水平方向的压缩力,确定显示面板处于水平压缩形态。
当所述第一电容和第二电容的电容值均增加时,判定所述形变感应单元受内弯力,确定显示面板处于内弯形态。
当所述第一电容和第二电容的电容值均减小时,判定所述形变感应单元受外弯力,确定显示面板处于外弯形态。
当所述第一电容的电容值基本不变、而第二电容的电容值均增加时,判定所述形变感应单元受垂直方向的压缩力,确定显示面板处于垂直压缩形态。
例如,内弯力是指显示面板受向其中心下方的弯曲力矩,内弯形态是指显示面板呈凹形弯曲状。外弯力是指显示面板受向其中心上方的弯曲力矩,外弯形态是指显示面板呈凸形弯曲状。
实际实施时,也可以根据第一电容、第二电容和第三电容电容值的变化关系确定显示面板的形态,如表1所示。
本公开实施例提供了一种显示面板的形变感应方法,通过获得每个形变感应单元中电容值的变化关系,来确定显示面板的形态。本公开实施例显示面板的形变感应方法不仅能 够确定内弯和外弯形态,而且可以确定水平拉伸、压缩以及垂直压缩等形态,实现了更丰富的输入指令,可以控制更多的应用程序,且判断方式简单,利用现有外围设备中的集成电路即可实现,具有广泛的应用前景。
基于前述实施例的技术方案,本公开实施例还提供了一种显示装置,显示装置包括前述的显示面板。显示装置可以为:OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
在本公开实施例的描述中,需要理解的是,术语“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。
本公开实施例提供了一种显示面板及其形变感应方法、显示装置,将形变感应单元集成在显示面板的结构中,利用形变感应单元中电容值的变化关系反映显示面板的形态,所形成的形变感应单元内置结构,不仅避免了使用中传感器损坏的问题,最大限度地提高了产品可靠性,而且利用现有生产设备即可制备,不需增加新的生产设备,生产成本低,具有广泛的应用前景。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例,而这些新的实施例都应属于本公开的范围。
以上所述,仅为本公开的示例实施例,本公开的保护范围并不局限于此,任何熟悉本技术领域的普通技术人员在本公开实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。

Claims (13)

  1. 一种显示面板,包括:
    基底;
    位于所述基底上的形变感应单元;
    所述形变感应单元包括第一电极、第二电极和第三电极,所述第二电极与所述第三电极之间配置为形成第一电容,所述第一电极与所述第二电极之间配置为形成第二电容,所述第一电极与所述第三电极之间配置为形成第三电容;所述第一电容、所述第二电容和所述第三电容配置为确定显示面板的形态。
  2. 根据权利要求1所述的显示面板,其中,还包括显示单元,所述显示单元包括薄膜晶体管,所述第一电极与所述薄膜晶体管的源电极和漏电极同层设置,所述第二电极和所述第三电极设置在覆盖所述第一电极的介质层上。
  3. 根据权利要求2所述的显示面板,其中,所述介质层位于所述第一电极位置开设有电极过孔,所述第二电极和所述第三电极分别设置在所述电极过孔两侧的所述介质层上。
  4. 根据权利要求2或3所述的显示面板,其中,所述第一电极、所述第二电极和所述第三电极分别与处理模块连接,所述处理模块向所述第一电极、所述第二电极和所述第三电极分别输入扫描信号,检测至少一个电容的电容值,获得所述电容值的变化关系,并根据所述电容值的变化关系确定所述显示面板的形态。
  5. 根据权利要求2-4任一项所述的显示面板,其中,所述形变感应单元还包括第一引线、第二引线和第三引线;所述第一电极通过所述第一引线、所述第二电极通过所述第二引线、所述第三电极通过所述第三引线分别与处理模块连接;所述第一引线与所述显示单元的栅电极同层设置,所述第一电极通过第一连接过孔与所述第一引线连接;所述第二引线与所述第二电极同层设置且直接连接;所述第三引线与所述显示单元的源电极和漏电极同层设置,以及所述第三电极通过第二引线过孔与所述第三引线连接。
  6. 根据权利要求1~4任一项所述的显示面板,其中,所述形变感应单元包括:
    覆盖所述基底的第一绝缘层;
    设置在所述第一绝缘层上的第一引线,所述第一引线与所述显示单元的栅电极同层设置;
    覆盖所述第一引线的第二绝缘层,所述第二绝缘层上开设有暴露出所述第一引线的第 一引线过孔;
    设置在所述第二绝缘层上的第一电极和第三引线,所述第一电极通过所述第一引线过孔与第一引线连接,所述第一电极和所述第三引线与所述显示单元的源电极和漏电极同层设置;
    覆盖所述第一电极和所述第三引线的平坦化层和所述介质层,所述平坦化层和所述介质层在所述第一电极和第三引线位置分别开设有电极过孔和第二引线过孔;
    设置在所述介质层上的第二电极和第三电极,所述第二电极和所述第三电极分别位于所述电极过孔的两侧,所述第三电极通过所述第二引线过孔与所述第三引线连接;以及
    覆盖所述第二电极和所述第三电极的像素定义层。
  7. 根据权利要求1~5任一项所述的显示面板,其中,所述显示单元包括:
    设置在所述基底上的有源层;
    覆盖所述有源层的第一绝缘层;
    设置在所述第一绝缘层上的栅电极,所述栅电极与所述形变感应单元的第一引线同层设置;
    覆盖所述栅电极的第二绝缘层,所述第二绝缘层上开设有暴露出所述有源层的第一连接过孔;
    设置在所述第二绝缘层上的源电极和漏电极,所述源电极和所述漏电极分别通过所述第一连接过孔与所述有源层连接,所述源电极和所述漏电极与所述形变感应单元的第一电极和第三引线同层设置;
    覆盖所述源电极和所述漏电极的平坦化层,所述平坦化层上开设有暴露出所述漏电极的第二连接过孔;
    设置在所述平坦化层上的阳极,所述阳极通过所述第二连接过孔与所述漏电极连接;以及
    覆盖所述阳极的介质层和像素定义层,所述像素定义层上开设有暴露出所述阳极的像素定义开口。
  8. 根据权利要求1-7所述的显示面板,其中所述基底为柔性基底。
  9. 一种显示装置,包括如权利要求1~8任一项所述的显示面板。
  10. 一种显示面板的形变感应方法,所述显示面板包括基底,所述基底上设置有形变感应单元,所述形变感应单元包括第一电极、第二电极和第三电极,所述第二电极与所述 第三电极之间配置为形成第一电容,所述第一电极与所述第二电极之间配置为形成第二电容,所述第一电极与所述第三电极之间配置为形成第三电容;所述形变感应方法包括:
    获得形变感应单元中各电容值的变化关系;以及
    根据各所述电容值的变化关系确定所述显示面板的形态。
  11. 根据权利要求10所述的形变感应方法,其中,所述获得形变感应单元中各电容值的变化关系包括:
    向所述第一电极、所述第二电极和所述第三电极分别输入扫描信号,检测所述第一电容和所述第二电容的电容值;
    将每个电容的电容值分别与各自的基准电容值比较,当两者差值大于等于预先设置的变化阈值时,判断每个电容的电容值的变化性质;以及
    根据每个电容的电容值的变化性质获得电容值的变化关系。
  12. 根据权利要求11所述的形变感应方法,其中,所述基准电容值是显示面板不受任何外力时检测到的每个电容的电容值;所述预先设置的变化阈值包括第一电容的变化阈值Δ1和第二电容的变化阈值Δ2,Δ1=(0.02~0.1)Q C1,Δ2=(0.02~0.1)Q C2,其中,Q C1、Q C2分别为第一电容、第二电容的基准电容值。
  13. 根据权利要求12所述的形变感应方法,将每个电容的电容值分别与其对应的基准电容值比较,当两者差值大于等于预先设置的变化阈值时,判断每个电容的变化性质,包括:
    分别比较│Q C1'-Q C1│与Δ1、│Q C2'-Q C2│与Δ2,其中,Q C1'、Q C2'分别为第一电容、第二电容的检测电容值;
    当│Q C1'-Q C1│≥Δ1或│Q C2'-Q C2│≥Δ2时,比较Q C1'与Q C1的大小或比较Q C2'与Q C2的大小;以及
    根据比较结果,判断每个电容的变化性质,其中所述变化性质包括:电容增加或电容减小。
PCT/CN2019/111486 2018-10-16 2019-10-16 显示面板及其形变感应方法、显示装置 WO2020078389A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/761,976 US11016625B2 (en) 2018-10-16 2019-10-16 Display panel and deformation sensing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811204678.6 2018-10-16
CN201811204678.6A CN109192071B (zh) 2018-10-16 2018-10-16 显示面板及其形变感应方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020078389A1 true WO2020078389A1 (zh) 2020-04-23

Family

ID=64944974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111486 WO2020078389A1 (zh) 2018-10-16 2019-10-16 显示面板及其形变感应方法、显示装置

Country Status (3)

Country Link
US (1) US11016625B2 (zh)
CN (1) CN109192071B (zh)
WO (1) WO2020078389A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192071B (zh) * 2018-10-16 2021-03-23 京东方科技集团股份有限公司 显示面板及其形变感应方法、显示装置
WO2020172761A1 (zh) * 2019-02-25 2020-09-03 深圳市柔宇科技有限公司 电子设备、柔性触控装置及其状态确定方法
CN110265450B (zh) * 2019-06-24 2021-10-22 京东方科技集团股份有限公司 可拉伸显示基板及其制作方法、显示装置及工作方法
CN110277433B (zh) * 2019-06-27 2021-11-02 京东方科技集团股份有限公司 柔性显示基板、制备方法及显示装置、检测方法
CN110415613A (zh) * 2019-08-06 2019-11-05 京东方科技集团股份有限公司 拉伸传感器和显示面板
CN110459569B (zh) * 2019-08-15 2021-11-26 昆山国显光电有限公司 一种显示面板及显示装置
CN110491921B (zh) * 2019-08-22 2022-01-25 京东方科技集团股份有限公司 柔性显示面板及显示装置
CN111176383B (zh) * 2019-12-31 2021-07-09 上海天马有机发光显示技术有限公司 一种柔性显示面板及显示装置
CN112230799B (zh) * 2020-10-15 2024-03-08 京东方科技集团股份有限公司 可拉伸显示面板及显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136378A (zh) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 一种显示基板及显示装置、压力检测系统及其检测方法
CN105824475A (zh) * 2016-03-31 2016-08-03 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制备方法
CN106206666A (zh) * 2016-08-29 2016-12-07 上海天马微电子有限公司 有机发光显示面板和有机发光显示装置
US20170192590A1 (en) * 2016-01-06 2017-07-06 Samsung Display Co., Ltd. Touch display apparatus
CN107562246A (zh) * 2016-07-01 2018-01-09 南昌欧菲光科技有限公司 触控屏以及电子设备
CN108511494A (zh) * 2018-03-30 2018-09-07 京东方科技集团股份有限公司 一种柔性显示面板及其弯曲检测方法
CN109192071A (zh) * 2018-10-16 2019-01-11 京东方科技集团股份有限公司 显示面板及其形变感应方法、显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI528249B (zh) * 2009-04-15 2016-04-01 財團法人工業技術研究院 觸控裝置之結構
TWI431362B (zh) * 2009-05-29 2014-03-21 Japan Display West Inc 觸控感測器、顯示器及電子裝置
JP2011017626A (ja) * 2009-07-09 2011-01-27 Sony Corp 力学量検知部材及び力学量検知装置
TW201205404A (en) * 2010-07-16 2012-02-01 Elan Microelectronics Corp Three-dimensional touch sensor and application thereof
CN103782254B (zh) * 2012-06-29 2017-03-01 松下知识产权经营株式会社 带触感提示功能的触摸屏装置
JP2015190859A (ja) * 2014-03-28 2015-11-02 ソニー株式会社 センサ装置、入力装置及び電子機器
US9841850B2 (en) * 2014-06-16 2017-12-12 Synaptics Incorporated Device and method for proximity sensing with force imaging
KR102280266B1 (ko) * 2014-08-29 2021-07-22 삼성디스플레이 주식회사 박막 트랜지스터 어레이 기판 및 이를 채용한 유기 발광 표시 장치
KR102288845B1 (ko) * 2015-01-12 2021-08-11 삼성디스플레이 주식회사 터치 센서를 포함하는 표시 장치
KR102369300B1 (ko) * 2015-02-24 2022-03-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
US20170160866A1 (en) * 2015-12-08 2017-06-08 Innolux Corporation Touch display device
CN105549803B (zh) * 2016-02-19 2018-06-29 京东方科技集团股份有限公司 触摸屏和显示装置
KR102455724B1 (ko) 2016-04-21 2022-10-19 삼성디스플레이 주식회사 플렉서블 표시 장치
CN206178743U (zh) * 2016-10-24 2017-05-17 上海天马微电子有限公司 柔性显示面板和装置
CN106445267B (zh) 2016-10-28 2019-03-26 京东方科技集团股份有限公司 一种电容式触摸屏、其弯曲判断方法及显示装置
CN108268159A (zh) * 2016-12-30 2018-07-10 财团法人工业技术研究院 可拉伸感测元件及其感测方法
CN108877649B (zh) * 2017-05-12 2020-07-24 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN106952612B (zh) * 2017-05-22 2019-09-03 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法
KR102390447B1 (ko) * 2017-07-28 2022-04-26 삼성디스플레이 주식회사 표시장치용 기판, 유기발광표시장치 및 유기발광표시장치의 제조방법
CN107479754B (zh) * 2017-08-22 2020-07-28 武汉天马微电子有限公司 一种柔性触摸传感器和柔性触摸显示面板
US20190393278A1 (en) * 2018-06-26 2019-12-26 Innolux Corporation Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136378A (zh) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 一种显示基板及显示装置、压力检测系统及其检测方法
US20170192590A1 (en) * 2016-01-06 2017-07-06 Samsung Display Co., Ltd. Touch display apparatus
CN105824475A (zh) * 2016-03-31 2016-08-03 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制备方法
CN107562246A (zh) * 2016-07-01 2018-01-09 南昌欧菲光科技有限公司 触控屏以及电子设备
CN106206666A (zh) * 2016-08-29 2016-12-07 上海天马微电子有限公司 有机发光显示面板和有机发光显示装置
CN108511494A (zh) * 2018-03-30 2018-09-07 京东方科技集团股份有限公司 一种柔性显示面板及其弯曲检测方法
CN109192071A (zh) * 2018-10-16 2019-01-11 京东方科技集团股份有限公司 显示面板及其形变感应方法、显示装置

Also Published As

Publication number Publication date
CN109192071A (zh) 2019-01-11
US11016625B2 (en) 2021-05-25
CN109192071B (zh) 2021-03-23
US20200264734A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2020078389A1 (zh) 显示面板及其形变感应方法、显示装置
EP3226299B1 (en) Pixel structures, transparent touch display screen and manufacturing method therefor, and display device
WO2019114287A1 (zh) 阵列基板及其制备方法、触控显示面板
US9921677B1 (en) Method for fabricating touch display device
WO2016141709A1 (zh) 阵列基板及其制作方法、显示装置
WO2016123985A1 (zh) 阵列基板及其制作方法和驱动方法、显示装置
WO2019148838A1 (zh) 触控显示基板、制作方法、触控显示装置及驱动方法
US11237662B2 (en) Touch display substrate with switching device disposed between adjacent electrode blocks, method for manufacturing the same, driving method thereof, and display device thereof
CN108133932B (zh) 阵列基板及其制作方法、显示面板
WO2016045241A1 (zh) 阵列基板及其制作方法、显示装置
US20180197897A1 (en) Array substrate and method for fabricating the same, display device
WO2016095513A1 (zh) 阵列基板及其制作方法、显示装置
CN108493218B (zh) 压感触控显示面板及其制备方法、显示装置
US10509501B2 (en) Pressure-sensitive display panel, manufacturing method thereof and pressure-sensitive display device
CN104752344A (zh) 薄膜晶体管阵列基板及其制作方法
CN109524419A (zh) Tft阵列基板的制作方法
WO2019001285A1 (zh) 阵列基板及其制备方法和显示装置
WO2022016620A1 (zh) 阵列基板、显示面板及电子设备
US11249584B2 (en) Touch substrate, manufacturing method thereof and touch screen
WO2022088326A1 (zh) 阵列基板、显示面板及电子设备
US10216028B2 (en) Array substrate and manufacturing method thereof, display panel, display device
WO2020232962A1 (zh) 一种彩膜基板及其制备方法
US20220283673A1 (en) Array Substrate and Preparation Method thereof, and Touch Display Apparatus
CN108062183B (zh) 触控基板及其制备方法、触控面板
CN112002739A (zh) 显示面板、显示屏及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872695

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19872695

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19872695

Country of ref document: EP

Kind code of ref document: A1