WO2020078186A1 - 荧光陶瓷及其制备方法 - Google Patents

荧光陶瓷及其制备方法 Download PDF

Info

Publication number
WO2020078186A1
WO2020078186A1 PCT/CN2019/107993 CN2019107993W WO2020078186A1 WO 2020078186 A1 WO2020078186 A1 WO 2020078186A1 CN 2019107993 W CN2019107993 W CN 2019107993W WO 2020078186 A1 WO2020078186 A1 WO 2020078186A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
fluorescent
powder
alumina
phosphor
Prior art date
Application number
PCT/CN2019/107993
Other languages
English (en)
French (fr)
Inventor
简帅
李乾
王艳刚
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020078186A1 publication Critical patent/WO2020078186A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Definitions

  • the invention relates to a fluorescent ceramic and a preparation method thereof, which belong to the technical field of functional ceramic manufacturing.
  • the traditional display technology has a large deficiency in displaying true colors, and can only display 30% of the color range recognized by the human eye. As people have higher and higher demands on display technology, presenting more and more real colors is one of the goals of the next generation display technology.
  • the laser display technology is a breakthrough to the traditional display technology, with its large color gamut space, rich colors, and high color saturation, so the laser display presents a broad market application prospect.
  • the advantages of the laser-excited phosphor display technology are obvious. It mainly uses blue lasers to excite fluorescent materials to obtain fluorescence in other wavelength bands. With the continuous development of laser display technology, the requirements on the performance of fluorescent materials have gradually increased. Fluorescent materials need to have higher light conversion efficiency, higher luminous brightness and higher thermal conductivity to support higher power density. Blue laser etc.
  • Fluorescent materials used in laser display technology can be roughly divided into three categories.
  • the first type uses organic polymers such as organic silica gel / organic resin to encapsulate various phosphors. When this type of fluorescent material is subjected to light conversion under high-power density blue laser irradiation, it will generate a large amount of heat and cause its temperature to rise sharply. For a long time, this will cause the encapsulated silicone / organic resin and other organic substrates to age and yellow, which will eventually lead to problems such as loss of light efficiency and reduced life.
  • the second type is fluorescent glass material, which encapsulates phosphor powder through SiO 2 -based / borosilicate-based glass.
  • fluorescent glass Compared with organic resin encapsulation, fluorescent glass has great improvements in heat resistance, high thermal stability, low color shift, etc., but there is no significant improvement in thermal conductivity.
  • the third category is fluorescent ceramics. Compared to fluorescent materials encapsulated in organic and inorganic glass substrates, fluorescent ceramics have significant advantages in heat resistance and thermal conductivity. Fluorescent ceramics can be divided into two types, one is doped with Ce and other rare earth elements into transparent ceramics such as YAG and prepared into fluorescent ceramics; the other is to encapsulate phosphors through transparent ceramics with high thermal conductivity. Fluorescent ceramics have become an important development direction in laser lighting display technology due to their excellent performance.
  • the technical problem to be solved by the present invention is to provide a fluorescent ceramic and its preparation method in view of the deficiencies of the prior art.
  • a fluorescent ceramic with at least a part of grain orientation, the linear transmittance of the fluorescent ceramic is greatly improved.
  • the phosphor in the deep layer of the fluorescent ceramic can be excited, while improving the luminous efficiency, and avoiding the problem that the heat generated by the phosphor is too concentrated and the local temperature is too high, so that the fluorescent ceramic can withstand greater power density. Excitation light, thereby improving the brightness of fluorescent ceramics.
  • the invention provides a fluorescent ceramic.
  • the fluorescent ceramic comprises alumina ceramics and phosphor powder distributed in the alumina ceramics, and at least a part of the crystal grains of the alumina ceramics are aligned.
  • the phosphor is an isotropic phosphor.
  • the phosphor is Ce: YAG phosphor or Ce: LuAG phosphor.
  • the texture degree of the alumina ceramic is greater than 60%.
  • the average particle size of the phosphor is 5 ⁇ m-25 ⁇ m, and the average particle size of the alumina ceramic grains is 1 ⁇ m-10 ⁇ m.
  • the invention also provides a preparation method of fluorescent ceramics, the preparation method comprising:
  • S3 Sinter and cut the ceramic green body to form a fluorescent ceramic.
  • the average particle diameter of the phosphor is 5 ⁇ m-25 ⁇ m, and the average particle diameter of the alumina powder is 0.05 ⁇ m-1 ⁇ m.
  • the specific crystal direction is c direction, r direction, a direction or n direction.
  • the sintering aid is magnesium oxide, yttrium oxide or magnesium nitrate hexahydrate.
  • the sintering temperature is 1700 ° C-1800 ° C, and the sintering time is 10h-60h.
  • the powder is coated around the sapphire seed wafer.
  • the present invention greatly improves the linear transmittance of the fluorescent ceramics by providing a fluorescent ceramic with at least a part of grain orientation, so that the phosphor powder in the deep layer of the fluorescent ceramics can be excited, while improving the luminous efficiency, The problem of excessively concentrated local temperature caused by excessively concentrated heat generated by the fluorescent powder is avoided, so that the fluorescent ceramic can withstand excitation light of greater power density, thereby improving the brightness of the fluorescent ceramic.
  • FIG. 1 is a schematic diagram of the microstructure of a fluorescent ceramic in the prior art
  • Fig. 2 is a macroscopic view of the alumina crystal in the fluorescent ceramic of Fig. 1;
  • FIG. 3 is a schematic diagram of excitation light passing through the fluorescent ceramic in FIG. 1;
  • Figure 5 is a schematic diagram of cold isostatic pressing
  • Figure 6 is a schematic diagram of the structure of a ceramic green body
  • FIG. 1 is a schematic diagram of the microstructure of a fluorescent ceramic in the prior art. As shown in Fig. 1, after the alumina powder is mixed with the phosphor and sintered, the phosphor is distributed in the alumina phase of the continuous medium, and Fig. 2 is the fluorescence of Fig.
  • FIG. 3 is a schematic diagram of the excitation light passing through the fluorescent ceramic in Figure 1. As shown in Figure 3, when the excitation light passes through When passing numerous randomly oriented alumina crystal grains, the grain boundary birefringence will occur repeatedly and repeatedly, and eventually the linear transmittance of the fluorescent ceramic will decrease.
  • the present invention provides a fluorescent ceramic.
  • the fluorescent ceramic includes an alumina ceramic 102 and a phosphor 101 distributed in the alumina ceramic 102. At least a portion of the crystal grains of the alumina ceramic 102 are aligned.
  • the alumina ceramic 102 serves as a continuous matrix phase
  • the phosphor powder 101 serves as a uniformly distributed functional phase.
  • the orientation means that the crystal orientation of the crystal grains is oriented in the same direction.
  • the orientation of each crystal grain in the polycrystal is arbitrary, and there is no certain positional relationship between the crystal grains.
  • the orientation distribution of polycrystals can significantly deviate from the random distribution, showing a certain degree of regularity. Such a directional distribution is called texture, or preferred orientation.
  • the spatial orientation of crystal grains in polycrystalline alumina ceramics is also arbitrary. Each alumina grain has a crystallographic orientation different from that of adjacent grains. In optical performance, it will show as shown in Figure 3. The multiple and repeated grain boundary birefringence phenomenon.
  • the texture refers specifically to the alumina ceramic 102 rather than the entire fluorescent ceramic.
  • the texture of the alumina ceramic 102 is higher than 60%.
  • Lotgering factor is a well-known method for calculating the degree of texture of ceramics.
  • P represents all the orientation axis directions in the aligned sample
  • P 0 represents the P value when the particles are randomly distributed.
  • the crystal grains of the alumina ceramic 102 are arranged in a direction parallel to the optical axis.
  • the optical axis refers to a crystal direction in which birefringence does not occur in an anisotropic crystal.
  • the sintering temperature is preferably 1300 ° C. or higher.
  • the alumina ceramic 102 is almost completely converted into ⁇ -alumina, and ⁇ -alumina is a trigonal system, and its optical axis is parallel to the c-axis. At least part of the crystal grains of the alumina ceramic 102 are aligned along the c-axis.
  • the phosphor 101 is preferably an isotropic phosphor, such as a cubic crystal Ce: YAG phosphor or Ce: LuAG phosphor, etc., and its average particle size is preferably 5 ⁇ m-25 ⁇ m.
  • the raw material of the alumina ceramic 102 is alumina powder, and the purity of the alumina powder is not less than 99%, preferably 99.99% or more.
  • the average particle size of the phosphor 101 is preferably 5 ⁇ m-25 ⁇ m, when the particle size of the alumina powder is large, the alumina after sintering is the same It is easy to form large holes between the phosphors 101, and it is difficult to mass produce when the particle size of the alumina powder is small, and the cost is high.
  • the average particle size of the alumina powder is preferably 0.05 ⁇ m-1 ⁇ m.
  • the total transmittance of transparent ceramics includes linear transmittance and scattering transmittance.
  • the influencing factors of total transmittance include the density and crystal grain size of transparent ceramics, which have little relationship with the orientation of crystal grains. Non-aligned alumina ceramics are easy to cause different grain directions, and there are many occurrences of grain boundary birefringence, so their scattering is serious, and the linear transmittance is relatively low.
  • excitation light such as blue laser
  • the excitation light irradiates the fluorescent ceramic, the excitation light can enter The deeper interior of the fluorescent ceramic allows more phosphors 101 to be excited; making the fluorescent ceramic not only limited to a small area of the ceramic surface to be excited, but also to concentrate the heat generated when excited in this narrow area, As a result, the fluorescent ceramic can withstand excitation light of greater power density, thereby improving the brightness and luminous efficiency of the fluorescent ceramic.
  • the invention also provides a method for preparing fluorescent ceramics.
  • the preparation method includes:
  • S3 Sinter and cut the ceramic green body to form a fluorescent ceramic.
  • the sintering aid may be magnesium oxide, yttrium oxide, or magnesium nitrate hexahydrate.
  • the specific crystal direction may be c direction, r direction, a direction or n direction.
  • Fig. 5 is a schematic diagram of cold isostatic pressing;
  • Fig. 6 is a schematic diagram of the structure of a ceramic green body. As shown in FIGS. 5 and 6, the sapphire seed wafer 201 and the powder 202 are pressed into a ceramic green body 302 containing the sapphire seed wafer 201 under the action of the rubber-clad mold 203.
  • the sintering temperature is preferably 1700 ° C-1800 ° C, and the sintering time is preferably 10h-60h.
  • the sapphire seed wafer will induce the growth of the alumina grains, so that the crystal orientation of the alumina grains is consistent with the crystal orientation of the sapphire seed wafers, so that the alumina grains can be oriented.
  • fluorescent ceramics are obtained. To eliminate residual stress, sintering can also be annealed.
  • FIG. 7 is an XRD chart of the fluorescent ceramic of the present invention. As shown in FIG. 7, in the figure, the intensity of the diffraction peaks of alumina Al 2 O 3 (110) and (300) is much higher than the diffraction peaks of the other surfaces, and it can be seen that the distribution of the crystal grains shows a certain direction. That is, the alumina crystal grains of the fluorescent ceramic in the present invention are aligned.
  • the excitation light passes through the fluorescent ceramic of this structure, the excitation light is emitted from one grain to another grain, because the physical environment (similar to a single crystal) is the same, so there is no grain boundary birefringence Phenomenon, the specific performance is that the linear transmittance of this fluorescent ceramic is very high; in practical applications, it can increase the linear transmittance by more than four or five times.
  • the traditional fluorescent ceramic when the traditional fluorescent ceramic is irradiated with blue laser, most of it can be excited by a small amount of fluorescent powder on the surface of the excitation surface of the fluorescent ceramic, and the linear transmittance of the fluorescent ceramic in the present invention is high, and the blue laser can Excitation of deeper phosphors, thereby improving the overall luminous efficiency, and avoiding excessive localization of the phosphors due to excessive heat generated by the excitation, which makes the fluorescent ceramics can withstand excitation light of greater power density and improve fluorescence Ceramic brightness.
  • the thickness of the ceramic green body is ⁇ 8 mm. It can be understood that the thickness of the ceramic green body can be determined according to the required thickness of the fluorescent ceramic; generally speaking, the thickness of the fluorescent ceramic is less than or equal to the thickness of the ceramic green body. Specifically, in this embodiment, the thickness of the fluorescent ceramic is ⁇ 8 mm.
  • sapphire seed wafers have different crystal planes on the surface, and the atomic distribution of the different crystal planes of the crystal is different.
  • alumina will be induced to re-grow according to its arrangement.
  • other sapphire seed wafers different from the r-direction may also be used.
  • the ceramic green body was placed in a vacuum furnace with a vacuum of 10 -3 Pa and sintered at 1700 ° C for 50 hours. After that, it was annealed at 1350 ° C for 10 hours in an air atmosphere; after annealing, it was cut, and the part containing the sapphire seed wafer was cut off, then thinned and polished, and finally a fluorescent ceramic was obtained.
  • the debinding process is 600 °C holding 2h and 1000 °C holding 6h.
  • the ceramic green body was placed in a vacuum furnace with a vacuum of 10 -3 Pa and sintered at 1750 ° C for 40 hours. After that, it was annealed at 1300 ° C for 15h in an air atmosphere; after annealing, it was cut, and the part containing the sapphire seed wafer was cut off, then thinned and polished, and finally a fluorescent ceramic was obtained.
  • the debinding process is 600 °C holding 3h and 800 °C holding 6h.
  • the ceramic green body was placed in a vacuum furnace with a vacuum of 10 -3 Pa and sintered at 1780 ° C for 30 hours. Afterwards, it was annealed at 1350 ° C for 15h in an air atmosphere; after annealing, it was cut, and the part containing the sapphire seed wafer was cut off, then thinned and polished, and finally a fluorescent ceramic was obtained.
  • the present invention greatly improves the linear transmittance of the fluorescent ceramic by providing a fluorescent ceramic with at least a part of crystal grains aligned, so that the fluorescent powder in the deep layer of the fluorescent ceramic can be excited, while improving the luminous efficiency and avoiding the cause of the fluorescent powder Excessive concentration of heat generated by excitation leads to the problem of excessively high local temperature, which enables fluorescent ceramics to withstand excitation light of greater power density, thereby improving the brightness of fluorescent ceramics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种荧光陶瓷及其制备方法,所述荧光陶瓷包含氧化铝陶瓷以及分布在氧化铝陶瓷中的荧光粉,所述氧化铝陶瓷的至少部分晶粒定向排列。通过提供一种至少部分晶粒定向排列的荧光陶瓷,大幅提高了荧光陶瓷的直线透过率,使得荧光陶瓷深层的荧光粉能够被激发,在提高发光效率的同时,避免了荧光粉因受激发所产生的热量过于集中而导致局部温度过高的问题,使得荧光陶瓷能承受更大功率密度的激发光。

Description

荧光陶瓷及其制备方法 技术领域
本发明涉及一种荧光陶瓷及其制备方法,属于功能陶瓷制造技术领域。
背景技术
传统显示技术在还原真实色彩的显示上存在较大的不足,只能显示人眼所识别色彩范围的30%。随着人们对显示技术的要求越来越高,呈现更多更真实的色彩是下一代显示技术的目标之一。激光显示技术正是对传统显示技术的突破,其色域空间大、色彩丰富、色饱和度高,因此激光显示呈现广阔的市场应用前景。激光显示技术中激光激发荧光粉显示技术的优势明显,其主要是通过蓝色激光激发荧光材料来获取其他波段的荧光。随着激光显示技术的不断发展,对荧光材料性能上的要求也逐步提升,荧光材料需要有较高的光转换效率,较高的发光亮度以及较高的导热性能,以承载更高功率密度的蓝色激光等。
用于激光显示技术的荧光材料大体可分为三大类。第一类采用有机硅胶/有机树脂等有机聚合物对各种荧光粉进行封装,此类荧光材料处于高功率密度蓝色激光照射下进行光转换时,会产生大量的热量从而使得自身温度急剧上升,长期如此会导致封装的硅胶/有机树脂等有机基质老化泛黄,最终会引发光效损失、寿命减少等问题。第二类为荧光玻璃材料,其通过SiO 2基/硼硅酸盐基的玻璃对荧光粉进行封装。同有机树脂封装相比,荧光玻璃在耐热性、高热稳定性、低色偏移等方面有很大的改善,但在导热性能上并无显著性的提升。第三类为荧光陶瓷,相比有机基质和无机玻璃基质所封装的荧光材料,荧光陶瓷的耐热性和热导率均有显著的优势。荧光陶瓷又可分为两种,一种是将Ce等稀土元素掺杂到YAG等透明陶瓷中而制备成荧光陶瓷;另外一种是通过高导热系数的透明陶瓷对将荧光粉进行封装。荧光陶瓷因 其优异的性能而成为激光照明显示技术中一个重要发展方向。
虽然目前荧光陶瓷大多是将荧光粉封装在透明陶瓷中,其热稳定性和发光性能相对较好,但是在较高功率的实际应用中,如投影显示光源、汽车头灯光源中,受限于荧光粉的特性,荧光粉在较高温度下会发生热淬灭(Thermal quenching),进而影响荧光陶瓷的发光效率和亮度提升。因此,如何进一步提高荧光陶瓷的亮度和发光效率是本领域亟待解决的技术问题。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种荧光陶瓷及其制备方法,通过提供一种至少部分晶粒定向排列的荧光陶瓷,大幅提高了荧光陶瓷的直线透过率,使得荧光陶瓷深层的荧光粉能够被激发,在提高发光效率的同时,避免了荧光粉因受激发所产生的热量过于集中而导致局部温度过高的问题,使得荧光陶瓷能承受更大功率密度的激发光,进而提高荧光陶瓷的发光亮度。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种荧光陶瓷,所述荧光陶瓷包含氧化铝陶瓷以及分布在氧化铝陶瓷中的荧光粉,所述氧化铝陶瓷的至少部分晶粒定向排列。
为了不影响荧光陶瓷的直线透过率,所述荧光粉为各向同性的荧光粉。
优选地,所述荧光粉为Ce:YAG荧光粉或Ce:LuAG荧光粉。
优选地,所述氧化铝陶瓷的织构度大于60%。
优选地,所述荧光粉的平均粒径为5μm-25μm,所述氧化铝陶瓷晶粒的平均粒径大小为1μm-10μm。
本发明还提供一种荧光陶瓷的制备方法,所述制备方法包含:
S1:将荧光粉、氧化铝粉、烧结助剂预混合后形成粉体;
S2:利用冷等静压及排胶工艺将所述粉体与一个或多个具有特定晶向的蓝宝石籽晶圆片压制成陶瓷素坯;
S3:烧结并切割所述陶瓷素坯,形成荧光陶瓷。
优选地,所述荧光粉的平均粒径为5μm-25μm,所述氧化铝粉平均粒径为0.05μm-1μm。
优选地,所述特定晶向为c向、r向、a向或n向。
优选地,所述烧结助剂为氧化镁、氧化钇或者六水合硝酸镁。
优选地,所述烧结温度为1700℃-1800℃,烧结时间为10h-60h。
优选地,在S2中,所述粉体包覆在蓝宝石籽晶圆片周围。
综上所述,本发明通过提供一种至少部分晶粒定向排列的荧光陶瓷,大幅提高了荧光陶瓷的直线透过率,使得荧光陶瓷深层的荧光粉能够被激发,在提高发光效率的同时,避免了荧光粉因受激发所产生的热量过于集中而导致局部温度过高的问题,使得荧光陶瓷能承受更大功率密度的激发光,进而提高荧光陶瓷的发光亮度。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为现有技术中荧光陶瓷的显微组织结构示意图;
图2为图1荧光陶瓷中氧化铝晶体的宏观形貌图;
图3为激发光穿过图1中荧光陶瓷时的示意图;
图4为本发明荧光陶瓷的结构示意图;
图5为冷等静压示意图;
图6为陶瓷素坯的结构示意图;
图7为本发明荧光陶瓷的XRD图。
具体实施方式
目前,荧光陶瓷大多是将荧光粉封装在透明陶瓷中,透明陶瓷多选用氧化铝陶瓷,并且多晶氧化铝陶瓷是透光性较好的透明陶瓷之一。图1为现有技术中荧光陶瓷的显微组织结构示意图,如图1所示,氧化铝粉同荧光粉混合烧结后,荧光粉分布在连续介质氧化铝物相中,图2为图1荧光陶瓷中氧化铝晶体的宏观形貌图,如图2所示,由于制备过程中氧化铝粉是随机混合的,其烧结后所形成的氧化铝晶粒的 晶向(c向,r向,a向,n向)也是各异。虽然,荧光陶瓷大多是将荧光粉封装在透明陶瓷中,并且为了提高其导热性能、热稳定性,透明陶瓷多选用氧化铝陶瓷,但是,在较大的功率密度下发光陶瓷的亮度和发光效率依旧不高。发明人研究发现,激发光在多晶氧化铝陶瓷中的直线透过率过低,例如在可见光波段(400nm-700nm)时,激发光的直线透过率一般仅为10%-15%,由此使得激发光只能激发荧光陶瓷表层部分的荧光粉,不仅激发效率低,还容易产生局部热量堆积等问题,进而使得表层的荧光粉发生热淬灭,“热淬灭”是指荧光材料或波长转换材料的发光效率随温度的增加而大幅降低的现象。进一步研究发现,由于氧化铝属于三方晶系,激发光入射时会存在晶界双折射现象,图3为激发光穿过图1中荧光陶瓷时的示意图,如图3所示,当激发光穿过任意取向的无数氧化铝晶粒时,将多次并反复发生晶界双折射,最终导致荧光陶瓷的直线透过率降低。
图4为本发明荧光陶瓷的结构示意图。如图4所示,本发明提供一种荧光陶瓷,所述荧光陶瓷包含氧化铝陶瓷102以及分布在氧化铝陶瓷102中的荧光粉101,所述氧化铝陶瓷102的至少部分晶粒定向排列。其中,所述氧化铝陶瓷102作为连续的基质相,荧光粉101作为均匀分布的功能相,所述定向排列指晶粒的晶向朝向同一个方向。
一般而言,多晶体各晶粒在空间的取向是任意的,各晶粒之间没有一定的位向关系。而经过冷加工,或者其他一些冶金,热处理过程后(如铸造、电镀、气相沉积、热加工、退火等等),多晶体的取向分布状态可以明显偏离随机分布状态,呈现一定的规则性。这样一种位向分布就称为织构,或者择优取向(Preferred Orientation)。通常,多晶氧化铝陶瓷中晶粒的空间取向也是任意的,每个氧化铝晶粒有不同于相邻晶粒的结晶学取向,在光学性能中,则会表现出如图3中所示的多次并反复发生的晶界双折射现象。
氧化铝陶瓷的晶粒是否定向排列可以采用XRD进行检测分析,其具体数据一般用织构度来表征,织构度越高,定向排列程度越高,织构度达到100%时可以认为完全定向排列,等同于单晶。在本发明中,所述织构特指氧化铝陶瓷102而非整个荧光陶瓷。优选地,所述氧化 铝陶瓷102的织构度高于60%。
Lotgering factor(LF)是目前公知的一种计算陶瓷织构度的方法,其计算公式为:LF=(P-P 0)/(1-P 0),其中,P表示定向排列样品中所有取向轴方向衍射峰强度之和与所有衍射峰强度之和的比值,P 0表示颗粒随机分布时的P值。LF值在0-1之间变动,LF=0对应随机排列的情况,LF=1对应完美排列的情况,即单晶。
优选地,氧化铝陶瓷102的至少部分晶粒沿与光轴平行的方向排列。所述光轴是指各向异性晶体中不会发生双折射的晶向。在本发明中,优选烧结温度为1300℃以上,此时所述氧化铝陶瓷102几乎完全转化为α-氧化铝,而α-氧化铝为三方晶系,其光轴与c轴平行,因此,所述氧化铝陶瓷102的至少部分晶粒沿c轴定向排列。
所述荧光粉101优选为各向同性的荧光粉,如立方晶系的Ce:YAG荧光粉或Ce:LuAG荧光粉等,其平均粒径优选为5μm-25μm。所述氧化铝陶瓷102的原料为氧化铝粉,所述氧化铝粉的纯度不小于99%,优选99.99%以上。考虑到氧化铝粉粒径过大时不利于烧结(烧结后晶粒比较大),且由于荧光粉101的平均粒径优选为5μm-25μm,氧化铝粉粒径较大时烧结后氧化铝同荧光粉101间容易形成大的孔洞,而氧化铝粉粒径较小时难以量产,成本较高,本发明中氧化铝粉平均粒径优选为0.05μm-1μm,通过控制烧结工艺的参数,所述氧化铝粉能够烧结出平均晶粒粒径大小在1μm-10μm之间的氧化铝陶瓷102。
透明陶瓷的总透过率包括直线透过率和散射透过率,总透过率的影响因素包含透明陶瓷的致密度、晶粒尺寸等,其与晶粒是否定向关系不大。非定向排列的氧化铝陶瓷易引起晶粒方向各异,发生晶界双折射现象次数多,因而其散射比较严重,直线透过率比较低,在激发光(如蓝色激光)照射时,仅能激发透明陶瓷表层部分的荧光粉101。
本发明中作为连续相的所述氧化铝陶瓷102的至少部分晶粒是定向排列的,其可极大地提高氧化铝陶瓷102的直线透过率,当激发光照射荧光陶瓷时,激发光可以进入荧光陶瓷更深层的内部,让更多的荧光粉101得以激发;使得荧光陶瓷不仅局限于陶瓷表面小部分区域能受激发,同时将受激发时所产生的热量不集中在该狭小的区域内, 从而可以使荧光陶瓷承受更大功率密度的激发光,进而提高荧光陶瓷的亮度和发光效率。
本发明还提供一种荧光陶瓷的制备方法。所述制备方法包含:
S1:将荧光粉、氧化铝粉、烧结助剂预混合后形成粉体;
S2:利用冷等静压及排胶工艺将所述粉体与一个或多个具有特定晶向的蓝宝石籽晶圆片压制成陶瓷素坯;
S3:烧结并切割所述陶瓷素坯,形成荧光陶瓷。
在S1中,烧结助剂可以为氧化镁、氧化钇或者六水合硝酸镁。
在S2中,所述特定晶向可以为c向、r向、a向或n向。图5为冷等静压示意图;图6为陶瓷素坯的结构示意图。如图5和图6所示,蓝宝石籽晶圆片201和粉体202在橡胶包套模具203的作用下,被压制成包含蓝宝石籽晶圆片201的陶瓷素坯302。
在S3中,烧结温度优选为1700℃-1800℃,烧结时间优选为10h-60h。在烧结过程中,蓝宝石籽晶圆片将会诱导氧化铝晶粒的生长,使得氧化铝晶粒晶向与蓝宝石籽晶圆片的晶向保持一致,故而可使得氧化铝晶粒呈定向排列,最终获得荧光陶瓷。为消除残余应力,烧结还可进行退火处理。
图7为本发明荧光陶瓷的XRD图。如图7所示,图中,氧化铝Al 2O 3的衍射峰的(110)和(300)的强度远高于其他面的衍射峰,可见其晶粒分布呈现一定的方向性。即本发明中荧光陶瓷的氧化铝晶粒是定向排列的。当激发光透过此种结构的荧光陶瓷时,激发光从一个晶粒射出到另外一个晶粒,由于其所处的物理环境(类似单晶)是一样的,故而不会产生晶界双折射现象,具体表现为此种荧光陶瓷的直线透过率非常高;实际应用中,能将直线透过率提高四、五倍以上。此时,传统荧光陶瓷受到蓝色激光照射时,其所能被激发的多为荧光陶瓷激发面表层少量的荧光粉,而本发明中的荧光陶瓷的直线透过率较高,蓝色激光可激发更深层的荧光粉,从而提高整体的发光效率,也避免了荧光粉因受激发所产生的热量过于集中而导致局部温度过高,使得荧光陶瓷能承受更大功率密度的激发光,提高荧光陶瓷发光亮度。
下面结合具体实施例来对本发明荧光陶瓷的制备方法作进一步地说明。
实施例一
选取高纯度的纳米氧化铝粉和氧化镁粉,二者纯度均在99%;将二者同少量的PVB(聚乙烯醇缩丁醛)乙醇溶液一同倒入球磨罐中,选用高纯氧化铝球进行球磨混料24h,其中氧化镁粉占粉体总质量的0.5wt%。称取一定量的Ce:YAG荧光粉,其占混合后总粉体质量的50wt%;将Ce:YAG荧光粉添加至球磨罐中,并球磨1h。将球磨后的浆料在真空干燥箱中70℃下进行干燥,随即对干燥后的粉体进行研磨、过筛处理,装粉待用。
将混合后的粉体同直径为10mm-50mm的r向蓝宝石籽晶圆片一同装填在橡胶包套模具中,其中粉体包覆在蓝宝石籽晶圆片周围,随即在200MPa下进行冷等静压成型,然后在马弗炉中排胶处理以形成陶瓷素坯,其排胶工艺为500℃保温2h以及900℃保温6h。优选地,所述陶瓷素坯的厚度≤8mm。可以理解,所述陶瓷素坯的厚度可以根据所需要的荧光陶瓷的厚度来确定;一般而言,荧光陶瓷的厚度小于或等于所述陶瓷素坯的厚度。具体的,本实施例中,所述荧光陶瓷的厚度≤8mm。
需要说明的是,不同向的蓝宝石籽晶圆片其表面分别为不同的晶面,晶体不同晶面的原子分布不同,在烧结过程中,会诱导氧化铝按其排列方式重新生长。实施例中也可采用不同于r向的其它向蓝宝石籽晶圆片。
将陶瓷素坯置于真空炉中,真空度为10 -3Pa,1700℃下烧结50h。之后在空气气氛下,1350℃退火处理10h;退火后进行切割,切除含有蓝宝石籽晶圆片的部分后进行减薄以及抛光处理,最后得到荧光陶瓷。
实施例二
选取高纯度的纳米氧化铝粉和氧化钇粉,二者纯度均在99%;将二者同少量的PVB乙醇溶液一同倒入球磨罐中,氧化钇占粉体总质量的0.4wt%,选用高纯氧化铝球进行球磨混料15h。称取一定量的Ce:YAG 荧光粉,其占混合后总粉体质量的40wt%;将Ce:YAG荧光粉添加至球磨罐中,并球磨40min。将球磨后的浆料在真空干燥箱中70℃下进行干燥,随即对干燥后的粉体进行研磨、过筛处理,装粉待用。
将混合后的粉体同直径为10mm-50mm的c向蓝宝石籽晶圆片一同装填在橡胶包套模具中,其中粉体包覆在蓝宝石籽晶圆片周围,随即在250MPa下进行冷等静压成型,然后在马弗炉中排胶处理以形成陶瓷素坯,其排胶工艺为600℃保温2h以及1000℃保温6h。
将陶瓷素坯置于真空炉中,真空度为10 -3Pa,1750℃下烧结40h。之后在空气气氛下,1300℃退火处理15h;退火后进行切割,切除含有蓝宝石籽晶圆片的部分后进行减薄以及抛光处理,最后得到荧光陶瓷。
实施例三
选取高纯度的纳米氧化铝粉和六水合硝酸镁,二者纯度均在99%;将二者同少量的PVB乙醇溶液一同倒入球磨罐中,六水合硝酸镁占粉体总质量的3wt%,选用高纯氧化铝球进行球磨混料20h。称取一定量的Ce:YAG荧光粉,其占混合后总粉体质量的60wt%;将Ce:YAG荧光粉添加至球磨罐中,并球磨30min。将球磨后的浆料在真空干燥箱中80℃下进行干燥,随即对干燥后的粉体进行研磨、过筛处理,装粉待用。
将混合后的荧光陶瓷粉体同直径为10mm-50mm的a向蓝宝石籽晶圆片一同装填在橡胶包套模具中,其中粉体包覆在蓝宝石籽晶圆片周围,随即在300MPa下进行冷等静压成型,然后在马弗炉中排胶处理以形成陶瓷素坯,其排胶工艺为600℃保温3h以及800℃保温6h。
将陶瓷素坯置于真空炉中,真空度为10 -3Pa,1780℃下烧结30h。之后在空气气氛下,1350℃退火处理15h;将退火后进行切割,切除含有蓝宝石籽晶圆片的部分后进行减薄以及抛光处理,最后得到荧光陶瓷。
本发明通过提供一种至少部分晶粒定向排列的荧光陶瓷,大幅提高了荧光陶瓷的直线透过率,使得荧光陶瓷深层的荧光粉能够被激发, 在提高发光效率的同时,避免了荧光粉因受激发所产生的热量过于集中而导致局部温度过高的问题,使得荧光陶瓷能承受更大功率密度的激发光,进而提高荧光陶瓷的发光亮度。

Claims (11)

  1. 一种荧光陶瓷,其特征在于,所述荧光陶瓷包含氧化铝陶瓷以及分布在氧化铝陶瓷中的荧光粉,所述氧化铝陶瓷的至少部分晶粒定向排列。
  2. 如权利要求1所述的荧光陶瓷,其特征在于,所述荧光粉为各向同性的荧光粉。
  3. 如权利要求2所述的荧光陶瓷,其特征在于,所述荧光粉为Ce:YAG荧光粉或Ce:LuAG荧光粉。
  4. 如权利要求1所述的荧光陶瓷,其特征在于,所述氧化铝陶瓷的织构度大于60%。
  5. 如权利要求1所述的荧光陶瓷,其特征在于,所述荧光粉的平均粒径为5μm-25μm,所述氧化铝陶瓷晶粒的平均粒径大小为1μm-10μm。
  6. 一种荧光陶瓷的制备方法,其特征在于,所述制备方法包含:
    S1:将荧光粉、氧化铝粉、烧结助剂预混合后形成粉体;
    S2:利用冷等静压及排胶工艺将所述粉体与一个或多个具有特定晶向的蓝宝石籽晶圆片压制成陶瓷素坯;
    S3:烧结并切割所述陶瓷素坯,形成荧光陶瓷。
  7. 如权利要求6所述的制备方法,其特征在于,所述荧光粉的平均粒径为5μm-25μm,所述氧化铝粉平均粒径为0.05μm-1μm。
  8. 如权利要求6所述的制备方法,其特征在于,所述特定晶向为c向、r向、a向或n向。
  9. 如权利要求6所述的制备方法,其特征在于,所述烧结助剂为氧化镁、氧化钇或者六水合硝酸镁。
  10. 如权利要求6所述的制备方法,其特征在于,所述烧结温度为1700℃-1800℃,烧结时间为10h-60h。
  11. 如权利要求6所述的制备方法,其特征在于,在S2中,所述粉体包覆在蓝宝石籽晶圆片周围。
PCT/CN2019/107993 2018-10-18 2019-09-26 荧光陶瓷及其制备方法 WO2020078186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811215453.0 2018-10-18
CN201811215453.0A CN111072374B (zh) 2018-10-18 2018-10-18 荧光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2020078186A1 true WO2020078186A1 (zh) 2020-04-23

Family

ID=70283538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107993 WO2020078186A1 (zh) 2018-10-18 2019-09-26 荧光陶瓷及其制备方法

Country Status (2)

Country Link
CN (1) CN111072374B (zh)
WO (1) WO2020078186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300785A (zh) * 2020-10-28 2021-02-02 陕西彩虹新材料有限公司 一种荧光浆料的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552038B (zh) * 2020-11-13 2021-12-14 浙江大学 一种绿色荧光复合陶瓷及其制备方法和应用
CN114195656B (zh) * 2021-11-29 2023-05-23 华南理工大学 一种大面积高透金属卤化物闪烁陶瓷及其制备方法
CN114394822B (zh) * 2022-01-30 2023-03-24 中国科学院宁波材料技术与工程研究所 一种面心结构复合陶瓷、其制备方法与激光白光光源装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468915A (zh) * 2007-12-26 2009-07-01 中国科学院上海硅酸盐研究所 一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法
JP2013056999A (ja) * 2011-09-08 2013-03-28 Covalent Materials Corp セラミックス複合体
CN106673625A (zh) * 2017-01-03 2017-05-17 中国科学院上海光学精密机械研究所 晶粒定向排列透明多晶氧化铝陶瓷的制备方法
CN107285745A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107474839A (zh) * 2016-06-07 2017-12-15 深圳市光峰光电技术有限公司 一种发光陶瓷
CN108105604A (zh) * 2016-11-25 2018-06-01 深圳市光峰光电技术有限公司 发光陶瓷结构及其制备方法、相关发光装置和投影装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503399B (zh) * 2011-10-25 2014-01-29 上海亚明灯泡厂有限公司 一种具有择优取向的多晶钇铝石榴石透明陶瓷的制备方法
CN104291796A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 一种led用透明荧光陶瓷的制备方法
JP2016204563A (ja) * 2015-04-24 2016-12-08 太平洋セメント株式会社 蛍光部材、その製造方法および発光装置
CN107298582B (zh) * 2017-06-30 2020-08-18 深圳市点睛创视技术有限公司 一种陶瓷材料及其制备方法和荧光陶瓷器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468915A (zh) * 2007-12-26 2009-07-01 中国科学院上海硅酸盐研究所 一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法
JP2013056999A (ja) * 2011-09-08 2013-03-28 Covalent Materials Corp セラミックス複合体
CN107285745A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107474839A (zh) * 2016-06-07 2017-12-15 深圳市光峰光电技术有限公司 一种发光陶瓷
CN108105604A (zh) * 2016-11-25 2018-06-01 深圳市光峰光电技术有限公司 发光陶瓷结构及其制备方法、相关发光装置和投影装置
CN106673625A (zh) * 2017-01-03 2017-05-17 中国科学院上海光学精密机械研究所 晶粒定向排列透明多晶氧化铝陶瓷的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300785A (zh) * 2020-10-28 2021-02-02 陕西彩虹新材料有限公司 一种荧光浆料的制备方法
CN112300785B (zh) * 2020-10-28 2024-02-13 陕西彩虹新材料有限公司 一种荧光浆料的制备方法

Also Published As

Publication number Publication date
CN111072374A (zh) 2020-04-28
CN111072374B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2020078186A1 (zh) 荧光陶瓷及其制备方法
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
EP1760794B1 (en) White light emitting diode device
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN107056070B (zh) 一种透明Ce:YAG玻璃陶瓷及其制备方法
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
JP7450701B2 (ja) 蛍光セラミックス及びその製造方法、光源装置
CN109467453A (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN106221695B (zh) 氮化铝基荧光粉的制备方法
CN109678475A (zh) 一种激光照明用高导热Al2O3/YAG:Ce复相荧光陶瓷及其制备方法
WO2020228066A1 (zh) 一种绿色荧光透明陶瓷的制备方法和应用
CN102173773A (zh) 用于高亮度白光发光二极管的透明陶瓷及其制备方法
CN108018040A (zh) 一种荧光陶瓷材料、其制备方法以及一种低色温白光led
CN102815941A (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN112047735B (zh) 一种复相荧光陶瓷材料及其制备方法
WO2015127742A1 (zh) 一种基于Ce:YAG晶片的复合结构及制作方法
CN111116207A (zh) 一种具有长波段发射、高显指的氧氮化物荧光陶瓷材料及其制备方法
CN110527508A (zh) 一种白光led用氮化物红色荧光粉及其制备方法
WO2023005948A1 (zh) 一种双层稀土离子掺杂钇铝石榴石陶瓷及其制备方法
WO2022100647A1 (zh) 一种绿色荧光陶瓷材料及其制备方法和应用
CN114804850A (zh) 高光学性能的荧光透明陶瓷的制备方法
CN114044668A (zh) 掺铈钇铝石榴石透明陶瓷原料及制备方法
CN111285675A (zh) 激光照明用浓度渐变荧光陶瓷及其制备方法
WO2014166083A1 (zh) 包含新型固态透明荧光材料的白光led及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874251

Country of ref document: EP

Kind code of ref document: A1