WO2020078103A1 - 半导体器件剥离方法 - Google Patents

半导体器件剥离方法 Download PDF

Info

Publication number
WO2020078103A1
WO2020078103A1 PCT/CN2019/102022 CN2019102022W WO2020078103A1 WO 2020078103 A1 WO2020078103 A1 WO 2020078103A1 CN 2019102022 W CN2019102022 W CN 2019102022W WO 2020078103 A1 WO2020078103 A1 WO 2020078103A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor device
semiconductor devices
connection layer
layer
Prior art date
Application number
PCT/CN2019/102022
Other languages
English (en)
French (fr)
Inventor
郭恩卿
邢汝博
黄秀颀
李旭娜
张宇
李晓伟
韦冬
郭凯
朱正勇
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to KR1020217014888A priority Critical patent/KR102517207B1/ko
Publication of WO2020078103A1 publication Critical patent/WO2020078103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present application relates to the field of semiconductor manufacturing, and in particular, to a semiconductor device stripping method.
  • Micro LED (micro light emitting diode) display technology has become a research hotspot, but the biggest difficulty facing Micro LED display is how to achieve a large amount of transfer, that is, the huge number of micron-scale LEDs (light emitting diodes) on sapphire )
  • the device is transferred to the display drive backplane. Therefore, the separation of sapphire substrate is one of the key processes for making Micro LEDs on the micron scale.
  • laser peeling, chemical peeling, and mechanical polishing are all means of peeling sapphire substrates.
  • laser peeling is relatively widely used.
  • the technique of using laser to peel the sapphire substrate has a relatively long time-consuming and high cost of laser peeling system.
  • the embodiments of the present application provide a semiconductor device peeling method, which can efficiently peel the semiconductor device from a large-area substrate.
  • An aspect of the present application provides a semiconductor device peeling method, including: providing a connection layer on a first surface of a plurality of semiconductor devices, wherein each of the plurality of semiconductor devices has a second surface opposite to the first surface, a semiconductor The device is fixed on the substrate through the second surface; the etching medium is passed through the gap between adjacent semiconductor devices in the plurality of semiconductor devices to reach the periphery of the second surface to etch the second surface so that the plurality of semiconductor devices and the substrate Bottom stripped.
  • connection layer has a through hole
  • the method further includes: passing an etching medium into the gap between the plurality of semiconductor devices through the through hole.
  • connection layer includes a bridge electrode layer
  • the bridge electrode layer includes a plurality of connection portions corresponding to the plurality of semiconductor devices and a bridge portion between adjacent connection portions of the plurality of connection portions.
  • the semiconductor device is square, and each through hole is surrounded by four connection parts and four bridge parts.
  • the corrosion medium includes an anisotropic corrosion medium.
  • the anisotropic corrosion medium includes: potassium hydroxide, sodium hydroxide, or phosphoric acid.
  • the method further includes: applying ultrasonic vibration to the second surface during the process of etching the second surface.
  • the method further includes: applying ultrasonic vibration to the connection layer during the etching of the second surface.
  • a plurality of semiconductor devices and the connection layer are respectively connected by a plurality of electrodes.
  • the semiconductor device includes a gallium nitride semiconductor device, and the substrate includes a sapphire substrate.
  • the method further includes: before the semiconductor device is detached from the substrate, fixing the connection layer on the support substrate, wherein the support substrate includes a temporary support substrate, a passive array display drive backplane, or an active array Display drive backplane.
  • the material of the connection layer includes a low melting point metal.
  • connection layer has a double-layer structure.
  • the double-layer structure includes a metal thin film layer and a polymer insulating material layer, and the metal thin film layer is in contact with the semiconductor device.
  • the semiconductor device is fixed to the substrate through the second surface thereof, and the corrosion medium passes through the plurality of semiconductor devices adjacent
  • the gap between the semiconductor devices reaches around the second surface to etch the second surface to peel off a plurality of semiconductor devices from the substrate, so that the semiconductor device can be separated from the substrate without damaging the substrate, and the substrate can be realized It is used repeatedly, and compared with the technology of laser peeling sapphire substrate, it takes less time, higher efficiency, simple process, and reduces the manufacturing cost of semiconductor devices.
  • FIG. 1 is a flowchart of a semiconductor device peeling method according to an exemplary embodiment of the present application.
  • Fig. 2 is a plan view of a connection layer according to an exemplary embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a semiconductor device to be stripped according to an exemplary embodiment of the present application.
  • Fig. 4 is a flow chart of a method for peeling off a semiconductor device according to another exemplary embodiment of the present application.
  • FIG. 1 is a flowchart of a semiconductor device peeling method according to an exemplary embodiment of the present application. As shown in Figure 1, the method includes:
  • connection layer is provided on the first surfaces of the plurality of semiconductor devices, wherein each of the plurality of semiconductor devices has a second surface opposite to the first surface, and the semiconductor device is fixed to the substrate through the second surface.
  • connection layer may be a hard metal, or a relatively soft polymer material, or a mixture of multiple materials.
  • the connecting layer is a solder, and in another embodiment of the present application, the connecting layer is a glass.
  • the connection layer may be provided on the semiconductor device by etching, or may be provided on the semiconductor device by plating.
  • connection layer does not limit the position of the connection layer, as long as the connection layer can not block the connection surface (ie, the second surface) between the semiconductor device and the substrate.
  • the connection layer is located on the top of the semiconductor device, that is, parallel to the plane of the substrate and farthest from the substrate.
  • the thickness of the semiconductor device is 5 ⁇ m
  • the thickness of the connection layer is 2 ⁇ m.
  • the semiconductor device is fixed on the substrate through the second surface.
  • the semiconductor material is prepared on the substrate by epitaxial growth, and then is etched and processed to make a semiconductor device, wherein the etching process will etch away the unretained semiconductor material from the substrate as needed, after etching
  • the contact surface between the remaining semiconductor material and the substrate is the connection surface between the semiconductor device and the substrate, and the corrosion process will cause a gap between each connection surface.
  • the connection surface has Different shapes and areas.
  • the etching medium reach the periphery of the second surface through the gaps between adjacent semiconductor devices in the plurality of semiconductor devices, so as to etch the second surface and peel off the plurality of semiconductor devices from the substrate.
  • the etching medium may be a liquid or a gas capable of etching semiconductor materials.
  • the etching medium is an anisotropic alkaline liquid, which can selectively etch the connection surface of the semiconductor device and the substrate, that is, the direction of etching the semiconductor material is selective, so that For selective etching of the part between the device and the substrate, the amount of the etching medium can be determined according to actual needs, and the connection layer has holes, and the etching liquid flows into the gap between the semiconductor devices through the holes, and then reaches Around the connection surface between the semiconductor device and the substrate, the semiconductor material at the connection surface is etched.
  • the height of the semiconductor device is 5 ⁇ m, and the thickness of the connection layer is 2 ⁇ m.
  • the corrosive medium is an acid gas capable of corroding semiconductor materials. The gas enters the gap between the substrate and the connection layer through a direction parallel to the plane of the substrate, and then reaches the periphery of the connection surface between the semiconductor device and the substrate. The semiconductor at the connection surface is corroded.
  • the semiconductor material at the connection surface is completely decomposed, and then the semiconductor device is peeled off from the substrate.
  • the semiconductor material at the connection surface is partially etched, and then the semiconductor device is peeled from the substrate via external force. Process adjustments.
  • the semiconductor device is fixed on the substrate through the second surface thereof, so that the corrosion medium passes through the adjacent semiconductor devices of the plurality of semiconductor devices
  • the gap between them reaches the periphery of the second surface to etch the second surface to peel off a plurality of semiconductor devices from the substrate, so that the semiconductor device can be separated from the substrate without damaging the substrate, and the substrate can be repeated It is used, and compared with the technology of laser peeling sapphire substrate, it takes less time, higher efficiency, simple process, and reduces the manufacturing cost of semiconductor devices.
  • the semiconductor device includes a gallium nitride semiconductor device, and the substrate includes a sapphire substrate.
  • connection layer is used to shield the first surface of the semiconductor device, so that the corrosion medium reaches the periphery of the second surface from the gap between adjacent semiconductor devices, so that the sapphire substrate can be
  • the fabricated gallium nitride semiconductor device is stripped, and the corrosive medium is prevented from splashing on the first surface and damaging the semiconductor device.
  • the stripping method has a simple process and reduces the manufacturing cost of the semiconductor device.
  • connection layer has a through hole
  • the method further includes: passing an etching medium into the gap between the plurality of semiconductor devices through the through hole.
  • the through hole is provided at a position corresponding to the gap between the semiconductor devices, and the shape and area of the through hole can be set according to different processes. For example, in the embodiment of the present application, etching by photolithography In the method, a through hole is formed on the connection layer that matches the shape of the gap between the semiconductor devices. In another embodiment of the present application, a circular through hole is formed in the connection layer by laser, which is not limited in the embodiment of the present application.
  • the etching medium can quickly reach around the connection surface between the semiconductor device and the substrate through the through hole, shorten the time of the etching process, and improve the manufacturing efficiency of the semiconductor device.
  • connection layer includes a bridge electrode layer
  • the bridge electrode layer includes a plurality of connection portions corresponding to the plurality of semiconductor devices and a bridge portion between adjacent connection portions of the plurality of connection portions.
  • the bridge electrode layer has a conductive function, so that the semiconductor devices connected via the bridge electrode layer can conduct current.
  • the connection layer is composed of a kind of solder, and the main component of the solder is a low melting point metal, so that the connection layer has a conductive function.
  • the connection layer has a double-layer structure, where one layer is a metal thin film and the other layer is a polymer insulating material, wherein the metal thin film layer is in contact with the semiconductor device so that current can be transmitted through the connection layer Onto the semiconductor device.
  • connection layer has a conductive function
  • the semiconductor device is square, and each through hole is surrounded by four connection parts and four bridge parts.
  • FIG. 2 is a plan view of a connection layer according to an exemplary embodiment of the present application.
  • the connection layer 20 includes a bridge portion 210, a connection portion 230, and a through hole 220.
  • the connecting portion 230 is square.
  • the bridge portion 210 spans between the two semiconductor devices 30, connects the two semiconductor devices together so that current can pass, and is surrounded by the four bridge portions 210 and the four connection portions 230 to form a through hole 220.
  • the width of the bridge deck in the bridge-like structure may be determined according to the hardness of the material of the connection layer 20, which is not limited in the embodiments of the present application.
  • the connection part 230 can cover the semiconductor device 30 so that current can flow into or out of the semiconductor device 30 through the connection part 230.
  • connection layer 20 can generate holes while connecting the semiconductor device 30, which simplifies the process flow and improves production efficiency.
  • the corrosion medium includes an anisotropic corrosion medium.
  • the anisotropic etching medium can selectively etch locations with many defects in the semiconductor material, and can also perform selective etching according to the crystal orientation of the semiconductor material. Since the connection surface between the semiconductor device and the substrate is the epitaxial growth surface of the semiconductor material, many defects will be generated during the growth process, and the semiconductor material near the connection surface is generated in the early stage of epitaxial growth, and there are many crystal defects , And the connection surface is a nitrogen polar surface, so the corrosion reaction is easy to start from here. Semiconductor materials far from the connection surface are not easily corroded by anisotropic corrosive media.
  • an anisotropic corrosion medium to perform corrosion can accurately etch the semiconductor materials near the connection surface, and improve the yield and efficiency of manufacturing semiconductor devices.
  • the anisotropic corrosion medium includes: potassium hydroxide, sodium hydroxide or phosphoric acid.
  • Potassium hydroxide, sodium hydroxide or phosphoric acid are common chemical reagents.
  • the use of the above anisotropic corrosion media can achieve excellent selective corrosion while reducing production costs and production difficulties.
  • the method further includes: applying ultrasonic vibration to the second surface 60 during the etching process of the second surface 60.
  • ultrasonic waves are applied to the substrate 10 to cause vibration between the semiconductor device 30 and the substrate 10 to assist the semiconductor device 30 to detach from the substrate 10.
  • ultrasonic waves are applied to the connection layer 20, and are transmitted to the semiconductor device 30 through the connection layer 20, so that vibration occurs between the semiconductor device 30 and the substrate 10, and the semiconductor device is separated from the substrate.
  • the example does not limit the application position of ultrasonic waves.
  • ultrasonic waves are applied after the corrosion process is completely completed.
  • simultaneous application of ultrasonic waves during the corrosion process can achieve efficient and rapid separation and achieve a better separation effect.
  • the substrate and the semiconductor device are vibrated in time, thereby assisting the semiconductor device to be separated from the substrate faster, thereby improving production efficiency.
  • a plurality of semiconductor devices and the connection layer are respectively connected by a plurality of electrodes.
  • the electrode 40 is an input or output terminal of current in the semiconductor device 30.
  • the electrode 40 is an important part of a semiconductor device.
  • the electrode 40 may be disposed between the semiconductor device 30 and the connection layer 20 by photolithography.
  • an electrode layer is first prepared on the semiconductor layer, and then the electrode layer is processed into a photolithography method. A predetermined shape, and finally a connection layer is welded above the electrode layer.
  • the electrode may also be provided between the semiconductor device and the connection layer by soldering, which is not limited in the embodiments of the present application.
  • the method further includes: before the semiconductor device is detached from the substrate, fixing the connection layer on the support substrate, wherein the support substrate includes a temporary support substrate, a passive array display drive backplane, or an active array Display drive backplane.
  • the supporting substrate is a substrate for transferring or fixing the connection layer.
  • the support substrate may be a temporary support substrate used only for transferring semiconductor devices.
  • the support substrate is a metal plate, and the connection layer is composed of a solder.
  • the support substrate Solder to the connection layer, and transfer the semiconductor device to the next process through the support substrate for processing.
  • the supporting substrate may also be a passive array display drive backplane or an active array display drive backplane with certain functions, wherein the passive array display drive backplane or active array display drive backplane has circuits and
  • the electronic device is not limited in the embodiments of the present application.
  • connection layer By fixing the connection layer on the supporting substrate, the semiconductor device can be easily transferred.
  • Fig. 4 is a flow chart of a method for peeling off a semiconductor device according to another exemplary embodiment of the present application. As shown in Figure 4, the method includes:
  • An electrode layer is provided on the semiconductor device, and the electrode layer is processed into a desired shape by photolithography.
  • the semiconductor device includes a semiconductor device 30 composed of gallium nitride, wherein the gallium nitride is epitaxially grown from a sapphire substrate (substrate 10).
  • a semiconductor device starts from a sapphire substrate and is composed of microcrystalline gallium nitride, n-type gallium nitride, indium gallium nitride / gallium nitride multiple quantum wells, and p-type gallium nitride multilayer materials.
  • a plurality of semiconductor devices form an array, and the array period is between 2 microns and 40 microns, and the isolation trench 50 is formed by etching, and the width of the isolation trench 50 is smaller than the array period, and is between 0.5 microns and 30 microns.
  • Each semiconductor device is isolated, and the isolation groove 50 is as deep as the sapphire interface.
  • the electrode in the electrode layer 40 is a p-electrode, which forms an ohmic contact with a p-type gallium nitride semiconductor, and the material of the p-electrode includes ITO (conductive glass), Ni (nickel), and Ag (silver) , Au (gold), Pd (palladium), Pt (platinum), Ti (titanium), W (tungsten) and Cr (chromium) one or more.
  • the electrode layer is provided above the semiconductor device by sputtering or evaporation, and then the electrode layer is processed into a shape suitable for the semiconductor device by photolithography.
  • connection layer is soldered on the electrode layer, and all semiconductor devices are connected to the connection layer.
  • the connection layer is composed of a kind of solder, and each semiconductor device is connected to each other through a bridge-like structure in the connection layer.
  • connection layer 20 spans the isolation trench 50 between the semiconductor devices 30 to connect the p-electrodes of all semiconductor devices.
  • the two adjacent p-electrodes are connected to each other by a bridge-like structure in the connection layer 20.
  • the bridge-like structure spans above the isolation groove.
  • the four bridge-like structures enclose a cross-shaped hole, and the liquid can be injected and isolated through the hole In the slot.
  • the material of the connection layer includes Ni (nickel), Ag (silver), Au (gold), Pt (platinum), Ti (titanium), Pd (palladium), W (tungsten), Cr (chromium), Sn (tin) and At least one of In (indium).
  • an anisotropic etching liquid is injected into the isolation trench 50 from the hole to selectively etch the connection surface between the gallium nitride and the sapphire substrate. Because gallium nitride is epitaxially grown on a sapphire substrate, the gallium nitride crystal located near the sapphire substrate has many defects, so it is more sensitive to anisotropic etching liquid and can be selectively etched by the anisotropic etching liquid At the same time, the gallium nitride crystal away from the sapphire substrate portion will not be corroded.
  • the anisotropic etching liquid includes an alkaline liquid mainly composed of sodium hydroxide and potassium hydroxide solutions.
  • the etching liquid is washed away, and then the connection layer is welded to the temporary supporting substrate, wherein the temporary supporting substrate is a metal plate.
  • the temporary substrate is used to transfer the peeled semiconductor device 30.
  • the welding of the temporary substrate can be performed after the corrosion is completed. By heating the temporary substrate, the solder in the connection layer is melted, and then the temporary substrate and the connection layer are welded together.
  • the semiconductor device is moved to the next process by moving the support substrate.
  • the sapphire substrate is fixed on the worktable.
  • a force is applied to the temporary support substrate to separate it from the sapphire substrate.
  • the temporary support substrate is displaced by this force, it can be judged that the semiconductor device and the sapphire substrate have been completely separated.
  • the temporary support is moved by The substrate moves the removed semiconductor device to the next process.
  • connection layer wherein at least two of the plurality of semiconductor devices are fixed on the connection layer, wherein each of the plurality of semiconductor devices is fixed on the substrate through the connection surface ;
  • Corrosion medium is used to corrode the connection surface, where the corrosion medium reaches the periphery of the connection surface through the gap between multiple semiconductor devices, so that the semiconductor device can be separated from the substrate without damaging the substrate, and the process is simple and reduces Manufacturing cost of semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一种半导体器件剥离方法。该方法包括:在多个半导体器件的第一表面设置连接层,其中,多个半导体器件中的每一个具有与第一表面相对的第二表面,半导体器件通过第二表面固定在衬底上(110);使腐蚀介质通过多个半导体器件中相邻半导体器件之间的空隙到达第二表面的周围,以对第二表面进行腐蚀而使得多个半导体器件与衬底剥离(120),从而不必破坏衬底即可将半导体器件与衬底分离,并且与激光剥离蓝宝石衬底的技术相比,耗时较短,效率较高,流程简单,降低了半导体器件的制作成本。

Description

半导体器件剥离方法 技术领域
本申请涉及半导体制造领域,尤其涉及一种半导体器件剥离方法。
发明背景
近年来Micro LED(微发光二极管)显示技术已成为研究热点,但目前Micro LED显示面临的最大难点是如何实现巨量转移,也就是将蓝宝石衬底上数量巨大的微米级尺度的LED(发光二极管)器件转移到显示驱动背板之上。因此分离蓝宝石衬底是制作微米级尺度的Micro LED关键的工艺之一,其中激光剥离、化学剥离、机械磨抛,都是剥离蓝宝石衬底的手段,其中激光剥离的应用相对较为广泛,但是,采用激光剥离蓝宝石衬底的技术有耗时相对较长,激光剥离系统成本高的问题。
因此亟待一种能够高效地将LED从大面积蓝宝石衬底上剥离的方法。
发明内容
有鉴于此,本申请实施例提供了一种半导体器件剥离方法,能够高效地将半导体器件从大面积衬底上剥离。
本申请的一个方面提供一种半导体器件剥离方法,包括:在多个半导体器件的第一表面设置连接层,其中,多个半导体器件中的每一个具有与第一表面相对的第二表面,半导体器件通过第二表面固定在衬底上;使腐蚀介质通过多个半导体器件中相邻半导体器件之间的空隙到达第二表面的周围,以对第二表面进行腐蚀而使得多个半导体器件与衬底剥离。
在本申请中,连接层具有通孔,方法还包括:使腐蚀介质通过通孔进入多个半导体器件之间的空隙。
在本申请的一个实施例中,连接层包括桥连电极层,桥连电极层包括与多个半导体器件对应的多个连接部分以及多个连接部分中相邻连接部分之间的桥接部分。
在本申请的一个实施例中,半导体器件为正方形,每个通孔由四个连接部分和四个桥接部分围成。
在本申请的一个实施例中,腐蚀介质包括各向异性腐蚀介质。
在本申请的一个实施例中,各向异性腐蚀介质包括:氢氧化钾、氢氧化钠或磷酸。
在本申请的一个实施例中,还包括:在对第二表面进行腐蚀的过程中,对第二表面施加超声波震动。
在本申请的一个实施例中,还包括:在对第二表面进行腐蚀的过程中,对连接层施加超声波震动。
在本申请的一个实施例中,多个半导体器件与连接层分别通过多个电极连接。
在本申请的一个实施例中,半导体器件包括氮化镓半导体器件,衬底包括蓝宝石衬底。
在本申请的一个实施例中,还包括:在半导体器件与衬底剥离前,将连接层固定在支撑基板上,其中,支撑基板包括临时支撑基板、被动阵列式显示屏驱动背板或主动阵列式显示屏驱动背板。
在本申请的一个实施例中,连接层的材料包括低熔点金属。
在本申请的一个实施例中,连接层为双层结构,双层结构包括金属薄膜层和高分子绝缘材料层,金属薄膜层与半导体器件接触。
根据本申请实施例提供的技术方案,通过在多个半导体器件的第一表面设置连接层,将半导体器件通过其第二表面固定在衬底上,并使腐蚀介质通过多个半导体器件中相邻半导体器件之间的空隙到达第二表面的周围,以对第二表面进行腐蚀而使得多个半导体器件与衬底剥离,从而不必破坏衬底即可将半导体器件与衬底分离,可以实现衬底的重复使用,并且与激光剥离蓝宝石衬底的技术相比,耗时较短,效率较高,流程简单,降低了半导体器件的制作成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据本申请一示例性实施例示出的一种半导体器件剥离方法流程图。
图2是根据本申请一示例性实施例示出的一种连接层的平面图。
图3是根据本申请一示例性实施例示出的一种待剥离的半导体器件的结构示意图。
图4是根据本申请另一示例性实施例示出的一种半导体器件剥离方法流程图。
实施本发明的方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是根据本申请一示例性实施例示出的一种半导体器件剥离方法流程图。如图1所示,该方法包括:
110:在多个半导体器件的第一表面设置连接层,其中,多个半导体器件中的每一个具有与第一表面相对的第二表面,半导体器件通过第二表面固定在衬底上。
本申请实施例中,多个半导体器件中的至少两个半导体器件通过连接层固定并连接在一起,通过设置连接层,能够将多个半导体器件之间的相对位置固定下来,防止剥离过程中半导体器件的位置发生变化。连接层可以是硬质金属,也可以是较软的高分子材料,还可以是多种材料混合。例如,本申请实施例中,连接层为一种焊料,本申请的另一个实施例中,连接层为一种玻璃。连接层可以通过刻蚀的方法设置在半导体器件上,也可以通过镀膜的方法设置在半导体器件上。应当理解的是,本申请实施例对于连接层的位置不做限定,只要连接层能够不遮挡半导体器件与衬底之间的连接面(即第二表面)即可。例如,本申请实施例中,连接层位于半导体器件的顶部,即与衬底平面平行,且距离衬底最远的平面上。本申请另一个实施例中,半导体器件厚度为5μm,连接层厚度为2μm。
半导体器件通过第二表面固定在衬底上。半导体材料通过外延生长的方式制备在衬底上,再经过刻蚀和加工后制成半导体器件,其中,刻蚀过程会根据需要将不保留的半导体材料从衬底上腐蚀掉,经过刻蚀后残留的半导体材料与衬底之间的接触面即为半导体器件与衬底之间的连接面,并且,腐蚀过程会使得每个连接面之间产生空隙,根据半导体器件的不同用途,连接面具有不同的形状和面积。
120:使腐蚀介质通过多个半导体器件中相邻半导体器件之间的空隙到达第二表面的周围,以对第二表面进行腐蚀而使得多个半导体器件与衬底剥离。
本申请实施例中,腐蚀介质可以是能够腐蚀半导体材料的液体或气体。例如,本申请实施例中,腐蚀介质是一种各向异性的碱性液体,能够对半导体器件与衬底的连接面进行选择性的腐蚀,即对于半导体材料的腐蚀方向具有选择性,从而能够针对器件与衬底之间的部分进行有选择性的腐蚀,腐蚀介质的用量可根据实际需要确定,并且,连接层上具有孔洞,腐蚀液通过孔洞流进半导 体器件之间的空隙中,进而到达半导体器件与衬底之间的连接面的四周,对连接面处的半导体材料进行腐蚀。本申请的另一个实施例中,半导体器件的高度为5μm,连接层厚度为2μm。腐蚀介质为一种能够腐蚀半导体材料的酸性气体,该气体经由平行于衬底平面的方向进入衬底与连接层之间的间隙,进而到达半导体器件与衬底之间的连接面的四周,对连接面处的半导体进行腐蚀。
本申请实施例中,经由长时间的腐蚀,使得连接面处的半导体材料全部分解,进而将半导体器件从衬底剥离。本申请另一个实施例中,通过控制腐蚀过程的时长,将连接面处的半导体材料部分腐蚀,再经由外力将半导体器件从衬底剥离,腐蚀过程的具体时长和腐蚀程度可以根据半导体器件的制作过程进行调整。
根据本申请实施例提供的技术方案,通过在多个半导体器件的第一表面设置连接层,半导体器件通过其第二表面固定在衬底上,使腐蚀介质通过多个半导体器件中相邻半导体器件之间的空隙到达第二表面的周围,以对第二表面进行腐蚀而使得多个半导体器件与衬底剥离,从而不必破坏衬底即可将半导体器件与衬底分离,可以实现衬底的重复使用,并且与激光剥离蓝宝石衬底的技术相比,耗时较短,效率较高,流程简单,降低了半导体器件的制作成本。
根据上述实施例,所述半导体器件包括氮化镓半导体器件,所述衬底包括蓝宝石衬底。
通过本申请实施例所提供的方法,通过设置连接层遮挡半导体器件的第一表面,使得腐蚀介质从相邻半导体器件之间的空隙中到达第二表面的周围,从而能够将在蓝宝石衬底上制作的氮化镓半导体器件剥离,且避免腐蚀介质溅到第一表面而损伤半导体器件。该剥离方法流程简单,降低了半导体器件的制作成本。
在本申请的一个实施例中,连接层具有通孔,方法还包括:使腐蚀介质通过通孔进入多个半导体器件之间的空隙。
本申请实施例中,通孔设置在与半导体器件之间的间隙相对应的位置上,通孔的形状和面积可以根据不同的工艺进行设定,例如,本申请实施例中,通过光刻腐蚀的方法,在连接层上制造出与半导体器件之间的间隙形状相适应的通孔。本申请的另一个实施例中,通过激光在连接层上制造出圆形的通孔,本申请实施例对此不做限定。
通过在连接层上设置通孔,使得腐蚀介质能够通过通孔快速到达半导体器件与衬底之间的连接面周围,缩短腐蚀工序的时间,提升半导体器件的制作效率。
在本申请的一个实施例中,连接层包括桥连电极层,桥连电极层包括与多 个半导体器件对应的多个连接部分以及多个连接部分中相邻连接部分之间的桥接部分。
本申请实施例中,桥连电极层具有导电功能,使得经由桥连电极层连接的半导体器件之间能够传导电流。例如,本申请实施例中,连接层由一种焊料构成,焊料的主要成分为低熔点金属,使得连接层具有导电功能。本申请的另一个实施例中,连接层具有双层结构,其中一层为金属薄膜,另一层为高分子绝缘材料,其中,金属薄膜层与半导体器件相接触,使得电流能够通过连接层传输到半导体器件上。
连接层具有导电功能后,使得半导体器件制造过程中,能够在连接层上规划电路,压缩了制造工序,提升半导体器件的制造效率。
优选地,在本申请的一个实施例中,半导体器件为正方形,每个通孔由四个连接部分和四个桥接部分围成。
图2是根据本申请一示例性实施例示出的一种连接层的平面图,结合图2和图3,连接层20包括桥接部分210,连接部分230,以及通孔220。
本申请实施例中,连接部分230为正方形。桥接部分210横跨在两个半导体器件30之间,将两个半导体器件连接在一起,使得电流能够通过,并且,由四个桥接部分210以及四个连接部分230围成一个通孔220。应当理解的是,桥状结构中桥面的宽度可以根据连接层20材料的硬度而确定,本申请实施例对此不做限定。本申请实施例中,连接部分230能够将半导体器件30覆盖,使得电流能够通过连接部分230流入或流出半导体器件30。
通过设置桥状结构,使得连接层20在将半导体器件30连接的同时,还能生成孔洞,简化了工艺流程,提升了生产效率。
在本申请的一个实施例中,腐蚀介质包括各向异性腐蚀介质。
本申请实施例中,各向异性腐蚀介质能够对半导体材料缺陷较多的位置进行选择性腐蚀,并且,也能够根据半导体材料的晶体取向,进行选择性的腐蚀。由于半导体器件与衬底之间的连接面为半导体材料的外延生长面,在生长过程中,会产生较多的缺陷,并且,连接面附近的半导体材料在外延生长的初期生成,晶体缺陷较多,并且连接面为氮极性面,因此腐蚀反应容易从这里开始。远离连接面的半导体材料不易被各向异性腐蚀介质所腐蚀。
使用各向异性腐蚀介质行腐蚀,能够精准的对连接面附近的半导体材料进行腐蚀,提升制造半导体器件的良率和效率。
根据上述实施例,优选地,各向异性腐蚀介质包括:氢氧化钾、氢氧化钠或磷酸。
氢氧化钾、氢氧化钠或磷酸为常见化学试剂,使用以上各向异性腐蚀介质 在达到优异选择性腐蚀的效果的同时,能够降低生产成本和生产难度。
在本申请的一个实施例中,还包括:在对第二表面60进行腐蚀的过程中,对第二表面60施加超声波震动。
本申请实施例中,超声波施加在衬底10上,使得半导体器件30与衬底10之间产生振动,辅助半导体器件30脱离衬底10。本申请另一个实施例中,超声波施加在连接层20上,通过连接层20传导至半导体器件30上,使得半导体器件30与衬底10之间产生振动,辅助半导体器件脱离衬底,本申请实施例对于超声波的施加位置不作限定。
本申请实施例中,在腐蚀过程完全结束后施加超声波。优选地,本申请的另一个实施例中,在腐蚀过程中,同时施加超声波,可以实现高效、快速地分离,达到更好的分离效果。
通过施加超声波,使得衬底与半导体器件时间产生振动,进而辅助半导体器件更快的与衬底分离,提升了生产效率。
在本申请的一个实施例中,多个半导体器件与连接层分别通过多个电极连接。
本申请实施例中,参见图3,电极40是半导体器件30中电流的输入或输出端。通常情况下,电极40是一个半导体器件的重要组成部分。电极40可以通过光刻的方式设置在半导体器件30与连接层20之间,例如,本申请实施例中,先在半导体层上制备一层电极层,再通过光刻的方式将电极层加工成预定的形状,最后在电极层的上方焊接连接层。电极也可以通过焊接的方式设置在半导体器件与连接层之间,本申请实施例对此不作限定。
通过在半导体器件与连接层之间设置电极,使得半导体器件的生产工序减少,提升了生产效率。
在本申请的一个实施例中,还包括:在半导体器件与衬底剥离前,将连接层固定在支撑基板上,其中,支撑基板包括临时支撑基板、被动阵列式显示屏驱动背板或主动阵列式显示屏驱动背板。
本申请实施例中,支撑基板是用于转移或固定连接层的基板。支撑基板可以是只用于转移半导体器件的临时支撑基板,例如,本申请实施例中,支撑基板是一块金属板,连接层由一种焊料构成,当半导体器件与衬底分离后,将支撑基板与连接层焊合,并且通过支持基板将半导体器件转移至下一道工序进行处理。支撑基板也可以是具有一定功能的被动阵列式显示屏驱动背板或主动阵列式显示屏驱动背板,其中,被动阵列式显示屏驱动背板或主动阵列式显示屏驱动背板上具有电路和电子器件,本申请实施例对此不做限定。
通过将连接层固定在支撑基板上,使得半导体器件能够方便的进行转移。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
图4是根据本申请另一示例性实施例示出的一种半导体器件剥离方法流程图。如图4所示,该方法包括:
410:在半导体器件上设置电极层,并且,通过光刻的形式将电极层加工成所需的形状。
本申请实施例中,参见图3,半导体器件包括由氮化镓构成的半导体器件30,其中,氮化镓由蓝宝石基底(衬底10)上方外延生长而成。例如,半导体器件自蓝宝石基底起,分别由微晶氮化镓、n型氮化镓、铟氮化镓/氮化镓多量子阱、p型氮化镓多层材料构成。通过刻蚀,多个半导体器件形成阵列,阵列周期在2微米至40微米之间,刻蚀再形成隔离槽50,隔离槽50的宽度小于阵列周期,在0.5微米至30微米之间。每个半导体器件隔离开,隔离槽50深至蓝宝石界面。本申请实施例中,电极层40中的电极为p电极,该p电极与p型氮化镓半导体形成欧姆接触,p电极的材料包括ITO(导电玻璃)、Ni(镍)、Ag(银)、Au(金)、Pd(钯)、Pt(铂)、Ti(钛)、W(钨)和Cr(铬)中的一种或多种。电极层利用溅射或蒸发的方式设置在半导体器件上方,再通过光刻将电极层加工为与半导体器件相适应的形状。
420:在电极层上焊接连接层,将全部的半导体器件连接在连接层上,连接层由一种焊料构成,每一个半导体器件通过连接层中的桥状结构相互连接。
本申请实施例中,参见图3,连接层20横跨过半导体器件30之间的隔离槽50,将所有半导体器件的p电极联通。相邻的两个p电极之间通过连接层20中的桥状结构相互连接,桥状结构横跨在隔离槽的上方,4个桥状结构围成一个十字状孔洞,液体能够通过孔洞注入隔离槽中。连接层的材料包括Ni(镍)、Ag(银)、Au(金)、Pt(铂)、Ti(钛)、Pd(钯)、W(钨)、Cr(铬)、Sn(锡)和In(铟)中的至少一种。
430:将各向异性腐蚀液通过桥状结构所围成的孔洞,注入半导体器件之间的缝隙中,对半导体器件与衬底之间的连接面进行选择性腐蚀。
本申请实施例中,将各向异性腐蚀液从孔洞中注入隔离槽50内,对氮化镓与蓝宝石衬底之间的连接面进行选择性的腐蚀。由于氮化镓是在蓝宝石衬底上外延生长而成,位于蓝宝石衬底附近的氮化镓晶体缺陷较多,因此对各向异性腐蚀液较为敏感,可以被各向异性腐蚀液选择性的腐蚀掉,同时,远离蓝宝石衬底部分的氮化镓晶体不会被腐蚀。本申请实施例中,各向异性腐蚀液包括氢氧化钠和氢氧化钾溶液为主的碱性液体。
440:腐蚀完毕后清洗掉腐蚀液,然后将连接层焊接在临时支撑基板上, 其中,临时支撑基板是一块金属板。
本申请实施例中,临时基板用于转移被剥离的半导体器件30。临时基板的焊接在腐蚀完毕后即可进行,通过加热临时基板,使得连接层中的焊料融化,进而将临时基板与连接层焊合。
450:在支撑基板焊接完成后,在衬底上施加超声波。
460:半导体器件与衬底完全分离后,通过移动支撑基板,将半导体器件移动至下一道工序。
本申请实施例中,蓝宝石衬底固定在工作台上。在临时支撑基板上施加有一个使其与蓝宝石衬底相互分离的力,当临时支撑基板在此力的作用下产生位移即可判断半导体器件与蓝宝石基板已经完全分离,此时,通过移动临时支撑基板,将取下的半导体器件移动至下一道工序。
根据本申请实施例提供的技术方案,通过设置连接层,其中,多个半导体器件中的至少两个固定在连接层上,其中,多个半导体器件中的每一个通过连接面固定在衬底上;使用腐蚀介质对连接面进行腐蚀,其中,腐蚀介质通过多个半导体器件之间的空隙到达连接面的周围,从而不必破坏衬底即可将半导体器件与衬底分离,并且流程简单,降低了半导体器件的制作成本。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种半导体器件剥离方法,包括:
    在多个半导体器件的第一表面设置连接层,其中,多个所述半导体器件中的每一个具有与所述第一表面相对的第二表面,所述半导体器件通过所述第二表面固定在衬底上;
    使腐蚀介质通过多个所述半导体器件中相邻半导体器件之间的空隙到达所述第二表面的周围,以对所述第二表面进行腐蚀而使得多个所述半导体器件与所述衬底剥离。
  2. 根据权利要求1所述的方法,其中,所述连接层具有通孔,所述方法还包括:
    使所述腐蚀介质通过所述通孔进入多个所述半导体器件之间的空隙。
  3. 根据权利要求2所述的方法,其中,所述连接层包括桥连电极层,所述桥连电极层包括与多个所述半导体器件对应的多个连接部分以及多个所述连接部分中相邻所述连接部分之间的桥接部分。
  4. 根据权利要求3所述的方法,其中,所述半导体器件在所述连接层上的投影为正方形,每个所述通孔由四个所述连接部分和四个所述桥接部分围成。
  5. 根据权利要求1所述的方法,其中,所述腐蚀介质包括各向异性腐蚀介质。
  6. 根据权利要求5所述的方法,其中,所述各向异性腐蚀介质包括:氢氧化钾、氢氧化钠或磷酸。
  7. 根据权利要求1所述的方法,还包括:
    在对所述第二表面进行腐蚀的过程中,对所述第二表面施加超声波震动。
  8. 根据权利要求1所述的方法,还包括:
    在对所述第二表面进行腐蚀的过程中,对所述连接层施加超声波震动。
  9. 根据权利要求1所述的方法,其中,多个所述半导体器件与所述连接层分别通过多个电极连接。
  10. 根据权利要求1至9中的任意一项所述的方法,其中,所述半导体器件包括氮化镓半导体器件,所述衬底包括蓝宝石衬底。
  11. 根据权利要求1至9中的任意一项所述的方法,还包括:
    在所述半导体器件与所述衬底剥离前,将所述连接层固定在支撑基板上,其中,所述支撑基板包括临时支撑基板、被动阵列式显示屏驱动背板或主动阵列式显示屏驱动背板。
  12. 根据权利要求1至9中的任意一项所述的方法,其中,所述连接层的 材料包括低熔点金属。
  13. 根据权利要求1至9中的任意一项所述的方法,其中,所述连接层为双层结构,所述双层结构包括金属薄膜层和高分子绝缘材料层,所述金属薄膜层与所述半导体器件接触。
PCT/CN2019/102022 2018-10-19 2019-08-22 半导体器件剥离方法 WO2020078103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217014888A KR102517207B1 (ko) 2018-10-19 2019-08-22 반도체 소자 박리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811221504.0A CN111081827B (zh) 2018-10-19 2018-10-19 一种半导体器件剥离方法
CN201811221504.0 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020078103A1 true WO2020078103A1 (zh) 2020-04-23

Family

ID=70283719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102022 WO2020078103A1 (zh) 2018-10-19 2019-08-22 半导体器件剥离方法

Country Status (3)

Country Link
KR (1) KR102517207B1 (zh)
CN (1) CN111081827B (zh)
WO (1) WO2020078103A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040259331A1 (en) * 2003-06-20 2004-12-23 Mitsuhiko Ogihara Method of manufacturing a semiconductor device
CN101106067A (zh) * 2006-07-11 2008-01-16 上海宇体光电有限公司 半导体器件与硅衬底的剥离方法
CN101529605A (zh) * 2006-10-27 2009-09-09 佳能株式会社 半导体构件、半导体物品制造方法以及使用该制造方法的led阵列
CN102956552A (zh) * 2012-08-21 2013-03-06 王伟明 半导体器件的制备方法
CN105793957A (zh) * 2013-12-12 2016-07-20 株式会社半导体能源研究所 剥离方法及剥离装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631724B2 (ja) * 2001-03-27 2005-03-23 日本電気株式会社 Iii族窒化物半導体基板およびその製造方法
KR101289602B1 (ko) * 2011-04-21 2013-07-24 영남대학교 산학협력단 발광 다이오드
KR101797970B1 (ko) * 2011-05-23 2017-11-15 엘지이노텍 주식회사 반도체 지지부재
KR20140047869A (ko) * 2012-10-15 2014-04-23 서울바이오시스 주식회사 성장 기판 분리 방법 및 발광 다이오드 제조 방법
KR20140047870A (ko) * 2012-10-15 2014-04-23 서울바이오시스 주식회사 성장 기판 분리 방법, 발광 다이오드 제조 방법 및 그것에 의해 제조된 발광 다이오드
CN107369746B (zh) * 2017-08-30 2023-05-23 华南理工大学 一种化学腐蚀剥离衬底的微尺寸谐振腔led芯片及其制备方法
CN107946414B (zh) * 2017-10-29 2019-06-11 广东省半导体产业技术研究院 一种基于干法刻蚀的悬挂式微器件结构转移方法
CN108417523B (zh) * 2018-04-16 2020-08-04 歌尔股份有限公司 Led衬底的剥离方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040259331A1 (en) * 2003-06-20 2004-12-23 Mitsuhiko Ogihara Method of manufacturing a semiconductor device
CN101106067A (zh) * 2006-07-11 2008-01-16 上海宇体光电有限公司 半导体器件与硅衬底的剥离方法
CN101529605A (zh) * 2006-10-27 2009-09-09 佳能株式会社 半导体构件、半导体物品制造方法以及使用该制造方法的led阵列
CN102956552A (zh) * 2012-08-21 2013-03-06 王伟明 半导体器件的制备方法
CN105793957A (zh) * 2013-12-12 2016-07-20 株式会社半导体能源研究所 剥离方法及剥离装置

Also Published As

Publication number Publication date
KR102517207B1 (ko) 2023-04-04
CN111081827A (zh) 2020-04-28
KR20210089672A (ko) 2021-07-16
CN111081827B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
TWI653694B (zh) 微型發光元件陣列製造方法、轉移載板以及微型發光元件陣列
CN112967984B (zh) 微芯片的巨量转移方法及显示背板
JP2010103186A (ja) 半導体発光装置の製造方法
TW200845424A (en) LED assembly having maximum metal support for laser lift-off of growth substrate
JP2005322847A (ja) 半導体発光装置とその製造方法
US20080210954A1 (en) Alternating Current Light Emitting Device
CN110838503A (zh) 微型led芯片制作方法、微型led显示器件制作方法和微型led显示器件
CN102683517B (zh) 薄膜led芯片器件及其制造方法及应用
JP2010238845A (ja) 半導体装置の製造方法、半導体装置、及び、半導体複合装置
CN111883553A (zh) 无需巨量转移操作的Micro LED显示面板制备方法
CN112968109A (zh) 一种驱动背板及其制作方法
JP2021521625A (ja) 複数のマイクロ発光ダイオードをターゲット基板に転写する方法、アレイ基板及びその表示装置
CN113555473B (zh) Micro-LED芯片巨量转移方法与系统、以及显示装置
WO2020078103A1 (zh) 半导体器件剥离方法
WO2023217285A1 (zh) 显示面板的制备方法及显示面板
US8232119B2 (en) Method for manufacturing heat dissipation bulk of semiconductor device
CN113284819A (zh) 一种巨量转移方法
WO2021098094A1 (zh) Micro-led显示器件的制作方法
JP2003162231A (ja) 素子の製造方法、素子の配列方法及び画像表示装置の製造方法
JP2003168825A (ja) 表示装置及び表示装置の製造方法
TWI715108B (zh) 微型發光二極體結構及其製作方法
CN111864037B (zh) 微元件阵列基板、显示面板及其制备方法
TWI793164B (zh) 批量接合微半導體結構與目標基板之方法及目標基板
US20220068792A1 (en) Semiconductor device and the manufacturing method thereof
JP2000101141A (ja) 半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014888

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19874151

Country of ref document: EP

Kind code of ref document: A1