WO2021098094A1 - Micro-led显示器件的制作方法 - Google Patents

Micro-led显示器件的制作方法 Download PDF

Info

Publication number
WO2021098094A1
WO2021098094A1 PCT/CN2020/079577 CN2020079577W WO2021098094A1 WO 2021098094 A1 WO2021098094 A1 WO 2021098094A1 CN 2020079577 W CN2020079577 W CN 2020079577W WO 2021098094 A1 WO2021098094 A1 WO 2021098094A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
micro
base substrate
single crystal
display device
Prior art date
Application number
PCT/CN2020/079577
Other languages
English (en)
French (fr)
Inventor
胡小波
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/757,398 priority Critical patent/US11380660B2/en
Publication of WO2021098094A1 publication Critical patent/WO2021098094A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a manufacturing method of a micro-LED display device.
  • Micro-LED has developed into one of the hotspots of display technology in the future. Compared with current LCD and OLED display devices, Micro-LED has the advantages of fast response, high color gamut, high pixels, and low energy consumption. However, its technical difficulties are many and complex, especially Its key technology: Mass transfer technology.
  • Micro-LED chips need to be transferred to the required positions one by one after the production is completed.
  • the number of LED chips that need to be transferred is large, and the position accuracy requirements after transfer are high, and a lot of resources are required.
  • the development of the mass transfer technology has so far produced many technical branches, such as electrostatic adsorption, laser burning and so on.
  • the traditional method of mass transfer of micro LEDs is to transfer the micro components from the transfer substrate to the receiving substrate through wafer bonding.
  • One of the implementation methods of the transfer method is direct transfer, that is, the micro-element array is directly bonded from the transfer substrate to the receiving substrate, and then the transfer substrate is removed; the other implementation method is "indirect transfer”.
  • This method includes two bonding/peeling steps.
  • the transposing head can pick up part of the micro-element array on the intermediate carrier substrate, then bond the micro-element array to the receiving substrate, and then remove the transposing head.
  • the massive transfer technology of direct transfer or indirect transfer in the prior art has complex processes and high costs.
  • This application relates to a method for manufacturing a micro-LED display device, which is used to solve the need to use massive direct transfer or massive indirect transfer technology in the micro-LED manufacturing process in the prior art, but these two technologies The process is more complicated and costly.
  • This application provides a method for manufacturing a micro-LED display device, which includes the following steps:
  • the LED single crystal film layer in step "S10" is prepared by chemical meteorological deposition of metal organic compounds.
  • the base substrate in step "S10" is a sapphire base substrate, a silicon carbide base substrate or a silicon base substrate.
  • the dielectric layer is made of silicon oxide, silicon nitride or an insulating organic material.
  • the height of the dielectric layer is greater than the sum of the heights of the drive circuit and the contact; the width of the through hole is smaller than the width of the drive circuit, and is larger than the width of the drive circuit. The width of the contact.
  • the molten metal spot is made of metallic tin.
  • step "S60" when the base substrate provided with the LED single crystal film layer is bound to the display backplane provided with the dielectric layer, the A low melting point metal material is used for binding between the LED single crystal film layer and the dielectric layer.
  • the low melting point metal material is tin, indium, lead or bismuth.
  • the bonding between the LED single crystal film layer and the dielectric layer adopts low temperature welding technology.
  • step "S70” a laser laser method is used to peel off the base substrate.
  • the manufacturing method of a micro-LED display device includes the following steps:
  • the LED single crystal film layer in step "S10" is prepared by chemical meteorological deposition of metal organic compounds.
  • the base substrate in step "S10" is a sapphire base substrate, a silicon carbide base substrate or a silicon base substrate.
  • the dielectric layer is made of silicon oxide, silicon nitride or an insulating organic material.
  • the height of the dielectric layer is greater than the sum of the heights of the drive circuit and the contact; the width of the through hole is smaller than the width of the drive circuit, and is larger than the width of the drive circuit. The width of the contact.
  • the molten metal spot is made of metallic tin.
  • step "S60" when the base substrate provided with the LED single crystal film layer is bound to the display backplane provided with the dielectric layer, the A low melting point metal material is used for binding between the LED single crystal film layer and the dielectric layer.
  • the low melting point metal material is tin, indium, lead or bismuth.
  • the bonding between the LED single crystal film layer and the dielectric layer adopts low temperature welding technology.
  • the base substrate is peeled off by a laser laser method.
  • the manufacturing method of the micro-LED display device provided in this application has the beneficial effects that: the manufacturing method of the micro-LED display device provided in this application can be self-aligned for LED transfer and binding, avoiding conventional The massive transfer process, the process is simple, the production cost is reduced, and the product yield and the pixels of the micro-LED display device are greatly improved.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a micro-LED display device provided by an embodiment of the application.
  • FIG. 2 is a first structural schematic diagram of a manufacturing process of a micro-LED display device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a second structure of a manufacturing process of a micro-LED display device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the third structure of the manufacturing process of the micro-LED display device provided by the embodiment of the application.
  • FIG. 5 is a fourth structural schematic diagram of the manufacturing process of the micro-LED display device provided by the embodiment of the application.
  • FIG. 6 is a schematic diagram of a fifth structure of a manufacturing process of a micro-LED display device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a sixth structure of a manufacturing process of a micro-LED display device provided by an embodiment of the application.
  • FIG. 8 is a seventh structural schematic diagram of the manufacturing process of the micro-LED display device provided by the embodiment of the application.
  • FIG. 9 is a schematic diagram of an eighth structure of a manufacturing process of a micro-LED display device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a ninth structure of a manufacturing process of a micro-LED display device provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • a plurality of means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relationship.
  • connection should be understood according to specific circumstances.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the present application provides a method for manufacturing a micro-LED display device. For details, refer to FIG. 1 to FIG. 10.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a micro-LED display device according to an embodiment of the application.
  • the method includes the following steps: S10, providing a base substrate, and depositing an LED single crystal film layer on the base substrate; S20, providing a display backplane, fabricating a driving circuit on the display backplane and placing the A contact is provided on the side of the driving circuit away from the display backplane; S30, covering a dielectric layer on the driving circuit of the display backplane, and facing the contact along the dielectric Layer is provided with through holes; S40, forming the molten metal dots along the through holes above the contacts; S50, connecting the base substrate on which the LED single crystal film layer is deposited and the display backplane Positioning is performed so that the side of the LED single crystal film layer is opposite to the side of the dielectric layer where the metal dots are provided; S60, the side facing away from the LED single crystal film layer and the side of the base substrate respectively.
  • the display backplane applies pressure on the side away from the dielectric layer, so that the LED single crystal film layer and the dielectric layer are completely attached and bound together; S70, the base substrate is removed from the LED The monocrystalline film layer and the display backplane are completely peeled off; S80, the side of the LED monocrystalline film layer facing away from the display backplane is subjected to yellow light and etching processes to form a micro-LED array; S90, filling a protective layer and a transparent electrode layer on the side of the dielectric layer away from the display backplane to form a complete micro-LED display device.
  • the LED single crystal film layer in step “S10” is prepared by chemical meteorological deposition of metal organic compounds at a temperature greater than 1000°C.
  • the base substrate is a sapphire base substrate, a silicon carbide base substrate or a silicon base substrate.
  • the dielectric layer is made of silicon oxide, silicon nitride, or an insulating organic material.
  • the molten metal spot in step “S40” is made of metallic tin.
  • FIGS. 2-10 which are respectively the first to ninth structural schematic diagrams of the manufacturing process of the micro-LED display device provided by the embodiments of the present application. It includes: a base substrate 1 and an LED single crystal film layer 2, the LED single crystal film layer 2 is deposited on the base substrate 1.
  • FIG. 3 includes: a display backplane 3, a driving circuit 4, and a contact 5 arranged on a side of the driving circuit 4 away from the display backplane 3.
  • a dielectric layer 6 is continuously deposited on the side of the display backplane 3 where the driving circuit 4 is arranged.
  • the height of the electrical layer 6 is greater than the sum of the heights of the driving circuit 4 and the contact 5.
  • a through hole 7 is provided directly above the driving circuit 4 and the contact 5. The width of the through hole 7 is smaller than the width of the driving circuit 4 and larger than the width of the contact 5.
  • the base substrate 1 on which the LED single crystal film layer 2 is deposited is aligned with the display backplane 3, so that the LED single crystal film layer 2 is positioned opposite to the
  • the molten metal dot 8 is on the side of the dielectric layer 6.
  • a laser laser method is used to peel off the base substrate 1 from the whole formed by the LED single crystal film layer 2 and the display backplane 3.
  • yellow light and etching processes are performed on the side of the LED single crystal film layer 2 facing away from the display backplane 3 to form a micro-LED array 9.
  • the protective layer 10 and the transparent electrode layer 11 are continued to be filled on the side of the dielectric layer 6 away from the display backplane 3 to form a complete micro-LED display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种micro-LED显示器件的制作方法,通过分别制作显示背板(3)和衬底基板(1),然后将显示背板(3)和衬底基板(1)合成,再去掉衬底基板(1)后,在形成有LED单晶膜层(2)的显示背板(3)上形成micro-LED阵列(9)、保护层(10)和透明电极层(11);该制作方法可以自对准进行LED转移绑定,避免了常规的巨量转移制程,工艺简单,降低了生产成本,提高了产品良率以及micro-LED显示器件的像素。

Description

micro-LED显示器件的制作方法 技术领域
本揭示涉及显示技术领域,尤其涉及一种micro-LED显示器件的制作方法。
背景技术
Micro-LED发展成未来显示技术的热点之一,和目前的LCD、OLED显示器件相比,具有反应快、高色域、高像素、低能耗等优势,但其技术难点多且复杂,特别是其关键技术:巨量转移技术。
Micro-LED芯片在制作完成后需要逐一转移到所需位置,需要转移的LED芯片的数量大缺转移后的位置精度要求高,需要耗费大量的资源。随着现有技术的不断发展,巨量转移技术发展至今已经出了不少技术分支,如静电吸附、镭射激光烧触等。
传统的巨量转移微型LED的方法是通过基板接合(Wafer Bonding)将微型元件自转移基板转移至接收基板。转移方法的其中一种实施方法为直接转移,也就是直接将微型元件阵列自转移基板接合至接收基板,之后再将转移基板移除;另一种实施方法为“间接转移”。此方法包含两次接合/剥离的步骤。在间接转移中,转置头可将位于中间承载基板上的部分微型元件阵列拾起,然后再将微型元件阵列接合至接收基板,接着再把转置头移除。但现有技术中的直接转移或间接转移的巨量转移技术,工艺复杂且成本较高。
因此,现有的micro-LED显示器件的技术中,还存在着micro-LED的制作过程中需要采用巨量直接转移或是巨量间接转移的技术,但这两种技术的工艺都比较复杂且成本高的问题,急需改进。
技术问题
本申请涉及一种micro-LED显示器件的制作方法,用于解决现有技术中存在着micro-LED的制作过程中需要采用巨量直接转移或是巨量间接转移的技术,但这两种技术的工艺都比较复杂且成本高的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种micro-LED显示器件的制作方法,包括以下步骤:
S10,提供一衬底基板,并在所述衬底基板上沉积LED单晶膜层,且环境温度大于1000摄氏度;
S20,提供一显示背板,在所述显示背板上制作驱动线路,并在所述驱动线路背离所述显示背板的一侧设置触点;
S30,在所述显示背板的所述驱动线路上方覆盖一层介电层,并在正对所述触点沿所述介电层设置通孔;
S40,在所述触点上方沿所述通孔处形成熔融金属点;
S50,将沉积有所述LED单晶膜层的所述衬底基板与所述显示背板进行对位,使得所述LED单晶膜层一侧正对于设置有金属点的所述介电层一侧;
S60,分别向所述衬底基板背离所述LED单晶膜层一侧、所述显示背板背离所述介电层一侧施压,使得所述LED单晶膜层与所述介电层完全贴合,绑定在一起;
S70,将所述衬底基板从所述LED单晶膜层与所述显示背板形成的整体上剥离下来;
S80,对所述LED单晶膜层背离所述显示背板的一侧进行黄光和刻蚀制程,形成mirco-LED阵列;
S90,再在所述介电层背离所述显示背板的一侧填充保护层和透明电极层,以形成完整的mirco-LED显示器件。
根据本申请提供的一优选实施例,步骤“S10”中所述LED单晶膜层采用金属有机化合物化学气象沉积的方式制得。
根据本申请提供的一优选实施例,步骤“S10”中所述衬底基板为蓝宝石衬底基板、碳化硅衬底基板或是硅衬底基板。
根据本申请提供的一优选实施例,所述介电层采用氧化硅、氮化硅或是绝缘有机材料。
根据本申请提供的一优选实施例,所述介电层的高度大于所述驱动线路与所述触点的高度之和;所述通孔的的宽度小于所述驱动线路的宽度,大于所述触点的宽度。
根据本申请提供的一优选实施例,所述熔融金属点采用金属锡制成。
根据本申请提供的一优选实施例,步骤“S60”中绑定设置有所述LED单晶膜层的所述衬底基板与设置有所述介电层的所述显示背板时,所述LED单晶膜层和所述介电层之间采用低熔点金属材料进行绑定。
根据本申请提供的一优选实施例,所述低熔点的金属材料为:锡、铟、铅或是铋。
根据本申请提供的一优选实施例,所述LED单晶膜层和所述介电层之间的绑定采用低温焊接技术。
根据本申请提供的一优选实施例,步骤“S70”中采用激光镭射的方法剥离所述衬底基板。
本申请提供的一种micro-LED显示器件的制作方法,包括以下步骤:
S10,提供一衬底基板,并在所述衬底基板上沉积LED单晶膜层;
S20,提供一显示背板,在所述显示背板上制作驱动线路,并在所述驱动线路背离所述显示背板的一侧设置触点;
S30,在所述显示背板的所述驱动线路上方覆盖一层介电层,并在正对所述触点沿所述介电层设置通孔;
S40,在所述触点上方沿所述通孔处形成熔融金属点;
S50,将沉积有所述LED单晶膜层的所述衬底基板与所述显示背板进行对位,使得所述LED单晶膜层一侧正对于设置有金属点的所述介电层一侧;
S60,分别向所述衬底基板背离所述LED单晶膜层一侧、所述显示背板背离所述介电层一侧施压,使得所述LED单晶膜层与所述介电层完全贴合,绑定在一起;
S70,将所述衬底基板从所述LED单晶膜层与所述显示背板形成的整体上剥离下来;
S80,对所述LED单晶膜层背离所述显示背板的一侧进行黄光和刻蚀制程,形成mirco-LED阵列;
S90,再在所述介电层背离所述显示背板的一侧填充保护层和透明电极层,以形成完整的mirco-LED显示器件。
根据本申请提供的一优选实施例,步骤“S10”中所述LED单晶膜层采用金属有机化合物化学气象沉积的方式制得。
根据本申请提供的一优选实施例,步骤“S10”中所述衬底基板为蓝宝石衬底基板、碳化硅衬底基板或是硅衬底基板。
根据本申请提供的一优选实施例,所述介电层采用氧化硅、氮化硅或是绝缘有机材料。
根据本申请提供的一优选实施例,所述介电层的高度大于所述驱动线路与所述触点的高度之和;所述通孔的的宽度小于所述驱动线路的宽度,大于所述触点的宽度。
根据本申请提供的一优选实施例,所述熔融金属点采用金属锡制成。
根据本申请提供的一优选实施例,步骤“S60”中绑定设置有所述LED单晶膜层的所述衬底基板与设置有所述介电层的所述显示背板时,所述LED单晶膜层和所述介电层之间采用低熔点金属材料进行绑定。
根据本申请提供的一优选实施例,所述低熔点的金属材料为:锡、铟、铅或是铋。
根据本申请提供的一优选实施例,所述LED单晶膜层和所述介电层之间的绑定采用低温焊接技术。
根据本申请提供的一优选实施例,采用激光镭射的方法剥离所述衬底基板。
有益效果
与现有技术相比,本申请提供的micro-LED显示器件的制作方法的有益效果为:本申请提供的micro-LED显示器件的制作方法,可以自对准进行LED转移绑定,避免了常规的巨量转移制程,工艺简单,降低了生产成本,大大地提高了产品良率以及micro-LED显示器件的像素。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的micro-LED显示器件的制作方法的流程示意图。
图2为本申请实施例提供的micro-LED显示器件制作工艺的第一结构示意图。
图3为本申请实施例提供的micro-LED显示器件制作工艺的第二结构示意图。
图4为本申请实施例提供的micro-LED显示器件制作工艺的第三结构示意图。
图5为本申请实施例提供的micro-LED显示器件制作工艺的第四结构示意图。
图6为本申请实施例提供的micro-LED显示器件制作工艺的第五结构示意图。
图7为本申请实施例提供的micro-LED显示器件制作工艺的第六结构示意图。
图8为本申请实施例提供的micro-LED显示器件制作工艺的第七结构示意图。
图9为本申请实施例提供的micro-LED显示器件制作工艺的第八结构示意图。
图10为本申请实施例提供的micro-LED显示器件制作工艺的第九结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请提供一种micro-LED显示器件的制作方法,具体参阅图1-图10。
参阅图1,为本申请实施例提供的一种micro-LED显示器件的制作方法的流程示意图。该方法包括如下步骤:S10,提供一衬底基板,并在所述衬底基板上沉积LED单晶膜层;S20,提供一显示背板,在所述显示背板上制作驱动线路并在所述驱动线路背离所述显示背板的一侧设置触点;S30,在所述显示背板的所述驱动线路上方覆盖一层介电层,并在正对所述触点沿所述介电层设置通孔;S40,在所述触点上方沿所述通孔处形成所述熔融金属点;S50,将沉积有所述LED单晶膜层的所述衬底基板与所述显示背板进行对位,使得所述LED单晶膜层一侧正对于设置有金属点的所述介电层一侧;S60,分别向所述衬底基板背离所述LED单晶膜层一侧、所述显示背板背离所述介电层一侧施压,使得所述LED单晶膜层与所述介电层完全贴合,绑定在一起;S70,将所述衬底基板从所述LED单晶膜层与所述显示背板形成的整体上剥离下来;S80,对所述LED单晶膜层背离所述显示背板的一侧进行黄光和刻蚀制程,形成micro-LED阵列;S90,再在所述介电层背离所述显示背板的一侧填充保护层和透明电极层,以形完整的micro-LED显示器件。
其中,步骤“S10”中所述LED单晶膜层采用金属有机化合物化学气象沉积在大于1000℃的温度下制得。所述衬底基板为蓝宝石衬底基板、碳化硅衬底基板或是硅衬底基板。步骤“S30”中所述介电层采用氧化硅、氮化硅或是绝缘有机材料。步骤“S40”中所述熔融金属点采用金属锡制成。
参阅图2-10,分别为本申请实施例提供的micro-LED显示器件制作工艺的第一至第九结构示意图。包括:衬底基板1和LED单晶膜层2,所述LED单晶膜层2沉积在所述衬底基板1上。
附图3中包括:显示背板3,驱动线路4以及设置在所述驱动线路4背离所述显示背板3一侧的触点5。
附图4中除了所述显示背板3,所述驱动线路4和所述触点5外,继续在所述显示背板3设置所述驱动线路4一侧沉积介电层6,所述介电层6的高度大于所述驱动线路4与所述触点5的高度之和。并在所述驱动线路4和所述触点5正上方设置通孔7,所述通孔7的宽度小于所述驱动线路4的宽度,大于所述触点5的宽度。
附图5中,继续在所述显示背板3设置所述介电层6的一侧,所述通孔7处形成熔融金属点8,使得所述通孔7被完全填充。
附图6中,将沉积有所述LED单晶膜层2的所述衬底基板1与所述显示背板3进行对位,使得所述LED单晶膜层2一侧正对于设置有所述熔融金属点8的所述介电层6一侧。
附图7中,分别向所述衬底基板1背离所述LED单晶膜层2一侧,所述显示背板3背离所述介电层6一侧施压,使得所述LED单晶膜层2与所述介电层6完全贴合,绑定在一起。采用低熔点的金属材料:锡、铟、铅或是铋,但不限于这几种低熔点金属材料,对所述LED单晶膜层2和所述介电层6之间进行绑定,绑定采用低温焊接技术进行。
附图8中,采用激光镭射的方法将所述衬底基板1从所述LED单晶膜层2与所述显示背板3形成的整体剥离下来。
附图9中,对所述LED单晶膜层2背离所述显示背板3的一侧进行黄光和刻蚀制程,形成micro-LED阵列9。
附图10中,继续在所述介电层6背离所述显示背板3的一侧填充保护层10和透明电极层11,以形成完整的micro-LED显示器件。
以上对本申请实施例所提供的一种micro-LED显示器件的制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种micro-LED显示器件的制作方法,包括以下步骤:
    S10,提供一衬底基板,并在所述衬底基板上沉积LED单晶膜层,且环境温度大于1000摄氏度;
    S20,提供一显示背板,在所述显示背板上制作驱动线路,并在所述驱动线路背离所述显示背板的一侧设置触点;
    S30,在所述显示背板的所述驱动线路上方覆盖一层介电层,并在正对所述触点沿所述介电层设置通孔;
    S40,在所述触点上方沿所述通孔处形成熔融金属点;
    S50,将沉积有所述LED单晶膜层的所述衬底基板与所述显示背板进行对位,使得所述LED单晶膜层一侧正对于设置有金属点的所述介电层一侧;
    S60,分别向所述衬底基板背离所述LED单晶膜层一侧、所述显示背板背离所述介电层一侧施压,使得所述LED单晶膜层与所述介电层完全贴合,绑定在一起;
    S70,将所述衬底基板从所述LED单晶膜层与所述显示背板形成的整体上剥离下来;
    S80,对所述LED单晶膜层背离所述显示背板的一侧进行黄光和刻蚀制程,形成mirco-LED阵列;
    S90,再在所述介电层背离所述显示背板的一侧填充保护层和透明电极层,以形成完整的mirco-LED显示器件。
  2. 根据权利要求1所述的micro-LED显示器件的制作方法,其中,步骤“S10”中所述LED单晶膜层采用金属有机化合物化学气象沉积的方式制得。
  3. 根据权利要求1所述的micro-LED显示器件的制作方法,其中,步骤“S10”中所述衬底基板为蓝宝石衬底基板、碳化硅衬底基板或是硅衬底基板。
  4. 根据权利要求1所述的micro-LED显示器件的制作方法,其中,所述介电层采用氧化硅、氮化硅或是绝缘有机材料。
  5. 根据权利要求4所述的micro-LED显示器件的制作方法,其中,所述介电层的高度大于所述驱动线路与所述触点的高度之和;所述通孔的的宽度小于所述驱动线路的宽度,大于所述触点的宽度。
  6. 根据权利要求1所述的micro-LED显示器件的制作方法,其中,所述熔融金属点采用金属锡制成。
  7. 根据权利要求1所述的micro-LED显示器件的制作方法,其中,步骤“S60”中绑定设置有所述LED单晶膜层的所述衬底基板与设置有所述介电层的所述显示背板时,所述LED单晶膜层和所述介电层之间采用低熔点金属材料进行绑定。
  8. 根据权利要求7所述的micro-LED显示器件的制作方法,其中,所述低熔点的金属材料为:锡、铟、铅或是铋。
  9. 根据权利要求7所述的micro-LED显示器件的制作方法,其中,所述LED单晶膜层和所述介电层之间的绑定采用低温焊接技术。
  10. 根据权利要求9所述的micro-LED显示器件的制作方法,其中,步骤“S70”中采用激光镭射的方法剥离所述衬底基板。
  11. 一种micro-LED显示器件的制作方法,包括以下步骤:
    S10,提供一衬底基板,并在所述衬底基板上沉积LED单晶膜层;
    S20,提供一显示背板,在所述显示背板上制作驱动线路,并在所述驱动线路背离所述显示背板的一侧设置触点;
    S30,在所述显示背板的所述驱动线路上方覆盖一层介电层,并在正对所述触点沿所述介电层设置通孔;
    S40,在所述触点上方沿所述通孔处形成熔融金属点;
    S50,将沉积有所述LED单晶膜层的所述衬底基板与所述显示背板进行对位,使得所述LED单晶膜层一侧正对于设置有金属点的所述介电层一侧;
    S60,分别向所述衬底基板背离所述LED单晶膜层一侧、所述显示背板背离所述介电层一侧施压,使得所述LED单晶膜层与所述介电层完全贴合,绑定在一起;
    S70,将所述衬底基板从所述LED单晶膜层与所述显示背板形成的整体上剥离下来;
    S80,对所述LED单晶膜层背离所述显示背板的一侧进行黄光和刻蚀制程,形成mirco-LED阵列;
    S90,再在所述介电层背离所述显示背板的一侧填充保护层和透明电极层,以形成完整的mirco-LED显示器件。
  12. 根据权利要求11所述的micro-LED显示器件的制作方法,其中,步骤“S10”中所述LED单晶膜层采用金属有机化合物化学气象沉积的方式制得。
  13. 根据权利要求11所述的micro-LED显示器件的制作方法,其中,步骤“S10”中所述衬底基板为蓝宝石衬底基板、碳化硅衬底基板或是硅衬底基板。
  14. 根据权利要求11所述的micro-LED显示器件的制作方法,其中,所述介电层采用氧化硅、氮化硅或是绝缘有机材料。
  15. 根据权利要求14所述的micro-LED显示器件的制作方法,其中,所述介电层的高度大于所述驱动线路与所述触点的高度之和;所述通孔的的宽度小于所述驱动线路的宽度,大于所述触点的宽度。
  16. 根据权利要求11所述的micro-LED显示器件的制作方法,其中,所述熔融金属点采用金属锡制成。
  17. 根据权利要求11所述的micro-LED显示器件的制作方法,其中,步骤“S60”中绑定设置有所述LED单晶膜层的所述衬底基板与设置有所述介电层的所述显示背板时,所述LED单晶膜层和所述介电层之间采用低熔点金属材料进行绑定。
  18. 根据权利要求17所述的micro-LED显示器件的制作方法,其中,所述低熔点的金属材料为:锡、铟、铅或是铋。
  19. 根据权利要求17所述的micro-LED显示器件的制作方法,其中,所述LED单晶膜层和所述介电层之间的绑定采用低温焊接技术。
  20. 根据权利要求19所述的micro-LED显示器件的制作方法,其中,步骤“S70”中采用激光镭射的方法剥离所述衬底基板。
PCT/CN2020/079577 2019-11-19 2020-03-17 Micro-led显示器件的制作方法 WO2021098094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/757,398 US11380660B2 (en) 2019-11-19 2020-03-17 Manufacturing method of micro-LED display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911133011.6 2019-11-19
CN201911133011.6A CN111029360B (zh) 2019-11-19 2019-11-19 micro-LED显示器件的制作方法

Publications (1)

Publication Number Publication Date
WO2021098094A1 true WO2021098094A1 (zh) 2021-05-27

Family

ID=70200554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079577 WO2021098094A1 (zh) 2019-11-19 2020-03-17 Micro-led显示器件的制作方法

Country Status (3)

Country Link
US (1) US11380660B2 (zh)
CN (1) CN111029360B (zh)
WO (1) WO2021098094A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029360B (zh) * 2019-11-19 2022-06-07 深圳市华星光电半导体显示技术有限公司 micro-LED显示器件的制作方法
US20220190223A1 (en) * 2020-12-15 2022-06-16 Samsung Electronics Co., Ltd. Display apparatus and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037530A1 (en) * 2015-09-04 2017-03-09 Hong Kong Beida Jade Bird Display Limited Semiconductor apparatus and method of manufacturing the same
CN107910414A (zh) * 2017-11-21 2018-04-13 歌尔股份有限公司 Led显示器制备方法及led显示器
CN109979957A (zh) * 2019-03-15 2019-07-05 广东省半导体产业技术研究院 半导体发光器件及其制作方法
US20190347979A1 (en) * 2018-05-08 2019-11-14 Intel Corporation Micro light-emitting diode displays and pixel structures

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633471B2 (en) * 2000-05-12 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electric appliance
KR20110037796A (ko) * 2009-10-07 2011-04-13 엘지디스플레이 주식회사 전사기판 어레이와 이를 이용한 유기발광다이오드 표시장치의 제조방법
CN102315353B (zh) * 2011-09-30 2013-05-22 安徽三安光电有限公司 一种倒装集成发光二极管及其制备方法
US9548332B2 (en) * 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
CN106716641B (zh) * 2014-10-17 2021-07-09 英特尔公司 微型led显示器和组装
CN104617121A (zh) * 2015-01-04 2015-05-13 中国电子科技集团公司第五十五研究所 一种提高有源矩阵微型led显示器光学性能的方法
US20180190614A1 (en) * 2016-12-05 2018-07-05 Ananda H. Kumar Massively parallel transfer of microLED devices
US20210135044A1 (en) * 2017-04-19 2021-05-06 Goertek Inc. Micro-led array transfer method, manufacturing method and display device
CN106941108B (zh) * 2017-05-23 2019-09-17 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
TWI653694B (zh) * 2017-09-13 2019-03-11 英屬開曼群島商錼創科技股份有限公司 微型發光元件陣列製造方法、轉移載板以及微型發光元件陣列
CN107978548B (zh) * 2017-11-20 2019-07-05 厦门市三安光电科技有限公司 微元件的巨量转移方法
CN108241456B (zh) * 2018-02-01 2021-07-27 业成科技(成都)有限公司 触控感测模组及其制作方法以及应用其的触控显示面板
US11177243B2 (en) * 2018-03-22 2021-11-16 Intel Corporation Micro light-emitting diode display fabrication and assembly
CN109860092B (zh) * 2019-01-02 2020-10-02 南京中电熊猫液晶显示科技有限公司 一种微型发光二极管巨量转移的方法及显示器
CN109994579B (zh) * 2019-04-30 2020-12-25 成都辰显光电有限公司 微型led显示面板的制备方法和微型led显示面板
CN111029360B (zh) * 2019-11-19 2022-06-07 深圳市华星光电半导体显示技术有限公司 micro-LED显示器件的制作方法
KR20210130896A (ko) * 2020-04-22 2021-11-02 삼성디스플레이 주식회사 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037530A1 (en) * 2015-09-04 2017-03-09 Hong Kong Beida Jade Bird Display Limited Semiconductor apparatus and method of manufacturing the same
CN107910414A (zh) * 2017-11-21 2018-04-13 歌尔股份有限公司 Led显示器制备方法及led显示器
US20190347979A1 (en) * 2018-05-08 2019-11-14 Intel Corporation Micro light-emitting diode displays and pixel structures
CN109979957A (zh) * 2019-03-15 2019-07-05 广东省半导体产业技术研究院 半导体发光器件及其制作方法

Also Published As

Publication number Publication date
CN111029360B (zh) 2022-06-07
US11380660B2 (en) 2022-07-05
CN111029360A (zh) 2020-04-17
US20210407975A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
US20220352446A1 (en) Display device using micro led and method for manufacturing same
US10741608B2 (en) Manufacturing method of micro light-emitting diode display panel
WO2020233576A1 (zh) 显示面板、其制作方法及显示装置
US20220375915A1 (en) Display device using micro led, and manufacturing method therefor
WO2021184522A1 (zh) 背光模组及其制备方法和显示装置
EP3989283B1 (en) Substrate for manufacturing display device and method for manufacturing display device
CN114899204B (zh) 微型led器件制备方法、微型led器件以及显示装置
US11211366B2 (en) Method for manufacturing display device and substrate for manufacturing display device
WO2021098094A1 (zh) Micro-led显示器件的制作方法
CN112652617A (zh) 一种Micro-LED新型显示器件的制备方法
WO2024012271A1 (zh) 一种像素单元及其制作方法、微显示屏、分立器件
CN112331689B (zh) 一种阵列基板、显示面板及其制备方法、显示装置
WO2024120061A1 (zh) 一种基板及其制作方法、显示装置
US11424232B2 (en) Display structure and preparation method thereof, and display apparatus
WO2023217285A1 (zh) 显示面板的制备方法及显示面板
US20230154903A1 (en) Light-emitting diode (led) chip assembly and prepraing method thereof, and preparing method of display panel
WO2024000653A1 (zh) 显示面板
CN114335058A (zh) 微显示装置的制造方法
CN111739869A (zh) 一种背板及其制作方法、显示装置及其制作方法
CN113782553A (zh) 巨量转移Micro LED模块、显示屏及制造方法
JP2006165286A (ja) 半導体基板の製造方法、半導体基板、半導体素子の製造方法、半導体素子及び電気光学装置の製造方法
CN216054704U (zh) 一种Micro-LED驱动背板结构
CN112510029B (zh) 一种rgb-led芯片及其制造方法和应用
CN112313806B (zh) 显示背板及制作方法、显示面板及制作方法、显示装置
US20230395748A1 (en) Semiconductor light emitting element, display device, and method for manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890210

Country of ref document: EP

Kind code of ref document: A1