WO2020077813A1 - 对旋风扇 - Google Patents

对旋风扇 Download PDF

Info

Publication number
WO2020077813A1
WO2020077813A1 PCT/CN2018/122531 CN2018122531W WO2020077813A1 WO 2020077813 A1 WO2020077813 A1 WO 2020077813A1 CN 2018122531 W CN2018122531 W CN 2018122531W WO 2020077813 A1 WO2020077813 A1 WO 2020077813A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
impeller
counter
ring
rotating fan
Prior art date
Application number
PCT/CN2018/122531
Other languages
English (en)
French (fr)
Inventor
胡小文
胡斯特
张辉
易榕
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to JP2021515113A priority Critical patent/JP7140911B2/ja
Priority to KR1020217007966A priority patent/KR102520545B1/ko
Priority to US17/283,528 priority patent/US11661943B2/en
Priority to EP18936996.0A priority patent/EP3839261B1/en
Publication of WO2020077813A1 publication Critical patent/WO2020077813A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/022Multi-stage pumps with concentric rows of vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the invention relates to the technical field of fans, in particular to a counter-rotating fan.
  • the fan can accelerate the transmission of the airflow, increase the air supply area to achieve wide wind, or increase the air distance and air supply distance, speed up the wind speed and increase the convection speed, which are indispensable parts in a variety of living appliances.
  • Two-stage fans have the same size and the same direction or opposite direction.
  • the two-stage fans are equipped with a motor or two motors to drive and rotate, and most of the rectifiers are arranged in the middle of the two-stage fans.
  • the structure is relatively complicated and the noise is large.
  • the swirling airflow at the outlet of the first-stage fan can be vortexed by the second-stage fan blades, and the straight wind comes out to speed up the air circulation, but the air volume of the rectified first-stage fan reaches After the second-stage fan, its wind power and air volume will be weakened.
  • the overall design of the axial fan cannot be too thick, otherwise it will seriously affect the appearance, and when the spacing between the two-stage fans is small, the airflow such as the leakage vortex generated by the previous stage blades easily enters the latter stage blades, causing the blades The peak noise of the frequency and leaf frequency doubling is obviously increased, and the noise is larger.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present invention is to propose a counter-rotating fan, which rotates stably and is not easily deformed, the motor has a good cooling effect, and the center has a strong wind.
  • the counter-rotating fan includes: two impellers, the two impellers are axially spaced apart and are divided into a first-stage impeller and a second-stage impeller.
  • the first-stage impeller blows toward the direction of the second-stage impeller, at least one of the impellers has multiple turns of blades, and the multiple turns of the blades are arranged in the radial direction of the impeller, and each of the multiple The blades are spaced around the hub of the impeller, and a spacer ring is connected between two adjacent turns of the blade; a motor is used to drive the two impellers to rotate.
  • an impeller with multi-turn blades can enhance the wind output capacity of the center of the counter-rotating fan, increase the speed distribution of the counter-rotating fan's outlet wind field near the center, and significantly improve the uniformity of the outlet wind field
  • Impeller with spacer ring and multi-turn blades has a significant strengthening effect on the front and rear stage impeller wind transmission, which can obviously improve the rigidity of the counter-rotating fan.
  • the blades are not easy to deform during long-term rotation, and the critical speed of the impellers at all levels Both have been improved, which is conducive to the stable operation of the counter-rotating fan as a whole and guarantees good fan performance; because the motor is generally located in the middle of the counter-rotating fan, the impeller with multi-turn blades, the rotation of the blades close to the motor can enhance the wind near the motor
  • the field speed improves the cooling effect of the motor, which is conducive to maintaining the service life of the motor;
  • the two-stage impeller is spaced apart, on the one hand, it can smooth the vortex generated by the first-stage impeller, on the other hand, it is provided for the installation of connecting parts such as the motor Enough space.
  • the bending angle of the blade in the inner ring is greater than or equal to the bending angle of the blade in the outer ring.
  • the number of the blades in the inner ring is greater than or equal to the number of the blades in the outer ring.
  • the difference between the diameter of the spacer ring and the diameter of the hub is the inner ring difference
  • the outer diameter of the blade of the outer ring and the hub The difference between the diameters is the outer ring difference
  • the inner ring difference is at least 0.3 times the outer ring difference
  • the inner ring difference does not exceed 0.7 times the outer ring difference.
  • the thickness of the spacer ring is less than or equal to the maximum thickness of the blade.
  • the entire surface of the spacer ring is a smooth curved surface.
  • two motors there are two motors, two motors are respectively connected to the two impellers, and the two impellers are arranged coaxially.
  • a transmission mechanism is connected between the motor and at least one impeller.
  • it further includes: a bracket, the motor is provided on the bracket, and the two impellers are located on opposite sides of the bracket.
  • the bracket includes: an inner bearing plate, the motor is fixed on the inner bearing plate; an outer branch ring, the outer branch ring is coated on the outside of the inner bearing plate; a radiation rod, the radiation There are a plurality of rods, and a plurality of the radiation rods are arranged around the inner bearing plate, one end of each of the radiation rods is connected to the inner bearing plate, and the other end of each of the radiation rods is connected to the outer support ring Connected.
  • FIG. 1 is a schematic diagram of the overall structure of a counter-rotating fan according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of a counter-rotating fan according to an embodiment of the invention.
  • FIG. 3 is a schematic front view of a second-stage impeller according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of the front view of the first-stage impeller according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a wind field of a counter-rotating fan according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram of the wind field when the two-stage impeller of the conventional counter-rotating fan is a single-turn blade.
  • FIG. 7 is a schematic diagram of blade profile parameters of an embodiment of the present invention.
  • Bracket 20 outer support ring 21; radiation rod 22;
  • the first stage impeller 30 The first stage impeller 30;
  • Second-stage impeller 40 Second-stage impeller 40
  • Wheel hub 60 lock nut 61.
  • the counter-rotating fan 100 according to an embodiment of the present invention will be described in detail below with reference to the drawings.
  • the counter-rotating fan 100 includes: two impellers and a motor 10. Among them, the motor 10 is used to drive the rotation of the two impellers to provide power for the rotation of the two-stage impeller.
  • the two impellers are spaced apart in the axial direction, which are the first-stage impeller 30 and the second-stage impeller 40 respectively.
  • the airflow is blown by the first-stage impeller 30 toward the second-stage impeller 40.
  • the two-stage impeller is spaced apart, and the first-stage impeller 30 and the second-stage impeller 40 may have different rotation speeds or different steering directions.
  • At least one impeller has multiple turns of blades, that is, the first-stage impeller 30 may have multiple turns of blades, and the second-stage impeller 40 has only one turn of blades; or the second-stage impeller 40 has Multi-turn blades, while the first-stage impeller 30 has only one-turn blade; or the second-stage impeller 40 and the first-stage impeller 30 each have multi-turn blades.
  • an impeller has multiple turns of blades, it can be two turns, three turns, etc., which is not limited here.
  • the multi-turn blades are arranged in the radial direction of the impeller, the plurality of blades in each turn are spaced apart around the hub 60 of the impeller, and a spacer ring 50 is connected between two adjacent turns of the blades.
  • the impeller provided with the spacer ring 50 and the multi-turn blades can significantly improve the overall rigidity of the single-stage impeller of the counter-rotating fan 100, and the blades are not likely to be deformed during long-term rotation.
  • FIG. 5 is a schematic diagram of the wind field at the outlet of the counter-rotating fan 100 where the two-stage impeller is a double-turn blade
  • FIG. 6 is a single-turn blade of the two-stage impeller. Schematic diagram of the wind field at the outlet of the counter-rotating fan 100 '.
  • the higher the linear velocity the stronger the function.
  • the wind wheel is a single-turn blade, the area of the outlet wind field adjacent to the axis of rotation is weak and the wind pressure is small, and the surrounding outer ring has a high wind pressure. Therefore, the outlet wind field will have a recirculation zone near the wind wheel.
  • the impeller has two or more turns of blades, even if the inner and outer ring blades have the same blade shape and the same number, but the inner ring blades and outer ring blades are provided with a spacer ring 50, the load carrying capacity is strengthened.
  • the functioning power also increases, and the wind feels stronger when the multi-turn impeller rotates at the same speed. Therefore, it shows that the export wind field tends to be uniform.
  • inner and outer rings mentioned in this article are relative concepts, that is, when the impeller has two or more turns of blades, between any two turns of the blades, the blades near the rotation axis of the impeller are called Inner ring blades, blades far from the axis of rotation of the impeller are called outer ring blades.
  • impellers with multi-turn blades have other advantages. Specifically, in a conventional impeller, the farther away from the hub 60, the smaller the blade stiffness, the smaller the bearing capacity of the blade will be, so the functioning capacity is limited.
  • the inner ring blade is connected to the spacer ring 50 at the tip of the blade, and the outer ring blade is connected to the spacer ring 50 at the blade root, and the blade rigidity is greatly enhanced.
  • the impeller provided with multi-turn blades has more structural change space than the single-turn impeller in terms of structure, and its function can be further enhanced.
  • the blades of different rings can be used with different blade shapes, and the characteristics of the inner blades with low linear velocity but greater rigidity and strength can be used, and the blade shapes that are easier to spin can be used.
  • the blade bending angle of the inner ring may be set larger than the blade bending angle of the outer ring, or the axial dimension of the blade of the inner ring may be changed.
  • the wind generated by the two-stage impellers (30, 40) can derotate each other. Especially between the two-stage impellers turning in opposite directions, the generated airflow rotates in opposite directions.
  • the vortex vortex generated by the second-stage impeller 40 will be vortexed by the vortex vortex generated by the first-stage impeller 30, or be scattered by the flat wind blown by the first-stage impeller 30, so that the middle part of the flat wind Enhancement makes the wind output of the counter-rotating fan 100 stable, and the straight air supply distance is long, and the periphery of the second-stage impeller 40 can spread out the diffuse wind.
  • the counter-rotating fan 100 according to the embodiment of the present invention can be applied to electric fans, circulation fans, ventilation fans, air-conditioning fans, and other devices that need to send out air.
  • the counter-rotating fan 100 according to the embodiment of the present invention is mainly used to promote airflow Not heat transfer.
  • the bend angle mentioned in this article refers to the change angle of the blade in the circumferential direction during the extension of the blade from the leading edge to the trailing edge, that is, the difference between the leading edge mounting angle of the blade and the trailing edge mounting angle value.
  • the blades of an impeller each have a leading edge and a trailing edge (the “trailing edge” may also be referred to as a “trailing edge”). Judging from the direction of fluid flow, the fluid flows into the blade channel from the leading edge of the blade. The blade channel flows out from the trailing edge of the blade.
  • a crescent-shaped cross section is formed by an equal-diameter cylindrical surface coaxial with the impeller and the blade.
  • LE is used to show the leading edge of the blade
  • TE is used to show the trailing edge of the blade.
  • the tangent of the mid-arc line of this cross section at the leading edge LE and the tangent line of the leading edge LE on the equal-diameter cylindrical surface are at the angle of the leading edge installation angle ⁇ 1m .
  • the tangent of the mid-arc line of this cross-section at the trailing edge TE and the tangent of the trailing edge TE on the equal-diameter cylindrical surface are between the trailing edge installation angle ⁇ 2m .
  • the difference between the leading edge mounting angle ⁇ 1m and the trailing edge mounting angle ⁇ 2m is equal to the bending angle ⁇ .
  • the bending angle of the blade of the inner ring is larger than that of the blade of the outer ring angle. Since the blades of the inner ring have high rigidity and strong bearing capacity, and do not affect the blade shape of the outer ring blades, the bending angle of the inner ring blades can be increased by design to improve the function of the inner ring blades.
  • the number of blades in the inner ring is equal to the number of blades in the outer ring in two adjacent blades. In other embodiments, as shown in FIGS. 1, 3, and 4, on the impeller with a spacer ring 50, the number of blades in the inner ring is greater than the number of blades in the outer ring in two adjacent blades. The larger number of blades in the inner ring can solve the defect that the inner ring is weak in function, and improve the uniformity of the wind output from the rotary fan 100. Since the spacer ring 50 is provided between the inner ring blade and the outer ring blade, the bending angle of the blade at the spacer ring 50 is increased.
  • the difference between the diameter of the spacer ring 50 and the diameter of the hub 60 is the difference in the inner ring
  • the outer diameter of the outer ring blades is The difference between the diameters of the hubs 60 is the outer ring difference
  • the inner ring difference is at least 0.3 times the outer ring difference
  • the inner ring difference does not exceed 0.7 times the outer ring difference.
  • the diameter of the hub 60 is r1
  • the diameter of the spacer ring 50 is r2
  • the outer diameter of the blade of the outer ring is r3, r1, r2, r3 satisfy the ratio of the difference between r2 and r1 and the difference between r3 and r1
  • the range is 0.3 to 0.7, that is, the following relationship is met:
  • the ratio of (r2-r1) / (r3-r1) is 0.3 to 0.7.
  • the outer diameters of the blades of the outer ring refer to the diameters of the circles where the blades of all outer rings are farthest from the rotation axis.
  • the larger value is taken, that is, the difference between the rim diameter of the outer ring blade and the rim diameter of the inner ring blade is small, and the area of the inner ring wind field that needs to be increased is more.
  • the outer ring blades are not easily broken when rotating due to too much bending and twisting; when the outer ring blades are designed with small bending and twisting, the smaller value is taken, that is, the outer ring blade rim diameter and inner ring blade rim diameter can be The difference is large, the area of the inner wind field to be increased is small, and the outer ring blades are not easy to break. This is the result of comprehensive consideration of the strength of the outer ring blades and the air flow capacity of the inner ring blades.
  • the thickness of the spacer ring 50 is less than or equal to the maximum thickness of the blade. If the blade design of the impeller is too thick, there will be two effects of noise. When the thickness of the blade of the first-stage impeller 30 is too thick, its trailing edge will interfere with the leading edge of the blade of the second-stage impeller 40, resulting in impact noise. When the blades of the second-stage impeller 40 are too thick, wide-band noise of the trailing portion of the spacer ring 50 of the second-stage impeller 40 is also caused. Therefore, the thickness of the spacer 50 and the blade should be designed reasonably, and the appropriate thickness difference should be selected to reduce noise, increase aesthetics, and maintain a good wind performance for the rotary fan 100.
  • the entire surface of the spacer ring 50 is a smooth curved surface.
  • the front, side, or rear of the spacer ring 50 need to be designed with smooth arcs such as round heads or elliptical heads to avoid generating extra airflow noise.
  • the blades of the outer ring are connected to the outer wall of the spacer ring 50, one end of the blades of the inner ring is connected to the inner wall of the spacer ring, and the other end of the blades of the inner ring is connected to the hub 60.
  • the inner and outer ring blades are not easy to bend when rotating at high speed.
  • FIG. 2 there are two motors 10, the two motors 10 are respectively connected to two impellers, and the two impellers are coaxially arranged.
  • the two motors 10 respectively control the first-stage impeller, which is convenient for changing the speed of the two-stage impeller through the adjustment of the rotation speed of the motor 10, and is convenient for installation and arrangement, and the symmetry of the counter-rotating fan 100 is good.
  • the two impellers are connected to the motor shaft of the motor 10 through the lock nut 61 respectively.
  • the transmission mechanism is a planetary gear mechanism. Specifically, both ends of the motor 10 are axially extended with a motor shaft, one end of the motor shaft is connected to the hub 60 of the first-stage impeller 30, and the other end of the motor shaft passes through the planetary gear mechanism To connect the hub 60 of the second-stage impeller 40, the planetary gear mechanism can adopt the scheme of the planetary mechanism known in the prior art, and is not limited here. As a result, the counter-rotating fan 100 is compact overall, the second-stage impeller 40 and the first-stage impeller 30 have lower noise during rotation, and the rotation speed ratio can be adjusted by the selection of the transmission mechanism.
  • the counter-rotating fan 100 further includes: a bracket 20, the motor 10 is provided on the bracket 20, and two impellers are located on opposite sides of the bracket 20.
  • the bracket 20 supports the rotation of the two-stage impeller and enhances the stability of its rotation.
  • the bracket 20 includes an inner bearing plate, an outer branch ring 21, and a radiation rod 22.
  • the motor 10 is fixed on the inner support plate (equivalent to the motor bracket); the outer support ring 21 is coated on the outer side of the inner support plate; there are multiple radiation rods 22, and a plurality of radiation rods 22 are arranged around the inner support plate, each radiating One end of the rod 22 is connected to the inner bearing plate, and the other end of each radiating rod 22 is connected to the outer branch ring 21.
  • the inner bearing plate provides support and space for the installation of the motor, and the structural arrangement of the radiation rod 22 and the outer branch ring 21 can reduce the interference to the airflow.
  • a counter-rotating fan includes a first-stage impeller 30, a second-stage impeller 40, a motor 10, and a bracket 20.
  • the first-stage impeller 30 and the second-stage impeller 40 are spaced apart in the axial direction.
  • the airflow is blown by the first-stage impeller 30 toward the second-stage impeller 40.
  • the first-stage impeller 30 and the second-stage impeller 40 each have an inner ring fan and an outer ring fan arranged radially, and between the inner ring fan and the outer ring fan All are separated by a spacer ring 50, wherein one end of the inner ring fan blade is connected to the hub 60, the other end of the inner ring fan blade is connected to the spacer ring 50, and the outer ring fan blade is connected to the outside of the spacer ring 50.
  • the bending angles of the inner ring blades are larger than those of the outer ring blades, and the number of inner ring blades is more than the number of outer ring blades.
  • the thickness of the spacer ring 50 is smaller than the maximum thickness of the blade.
  • the spacer ring 50 has smooth curved surfaces throughout.
  • Both ends of the motor 10 extend axially along the motor shaft, one end is connected to the first-stage impeller 30, and the other end is connected to the second-stage impeller 40 through a transmission mechanism.
  • the motor 10 is provided on the inner bearing plate of the bracket 20.
  • the bracket 20 further includes an outer branch ring 21 and a radiation rod 22, and the outer branch ring 21 is sheathed on the outside of the inner bearing plate.
  • a plurality of radiation rods 22 are arranged around the inner support plate, one end of each radiation rod 22 is connected to the inner support plate, and the other end of each radiation rod 22 is connected to the outer branch ring 21.
  • the backflow area of the wind field near the hub 60 in the middle of the counter-rotating fan 100 is small, and the entire wind field is relatively uniform, with both wide scattered wind and long-distance straight wind.
  • the second stage impeller 40 rotates clockwise; on the contrary, when the first stage impeller 30 rotates clockwise, the second stage impeller 40 rotates counterclockwise.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the characteristics of the "first-stage impeller” and “second-stage impeller” defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • connection In the present invention, unless otherwise clearly specified and defined, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
  • the first feature is “on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are indirectly through an intermediary contact.
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is "below”, “below”, and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Abstract

一种对旋风扇(100),包括两个叶轮和电机(10),电机(10)用于驱动两个叶轮旋转;两个叶轮沿轴向间隔开设置且分为第一级叶轮(30)和第二级叶轮(40),对旋风扇(100)运转时气流由第一级叶轮(30)朝向第二级叶轮(40)的方向吹动,至少一个叶轮具有多圈的叶片,多圈叶片沿叶轮的径向排布,每圈的多个叶片绕叶轮的轮毂(60)间隔开设置,相邻两圈叶片之间连接有隔环(50)。该对旋风扇的旋转稳定,不易变形,冷却效果好,中心出风较强。

Description

对旋风扇
相关申请的交叉引用
本申请基于申请号为201811198969.9、申请日为2018年10月15日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及风扇技术领域,具体是一种对旋风扇。
背景技术
风扇可以加快气流的传动,增加送风面积实现广散风、或提高风程和送风距离、加快风速提高对流速度,是多种生活电器中不可缺少的零部件。
已有的串联式的双级轴流风扇,两级风扇大小相同,转向相同或相反,两级风扇分别配置一个电机或两个电机进行驱动旋转,且大多在两级风扇的中间布置整流装置,结构较为复杂,且噪声大。当两级风扇朝向不同的方向旋转时,第一级风扇出口的带旋气流可以被第二级扇叶消旋,出来平直风,加速空气循环,但经过整流的第一级风扇的风量到第二级风扇后,其风力和风量会有所减弱。
当风扇的单个叶片长度较长时,旋转速度的调整有限,否则叶片变形较大,气动性能和噪音性能都下降,采用更硬的叶片虽能解决叶片变形的问题但成本较高。此时风扇若为轮毂比较小的长叶型,其叶片根部会出现较大的扭曲,两级叶片根部产生回流区,风速低且风不会往前吹,不利于电机的散热,影响电机寿命。
为了美观,轴流风扇整体不能设计太厚,否则严重影响外观,而两级风扇之间的间距较小时,前一级扇叶产生的泄露涡等气流容易进入后一级扇叶中,导致叶频和叶倍频的噪音峰值明显上升,噪音较大。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种对旋风扇,所述对旋风扇旋转稳定不易变形,电机冷却效果好,中心出风较强。
根据本发明实施例的对旋风扇,包括:两个叶轮,两个所述叶轮沿轴向间隔开设置且分为第一级叶轮和第二级叶轮,所述对旋风扇运转时气流由所述第一级叶轮朝向所述 第二级叶轮的方向吹动,至少一个所述叶轮具有多圈的叶片,多圈所述叶片沿所述叶轮的径向排布,每圈的多个所述叶片绕所述叶轮的轮毂间隔开设置,相邻两圈所述叶片之间连接有隔环;电机,所述电机用于驱动两个所述叶轮旋转。
根据本发明实施例的对旋风扇,采用多圈叶片的叶轮,可增强对旋风扇中部的出风能力,提高对旋风扇出口风场靠近中心位置的速度分布,可明显改善出口风场的均匀性;设有隔环和多圈叶片的叶轮,对前后级叶轮风力传动具有显著的加强作用,可明显改善对旋风扇的刚性,叶片在长期旋转时不易产生变形,且各级叶轮其临界转速都得到提高,有利于对旋风扇整体的稳定运转,保证良好的风扇性能;由于电机一般设在对旋风扇的中部,具有多圈叶片的叶轮,距离电机近的叶片旋转做功可加强电机附近风场的速度,提高电机的冷却效果,有利于维持电机的使用寿命;两级叶轮间隔开设置,一方面可使得第一级叶轮产生的涡旋得以平缓,另一方面为安装电机等连接部件提供了足够的空间。
可选的,具有所述隔环的所述叶轮上,每相邻两圈所述叶片中,内圈的所述叶片的弯角大于等于外圈的所述叶片的弯角。
可选的,具有所述隔环的所述叶轮上,相邻两圈所述叶片中,内圈的所述叶片的数量大于等于外圈的所述叶片的数量。
可选的,具有两圈所述叶片的所述叶轮上,所述隔环的直径与所述轮毂的直径之间差值为内环差,外圈的所述叶片的外径与所述轮毂直径之间的差值为外环差,所述内环差至少为所述外环差的0.3倍,且所述内环差不超过所述外环差的0.7倍。
可选的,所述隔环的厚度小于等于所述叶片的最大厚度。
可选的,所述隔环的整个表面为光滑的弧面。
可选的,所述电机为两个,两个所述电机分别与两个所述叶轮相连,两个所述叶轮同轴设置。
可选的,所述电机为一个,所述电机与至少一个所述叶轮之间连接有传动机构。
可选的,还包括:支架,所述电机设在所述支架上,所述两个叶轮位于所述支架的相对两侧。
可选的,所述支架包括:内承板,所述电机固定在所述内承板上;外支环,所述外支环外套在所述内承板的外侧;辐射杆,所述辐射杆为多个,多个所述辐射杆环绕所述内承板设置,每个所述辐射杆的一端与所述内承板相连,每个所述辐射杆的另一端与所述外支环相连。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明一个实施例的对旋风扇的总体结构示意图。
图2为本发明一个实施例的对旋风扇的侧视结构示意图。
图3为本发明一个实施例的第二级叶轮的主视结构示意图。
图4为本发明一个实施例的第一级叶轮的主视结构示意图。
图5为本发明一个实施例的对旋风扇的风场示意图。
图6是现有的对旋风扇的两级叶轮都是单圈叶片时的风场示意图。
图7是本发明实施例的叶片叶型参数示意图。
附图标记:
对旋风扇100;
电机10;
支架20;外支环21;辐射杆22;
第一级叶轮30;
第二级叶轮40;
隔环50;
轮毂60;锁紧螺母61。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图来详细描述根据本发明实施例的对旋风扇100。
根据本发明实施例的对旋风扇100,如图1、图2所示,包括:两个叶轮和电机10。其中,电机10用于驱动两个叶轮旋转,为两级叶轮旋转提供动力。
两个叶轮沿轴向间隔开设置,分别为第一级叶轮30和第二级叶轮40,当对旋风扇100运转时,气流由第一级叶轮30朝向第二级叶轮40的方向吹动。两级叶轮间隔开设置,第一级叶轮30和第二级叶轮40之间可以是转速不同,也可以是转向不同。
在本发明实施例中,至少一个叶轮具有多圈的叶片,也就是说,第一级叶轮30可以具有多圈的叶片,而第二级叶轮40仅有一圈叶片;或者第二级叶轮40具有多圈的叶片,而第一级叶轮30则仅有一圈叶片;或者第二级叶轮40和第一级叶轮30均具有多 圈的叶片。当某一叶轮具有多圈叶片时,它可以是两圈,也可以是三圈等,这里不作限制。
多圈叶片沿叶轮的径向排布,每圈的多个叶片绕叶轮的轮毂60间隔开设置,相邻两圈叶片之间连接有隔环50。设有隔环50和多圈叶片的叶轮,可明显改善对旋风扇100单级叶轮整体的刚性,叶片在长期旋转时不易产生变形。
相对于两级叶轮都是单圈叶片的对旋风扇100’而言,将至少一级叶轮设置成多圈叶片可以明显改善出口风场均匀性。
下面以图5和图6所示的风场示意图来进行说明,图5是两级叶轮均是双圈叶片的对旋风扇100出口风场示意图,图6是两级叶轮均是单圈叶片的对旋风扇100’出口风场示意图。
从图6可以看出当两级叶轮均是单圈叶片时,出口风场靠近轴线位置出现较大的低速回流区,风感较弱,而出口风场最大速度出现在叶片靠近叶顶的中上部位置。
从图5可以看出当两级叶轮均是双圈叶片时,中心靠近轴线位置虽然仍然有回流区,但是回流区明显缩小。出口风场的风力明显趋于均匀。相对于单圈叶片而言,出口风场均匀性得到了改善,对于用户的舒适性体验是有提高的。
可以理解的是,叶轮上距离旋转轴线越近处,线速度越小,因此通常风扇出风侧邻近轮毂60处风感较弱。而当叶轮上距离旋转轴线越远处,线速度越大,做功能力越强。当风轮为单圈叶片时,出口风场邻近旋转轴线的区域因为风力弱、风压小,而周围外圈风压较大,因此出口风场在临近风轮处会出现回流区。
但是当叶轮具有两圈甚至更多圈的叶片时,即使内圈叶片和外圈叶片叶型相同、数量相等,但是内圈叶片和外圈叶片之间由于设置了隔环50,承载能力加强,做功能力也就随之增加,同速下多圈叶轮旋转时风感更强。因此表现出出口风场明显趋于均匀。
需要说明的是,本文中提到的内圈、外圈均是相对概念,即当叶轮具有两圈甚至更多圈的叶片时,任意两圈叶片之间,临近叶轮的旋转轴线的叶片称为内圈叶片,远离叶轮的旋转轴线的叶片称为外圈叶片。
除了风场均匀性得到加强外,具有多圈叶片的叶轮还有其他优势。具体而言,常规的叶轮,距离轮毂60越远,叶片刚度越小,叶片的承载能力就会变小,因此做功能力受到限制。而对于设置了隔环50的叶轮而言,相邻两圈叶片中,内圈叶片在叶顶处连接隔环50,外圈叶片在叶根处连接隔环50,叶片刚度大大加强。
而且设置了多圈叶片的叶轮,其结构上相对于单圈的叶轮而言,存在更多的结构变化空间,做功能力可以进一步增强。例如,可以将不同圈的叶片采用不同的叶型,利用内圈叶片线速度低但是刚度、强度更大的特点,采用更易出旋的叶型等。例如,可将内 圈的叶片数量设置得大于外圈的叶片数量,增加叶片密度来增加内圈做功能力。还例如,可将内圈的叶片弯角设置得大于外圈的叶片弯角,或者内圈叶片的轴向尺寸做出变化等。
当然,如果风扇中只有单个叶轮,即使该叶轮具有两圈或者三圈叶片,其出口风场的风感仍会大打折扣。
具体而言,单个叶轮旋转时会形成环向涡流状风场,叶顶产生叶顶气流泄露涡。当轮上设置了两圈或者更多圈叶片时,每个隔环50处,隔环50外侧连接一圈叶片的叶根,隔环50内侧连接一圈叶片的叶顶,隔环50处出风风场形成的涡流状况复杂,不仅有额外气流噪音,而且此处紊乱的气流使气流不稳,还会消耗风压。
但是两个叶轮同时旋转,合理设置结构参数的前提下,两级叶轮(30,40)产生的出风可相互进行消旋。尤其在转向相反的两级叶轮之间,产生的气流旋转向相反。如图2所示,第二级叶轮40产生的涡流旋会被第一级叶轮30产生的涡流旋消旋,或者被第一级叶轮30吹出的平直风吹散,使中间部分平直风增强,促使对旋风扇100的出风稳定,平直风送风距离远,第二级叶轮40的周边则可以向外扩散广散风。
需要说明的是,本发明实施例的对旋风扇100可应用于电风扇、循环扇、换气扇、空调风扇等需要送出空气的设备中,本发明实施例的对旋风扇100主要用于促进气流流动而非换热。
需要说明的是,本文提到的弯角,指的是叶片由前缘到尾缘的延伸过程中,叶片沿周向的弯曲变化角,即叶片的前缘安装角与尾缘安装角的差值。为本领域为公知的是,叶轮的叶片均具有前缘和尾缘(“尾缘”也可称为“后缘”),根据流体的流动方向来判断,流体从叶片前缘流入叶片通道,从叶片尾缘流出叶片通道。
参照图7,用与叶轮同轴的等径圆筒面与叶片相交形成月牙形的截面,图中为方便说明以LE示出叶片的前缘,以TE示出叶片的尾缘。该截面的中弧线在前缘LE处的切线,与前缘LE在等径圆筒面上的切线,二者之间夹角为前缘安装角β 1m。该截面的中弧线在后缘TE处的切线,与后缘TE在等径圆筒面上的切线,二者之间夹角为后缘安装角β 2m。前缘安装角β 1m与后缘安装角β 2m的差值等于弯角Δβ。
在本发明的一些实施例中,如图1、图3、图4所示,具有隔环50的叶轮上,相邻两圈叶片中,内圈的叶片的弯角大于外圈的叶片的弯角。由于内圈的叶片刚度大、承载能力强,且不影响外圈叶片的叶型,因此可以通过设计增加内圈叶片的弯角,来提高内圈叶片的做功能力。
弯角越大的内圈叶片,气流在经内圈时转弯幅度越大,产生的气流旋就越多。出口气流中气流旋越多,风扇做功能力越强,即风量、风压更大。从而一方面增加了对旋风扇100中心位置出风能力,另一方面可加快轮毂60附近电机10的散热和冷却。
在本发明的一些实施例中,具有隔环50的叶轮上,相邻两圈叶片中,内圈的叶片的数量等于外圈的叶片的数量。在另一些实施例中,如图1、图3、图4所示,具有隔环50的叶轮上,相邻两圈叶片中,内圈的叶片的数量多于外圈的叶片的数量。内圈叶片数量设计的多一些可以解决内圈做功能力弱的缺陷,提高对旋风扇100出风的均匀性。内圈叶片和外圈叶片之间由于设置了隔环50,叶片在隔环50处弯角得到增加。
在本发明的一些实施例中,如图3所示,具有两圈叶片的叶轮上,隔环50的直径与轮毂60的直径之间差值为内环差,外圈的叶片的外径与轮毂60的直径之间的差值为外环差,内环差至少为外环差的0.3倍,且内环差不超过外环差的0.7倍。具体而言,轮毂60的直径为r1,隔环50的直径为r2,外圈的叶片的外径为r3,r1、r2、r3满足r2与r1的差值和r3与r1的差值的比值范围为0.3~0.7,即符合如下关系式:(r2-r1)/(r3-r1)的比值为0.3~0.7。这里,外圈的叶片的外径指的是,所有外圈的叶片距离旋转轴线最远点所在圆的直径。
当外圈叶片设计弯扭较为严重时,取较大值,即外圈叶片的轮缘直径和内圈叶片的轮缘直径之间相差较小,需要增加的内圈风场的面积较多,使得外圈叶片不因弯扭太大而在旋转时轻易发生断裂;当外圈叶片设计弯扭较小时,取较小值,即外圈叶片的轮缘直径和内圈叶片的轮缘直径可相差较大,需要增加的内圈风场的面积较小,外圈叶片不易断裂。这是综合考虑了外圈叶片的强度问题和内圈叶片的空气通流能力,综合得出的结果。
在本发明的一些实施例中,隔环50的厚度小于等于叶片的最大厚度。叶轮的叶片设计过厚会有两方面的噪音影响,当第一级叶轮30的叶片的厚度太厚,其尾缘尾迹会和第二级叶轮40的叶片前缘进行干涉,导致冲击噪声。当第二级叶轮40的叶片过厚也会带来第二级叶轮40的隔环50部分的尾迹宽频噪音。因此隔环50和叶片的厚度要合理设计,取适当的厚度差,以减小噪声,增加美观度,且保持对旋风扇100较好的出风性能。
可选地,隔环50的整个表面为光滑的弧面。隔环50的前部、侧部或后部均需要为圆头或者椭圆头等光滑弧线设计,避免产生额外气流噪音。
可选地,外圈的叶片与隔环50的外壁连接,内圈的叶片一端与隔环的内壁连接,内圈的叶片另一端与轮毂60连接。使内圈和外圈叶片在高速旋转时,不易弯折。
在本发明的一些实施例中,如图2所示,电机10为两个,两个电机10分别与两个叶轮相连,两个叶轮同轴设置。两个电机10分别控制一级叶轮,方便通过电机10的转速的调整,改变两级叶轮的转速,且便于安装和布置,对旋风扇100的对称性好。两叶轮分别通过锁紧螺母61与电机10的电机轴连接。
在本发明的一些实施例中,电机10为一个,电机10与至少一个叶轮之间连接有传动机构。使用单个电机10进行驱动旋转,可进一步降低对旋风扇100的整体噪声,并简化对旋风扇100的结构。其中传动机构为行星轮机构,具体的,电机10的两端沿轴向均伸出设有电机轴,电机轴的一端连接第一级叶轮30的轮毂60,电机轴的另一端通过行星轮机构连接第二级叶轮40的轮毂60,行星轮机构可采用现有技术公知的行星机构的方案,这里不作限制。由此,对旋风扇100整体紧凑,第二级叶轮40和第一级叶轮30在旋转时噪声更低,旋转转速比可通过传动机构的选择而调整。
在本发明的一些实施例中,如图1所示,对旋风扇100还包括:支架20,电机10设在支架20上,两个叶轮位于支架20的相对两侧。支架20支撑两级叶轮转动,增强其旋转的稳定性。
可选地,支架20包括:内承板、外支环21、辐射杆22。其中,电机10固定在内承板(相当于电机支架)上;外支环21外套在内承板的外侧;辐射杆22为多个,多个辐射杆22环绕内承板设置,每个辐射杆22的一端与内承板相连,每个辐射杆22的另一端与外支环21相连。内承板为电机的安装提供了支撑和空间,辐射杆22和外支环21的结构设置可减小对气流的干扰。
为更好理解本发明实施例的方案,下面结合图1-图5描述本发明的一个具体实施例中对旋风扇100的结构。
如图1、图2所示,一种对旋风扇,包括第一级叶轮30、第二级叶轮40、一个电机10、支架20。其中第一级叶轮30和第二级叶轮40沿轴向间隔开设置,当对旋风扇100旋转时,气流由第一级叶轮30朝向第二级叶轮40的方向吹动。
如图3、图4所示,第一级叶轮30、第二级叶轮40均具有沿径向排布的内圈扇叶和外圈扇叶,且内圈扇叶和外圈扇叶之间均采用隔环50隔开,其中内圈扇叶的一端与轮毂60连接,内圈扇叶的另一端与隔环50连接,外圈扇叶与隔环50的外部连接。
内圈叶片的弯角均大于外圈叶片的弯角,且内圈叶片的数量均多于外圈叶片的数量。隔环50的厚度小于叶片的最大厚度。隔环50各处均设为光滑弧面。
电机10两端沿轴向伸出电机轴,一端与第一级叶轮30连接,另一端通过传动机构与第二级叶轮40连接。电机10设在支架20的内承板上。
支架20还包括外支环21、辐射杆22,外支环21外套在内承板的外侧。多个辐射杆22环绕内承板设置,每个辐射杆22的一端与内承板相连,每个辐射杆22的另一端与外支环21相连。
如图5所示,对旋风扇100中部靠近轮毂60的风场的回流区较小,整个出风风场较为均匀,既有广散风,又有远距离平直风。第一级叶轮30逆时针旋转时,第二级叶轮40顺时针旋转;相反,第一级叶轮30顺时针旋转时,第二级叶轮40逆时针旋转。
在本发明的描述中,需要理解的是,术语“中心”、“长度”、“上”、“下”、“前”、“后”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,“第一级叶轮”、“第二级叶轮”限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料 或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种对旋风扇,其特征在于,包括:
    两个叶轮,两个所述叶轮沿轴向间隔开设置且分为第一级叶轮和第二级叶轮,所述对旋风扇运转时气流由所述第一级叶轮朝向所述第二级叶轮的方向吹动,至少一个所述叶轮具有多圈的叶片,多圈所述叶片沿所述叶轮的径向排布,每圈的多个所述叶片绕所述叶轮的轮毂间隔开设置,相邻两圈所述叶片之间连接有隔环;
    电机,所述电机用于驱动两个所述叶轮旋转。
  2. 根据权利要求1所述的对旋风扇,其特征在于,具有所述隔环的所述叶轮上,每相邻两圈所述叶片中,内圈的所述叶片的弯角大于等于外圈的所述叶片的弯角。
  3. 根据权利要求1或2所述的对旋风扇,其特征在于,具有所述隔环的所述叶轮上,相邻两圈所述叶片中,内圈的所述叶片的数量大于等于外圈的所述叶片的数量。
  4. 根据权利要求1、2或3所述的对旋风扇,其特征在于,具有两圈所述叶片的所述叶轮上,所述隔环的直径与所述轮毂的直径之间差值为内环差,外圈的所述叶片的外径与所述轮毂直径之间的差值为外环差,所述内环差至少为所述外环差的0.3倍,且所述内环差不超过所述外环差的0.7倍。
  5. 根据权利要求1~4中任一项所述的对旋风扇,其特征在于,所述隔环的厚度小于等于所述叶片的最大厚度。
  6. 根据权利要求1~5中任一项所述的对旋风扇,其特征在于,所述隔环的整个表面为光滑的弧面。
  7. 根据权利要求1~6中任一项所述的对旋风扇,其特征在于,所述电机为两个,两个所述电机分别与两个所述叶轮相连,两个所述叶轮同轴设置。
  8. 根据权利要求1~7中任一项所述的对旋风扇,其特征在于,所述电机为一个,所述电机与至少一个所述叶轮之间连接有传动机构。
  9. 根据权利要求1~8中任一项所述的对旋风扇,其特征在于,还包括:支架,所述电机设在所述支架上,所述两个叶轮位于所述支架的相对两侧。
  10. 根据权利要求9所述的对旋风扇,其特征在于,所述支架包括:
    内承板,所述电机固定在所述内承板上;
    外支环,所述外支环外套在所述内承板的外侧;
    辐射杆,所述辐射杆为多个,多个所述辐射杆环绕所述内承板设置,每个所述辐射杆的一端与所述内承板相连,每个所述辐射杆的另一端与所述外支环相连。
PCT/CN2018/122531 2018-10-15 2018-12-21 对旋风扇 WO2020077813A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021515113A JP7140911B2 (ja) 2018-10-15 2018-12-21 正逆回転ファン
KR1020217007966A KR102520545B1 (ko) 2018-10-15 2018-12-21 이중 반전 팬
US17/283,528 US11661943B2 (en) 2018-10-15 2018-12-21 Counter-rotating fan
EP18936996.0A EP3839261B1 (en) 2018-10-15 2018-12-21 Counter-rotating fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811198969.9 2018-10-15
CN201811198969.9A CN111043057B (zh) 2018-10-15 2018-10-15 对旋风扇

Publications (1)

Publication Number Publication Date
WO2020077813A1 true WO2020077813A1 (zh) 2020-04-23

Family

ID=70230429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122531 WO2020077813A1 (zh) 2018-10-15 2018-12-21 对旋风扇

Country Status (6)

Country Link
US (1) US11661943B2 (zh)
EP (1) EP3839261B1 (zh)
JP (1) JP7140911B2 (zh)
KR (1) KR102520545B1 (zh)
CN (1) CN111043057B (zh)
WO (1) WO2020077813A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074978A1 (en) * 2021-04-14 2022-10-19 Stokes Technology Development Ltd. Counter-rotating axial air moving device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828355B (zh) * 2020-07-09 2021-12-28 宁海县洪基新型建材科技有限公司 一种节能鼓风机
CN112283152B (zh) * 2020-10-15 2023-04-21 青岛海尔智慧厨房电器有限公司 一种双向扇叶及厨房电器
CN112594212A (zh) * 2020-12-09 2021-04-02 江苏美的清洁电器股份有限公司 一种叶轮、风机及吸尘器
CN112797013B (zh) * 2020-12-31 2023-08-18 广东美的厨房电器制造有限公司 风扇组件以及烹饪器具
CN214536536U (zh) * 2021-01-21 2021-10-29 青岛海尔空调器有限总公司 空调室内机和空调
FI129583B (fi) * 2021-04-29 2022-05-13 Napalmi Tietotekniikka Oy Puhallin
KR102590181B1 (ko) * 2021-09-27 2023-10-16 한국기술교육대학교 산학협력단 공기청정 실링팬
KR102441173B1 (ko) * 2021-11-08 2022-09-08 디엠엔텍 주식회사 탈취기용 이산화염소 발생 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050191A (ja) * 1999-08-06 2001-02-23 Minoru Sugitani ツイン扇風機
US20060276122A1 (en) * 2005-06-06 2006-12-07 Chung-Yin Cheng Electric fan
CN101105179A (zh) * 2006-07-10 2008-01-16 台达电子工业股份有限公司 散热装置
CN201818521U (zh) * 2010-10-11 2011-05-04 方齐 气动轴流式对旋风机
CN102052339A (zh) * 2011-01-20 2011-05-11 浙江理工大学 双层反转轴流风扇
CN202451460U (zh) * 2011-11-15 2012-09-26 广东三源生活电器有限公司 一种风扇扇叶
CN102705269A (zh) * 2012-05-29 2012-10-03 张秀英 一种双扇叶的消音风扇
CN203114677U (zh) * 2013-01-27 2013-08-07 王龙有 一种双扇叶的迷你风扇
CN203189324U (zh) * 2013-03-22 2013-09-11 曾慕楚 双层电风扇扇叶
CN103696987A (zh) * 2012-09-27 2014-04-02 台达电子工业股份有限公司 风扇及其增压扇叶组
CN106968973A (zh) * 2017-05-09 2017-07-21 美的集团股份有限公司 轴流风机

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143283A (en) * 1961-07-27 1964-08-04 Clarage Fan Company Fan equipment
JPS5261620A (en) * 1975-11-15 1977-05-21 Ito Kiyoshi Fluid especially air suction apparatus
JP3071456B2 (ja) * 1990-10-31 2000-07-31 アジレント・テクノロジー株式会社 ベクタ補正型サンプルホールド回路
US5454695A (en) 1994-07-05 1995-10-03 Ford Motor Company High output engine cooling fan
US5755557A (en) 1995-08-03 1998-05-26 Valeo Thermique Moteur Axial flow fan
IT232118Y1 (it) * 1996-12-06 1999-09-10 Bacchiocchi Alberto Gruppo di aspirazione a doppia coclea per cappe, forni e simili
TW529675U (en) * 1999-11-25 2003-04-21 Delta Electronics Inc Improved fan with movable blade series connected
US6591873B1 (en) 2001-11-21 2003-07-15 Air Cruisers Company Turbo fan aspirator
US20030150326A1 (en) * 2002-02-11 2003-08-14 Hp Intellectual Corp. Multi-stage air cleaner fan system
US7484925B2 (en) * 2005-05-10 2009-02-03 Emp Advanced Development, Llc Rotary axial fan assembly
JP4862482B2 (ja) * 2006-05-15 2012-01-25 株式会社デンソー 送風装置
WO2008072516A1 (ja) * 2006-12-11 2008-06-19 Mitsuba Corporation 冷却ファン
JP4076570B1 (ja) 2007-04-18 2008-04-16 山洋電気株式会社 二重反転式軸流送風機
EP2469101B1 (en) * 2009-06-28 2014-08-13 Balmuda Inc. Axial fan
CN101994713B (zh) * 2009-08-26 2014-03-26 鸿富锦精密工业(深圳)有限公司 风扇及具有该风扇的电子装置
US20130170995A1 (en) * 2012-01-04 2013-07-04 Ming-Ju Chen Axial flow fan blade structure and axial flow fan thereof
CN202597137U (zh) * 2012-05-24 2012-12-12 黄正滨 一种适用于吸尘器的具有两级叶轮的风机
CN102808793B (zh) * 2012-08-17 2015-05-06 三河市燕京矿山设备有限公司 一种对旋式轴流风机
JP5709921B2 (ja) 2013-03-29 2015-04-30 リズム時計工業株式会社 二重反転式送風機
KR102395851B1 (ko) * 2015-04-08 2022-05-10 삼성전자주식회사 팬 어셈블리 및 이를 포함하는 공기조화기
CN206694277U (zh) * 2017-03-22 2017-12-01 恒爱节能环控设备有限公司 一种多层扇叶式斜流风机
US20190063443A1 (en) * 2017-08-23 2019-02-28 Ta-Chang Liu Double-motor Double-blade Booster Fan
CN207795606U (zh) * 2017-12-22 2018-08-31 广东美的白色家电技术创新中心有限公司 轴流风机
CN207892890U (zh) * 2018-02-07 2018-09-21 广东美的环境电器制造有限公司 双层风叶及风扇

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050191A (ja) * 1999-08-06 2001-02-23 Minoru Sugitani ツイン扇風機
US20060276122A1 (en) * 2005-06-06 2006-12-07 Chung-Yin Cheng Electric fan
CN101105179A (zh) * 2006-07-10 2008-01-16 台达电子工业股份有限公司 散热装置
CN201818521U (zh) * 2010-10-11 2011-05-04 方齐 气动轴流式对旋风机
CN102052339A (zh) * 2011-01-20 2011-05-11 浙江理工大学 双层反转轴流风扇
CN202451460U (zh) * 2011-11-15 2012-09-26 广东三源生活电器有限公司 一种风扇扇叶
CN102705269A (zh) * 2012-05-29 2012-10-03 张秀英 一种双扇叶的消音风扇
CN103696987A (zh) * 2012-09-27 2014-04-02 台达电子工业股份有限公司 风扇及其增压扇叶组
CN203114677U (zh) * 2013-01-27 2013-08-07 王龙有 一种双扇叶的迷你风扇
CN203189324U (zh) * 2013-03-22 2013-09-11 曾慕楚 双层电风扇扇叶
CN106968973A (zh) * 2017-05-09 2017-07-21 美的集团股份有限公司 轴流风机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074978A1 (en) * 2021-04-14 2022-10-19 Stokes Technology Development Ltd. Counter-rotating axial air moving device

Also Published As

Publication number Publication date
EP3839261A4 (en) 2021-11-24
KR20210040448A (ko) 2021-04-13
CN111043057A (zh) 2020-04-21
EP3839261B1 (en) 2023-08-23
CN111043057B (zh) 2022-03-25
JP2022500590A (ja) 2022-01-04
US20210388838A1 (en) 2021-12-16
KR102520545B1 (ko) 2023-04-10
US11661943B2 (en) 2023-05-30
JP7140911B2 (ja) 2022-09-21
EP3839261A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2020077813A1 (zh) 对旋风扇
JP7092433B2 (ja) 正逆回転ファン
US7214033B2 (en) Blower fan
US11022129B2 (en) Pressurized cooling fan and instructions for use
MX2007000296A (es) Ventilador axial.
WO2015146013A1 (ja) 扇風機用のプロペラファン、扇風機
US20200158137A1 (en) Cross-flow wind turbine, and fan heater
WO2021063050A1 (zh) 风扇及轴流叶轮
CN106640758A (zh) 一种双风道风轮
CN207407420U (zh) 风暖式室内加热器
WO2021243969A1 (zh) 扇叶、风机、空调室外机和空调系统
WO2023202327A1 (zh) 组合式扇叶结构及出风装置
CN205639069U (zh) 轴流柜机的动叶、导流组件和轴流柜机
CN105782076A (zh) 离心风机和抽油烟机
KR20220140837A (ko) 팬 및 전기 헤어 드라이어
CN109236742B (zh) 蜗舌、风机和油烟机
CN207926301U (zh) 一种铸铝转子
CN209892506U (zh) 风轮和轴流风机
WO2020077916A1 (zh) 对旋风扇
CN217682366U (zh) 扇轮及具有该扇轮的散热风扇
CN216342935U (zh) 轴流风机及空调室外机
CN205618392U (zh) 离心风机和抽油烟机
CN216199224U (zh) 一种离心风轮以及空调器
CN116255361A (zh) 扇轮及具有该扇轮的散热风扇
CN214742354U (zh) 一种提效轴流风机集流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1936996.0

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021515113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE