WO2023202327A1 - 组合式扇叶结构及出风装置 - Google Patents

组合式扇叶结构及出风装置 Download PDF

Info

Publication number
WO2023202327A1
WO2023202327A1 PCT/CN2023/084019 CN2023084019W WO2023202327A1 WO 2023202327 A1 WO2023202327 A1 WO 2023202327A1 CN 2023084019 W CN2023084019 W CN 2023084019W WO 2023202327 A1 WO2023202327 A1 WO 2023202327A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
blade
air
inner hub
fan blade
Prior art date
Application number
PCT/CN2023/084019
Other languages
English (en)
French (fr)
Inventor
张平
孙兴林
周慧珠
孙叶琳
骆兰英
Original Assignee
续新电器技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 续新电器技术(深圳)有限公司 filed Critical 续新电器技术(深圳)有限公司
Priority to AU2023258075A priority Critical patent/AU2023258075A1/en
Publication of WO2023202327A1 publication Critical patent/WO2023202327A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the present disclosure relates to a combined fan blade structure and an air outlet device.
  • axial flow fans are usually used to meet the air supply needs of large air volumes.
  • the air volume of axial flow fans is increased by reducing the hub ratio.
  • the hub ratio is the ratio of the hub diameter to the impeller diameter.
  • the hub ratio of the axial flow fan is limited. If the hub ratio is too small, the air outlet efficiency of the fan will be low, resulting in the fan being unable to meet the needs of large air volume and air outlet efficiency.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. To this end, the present disclosure proposes a combined fan blade structure and air outlet device, which can improve the air volume and air outlet efficiency of the fan blade structure.
  • the outer hub is coaxially arranged with the inner hub and sleeved on the outside of the inner hub;
  • the first blade group is connected to the outer peripheral surface of the outer hub, the first blade group includes a plurality of first blades, and the plurality of first blades are distributed at intervals along the circumferential direction of the outer hub;
  • the second blade set is connected between the inner hub and the outer hub.
  • the second blade set includes a plurality of second blades.
  • the plurality of second blades are distributed along the circumferential direction of the inner hub.
  • the outer hub blocks the second blades facing the outer hub. one side.
  • the first blade set and the second blade set are respectively located on the inner and outer sides of the outer hub in the radial direction. Both can receive air entering from the external environment, making the combined fan blade structure
  • the fan blade structure has a large air inlet area.
  • Both the first blade group and the second blade group can rotate to draw air from the inlet side of the fan blade structure.
  • the incoming air forms an airflow and is discharged, thereby increasing the air volume of the fan blade structure;
  • the first blade group allows a larger number of first blades to be connected, thereby increasing the air volume of the fan blade structure.
  • the number of second blades is not affected by the size of the hub.
  • the size of the inner hub is not limited due to the influence of the influence and the limitation of the hub ratio; the airflow generated by the first blade set and the second blade set is combined and discharged.
  • the fan blade structure can achieve the same speed at the same speed. A larger air volume is generated, and the rotation speed required to produce the same air volume is lower, which improves the air volume and air outlet efficiency of the fan blade structure.
  • the first blade includes an axial flow blade or an oblique flow blade
  • the second blade includes a centrifugal blade
  • the first blade is an axial flow blade, and projections of adjacent first blades in a plane perpendicular to the axial direction are arranged at circumferential intervals;
  • the first blade is an oblique flow blade, and the projections of adjacent first blades in a plane perpendicular to the axial direction have overlapping areas along the circumferential direction.
  • the outer hub is inclined in a direction away from the rotation axis of the inner hub.
  • the inner hub is inclined in a direction away from the rotation axis of the inner hub.
  • the opening of the inner hub faces the air outlet side.
  • the inner hub includes a first air guide portion and a second air guide portion connected to each other.
  • the first air guide portion is located on the air inlet side of the inner hub, and the second air guide portion is radially connected to the outer hub.
  • the outer hubs are arranged oppositely, and the second blades are connected to the second flow guide portion.
  • the first air guide part and/or the second air guide part are inclined in a direction away from the rotation axis of the inner hub.
  • the acute angle between the first air guide part and the second air guide part and the rotation axis of the inner hub gradually decreases.
  • the first air guide portion is axially higher than the air inlet side of the outer hub.
  • the distance between adjacent second blades in the inner circumferential direction of the outer hub is smaller than the distance between adjacent first blades in the outer circumferential direction of the outer hub.
  • the hub ratio of the inner hub to the second blade is smaller than the hub ratio of the outer hub to the first blade.
  • the air deflector has an air inlet and an air outlet at both ends.
  • the air inlet and the air outlet are both connected to the air guide cavity.
  • the combined fan blade structure is housed in the air guide cavity. Arranged coaxially with the air deflector; and
  • the power component is connected to an end of the inner hub close to the air outlet, and is configured to drive the inner hub to rotate.
  • the air outlet device further includes a mounting base and a plurality of guide vanes.
  • the mounting base and the plurality of guide vanes are accommodated in the air deflector.
  • the mounting base and the air deflector are coaxially arranged, and the power part and the inner One end of the hub connection passes through the mounting seat, a plurality of guide vane rings are arranged on the outer periphery of the mounting seat, and the guide vanes are connected between the shroud and the mounting seat.
  • the outer wall of the mounting base is located radially inward of an end of the inner wall of the outer hub close to the air outlet.
  • the mounting base includes a first connection part, a second connection part and a transition part
  • the first connection part is perpendicular to the rotation axis of the inner hub
  • the second connection part is ringed around the outer periphery of the first connection part
  • the transition portion is connected between the first connecting portion and the second connecting portion, and the transition portion is inclined in a direction away from the rotation axis of the inner hub along the air outlet direction.
  • Figure 1 is a schematic structural diagram of some embodiments of the combined fan blade structure of the present disclosure.
  • Figure 2 is a top view of the combined fan blade structure in Figure 1.
  • Figure 3 is a schematic structural diagram of other embodiments of the combined fan blade structure of the present disclosure.
  • Figure 4 is a top view of the combined fan blade structure in Figure 3.
  • Figure 5 is a cross-sectional air outlet schematic diagram of the combined fan blade structure in Figure 1.
  • Figure 6 is a schematic structural diagram of some embodiments of the inner hub in Figure 5.
  • Figure 7 is a cross-sectional view of some embodiments of the air outlet device of the present disclosure.
  • Figure 8 is a schematic diagram of the air flow of the air outlet device in Figure 7.
  • Figure 9 is a three-dimensional schematic view of the air outlet device in Figure 7.
  • orientation descriptions such as up, down, front, back, left, right, etc., are based on the orientation or position relationships shown in the drawings and are only In order to facilitate the description of the present disclosure and simplify the description, it is not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation on the present disclosure.
  • an embodiment of the present disclosure provides a combined fan blade structure 100 (which may also be called a combined air outlet structure, hereinafter referred to as the fan blade structure 100 ).
  • the combined fan blade structure 100 includes The inner hub 110, the outer hub 120, the first blade set 130 and the second blade set 140.
  • the inner hub 110 and the outer hub 120 are coaxially arranged.
  • the outer hub 120 is sleeved on the outside of the inner hub 110, and there is a gap between them.
  • the first blade group 130 is located at the Radially outside the two blade sets 140, the first blade set 130 is connected to the outer peripheral surface of the outer hub 120, and the second blade set 140 is located between the inner hub 110 and the outer hub 120.
  • both blade set 130 and the second blade set 140 are respectively located on the inner and outer sides of the outer hub 120 in the radial direction, both can receive air entering from the external environment, so that the combined fan blade structure 100 has a larger air intake. area, both the first blade set 130 and the second blade set 140 can rotate to form an airflow from the air entering from the air inlet side of the fan blade structure 100 and discharge it, thereby increasing the air volume of the fan blade structure 100 .
  • the first blade group 130 includes a plurality of first blades 131 distributed along the circumferential direction of the outer hub 120
  • the second blade group 140 includes a plurality of second blades 141 .
  • 141 are distributed at intervals along the circumferential direction of the inner hub 110
  • the second blades 141 are respectively connected to the outer hub 120 and the inner hub 110 on both sides of the radial direction of the inner hub 110.
  • the inner hub 110 can be connected to the power component and simultaneously drive the first blade 141.
  • the blades 131 and the second blade group 140 rotate and form airflow.
  • the outer hub 120 blocks the side of the second blade 141 facing the outer hub 120 to guide the airflow.
  • one end of the second blade 141 close to the outer hub 120 can be partially connected to the outer hub 120, or can be All are connected to the outer hub 120.
  • the plurality of first blades 131 and the plurality of second blades 141 are all inclined in the same preset direction from the root connected to the outer hub 120.
  • the preset direction may be clockwise or clockwise. It's counterclockwise.
  • the first blade 131 is configured as an axial flow blade or an oblique flow blade
  • the second blade 141 is configured as a centrifugal blade.
  • the number of centrifugal blades is not affected by the size of the hub and is not limited by the hub ratio.
  • the size of the inner hub 110 is not limited, and a smaller inner hub 110 can be designed.
  • setting the second blade 141 as a centrifugal fan blade can increase the number of The number of second blades 141 is conducive to increasing the air volume, and the outer hub 120 blocks the side of the second blades 141 facing the outer hub 120, so that the airflow generated by the second blades 141 can be guided out along the axial direction of the fan blade structure 100.
  • the second blade set 140 is allowed to discharge air axially; the first blade set 130 can generate axial or oblique airflow. Since the first blade set 130 is connected to the outer hub 120, the size of the outer hub 120 is larger, allowing a larger number of connections. There are more first blades 131 to increase the air volume of the fan blade structure 100.
  • the airflow generated by the first blade group 130 and the second blade group 140 is combined and discharged.
  • the provided fan blade structure 100 can generate a larger air volume at the same rotational speed, and the rotational speed required to generate the same air volume is lower, which improves the air volume and air outlet efficiency of the fan blade structure 100 .
  • the airflow generated by the centrifugal blades has a large wind pressure.
  • the wind pressure of the mixed airflow can be increased. Therefore, the fan blade structure 100 is suitable for air outlet environments with high wind pressure and large air volume.
  • the diversion effect of the second blade group 140 is to guide the radial airflow generated by the second blade group 140 along the axial direction, so that the fan blade structure 100 can discharge air in the axial direction, which can be applied to axial flow fans and increases the size of the fan.
  • the blade structure 100 combines the wind pressure of the air flow, which is beneficial to increasing the air outlet speed of the fan blade structure 100 .
  • the linear velocity on the inner side of the axial flow blade is usually smaller than the linear velocity on the outer side of the axial flow blade.
  • the airflow generated by the axial flow blade has the characteristics of small inner speed and large outer speed.
  • the first blade group 130 is Combined with the second blade set 140, and the number of the second blades 141 is not limited, it can generate large airflow.
  • the airflow generated by the second blade set 140 can make up for the lack of linear speed inside the first blade set 130, making the fan
  • the airflow on the entire air outlet surface of the leaf structure 100 is more uniform.
  • the first blade 131 is an axial flow blade
  • the first blade group 130 discharges air axially
  • the mixed airflow of the first blade group 130 and the second blade group 140 is discharged in the axial direction.
  • the fan blade structure 100 discharges airflow along the axial direction
  • the fan blade structure 100 is suitable for environments with axial air outlet requirements;
  • the first blade 131 is an oblique flow blade
  • the first blade 131 is an oblique flow blade.
  • One blade group 130 discharges air obliquely, and the mixed airflow of the first blade group 130 and the second blade group 140 is discharged in axial and oblique directions.
  • the fan blade structure 100 is suitable for environments with axial and oblique air outlet requirements.
  • the projections of the adjacent first blades 131 in a plane perpendicular to the axial direction do not overlap, or in other words, the adjacent first blades 131 are in a plane perpendicular to the axial direction.
  • the projections in the plane are spaced along the circumferential direction.
  • the fan blade structure 100 can be molded along the axial direction and integrally formed by injection molding. The processing cost of the fan blade structure 100 is low, and each component does not need to be assembled, making it highly convenient to use. As shown in FIG.
  • the projections of adjacent first blades 131 on a plane perpendicular to the axial direction have overlapping areas along the circumferential direction, and the fan blade structure 100 cannot be molded along the axial direction.
  • row-position mold opening that is, use sliders to form some structures that cannot be directly parted
  • the processing cost of the oblique flow blade is lower Higher, but at the same rotation speed, the air flow generated has a larger air volume and wind pressure, and no matter the first blade 131 is an axial flow blade or an oblique flow blade, due to the combination of the first blade group 130 and the second blade group 140
  • the fan blade structure 100 can generate airflow with large air volume and high pressure, and can discharge air with high efficiency.
  • the outer hub 120 is tilted away from the rotation axis of the inner hub 110 , so that the outer hub 120 is tilted toward the outside of the fan blade structure 100 relative to the central axis of the fan blade structure 100 , or It is said that the outer hub 120 has a gradually expanding structure along the air outlet direction.
  • the second blade 141 is a centrifugal blade, and the airflow generated by the second blade group 140 flows along the radial direction of the fan blade structure 100.
  • the tilted arrangement of the outer hub 120 can reduce the impact of the second blade group 140 on the outer hub 120, and the outer hub 120 can reduce the impact of the second blade group 140 on the outer hub 120.
  • the hub 120 can diagonally lead out the airflow generated by the second blade set 140, so that the airflow can be more easily discharged from between the inner hub 110 and the outer hub 120, and avoid the contact between the outer hub 120 and the inner hub. Turbulence or noise is generated between 110; on the other hand, the airflow generated by the second blade group 140 is discharged obliquely outward, and the airflow generated by the first blade group 130 flows axially.
  • the airflow generated by the two can be quickly mixed. Driven by the airflow generated by the two blade groups 140, the flow rate of the mixed airflow can be increased.
  • the inner hub 110 is inclined in a direction away from the rotation axis of the inner hub 110 , or in other words, the inner hub 110 has a gradually expanding structure along the air outlet direction. Specifically, the inner hub 110 has only one opening and its opening faces the air outlet side.
  • the inclined arrangement of the inner hub 110 is also conducive to the introduction of air flow, which can increase the smoothness of the air inlet and outlet of the fan blade structure 100 and avoid turbulence or noise between the inner hub 110 and the outer hub 120 .
  • the inner hub 110 has a first air guide part 111 and a second air guide part 112 .
  • the first air guide part 111 and the second air guide part 112 are integrally connected.
  • the first air guide part 111 is located on the inner hub 110
  • the second air guide part 112 is arranged opposite to the outer hub 120 in the radial direction of the outer hub 120.
  • Both sides of the second blade 141 are respectively connected to the inner side of the outer hub 120 and the outer side of the second air guide part 112.
  • Both the first air guide part 111 and the second air guide part 112 can guide the outside air, allowing the outside air to enter between the inner hub 110 and the outer hub 120.
  • the first air guide part 111 can be used to connect power components, through The power component provides power to the fan blade structure 100 so that the fan blade structure 100 generates airflow.
  • the first air guide 111 is inclined in a direction away from the rotation axis of the inner hub 110 , that is, the first air guide 111 is inclined from the air inlet side toward the air outlet side of the fan blade structure 100 , and The size of the first guide part 111 along the radial direction of the outer hub 120 gradually increases.
  • the first guide part 111 guides the air in the external environment and quickly guides the air entering the fan blade structure 100 to the outer circumference of the inner hub 110 , and enters between the inner hub 110 and the outer hub 120 , causing the air to form an airflow under the rotation of the second blade group 140 , thereby improving the air outlet efficiency of the fan blade structure 100 .
  • the axial cross section of the first air guide part 111 along the blade structure 100 may be triangular or arc-shaped, that is, the first air guide part 111 may be a cone surface, a spherical surface, etc., to achieve rapid air guidance.
  • the cross section of the first air guide part 111 is arc-shaped, and the first air guide part 111 and the second air guide part 112 transition smoothly at the connection point, and the air can flow along the outer surface of the inner hub 110 to avoid air flow. Turbulence is generated during the flow process, thereby reducing the noise of the fan blade structure 100 .
  • the second air guide part 112 is inclined in a direction away from the rotation axis of the inner hub 110, and the external air quickly flows to the second air guide part under the guidance of the first air guide part 111.
  • the second airflow guide part 112 leads the airflow generated by the second blade set 140 obliquely outward. Under the guidance of the second airflow guide part 112, the airflow generated by the second blade set 140 can quickly interact with the second blade set 140.
  • a blade set 130 produces The airflow is mixed; in addition, since the outer hub 120 and the second guide part 112 are both inclined toward the outside of the fan blade structure 100, the oblique guide effect on the airflow generated by the second blade set 140 can be enhanced, which facilitates the first blade set 130 Rapid mixing with the airflow generated by the second blade set 140 .
  • the acute angle between the first air guide part 111 and the second air guide part 112 and the rotation axis of the inner hub 110 gradually decreases, that is, the first air guide part 111 and the second air guide part 111 gradually decrease.
  • the flow portions 112 are smoothly connected in an arc shape and both protrude in a direction away from the rotation axis, which not only helps to guide the air flow along the outer surface of the inner hub 110, but also promotes the airflow generated by the second blade set 140 to interact with the first blade.
  • Group 130 produces airflow mixing.
  • the first air guide 111 is axially higher than the air inlet side of the outer hub 120 , which can optimize the steering angle of the airflow in the middle part of the second blade set 140 , for example, increase the airflow in the middle part of the centrifugal fan blades.
  • the steering angle of the wind side is axially higher than the air inlet side of the outer hub 120, which can strengthen the air guide effect and increase the smoothness of the air inlet and outlet of the air duct between the inner hub 110 and the outer hub 120.
  • the distance between adjacent second blades 141 in the circumferential direction on the inner side of the outer hub 120 is smaller than the distance between adjacent first blades 131 in the outer circumferential direction of the outer hub 120 . That is, the second blade 141 is smaller than the first blade. 131 are arranged more densely. Since the second blades 141 are centrifugal blades, the number of the second blades 141 and the size of the inner hub 110 are not limited by the hub ratio. By setting a larger number of second blades 141, the second blade group can be improved.
  • the air output volume is 140, thereby increasing the overall air volume of the fan blade structure 100; in addition, the hub ratio of the inner hub 110 and the second blade 141 is smaller than the hub ratio of the outer hub 120 and the first blade 131. Therefore, the second blade group 140 is Compared with the first blade group 130, it can generate airflow with larger air volume and wind pressure. Compared with the traditional axial flow fan, the air volume and wind pressure of the fan blade structure 100 are effectively enhanced.
  • an embodiment of the present disclosure also provides an air outlet device, which includes the above-mentioned combined air outlet structure 100, and also includes a air guide 200 and a power part 300. Both ends of the air guide 200 An air inlet 210 and an air outlet 220 are provided respectively.
  • the air guide 200 has a guide cavity 230 inside. Both the air inlet 210 and the air outlet 220 are connected with the guide cavity 230.
  • the combined fan blade structure 100 is accommodated in the guide cavity. 230 and coaxially arranged with the air deflector 200. External air enters the air guide chamber 230 from the air inlet 210.
  • the power part 300 is connected to one end of the inner hub 110 near the air outlet 220.
  • the power part 300 is configured to drive the inner hub 110. Rotation, the first blade set 130 and the second blade set 140 form an air flow during the rotation process.
  • the air passes through the fan blade structure 100 to form an air flow and is discharged from the air outlet 220 .
  • the air deflector 200 is coaxially arranged with the inner hub 110 and the outer hub 120 .
  • the power component 300 is connected to the air outlet side of the fan blade structure 100 and is located at the center of the fan blade structure 100 .
  • 200 and the power part 300 the airflow discharged from the air outlet 220 by the air outlet device is distributed in an annular area and along the
  • the axial discharge of the air guide 200 is constrained by the air guide 200 and the power part 300, and the air flow of the air outlet device is relatively linear, which is suitable for axial air outlet and fixed area air supply environments.
  • the air outlet device also includes a mounting base 400 and a plurality of guide vanes 500.
  • the mounting base 400 and the plurality of guide vanes 500 are accommodated in the air deflector 200.
  • the mounting base 400 and the air deflector 200 Coaxially arranged, one end of the mounting seat 400 is connected to the inner hub 110, and one end of the power component 300 connected to the inner hub 110 passes through the mounting seat 400.
  • the mounting seat 400 is configured to support and install the power component 300, and a plurality of guide vanes 500 ring Located on the outer periphery of the mounting base 400, the radial sides of the guide vane 500 are respectively connected to the air deflector 200 and the mounting base 400.
  • the guide vane 500 simultaneously serves to connect the air deflector 200 and the mounting base 400, and to guide the air flow. , to improve the coaxiality between the mounting base 400 and the air deflector 200 and the overall structural strength of the mounting base 400 and the air deflector 200, and to discharge the airflow in the air guide cavity 230 along the axial direction of the air deflector 200.
  • the plurality of guide vanes 500 are evenly distributed along the circumferential direction of the mounting base 400.
  • the uniformity of the air flow at the air outlet 220 can be improved.
  • the air guide 200 is expanded at one end of the air inlet 210 to facilitate external air to enter the air guide cavity 230 .
  • the mounting base 400 includes a first connecting part 410 and a second connecting part 420.
  • the first connecting part 410 is perpendicular to the rotation axis of the inner hub 110.
  • the second connecting part 420 is annular and connected to the first connecting part 410.
  • the first connection part 410 is in contact with the power component 300
  • the second connection part 420 is connected with the guide vane 500 .
  • the inner hub 110 includes a mounting portion 113 connected to the inside of the first air guide portion 111 , and the first connecting portion 410 has a through hole for power supply.
  • the output end of the component 300 passes through, and the output end of the power component 300 is inserted into the mounting part 113 to realize power transmission from the power component 300 to the inner hub 110 .
  • the outer wall of the mounting seat 400 is located inside the end of the inner wall of the outer hub 120 close to the air outlet 220 to prevent the mounting seat 400 from blocking the air outlet of the second blade group 140;
  • the mounting seat 400 also includes a transition portion 430 , both ends of the transition portion 430 are connected to the first connecting portion 410 and the second connecting portion 420 respectively.
  • the transition portion 430 is inclined in a direction away from the rotation axis of the inner hub 110 along the air outlet direction.
  • the transition portion 430 serves to support the fan blade structure.
  • the guiding effect of the exhaust airflow 100 guides the airflow between the second connecting part 420 and the airflow guide 200 so that the airflow is discharged along the axial direction of the airflow guide 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

组合式扇叶结构以及出风装置。组合式扇叶结构(100)包括:内轮毂(110)、外轮毂(120)、第一叶片组(130)和第二叶片组(140),外轮毂(120)与内轮毂(110)同轴设置,第一叶片组(130)连接于外轮毂(120)的外周面,第二叶片组(140)位于内轮毂(110)与外轮毂(120)之间,外轮毂(120)遮挡第二叶片组(140)。该组合式扇叶结构提高了风扇的出风量和出风效率。

Description

组合式扇叶结构及出风装置
相关申请的横向引用
本公开是以申请号为202210405774.7,申请日为2022年4月18日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及一种组合式扇叶结构及出风装置。
背景技术
这里的陈述仅提供与本公开有关的背景信息,而不必然地构成现有技术。
在风机技术领域,通常采用轴流风机来满足大风量的送风需求,通过降低轮毂比的方式提高轴流风机的风量,轮毂比为轮毂直径与叶轮直径的比值。但轴流风机的轮毂比受限,过小的轮毂比导致风机的出风效率较低,导致风机无法兼顾大风量与出风效率的需求。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种组合式扇叶结构及出风装置,能够提高扇叶结构的风量及出风效率。
根据本公开的第一方面实施例的组合式扇叶结构,包括:
内轮毂;
外轮毂,与内轮毂同轴设置,并套设于内轮毂的外部;
第一叶片组,连接于外轮毂的外周面,第一叶片组包括多个第一叶片,多个第一叶片沿外轮毂的周向间隔分布;和
第二叶片组,连接于内轮毂与外轮毂之间,第二叶片组包括多个第二叶片,多个第二叶片沿内轮毂的周向间隔分布,外轮毂遮挡第二叶片朝向外轮毂的一侧。
根据本公开实施例的组合式扇叶结构,至少具有如下有益效果:
本公开的实施例中提供的组合式扇叶结构,第一叶片组与第二叶片组在径向上分别位于外轮毂的内外两侧,二者均可接收外部环境中进入的空气,使组合式扇叶结构具有较大的进风面积,第一叶片组与第二叶片组均可通过转动将从扇叶结构进风侧进 入的空气形成气流并排出,从而增大扇叶结构的风量;第一叶片组允许连接数量较多的第一叶片,从而增大扇叶结构的风量,第二叶片的数量不受轮毂大小的影响以及轮毂比的限制,内轮毂的尺寸不受限;第一叶片组与第二叶片组所产生的气流组合后排出,相较于传统的轴流风机,扇叶结构能够在相同的转速下产生较大的风量,且产生相同的风量所需的转速较低,提高了扇叶结构的风量及出风效率。
根据本公开的一些实施例,第一叶片包括轴流叶片或斜流叶片,和/或第二叶片包括离心叶片。
根据本公开的一些实施例,第一叶片为轴流叶片,相邻的第一叶片在垂直于轴向的平面内的投影沿周向间隔设置;
或第一叶片为斜流叶片,相邻的第一叶片在垂直于轴向的平面内的投影沿周向具有重合区域。
根据本公开的一些实施例,沿出风方向,外轮毂朝远离内轮毂的旋转轴线的方向倾斜。
根据本公开的一些实施例,沿出风方向,沿出风方向,内轮毂朝远离内轮毂的旋转轴线的方向倾斜。
根据本公开的一些实施例,内轮毂的开口朝向出风侧。
根据本公开的一些实施例,内轮毂包括相互连接的第一导流部与第二导流部,第一导流部位于内轮毂的进风侧,第二导流部在外轮毂的径向上与外轮毂相对设置,第二叶片与第二导流部连接。
根据本公开的一些实施例,沿出风方向,第一导流部和/或第二导流部朝向远离内轮毂的旋转轴线的方向倾斜。
根据本公开的一些实施例,沿出风方向,第一导流部和第二导流部与内轮毂的旋转轴线的锐角夹角逐渐减小。
根据本公开的一些实施例,第一导流部沿轴向高于外轮毂的进风侧。
根据本公开的一些实施例,相邻的第二叶片在外轮毂内侧周向上的间距,小于相邻的第一叶片在外轮毂外侧周向上的间距。
根据本公开的一些实施例,内轮毂与第二叶片的轮毂比,小于外轮毂与第一叶片的轮毂比。
根据本公开的第二方面实施例的出风装置,包括:
第一方面实施例的组合式扇叶结构;
导流罩,两端分别设有进风口与出风口,导流罩的内部具有导流腔,进风口和出风口均与导流腔连通,组合式扇叶结构容置于导流腔内且与导流罩同轴设置;和
动力件,连接于内轮毂靠近出风口的一端,被配置为驱动内轮毂转动。
根据本公开的一些实施例,出风装置还包括安装座与多个导叶,安装座与多个导叶均容纳于导流罩内,安装座与导流罩同轴设置,动力件与内轮毂连接的一端穿过安装座,多个导叶环设于安装座的外周,导叶连接于导流罩和安装座之间。
根据本公开的一些实施例,安装座的外壁位于外轮毂的内壁靠近出风口一端的径向内侧。
根据本公开的一些实施例,安装座包括第一连接部、第二连接部和过渡部,第一连接部垂直于内轮毂的旋转轴线,第二连接部环设于第一连接部的外周,过渡部连接于第一连接部和第二连接部之间,且沿出风方向过渡部朝向远离内轮毂的旋转轴线的方向倾斜。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开组合式扇叶结构的一些实施例的结构示意图。
图2为图1中组合式扇叶结构的俯视图。
图3为本公开组合式扇叶结构的另一些实施例的结构示意图。
图4为图3中组合式扇叶结构的俯视图。
图5为图1中组合式扇叶结构的剖视出风示意图。
图6为图5中内轮毂的一些实施例的结构示意图。
图7为本公开出风装置的一些实施例的剖视图。
图8为图7中出风装置的气流流动示意图。
图9为图7中出风装置的立体示意图。
附图标记说明:
100、组合式扇叶结构;110、内轮毂;111、第一导流部;112、第二导流部;113、安装部;120、外轮毂;130、第一叶片组;131、第一叶片;140、第二叶片组;141、第二叶片;200、导流罩;210、进风口;220、出风口;230、导流腔;300、动力件;400、安装座;410、第一连接部;420、第二连接部;430、过渡部;500、导叶。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本公开的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本公开中的具体含义。
本公开的描述中,参考术语“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一些实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
参照图1至图4,本公开的实施例中提供了一种组合式扇叶结构100(也可被称为组合式出风结构,以下简称扇叶结构100),组合式扇叶结构100包括内轮毂110、外轮毂120、第一叶片组130与第二叶片组140,内轮毂110与外轮毂120同轴设置,外轮毂120套设于内轮毂110的外部,且二者之间具有间隙,第一叶片组130位于第 二叶片组140的径向外侧,第一叶片组130连接于外轮毂120的外周面,第二叶片组140位于内轮毂110与外轮毂120之间。由于第一叶片组130与第二叶片组140在径向上分别位于外轮毂120的内外两侧,二者均可接收外部环境中进入的空气,使组合式扇叶结构100具有较大的进风面积,第一叶片组130与第二叶片组140均可通过转动将从扇叶结构100进风侧进入的空气形成气流并排出,从而增大扇叶结构100的风量。
具体地,第一叶片组130包括多个第一叶片131,多个第一叶片131沿外轮毂120的周向间隔分布,第二叶片组140包括多个第二叶片141,多个第二叶片141沿内轮毂110的周向间隔分布,并且第二叶片141在内轮毂110径向上的两侧分别与外轮毂120和内轮毂110连接,内轮毂110可以与动力部件连接,并同时带动第一叶片131与第二叶片组140转动,并形成气流。具体地,外轮毂120遮挡第二叶片141朝向外轮毂120的一侧以对气流起到导向作用,可选地,第二叶片141靠近外轮毂120的一端可以部分连接在外轮毂120上,也可以全部连接在外轮毂120上。可选地,多个第一叶片131和多个第二叶片141自连接于外轮毂120的根部起均向相同的预设方向倾斜,可选地,预设方向可以是顺时针方向,也可以是逆时针方向。
另外,在本公开的一些实施例中,第一叶片131设置为轴流叶片或斜流叶片,第二叶片141设置为离心叶片,离心叶片的数量不受轮毂大小的影响以及轮毂比的限制,满足小轮毂、多叶片的设计需求,内轮毂110的尺寸不受限,可以设计尺寸较小的内轮毂110,相较于单纯设置轴流叶片,将第二叶片141设置为离心扇叶可以增加第二叶片141的数量,有利于增大风量,并且外轮毂120对第二叶片141朝向外轮毂120的一侧遮挡,可以将第二叶片141产生的气流沿扇叶结构100的轴向导出,使第二叶片组140轴向出风;第一叶片组130能够产生轴向或斜向的气流,由于第一叶片组130连接于外轮毂120,外轮毂120的尺寸较大,允许连接数量较多的第一叶片131,从而增大扇叶结构100的风量,第一叶片组130与第二叶片组140所产生的气流组合后排出,相较于传统的轴流风机,本公开实施例中提供的扇叶结构100,能够在相同的转速下产生较大的风量,且产生相同的风量所需的转速较低,提高了扇叶结构100的风量及出风效率。
需要说明的是,离心叶片所产生的气流风压较大,第二叶片组140产生的气流与第一叶片组130产生的气流混合后,可以增大混合气流的风压,因此,扇叶结构100适用于大风压、大风量的出风环境。本公开的实施例中,如图5所示,通过外轮毂120 对第二叶片组140的导流作用,将第二叶片组140所产生的径向气流沿轴向导出,使扇叶结构100轴向出风,能够应用于轴流风机,并增大了扇叶结构100组合气流的风压,有利于加大扇叶结构100的出风速度。
另外,通常轴流叶片内侧的线速度小于其外侧的线速度,导致轴流叶片所产生的气流具有内侧速度小、外侧速度大的特点,本公开的实施例中,通过将第一叶片组130与第二叶片组140组合,且第二叶片141的数量不受限,能够产生大风量气流,第二叶片组140所产生的气流能够弥补第一叶片组130内侧线速度不足的缺陷,使扇叶结构100整个出风面的气流更为均匀。
参照图1与图2,在一些实施例中,第一叶片131为轴流叶片,第一叶片组130轴向出风,第一叶片组130与第二叶片组140的混合气流沿轴向排出,扇叶结构100沿轴向排出气流,扇叶结构100适用于具有轴向出风需求的环境;参照图3与图4,在另一些实施例中,第一叶片131为斜流叶片,第一叶片组130斜向出风,第一叶片组130与第二叶片组140的混合气流沿轴向及斜向排出,扇叶结构100适用于具有轴向及斜向出风需求的环境。
如图2所示,第一叶片131为轴流叶片时,相邻的第一叶片131在垂直于轴向的平面内的投影不重合,或者说相邻的第一叶片131在垂直于轴向的平面内的投影沿周向间隔设置,扇叶结构100可以沿轴向开模,并通过注塑等方式一体成型,扇叶结构100的加工成本低,且各部件无需组装,使用便捷度高。如图4所示,第一叶片131为斜流叶片时,相邻的第一叶片131在垂直于轴向的平面内的投影沿周向具有重合区域,扇叶结构100无法沿轴向开模,可以进行行位开模(即利用滑块成型一些不能直接分模的结构),并通过注塑等工艺一体成型,相较于将第一叶片131设置为轴流叶片,斜流叶片的加工成本较高,但在相同转速下,所产生的气流具有较大的风量及风压,并且无论第一叶片131为轴流叶片或斜流叶片,由于第一叶片组130与第二叶片组140组合使用,扇叶结构100均可产生大风量、大风压的气流,并能高效率出风。
如图5所示,沿出风方向,外轮毂120朝远离内轮毂110的旋转轴线的方向倾斜,从而外轮毂120相较于扇叶结构100的中轴线向扇叶结构100的外侧倾斜,或者说沿出风方向外轮毂120为渐扩结构。一方面,第二叶片141为离心叶片,第二叶片组140所产生的气流沿扇叶结构100的径向流动,外轮毂120倾斜设置可以降低第二叶片组140对外轮毂120的冲击,并且外轮毂120可以将第二叶片组140产生的气流斜向导出,使气流更容易的从内轮毂110与外轮毂120之间排出,避免外轮毂120与内轮毂 110之间产生紊流或噪音;另一方面,第二叶片组140产生的气流斜向外排出,第一叶片组130产生的气流轴向流动,二者所产生的气流能够快速混合,在第二叶片组140所产生的气流的推动下,可以加大混合气流的流速。
在一些实施例中,如图5至图8所示,沿出风方向,内轮毂110朝远离内轮毂110的旋转轴线的方向倾斜,或者说沿出风方向内轮毂110为渐扩结构。具体地,内轮毂110仅有一个开口且其开口朝向出风侧。内轮毂110的倾斜设置也有利于气流的导入,能够增加扇叶结构100的进风和出风顺畅性,避免内轮毂110和外轮毂120之间产生紊流或噪声。
如图6所示,内轮毂110具有第一导流部111与第二导流部112,第一导流部111与第二导流部112一体连接,第一导流部111位于内轮毂110的进风侧,第二导流部112在外轮毂120的径向上与外轮毂120相对设置,第二叶片141的两侧分别与外轮毂120的内侧以及第二导流部112的外侧连接。第一导流部111与第二导流部112均可对外部空气导流,使外部空气进入内轮毂110与外轮毂120之间,另外,第一导流部111可供动力部件连接,通过动力部件为扇叶结构100提供动力,使扇叶结构100产生气流。
具体地,在一些实施例中,第一导流部111朝向远离内轮毂110的旋转轴线的方向倾斜,即第一导流部111从扇叶结构100的进风侧朝向出风侧倾斜,且第一导流部111沿外轮毂120径向的尺寸逐渐增大,第一导流部111对外部环境内的空气进行导向,将进入扇叶结构100内的空气快速引向内轮毂110的外周,并进入内轮毂110与外轮毂120之间,使空气在第二叶片组140的转动下形成气流,提高扇叶结构100的出风效率。
第一导流部111沿扇叶结构100的轴向截面可以为三角形或弧形等,即第一导流部111可以为锥面或球面等,以实现对空气的快速导流。在一些实施例中,第一导流部111的截面为弧形,第一导流部111与第二导流部112在连接处圆滑过渡,空气可以沿内轮毂110的外表面流动,避免空气流动过程中产生紊流,进而降低扇叶结构100的噪音。
进一步的,沿扇叶结构100的出风方向,第二导流部112朝向远离内轮毂110的旋转轴线的方向倾斜,外部空气在第一导流部111的导向作用下快速流动至第二导流部112处,第二导流部112将第二叶片组140产生的气流斜向外引出,在第二导流部112的导向作用下,第二叶片组140所产生的气流能够快速与第一叶片组130产生的 气流混合;另外,由于外轮毂120与第二导流部112均朝扇叶结构100的外侧倾斜,可以增强对第二叶片组140所产生的气流的斜向导流效果,便于第一叶片组130与第二叶片组140所产生气流的快速混合。
在一些实施例中,沿出风方向,第一导流部111和第二导流部112与内轮毂110的旋转轴线的锐角夹角逐渐减小,即第一导流部111与第二导流部112平滑连接成弧形且均朝向远离旋转轴线的方向凸出,既有利于对空气沿内轮毂110的外表面流动进行导向,又能促使第二叶片组140产生的气流与第一叶片组130产生的气流混合。
在一些实施例中,第一导流部111沿轴向高于外轮毂120的进风侧,能够优化第二叶片组140中间部分气流的转向角度,例如增大离心扇叶中间部分气流在进风侧的转向角度。该实施例的第一导流部111沿轴向高于外轮毂120的进风侧,能够强化导流作用,增加内轮毂110和外轮毂120之间风道的进风和出风顺畅性。
在一些实施例中,相邻的第二叶片141在外轮毂120内侧周向上的间距,小于相邻的第一叶片131在外轮毂120外侧周向上的间距,即第二叶片141相较于第一叶片131排布更为密集,由于第二叶片141为离心叶片,第二叶片141的数量以及内轮毂110的大小不受轮毂比限制,通过设置数量较多的第二叶片141可以提高第二叶片组140的出风量,从而提高扇叶结构100整体的风量;另外,内轮毂110与第二叶片141的轮毂比,小于外轮毂120与第一叶片131的轮毂比,因此,第二叶片组140相较于第一叶片组130能够产生较大风量及风压的气流,相较于传统的轴流风机,有效的增强了扇叶结构100的风量及风压。
参照图7与图8,本公开的实施例中还提供了一种出风装置,包括上述的组合式出风结构100,还包括导流罩200与动力件300,导流罩200的两端分别设有进风口210与出风口220,导流罩200的内部具有导流腔230,进风口210和出风口220均与导流腔230连通,组合式扇叶结构100容置于导流腔230内且与导流罩200同轴设置,外部空气从进风口210处进入导流腔230,动力件300连接于内轮毂110靠近出风口220的一端,动力件300被配置为驱动内轮毂110转动,第一叶片组130与第二叶片组140在转动过程中形成气流,空气经过扇叶结构100后形成气流并从出风口220排出。
如图8所示,导流罩200与内轮毂110、外轮毂120同轴设置,动力件300连接于扇叶结构100的出风侧,并位于扇叶结构100的中心位置,受导流罩200以及动力件300的导流作用,出风装置从出风口220处排出的气流分布于一环形区域内,并沿 导流罩200的轴向排出;受导流罩200与动力件300的约束,出风装置的气流直线性较好,适用于轴向出风以及固定区域送风的环境。
如图7与图9所示,出风装置还包括安装座400与多个导叶500,安装座400与多个导叶500均容纳于导流罩200内,安装座400与导流罩200同轴设置,安装座400的一端与内轮毂110连接,动力件300与内轮毂110连接的一端穿过安装座400,安装座400被配置为支撑及安装动力件300,多个导叶500环设于安装座400的外周,导叶500的径向两侧分别与导流罩200、安装座400连接,导叶500同时起到连接导流罩200与安装座400,以及对气流导向的作用,以提高安装座400与导流罩200的同轴度以及安装座400与导流罩200整体的结构强度,并使导流腔230内的气流沿导流罩200的轴向排出。
进一步的,多个导叶500沿安装座400的周向均匀分布,通过导叶500对导流腔230内气流的导向,可以提高出风口220处气流的均匀度。可选地,导流罩200在进风口210的一端呈扩口状,以便于外部空气进入导流腔230内。
具体地,安装座400包括第一连接部410与第二连接部420,第一连接部410垂直于内轮毂110的旋转轴线,第二连接部420呈环状,并连接于第一连接部410的外周,第一连接部410与动力件300抵接,第二连接部420与导叶500连接。具体地,如图6与图7所示,内轮毂110包括安装部113,安装部113连接于第一导流部111的内侧,第一连接部410具有通孔,该通孔用于供动力件300的输出端穿过,动力件300的输出端插入安装部113内,实现动力件300向内轮毂110的动力传递。
另外,在外轮毂120的径向上,安装座400的外壁位于外轮毂120的内壁靠近出风口220一端的内侧,以防止安装座400阻挡第二叶片组140出风;安装座400还包括过渡部430,过渡部430的两端分别与第一连接部410和第二连接部420连接,沿出风方向过渡部430朝向远离内轮毂110的旋转轴线的方向倾斜,过渡部430起到对扇叶结构100排出气流的导向作用,将气流引向第二连接部420与导流罩200之间,使气流沿导流罩200的轴向排出。
上面结合附图对本公开实施例作了详细说明,但是本公开不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本公开宗旨的前提下作出各种变化。此外,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。

Claims (16)

  1. 一种组合式扇叶结构,包括:
    内轮毂(110);
    外轮毂(120),与所述内轮毂(110)同轴设置,并套设于所述内轮毂(110)的外部;
    第一叶片组(130),连接于所述外轮毂(120)的外周面,所述第一叶片组(130)包括多个第一叶片(131),多个所述第一叶片(131)沿所述外轮毂(120)的周向间隔分布;和
    第二叶片组(140),连接于所述内轮毂(110)与所述外轮毂(120)之间,所述第二叶片组(140)包括多个第二叶片(141),多个所述第二叶片(141)沿所述内轮毂(110)的周向间隔分布,所述外轮毂(120)遮挡所述第二叶片(141)朝向所述外轮毂(120)的一侧。
  2. 根据权利要求1所述的组合式扇叶结构,其中所述第一叶片(131)包括轴流叶片或斜流叶片,和/或所述第二叶片(141)包括离心叶片。
  3. 根据权利要求1或2所述的组合式扇叶结构,其中所述第一叶片(131)为轴流叶片,相邻的所述第一叶片(131)在垂直于轴向的平面内的投影沿周向间隔设置;
    或所述第一叶片(131)为斜流叶片,相邻的所述第一叶片(131)在垂直于轴向的平面内的投影沿周向具有重合区域。
  4. 根据权利要求1至3任一项所述的组合式扇叶结构,其中沿出风方向,所述外轮毂(120)朝远离所述内轮毂(110)的旋转轴线的方向倾斜。
  5. 根据权利要求1至4任一项所述的组合式扇叶结构,其中沿出风方向,所述内轮毂(110)朝远离所述内轮毂(110)的旋转轴线的方向倾斜。
  6. 根据权利要求1至5任一项所述的组合式扇叶结构,其中所述内轮毂(110)的开口朝向出风侧。
  7. 根据权利要求1至6任一项所述的组合式扇叶结构,其中所述内轮毂(110)包括相互连接的第一导流部(111)与第二导流部(112),所述第一导流部(111)位于所述内轮毂(110)的进风侧,所述第二导流部(112)在所述外轮毂(120)的径向上与所述外轮毂(120)相对设置,所述第二叶片(141)与所述第二导流部(112)连接。
  8. 根据权利要求7所述的组合式扇叶结构,其中沿出风方向,所述第一导流部(111)和/或所述第二导流部(112)朝向远离所述内轮毂(110)的旋转轴线的方向倾斜。
  9. 根据权利要求7或8所述的组合式扇叶结构,其中沿出风方向,所述第一导流部(111)和所述第二导流部(112)与所述内轮毂(110)的旋转轴线的锐角夹角逐渐减小。
  10. 根据权利要求7至9中任一项所述的组合式扇叶结构,其中所述第一导流部(111)沿轴向高于所述外轮毂(120)的进风侧。
  11. 根据权利要求1至10中任一项所述的组合式扇叶结构,其中相邻的所述第二叶片(141)在所述外轮毂(120)内侧周向上的间距,小于相邻的所述第一叶片(131)在所述外轮毂(120)外侧周向上的间距。
  12. 根据权利要求1至11中任一项所述的组合式扇叶结构,其中所述内轮毂(110)与所述第二叶片(141)的轮毂比,小于所述外轮毂(120)与所述第一叶片(131)的轮毂比。
  13. 一种出风装置,包括:
    权利要求1至12中任一项所述的组合式扇叶结构(100);
    导流罩(200),两端分别设有进风口(210)与出风口(220),所述导流罩(200)的内部具有导流腔(230),所述进风口(210)和所述出风口(220)均与所述导流腔(230)连通,所述组合式扇叶结构(100)容置于所述导流腔(230)内且与所述导流罩(200)同轴设置;和
    动力件(300),连接于所述内轮毂(110)靠近所述出风口(220)的一端,被配置为驱动所述内轮毂(110)转动。
  14. 根据权利要求13所述的出风装置,还包括安装座(400)与多个导叶(500),所述安装座(400)与多个所述导叶(500)均容纳于所述导流罩(200)内,所述安装座(400)与所述导流罩(200)同轴设置,所述动力件(300)与所述内轮毂(110)连接的一端穿过所述安装座(400),多个所述导叶(500)环设于所述安装座(400)的外周,所述导叶(500)连接于所述导流罩(200)和所述安装座(400)之间。
  15. 根据权利要求14所述的出风装置,其中所述安装座(400)的外壁位于所述外轮毂(120)的内壁靠近所述出风口(220)一端的径向内侧。
  16. 根据权利要求14或15所述的出风装置,其中所述安装座(400)包括第一 连接部(410)、第二连接部(420)和过渡部(430),所述第一连接部(410)垂直于所述内轮毂(110)的旋转轴线,所述第二连接部(420)环设于所述第一连接部(410)的外周,所述过渡部(430)连接于所述第一连接部(410)和所述第二连接部(420)之间,且沿出风方向所述过渡部(430)朝向远离所述内轮毂(110)的旋转轴线的方向倾斜。
PCT/CN2023/084019 2022-04-18 2023-03-27 组合式扇叶结构及出风装置 WO2023202327A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023258075A AU2023258075A1 (en) 2022-04-18 2023-03-27 Combined fan blade structure and air outlet device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210405774.7 2022-04-18
CN202210405774.7A CN114704500A (zh) 2022-04-18 2022-04-18 组合式出风结构及出风装置

Publications (1)

Publication Number Publication Date
WO2023202327A1 true WO2023202327A1 (zh) 2023-10-26

Family

ID=82175197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084019 WO2023202327A1 (zh) 2022-04-18 2023-03-27 组合式扇叶结构及出风装置

Country Status (3)

Country Link
CN (1) CN114704500A (zh)
AU (1) AU2023258075A1 (zh)
WO (1) WO2023202327A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704500A (zh) * 2022-04-18 2022-07-05 续新电器技术(深圳)有限公司 组合式出风结构及出风装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074663A1 (ko) * 2016-10-19 2018-04-26 주식회사 한미마이크로닉스 이중 날개가 형성된 냉각팬
CN212155257U (zh) * 2020-01-17 2020-12-15 富泰华工业(深圳)有限公司 双层扇叶及风扇
CN214945238U (zh) * 2021-05-10 2021-11-30 佛山市吉星家电有限公司 一种风扇的扇叶
CN114233680A (zh) * 2021-12-29 2022-03-25 续新电器技术(深圳)有限公司 组合式扇叶及组合出风装置
CN114704500A (zh) * 2022-04-18 2022-07-05 续新电器技术(深圳)有限公司 组合式出风结构及出风装置
CN217518915U (zh) * 2022-04-18 2022-09-30 续新电器技术(深圳)有限公司 组合式出风结构及出风装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074663A1 (ko) * 2016-10-19 2018-04-26 주식회사 한미마이크로닉스 이중 날개가 형성된 냉각팬
CN212155257U (zh) * 2020-01-17 2020-12-15 富泰华工业(深圳)有限公司 双层扇叶及风扇
CN214945238U (zh) * 2021-05-10 2021-11-30 佛山市吉星家电有限公司 一种风扇的扇叶
CN114233680A (zh) * 2021-12-29 2022-03-25 续新电器技术(深圳)有限公司 组合式扇叶及组合出风装置
CN114704500A (zh) * 2022-04-18 2022-07-05 续新电器技术(深圳)有限公司 组合式出风结构及出风装置
CN217518915U (zh) * 2022-04-18 2022-09-30 续新电器技术(深圳)有限公司 组合式出风结构及出风装置

Also Published As

Publication number Publication date
AU2023258075A1 (en) 2024-10-10
CN114704500A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
KR102582026B1 (ko) 송풍장치 및 이를 포함하는 공기조화기의 실외기
EP1979623B1 (en) Improved impeller and fan
CN108252949A (zh) 混流风轮及混流风机
KR20000023522A (ko) 축류 송풍기
CN209959503U (zh) 对角风扇
WO2018147128A1 (ja) 遠心圧縮機、ターボチャージャ
WO2023124700A1 (zh) 组合式扇叶装置及组合出风装置
WO2023202327A1 (zh) 组合式扇叶结构及出风装置
WO2004113732A1 (ja) 送風機
US20160319822A1 (en) Centrifugal pump and method for manufacturing the same
US3059833A (en) Fans
JPH08177792A (ja) 軸流ファン
WO2024051360A1 (zh) 电机及风机
CN212378124U (zh) 一种导流圈及空调器
CN217518915U (zh) 组合式出风结构及出风装置
CN107906046A (zh) 一种风扇叶轮
CN109595198B (zh) 一种风机叶轮
CN215805384U (zh) 出风格栅及出风装置
CN115727008A (zh) 进风圈和油烟机
WO2022142359A1 (zh) 送风装置
CN112628165B (zh) 风扇及其风扇叶轮
JP2019019759A (ja) 遠心ファンインペラおよび当該遠心ファンインペラを備える遠心ファン
JP2023015577A (ja) 軸流ファン
WO2021139508A1 (zh) 扩压器、送风装置及吸尘设备
WO2024021612A1 (zh) 风机组、散热装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023790987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 814900

Country of ref document: NZ

Ref document number: AU2023258075

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 315986

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2023790987

Country of ref document: EP

Effective date: 20240919

ENP Entry into the national phase

Ref document number: 2023258075

Country of ref document: AU

Date of ref document: 20230327

Kind code of ref document: A