WO2020077740A1 - 二次电池及其电极构件 - Google Patents

二次电池及其电极构件 Download PDF

Info

Publication number
WO2020077740A1
WO2020077740A1 PCT/CN2018/117479 CN2018117479W WO2020077740A1 WO 2020077740 A1 WO2020077740 A1 WO 2020077740A1 CN 2018117479 W CN2018117479 W CN 2018117479W WO 2020077740 A1 WO2020077740 A1 WO 2020077740A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode member
active material
protrusion
thickness
material layer
Prior art date
Application number
PCT/CN2018/117479
Other languages
English (en)
French (fr)
Inventor
张子格
李伟
薛庆瑞
李静
王鹏翔
张扬
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2021520320A priority Critical patent/JP7193626B2/ja
Priority to EP18932316.5A priority patent/EP3719876A4/en
Priority to US16/817,278 priority patent/US11444284B2/en
Publication of WO2020077740A1 publication Critical patent/WO2020077740A1/zh
Priority to US17/137,077 priority patent/US11043677B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of batteries, in particular to a secondary battery and its electrode member.
  • the electrode member of a secondary battery generally includes a current collector and an active material layer coated on the surface of the current collector.
  • some electrode members select a multi-layer structure current collector.
  • the current collector includes an insulating substrate 11 and a conductive layer 12 provided on the surface of the insulating substrate 11, and The active material layer 13 is coated on the surface of the conductive layer 12.
  • the conductive layer 12 includes a main body portion 121 coated with the active material layer 13 and a protrusion 122 that is not coated with the active material layer 13.
  • the active material layer 13, the main body 121, and the portion of the insulating base 11 corresponding to the main body 121 form an electricity generation region P1
  • the protrusion 122 and the portion of the insulating base 11 corresponding to the protrusion 122 form an electrical guide region P2 P2 is used for electrical connection with the electrode terminal of the secondary battery, and realizes charge and discharge through the electrode terminal.
  • the insulating substrate 11 is a relatively soft material (such as PET plastic) and has a relatively large elongation rate.
  • the roller 9 since the thickness of the electricity generating region P1 is much greater than the thickness of the electricity guiding region P2, the roller 9 only applies pressure on the active material layer 13, so the insulating substrate 11 of the electricity generating region P1 has a larger extension; and During the extension process, the insulating substrate 11 of the electricity generating region P1 applies tension to the insulating substrate 11 of the electric guide region P2 to drive the insulating substrate 11 of the electric guide region P2 to expand.
  • the insulating base 11 of the electrical guide region P2 exerts a reaction force on the insulating base 11 of the electrical generating region P1 to limit the extension of the insulating base 11 of the electrical generating region P1; when the thickness of the electrical generating region P1 is uniform, along The reaction force gradually decreases away from the direction of the electrical guide region P2 (that is, the elongation rate of the insulating base 11 of the electrical generation region P1 gradually increases). Therefore, referring to FIG. 3, after the electrode member is rolled, the length of the end of the electrical generation region P1 away from the electrical guide region P2 will be greater than the length of the electrical guide region P2, causing the entire electrode member to bend.
  • the positive and negative electrode members are wound as a whole; if the electricity generating region P1 is bent, the ends of the electricity generating region P1 cannot be aligned after being wound, resulting in the active material layer 13 of the negative electrode member being unable to be completely Covering the active material layer 13 of the positive electrode member; during the charging process, the lithium extracted from the active material layer 13 of the positive electrode member cannot be fully inserted into the active material layer 13 of the negative electrode member, thereby causing lithium deposition and affecting the performance of the secondary battery.
  • an object of the present invention is to provide a secondary battery and an electrode member thereof, which can reduce the bending of the electricity generation region and avoid lithium precipitation of the secondary battery.
  • the present invention provides a secondary battery and its electrode member.
  • the electrode member includes an insulating substrate, a conductive layer, and an active material layer.
  • the conductive layer is provided on the surface of the insulating base, and the conductive layer includes a body portion and a protrusion extending from the body portion, the body portion is coated with an active material layer, and the protrusion portion is not coated with the active material layer.
  • the active material layer includes a first portion and a second portion, the first portion is located at an end of the active material layer away from the protrusion, the second portion is located on the side of the first portion near the protrusion, and the thickness of the first portion is less than the thickness of the second portion.
  • the thickness of the first part gradually decreases in a direction away from the protrusion.
  • the ratio of the size of the first part to the total size of the active material layer is 3% to 20%.
  • the density of the second part is greater than the density of the first part.
  • the difference between the thickness of the first part and the thickness of the second part is 0.5 ⁇ m to 20 ⁇ m.
  • the active material layer further includes a third portion, the third portion is located on the side of the second portion near the protrusion, and the thickness of the third portion is less than the thickness of the second portion; along the direction close to the protrusion, the thickness of the third portion gradually Decrease.
  • the electrode member further includes a protective layer, which is disposed on the side of the protrusion away from the insulating base and connected to the third part.
  • the difference between the elongation of the insulating substrate and the conductive layer does not exceed 4%.
  • the elongation of the insulating substrate is less than 10%.
  • the secondary battery includes an electrode assembly including the electrode member described above.
  • the beneficial effects of the present invention are as follows: since the thickness of the second part is greater than the thickness of the first part, during the rolling process, the roller pressure received by the second part is greater, while the roller pressure received by the first part is less; that is That is to say, the elongation rate of the portion of the electricity generation area corresponding to the second portion is larger, and the elongation rate of the portion of the electricity generation area corresponding to the first portion is smaller.
  • the electrical guide area is not stressed and hardly stretches. Therefore, after rolling, the elongation rate of the electrode member at both ends in the height direction is small, and the elongation rate at the middle of the electrode member is large.
  • the present application reduces the thickness of the first part, reduces the length difference between the two ends of the electrode member in the height direction, reduces the bending deformation of the entire electrode member, and avoids lithium precipitation of the secondary battery.
  • FIG. 1 is a schematic diagram of an electrode member in the prior art.
  • FIG. 2 is a schematic diagram of the electrode member of FIG. 1 during the rolling process.
  • FIG. 3 is a schematic diagram of the electrode member of FIG. 1 after being rolled.
  • FIG. 4 is a schematic diagram of a secondary battery according to the present invention.
  • FIG. 5 is a cross-sectional view of an electrode assembly according to the present invention.
  • FIG. 6 is a schematic diagram of the electrode member according to the present invention after being wound.
  • FIG. 7 is a schematic diagram of the electrode member of FIG. 6 after being unfolded.
  • FIG. 8 is a cross-sectional view taken along line A-A of FIG. 7.
  • FIG. 9 is a schematic diagram of the electrode member of FIG. 7 during the molding process.
  • FIG. 10 is a cross-sectional view taken along line B-B of FIG. 9.
  • FIG. 11 is a schematic diagram of the electrode member of FIG. 9 after being rolled.
  • FIG. 12 is a schematic diagram of another embodiment of an electrode member according to the present invention.
  • Fig. 13 is a cross-sectional view taken along line C-C of Fig. 12.
  • FIG. 14 is a schematic diagram of still another embodiment of the electrode member according to the present invention.
  • the secondary battery of the present invention includes an electrode assembly.
  • the electrode assembly includes a positive electrode member 2, a negative electrode member 3 and a separator 4.
  • the separator 4 is provided between the positive electrode member 2 and the negative electrode member 3.
  • the positive electrode member 2, the separator 4, and the negative electrode member 3 are stacked and wound into a flat shape.
  • the electrode assembly is the core component of the secondary battery to realize the charge and discharge function.
  • the secondary battery of the present invention may be a soft-pack battery, and the electrode assembly formed by winding the positive electrode member 2, the separator 4, and the negative electrode member 3 is directly encapsulated in a packaging bag.
  • the packaging bag may be an aluminum plastic film.
  • the secondary battery of the present application may also be a hard-shell battery.
  • the secondary battery mainly includes an electrode assembly, a case 5, a top cover plate 6, an electrode terminal 7 and an adapter sheet 8.
  • the housing 5 may have a hexahedral shape or other shapes.
  • a cavity is formed inside the case 5 to accommodate the electrode assembly and the electrolyte.
  • the case 5 forms an opening at one end, and the electrode assembly can be placed into the receiving cavity of the case 5 through the opening.
  • the housing 5 may be made of conductive metal materials such as aluminum or aluminum alloy, or may be made of insulating materials such as plastic.
  • the top cover plate 6 is provided in the casing 5 and covers the opening of the casing 5, so that the electrode assembly is enclosed in the casing 5.
  • the electrode terminal 7 is provided on the top cover plate 6.
  • the upper end of the electrode terminal 7 protrudes to the upper side of the top cover plate 6, and the lower end can pass through the top cover plate 6 and extend into the housing 5.
  • the adapter piece 8 is provided in the case 5 and fixed to the electrode terminal 7. Both the electrode terminal 7 and the adapter tab 8 are two, the positive electrode member 2 is electrically connected to one electrode terminal 7 via one adapter tab 8, and the negative electrode member 3 is electrically connected to the other electrode terminal 7 via another adapter tab 8.
  • At least one of the positive electrode member 2 and the negative electrode member 3 adopts the electrode member 1 described later.
  • FIGS. 6 to 11 are schematic diagrams of the first embodiment of the electrode member 1 of the present invention. 6 to 11, the electrode member 1 includes an insulating base 11, a conductive layer 12 and an active material layer 13.
  • the material of the insulating substrate 11 may be a PET (polyethylene terephthalate) film or a PP (polypropylene) film.
  • the thickness of the insulating base 11 may be 1 ⁇ m to 20 ⁇ m.
  • the conductive layers 12 are two and are respectively provided to both surfaces of the insulating base 11.
  • the material of the conductive layer 12 is selected from at least one of a metal conductive material and a carbon-based conductive material; the metal conductive material is preferably at least one of aluminum, copper, nickel, titanium, silver, nickel-copper alloy, aluminum zirconium alloy
  • the carbon-based conductive material is preferably at least one of graphite, acetylene black, graphene, and carbon nanotubes.
  • the conductive layer 12 may be formed on the surface of the insulating base 11 by at least one of vapor deposition (deposition) and electroless plating (electroless plating).
  • the vapor deposition method is preferably a physical vapor deposition method (Physical Vapor Deposition, PVD), such as a thermal evaporation method (Thermal Evaporation Deposition).
  • the active material layer 13 includes an active material, and the active material may depend on the polarity of the electrode member 1; for example, when the electrode member 1 is positive, the active material may be lithium manganate or lithium iron phosphate, when the electrode member 1 In the case of negative polarity, the active material may be graphite or silicon.
  • the active material, the binder, the conductive agent, and the solvent can be made into a slurry, and then the slurry is coated on the outer surface of the conductive layer 12 away from the insulating substrate 11, and the active material layer 13 is formed after the slurry is cured. There are two active material layers 13 and are applied to the two conductive layers 12 respectively.
  • the active material layer 13 covers only a partial area of the conductive layer 12.
  • the conductive layer 12 includes a body portion 121 and a protrusion 122 extending from the body portion 121, the body portion 121 is coated with the active material layer 13, and the protrusion 122 is not coated with the active material layer 13.
  • the portions of the active material layer 13, the main body 121, and the insulating base 11 corresponding to the main body 121 are referred to as the electricity generation region P1
  • the protrusions 122 and the portions of the insulating base 11 corresponding to the protrusion 122 are referred to as Electrical guide zone P2.
  • the active material layer 13 of the electricity generation area P1 electrochemically reacts with the electrolyte, etc., to produce a charge and discharge process; and the electricity guide area P2 is connected to the adapter sheet 8, thereby leading the current to the secondary The exterior of the battery.
  • the electric guide regions P2 are plural and are arranged at intervals in the width direction X; in the secondary battery, the electrode members 1 of positive and negative polarities are formed into electrode assemblies by winding, and referring to FIG. 6, the electrode members 1 are formed by winding After that, the plurality of electrical guide regions P2 are arranged in a stack in the thickness direction Y, and are fixed to the interposer 8 by welding.
  • the conductive layer 12 Since the conductive layer 12 is thin, the burrs generated by the conductive layer 12 are small during the cutting process, and it is difficult to puncture the separator 4 of more than ten microns, thereby avoiding a short circuit and improving safety performance. In addition, when a foreign object pierces the electrode member 1 of the secondary battery, since the thickness of the conductive layer 12 is small, the conductive layer 12 has a small burr at the portion pierced by the foreign object, and it is difficult to pierce the separator 4 to avoid short circuit To improve safety performance.
  • the electrode member 1 further includes a protective layer 14 disposed on the side of the protrusion 122 away from the insulating base 11 and connected to the active material layer 13.
  • the protective layer 14 includes an adhesive and an insulating material, and the insulating material includes at least one of aluminum oxide and aluminum oxyhydroxide.
  • the binder, the insulating material and the solvent are mixed together to prepare a slurry, which is coated on the surface of the protrusion 122 and forms the protective layer 14 after curing.
  • the hardness of the protective layer 14 is greater than the hardness of the conductive layer 12.
  • the electrode member 1 further includes a plurality of conductive structures 15, and each conductive structure 15 is welded to an area of the protrusion 122 that is not covered by the protective layer 14. Referring to FIG. 6, after the electrode member 1 is wound and formed, the plurality of conductive structures 15 are stacked in the thickness direction Y, and there are conductive structures 15 between every two adjacent electrical guide regions P2. The plurality of conductive structures 15 are welded to the transition piece 8 at the same time, so as to realize the bus output of the two conductive layers 12.
  • the active material layer 13 includes a first portion 131 and a second portion 132, the first portion 131 is located at the end of the active material layer 13 away from the protrusion 122, the second portion 132 is located on the side of the first portion 131 near the protrusion 122, and the first portion
  • the thickness of 131 is smaller than the thickness of the second portion 132.
  • the electrode member 1 of the first embodiment can be formed in the following steps:
  • the conductive layer 12 is formed on the surface of the insulating substrate 11 by vapor deposition or electroless plating, thereby preparing a composite tape.
  • the active material layer 13 and the protective layer 14 are simultaneously coated on the surface of the conductive layer 12; when coating, the thickness of the end of the active material layer 13 away from the protective layer 14 is reduced.
  • a metal foil material for example, aluminum foil
  • the metal foil material, the protective layer 14, the conductive layer 12 and the insulating substrate 11 are cut simultaneously to obtain FIG. 7 ⁇ ⁇ Default Member 1.
  • FIG. 11 shows the shape of the electrode member 1 after the rolling process of step (3). Since the thickness of the second portion 132 is greater than the thickness of the first portion 131, during the rolling process, the roller pressure received by the second portion 132 is greater, while the roller pressure received by the first portion 131 is smaller; The elongation rate of the portion of the region P1 corresponding to the second portion 132 is large, and the elongation rate of the portion of the electricity generation region P1 corresponding to the first portion 131 is small. In the rolling process, the electrical guide area P2 is not stressed and hardly stretched. Therefore, referring to FIG. 11, after rolling, the elongation rate of the electrode member 1 at both ends in the height direction Z is small, while the middle of the electrode member 1 The extension rate is larger. In the present application, by reducing the thickness of the first portion 131, the length difference between the two ends of the electrode member 1 in the height direction Z is reduced, the bending deformation of the entire electrode member 1 is reduced, and lithium precipitation of the secondary battery is avoided.
  • the protective layer 14 has high strength, and can provide support for the protrusion 122 during the rolling of the electrode member 1, limit the deformation of the protrusion 122, and reduce the probability of the protrusion 122 cracking. The overcurrent capability of the electrode member 1 is improved.
  • the protrusion 122 may come off due to vibration and other factors; preferably, the protective layer 14 is connected to the active material layer 13 so that the protective layer 14 can be fixed to the active material layer 13 to increase the protective layer 14
  • the binding force on the electrode member 1 improves the seismic resistance and prevents the protective layer 14 from falling off together with the protrusion 122.
  • the protrusion 122 is most likely to crack near the root of the active material layer 13 (that is, the boundary between the protrusion 122 and the main body area 121), so when the protective layer 14 is connected to the active material layer 13, the protrusion can be avoided 122 cracks, thereby improving the overcurrent capability of the electrode member 1.
  • the ratio of the size of the first portion 131 to the total size of the active material layer 13 is 3% to 20%. Since the elastic modulus of the insulating base 11 is small, during the rolling process, the insulating base 11 corresponding to the second part 132 exerts a force on the insulating base 11 corresponding to the first part 131 to drive the first base 131 The corresponding insulating substrate 11 extends; the force gradually decreases in a direction away from the electrical guide region P2. If the ratio of the size of the first portion 131 to the total size of the active material layer 13 is less than 3%, then the end of the electricity generating region P1 away from the electricity guiding region P2 will still have a larger extension under the driving force of the force.
  • the effect of reducing the length difference of both ends of the electrode member 1 in the height direction Z is limited. If the ratio of the size of the first portion 131 to the total size of the active material layer 13 is greater than 20%, the capacity of the active material layer 13 will be reduced, affecting the energy density.
  • the second part 132 When rolling, the second part 132 receives the largest roller pressure, and therefore, after compaction, the density of the second part 132 is greater than the density of the first part 131.
  • the difference between the thickness of the first portion 131 and the thickness of the second portion 132 is 0.5 ⁇ m to 20 ⁇ m. If the thickness difference is less than 0.5 ⁇ m, the first portion 131 will still be subjected to a relatively large roller pressure, and the end of the electricity generating region P1 away from the electricity guiding region P2 will still have a large extension, which reduces the height of the electrode member 1 in the height direction Z The effect of the difference in length at both ends is limited. If the thickness difference is greater than 20 ⁇ m, the capacity of the active material layer 13 will be reduced, affecting the energy density.
  • the elongation rate of the insulating substrate 11 is greater than the elongation rate of the conductive layer 12. Therefore, during the rolling process, the insulating substrate 11 exerts a force on the conductive layer 12 to drive the conductive layer 12 to extend. If the difference between the elongation rate of the insulating base 11 and the elongation rate of the conductive layer 12 is too large, the conductive layer 12 is likely to break under the driving force, which affects the overcurrent capability of the conductive layer 12. Therefore, preferably, under the same force, the elongation of the insulating substrate 11 and the elongation of the conductive layer 12 differ by no more than 4%. In addition, the elongation refers to the percentage of the elongation of the material in the original length under a certain pressure.
  • the elongation rate of the insulating substrate 11 Preferably less than 10%. Further, the elongation rate of the insulating substrate 11 is preferably 1% to 3%
  • 12 and 13 are schematic diagrams of the second embodiment of the electrode member of the present invention. 12 and 13, in the second embodiment, the thickness of the first portion 131 gradually decreases in the direction away from the protrusion 122. In order to reduce the length difference between the two ends of the electrode member 1 in the height direction Z, it is necessary to reduce the elongation rate of the end of the electricity generation region P1 away from the electricity guide region P2; therefore, in the first part 131, the farther from the protrusion 122, the thickness needs The smaller is to reduce the difference in length of the electrode member 1 at both ends in the height direction Z.
  • the first part 131 is uniformly coated, then the first part 131 and the second part 132 have a large thickness difference at the junction; during rolling, the stress will be concentrated on the first part 131 and The second part 132 is at the junction, therefore, the conductive layer 12 is easily broken under the effect of stress, which affects the overcurrent capability.
  • the first portion 131 is gradually thinned away from the protrusion 122 to achieve a smooth transition between the first portion 131 and the second portion 132 at the junction, thereby dispersing stress, reducing stress concentration, and preventing stress from cutting off conduction Layer 12.
  • the active material layer 13 further includes a third portion 133, the third portion 133 is located on the side of the second portion 132 close to the protrusion 122, and the thickness of the third portion 133 Less than the thickness of the second portion 132.
  • the third portion 133 is located at the end of the active material layer 13 close to the protrusion 122.
  • the main body 121 is subjected to the pressure of the roller, and the protrusion 122 is not affected by the pressure of the roller. Therefore, the stress is concentrated at the boundary between the two.
  • the protrusion 122 is directly adjacent to the second portion 132, and the second portion 132 has a larger thickness. Therefore, the stress at the junction between the main body 121 and the protrusion 122 is biased. Large, the main body 121 and the protrusion 122 are easily separated and form a crack, which affects the overcurrent capability.
  • the third embodiment by reducing the thickness of the third portion 133, the stress at the boundary between the main body 121 and the protrusion 122 can be reduced, and the probability of cracks can be reduced.
  • the thickness of the third portion 133 gradually decreases.
  • the third portion 133 gradually becomes thinner in the direction close to the protrusion 122 to realize a smooth transition between the first portion 131 and the third portion 133 at the boundary, thereby dispersing stress, reducing stress concentration, and preventing stress from cutting off the conductive layer 12.
  • the protective layer 14 is connected to the third portion 133.

Abstract

本发明提供了一种二次电池及其电极构件。电极构件包括绝缘基体、导电层及活性物质层。导电层设置于绝缘基体的表面,且导电层包括主体部和从主体部延伸的突部,主体部涂覆有活性物质层,突部未涂覆活性物质层。活性物质层包括第一部分和第二部分,第一部分位于活性物质层的远离突部的端部,第二部分位于第一部分靠近突部的一侧,且第一部分的厚度小于第二部分的厚度。二次电池包括电极组件,电极组件包括所述的电极构件。

Description

二次电池及其电极构件 技术领域
本发明涉及电池领域,尤其涉及一种二次电池及其电极构件。
背景技术
二次电池的电极构件通常包括集流体和涂覆在集流体表面的活性物质层。为了提高二次电池的安全性能,一些电极构件选择一种多层结构的集流体,参照图1和图2,所述集流体包括绝缘基体11和设置于绝缘基体11表面的导电层12,而活性物质层13涂覆于导电层12的表面。导电层12包括涂覆有活性物质层13的主体部121和未涂覆活性物质层13的突部122。活性物质层13、主体部121以及绝缘基体11的与主体部121对应的部分形成电生成区P1,突部122以及绝缘基体11的与突部122对应的部分形成电引导区P2,电引导区P2用于与二次电池的电极端子电连接,并通过电极端子实现充放电。
在电极构件的生产过程中,需要辊压活性物质层13,以将活性物质层13压薄,提高能量密度。绝缘基体11为一种较软的材质(例如PET塑料),具有较大的延展率。参照图2,因电生成区P1的厚度远远大于电引导区P2的厚度,辊轮9仅仅在活性物质层13上施加压力,所以电生成区P1的绝缘基体11具有较大的延展;而在延展过程中,电生成区P1的绝缘基体11会对电引导区P2的绝缘基体11施加张力,以带动电引导区P2的绝缘基体11延展。对应地,电引导区P2的绝缘基体11会对电生成区P1的绝缘基体11施加反作用力,以限制电生成区P1的绝缘基体11的延展;在电生成区P1厚度均匀的情况下,沿远离电引导区P2的方向,所述反作用力逐渐减小(也就是说,电生成区P1的绝缘基体11的延展率逐渐增大)。因此,参照图3,电极构件经过辊压后,电生成区P1远离电引导区P2的一端的长度会大于电引导区P2的长度,导致电极构件整体弯曲。
在二次电池中,正负极性的电极构件卷绕为一体;如果电生成区P1弯 曲,电生成区P1的端部在卷绕后无法对齐,导致负极电极构件的活性物质层13无法完全覆盖正极电极构件的活性物质层13;在充电过程中,正极电极构件的活性物质层13脱出的锂无法全部嵌入负极电极构件的活性物质层13,从而造成析锂,影响二次电池的性能。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种二次电池及其电极构件,其能减小电生成区的弯曲,避免二次电池析锂。
为了实现上述目的,本发明提供了一种二次电池及其电极构件。
电极构件包括绝缘基体、导电层及活性物质层。导电层设置于绝缘基体的表面,且导电层包括主体部和从主体部延伸的突部,主体部涂覆有活性物质层,突部未涂覆活性物质层。活性物质层包括第一部分和第二部分,第一部分位于活性物质层的远离突部的端部,第二部分位于第一部分靠近突部的一侧,且第一部分的厚度小于第二部分的厚度。
沿远离突部的方向,第一部分的厚度逐渐减小。
沿高度方向,第一部分的尺寸与活性物质层的总尺寸之比为3%~20%。
第二部分的密度大于第一部分的密度。
第一部分的厚度与第二部分的厚度之差为0.5μm~20μm。
活性物质层还包括第三部分,第三部分位于第二部分的靠近突部的一侧,且第三部分的厚度小于第二部分的厚度;沿靠近突部的方向,第三部分的厚度逐渐减小。
所述电极构件还包括保护层,设置于突部的远离绝缘基体的一侧并与第三部分相连。
在相同作用力下,绝缘基体的延展率与导电层的延展率相差不超过4%。
绝缘基体的延展率小于10%。
二次电池包括电极组件,电极组件包括所述的电极构件。
本发明的有益效果如下:在由于第二部分的厚度大于第一部分的厚度,因此,在辊压过程中,第二部分受到的辊压力较大,而第一部分受到的辊压力较小;也就是说,电生成区的与第二部分对应的部分的延展率较大,而电生成区的与第一部分对应的部分的延展率较小。而在辊压过程中,电引导区 不受力且几乎不延展,因此,经过辊压后,电极构件沿高度方向两端的延展率较小,而电极构件中部的延展率较大。本申请通过减小第一部分的厚度,降低电极构件沿高度方向两端的长度差,减小电极构件整体的弯曲变形,避免二次电池析锂。
附图说明
图1为现有技术的电极构件的示意图。
图2为图1的电极构件在辊压过程中的示意图。
图3为图1的电极构件在辊压后的示意图。
图4为根据本发明的二次电池的示意图。
图5为根据本发明的电极组件的断面图。
图6为根据本发明的电极构件在卷绕后的示意图。
图7为图6的电极构件在展开后的示意图。
图8为图7沿线A-A作出的剖视图。
图9为图7的电极构件在成型过程中的示意图。
图10为图9沿线B-B作出的剖视图。
图11为图9的电极构件经过辊压后的示意图。
图12为根据本发明的电极构件的另一实施例的示意图。
图13为图12沿线C-C作出的剖视图。
图14为根据本发明的电极构件的又一实施例的示意图。
图15为图14沿线D-D作出的剖视图。
其中,附图标记说明如下:
1电极构件                P2电引导区
11绝缘基体               2正极构件
12导电层                 3负极构件
121主体部                4隔膜
122突部                  5壳体
13活性物质层             6顶盖板
131第一部分              7电极端子
132第二部分              8转接片
133第三部分              9辊轮
14保护层                 X宽度方向
15导电结构               Y厚度方向
P1电生成区               Z高度方向
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
本发明的二次电池包括电极组件,参照图5,电极组件包括正极构件2、负极构件3以及隔膜4,隔膜4设置于正极构件2和负极构件3之间。正极构件2、隔膜4及负极构件3堆叠并卷绕成扁平状。电极组件为二次电池实现充放电功能的核心部件。
本发明的二次电池可为软包电池,正极构件2、隔膜4和负极构件3卷绕形成的电极组件直接封装在包装袋内。所述包装袋可为铝塑膜。
当然,本申请的二次电池也可为硬壳电池。具体地,参照图4,二次电池主要包括电极组件、壳体5、顶盖板6、电极端子7及转接片8。
壳体5可具有六面体形状或其它形状。壳体5内部形成空腔,以容纳电极组件和电解液。壳体5在一端形成开口,而电极组件可经由所述开口放置到壳体5的收容腔。壳体5可由铝或铝合金等导电金属的材料制成,也可由塑胶等绝缘材料制成。
顶盖板6设置于壳体5并覆盖壳体5的开口,从而将电极组件封闭在壳体5内。电极端子7设置于顶盖板6,电极端子7的上端突出到顶盖板6上侧,下端可穿过顶盖板6并延伸到壳体5内。转接片8设置于壳体5内并固 定于电极端子7。电极端子7和转接片8均为两个,正极构件2经由一个转接片8与一个电极端子7电连接,负极构件3经由另一个转接片8与另一个电极端子7电连接。
在二次电池中,正极构件2和负极构件3中的至少一个采用后述的电极构件1。
图6至图11为本发明的电极构件1的第一实施例的示意图。参照图6至图11,电极构件1包括绝缘基体11、导电层12及活性物质层13。
绝缘基体11材质可为PET(聚对苯二甲酸乙二醇酯)膜或PP(聚丙烯)膜。绝缘基体11的厚度可为1μm~20μm。
导电层12为两个且分别设置到绝缘基体11的两个表面。具体地,导电层12的材料选自金属导电材料、碳基导电材料中的至少一种;金属导电材料优选铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种,所述碳基导电材料优选石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。导电层12可通过气相沉积法(vapor deposition)、化学镀(electroless plating)中的至少一种形成于绝缘基体11的表面。其中,气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD),例如热蒸发法(Thermal Evaporation Deposition)。
活性物质层13包括活性材料,活性材料可依照电极构件1的极性而定;例如,当电极构件1为正极性时,所述活性材料可为锰酸锂或磷酸铁锂,当电极构件1为负极性时,所述活性材料可为石墨或硅。可将活性材料、粘结剂、导电剂及溶剂制成浆料,然后将浆料涂布在导电层12的远离绝缘基体11的外表面,浆料固化后形成活性物质层13。活性物质层13为两个且分别涂覆到两个导电层12上。
活性物质层13仅覆盖导电层12的部分区域。具体地,参照图7和图8,导电层12包括主体部121和从主体部121延伸的突部122,主体部121涂覆有活性物质层13,突部122未涂覆活性物质层13。
为了方便描述,将活性物质层13、主体部121以及绝缘基体11的与主体部121对应的部分称为电生成区P1,将突部122以及绝缘基体11的与突部122对应的部分称为电引导区P2。在二次电池的使用过程中,电生成区P1的活性物质层13与电解液等发生电化反应,产生充放电过程;而电引 导区P2连接到转接片8,从而将电流引出到二次电池的外部。
参照图7,电引导区P2为多个且沿宽度方向X间隔布置;在二次电池中,正负极性的电极构件1通过卷绕形成电极组件,参照图6,电极构件1卷绕成型后,所述多个电引导区P2沿厚度方向Y层叠布置,且通过焊接固定到转接片8。
由于导电层12较薄,所以在裁切的过程中,导电层12产生的毛刺较小,很难刺破十几微米的隔膜4,从而避免短路,提高安全性能。另外,当异物刺穿二次电池的电极构件1时,由于导电层12厚度较小,因此导电层12在被异物刺穿的部位产生的毛刺较小,很难刺破隔膜4,从而避免短路,提高安全性能。
所述电极构件1还包括保护层14,设置于突部122的远离绝缘基体11的一侧并与活性物质层13相连。保护层14包括粘结剂和绝缘材料,所述绝缘材料包括三氧化二铝和羟基氧化铝中的至少一种。粘结剂、绝缘材料及溶剂混合在一起制备出浆料,所述浆料涂布在突部122的表面,并在固化后形成保护层14。保护层14的硬度大于导电层12硬度。
所述电极构件1还包括多个导电结构15,各导电结构15焊接于突部122的未被保护层14覆盖的区域。参照图6,当电极构件1卷绕成型后,所述多个导电结构15沿厚度方向Y层叠布置,并且每两个相邻的电引导区P2之间均具有导电结构15。所述多个导电结构15同时焊接到转接片8,从而实现两个导电层12的汇流输出。
活性物质层13包括第一部分131和第二部分132,第一部分131位于活性物质层13的远离突部122的端部,第二部分132位于第一部分131靠近突部122的一侧,且第一部分131的厚度小于第二部分132的厚度。
第一实施例的电极构件1可按照下述步骤成型:
(一)通过气相沉积法或化学镀在绝缘基体11的表面形成导电层12,从而制备出一种复合带材。
(二)参照图9,在导电层12的表面上同时涂布活性物质层13和保护层14;涂布时,减小活性物质层13远离保护层14的一端的厚度。
(三)辊压活性物质层13,以将活性物质层13压实,提高密度。
(四)辊压完成后,在导电层12上焊接金属箔材(例如铝箔),然后 同时裁切所述金属箔材、保护层14、导电层12及绝缘基体11,以得到图7所示的电极构件1。
图11示出电极构件1经过步骤(三)的辊压过程后的形状。由于第二部分132的厚度大于第一部分131的厚度,因此,在辊压过程中,第二部分132受到的辊压力较大,而第一部分131受到的辊压力较小;也就是说,电生成区P1的与第二部分132对应的部分的延展率较大,而电生成区P1的与第一部分131对应的部分的延展率较小。而在辊压过程中,电引导区P2不受力且几乎不延展,因此,参照图11,经过辊压后,电极构件1沿高度方向Z两端的延展率较小,而电极构件1中部的延展率较大。本申请通过减小第一部分131的厚度,降低电极构件1沿高度方向Z两端的长度差,减小电极构件1整体的弯曲变形,避免二次电池析锂。
由于绝缘基体11的弹性模量较小,所以在辊压电生成区P1时,电生成区P1的绝缘基体11会向突部122的内侧延展,导致突部122内侧的绝缘基体11鼓起变形,而突部122容易在绝缘基体11的作用力下开裂。在本申请中,保护层14具有较高的强度,可以在辊压电极构件1的过程中为突部122提供支撑力,限制突部122的变形,减小突部122产生裂纹的概率,改善电极构件1的过流能力。
在二次电池工作过程中,由于震动等因素可能会导致突部122脱落;优选地,保护层14连接于活性物质层13,这样可以将保护层14固定到活性物质层13,增大保护层14在电极构件1上的结合力,提高抗震能力,避免保护层14连同突部122一起脱落。同时,突部122最容易在靠近活性物质层13的根部(也就是突部122与主体区121的交界处)产生裂纹,所以,当保护层14与活性物质层13相连时,可以避免突部122开裂,从而改善电极构件1的过流能力。
沿高度方向Z,第一部分131的尺寸与活性物质层13的总尺寸之比为3%~20%。由于绝缘基体11的弹性模量较小,因此,在辊压过程中,与第二部分132对应的绝缘基体11会对与第一部分131对应的绝缘基体11施加作用力,以带动与第一部分131对应的绝缘基体11延展;沿远离电引导区P2的方向,所述作用力逐渐减小。如果第一部分131的尺寸与活性物质层13的总尺寸之比小于3%,那么在所述作用力的带动下,电生成区P1远离电引 导区P2的一端仍然会有较大的延展,对减小电极构件1沿高度方向Z两端的长度差的效果有限。而如果第一部分131的尺寸与活性物质层13的总尺寸之比大于20%,将会降低活性物质层13的容量,影响能量密度。
辊压时,第二部分132受到的辊压力最大,因此,在压实后,第二部分132的密度大于第一部分131的密度。
第一部分131的厚度与第二部分132的厚度之差为0.5μm~20μm。如果所述厚度差小于0.5μm,第一部分131仍会受到较大的辊压力,电生成区P1远离电引导区P2的一端仍然会有较大的延展,对减小电极构件1沿高度方向Z两端的长度差的效果有限。如果所述厚度差大于20μm,将会降低活性物质层13的容量,影响能量密度。
通常,绝缘基体11的延展率大于导电层12的延展率,因此,在辊压过程中,绝缘基体11会对导电层12施加作用力,以带动导电层12延展。如果绝缘基体11的延展率与导电层12的延展率之差过大,那么导电层12容易在所述作用力的带动下断裂,影响导电层12的过流能力。因此,优选地,在相同作用力下,绝缘基体11的延展率与导电层12的延展率相差不超过4%。另外,所述延展率指的是,在一定的压力下,材料伸长量占原来长度的百分率。
绝缘基体11的延展率越大,电极构件1沿高度方向Z两端的长度差的也就越大,同时,也更容易在辊压过程中拉断导电层12,因此,绝缘基体11的延展率优选小于10%。进一步地,绝缘基体11的延展率优选为1%~3%
下面对其它两个实施例进行说明。为了简化描述,以下仅主要介绍其它两个实施例与第一实施例的不同之处,未描述的部分可以参照第一实施例进行理解。
图12和图13为本发明电极构件的第二实施例的示意图。参照图12和图13,在第二实施例中,沿远离突部122的方向,第一部分131的厚度逐渐减小。为了减小电极构件1沿高度方向Z两端的长度差,需要降低电生成区P1远离电引导区P2的一端的延展率;因此,在第一部分131中,距离突部122越远,其厚度需要越小,以减小电极构件1沿高度方向Z两端的长度差。
参照图8,在第一实施例中,第一部分131均匀涂布,那么第一部分131和第二部分132在交界处具有较大的厚度差;在辊压时,应力会集中到第一 部分131和第二部分132在交界处,因此,导电层12很容易在应力的作用下断裂,影响过流能力。而在第二实施例中,第一部分131沿远离突部122的方向逐渐变薄,实现第一部分131和第二部分132在交界处的平滑过渡,进而分散应力,降低应力集中,避免应力切断导电层12。
图14和图15为本发明电极构件的第三实施例的示意图。参照图14和图15,在第三实施例中,活性物质层13还包括第三部分133,第三部分133位于第二部分132的靠近突部122的一侧,且第三部分133的厚度小于第二部分132的厚度。第三部分133位于活性物质层13的靠近突部122的一端。
在辊压过程中,主体部121受到辊压力的作用,而突部122则不受辊压力的作用,因此,应力会集中到两者的交界处。参照图13,在第二实施例中,突部122直接与第二部分132相邻,而第二部分132又具有较大的厚度,因此,主体部121和突部122在交界处的应力偏大,主体部121和突部122很容易分离并形成裂纹,影响过流能力。而在第三实施例中,通过减小第三部分133的厚度,可以降低主体部121和突部122在交界处的应力,减小产生裂纹的概率。
进一步地,沿靠近突部122的方向,第三部分133的厚度逐渐减小。第三部分133沿靠近突部122的方向逐渐变薄,实现第一部分131和第三部分133在交界处的平滑过渡,进而分散应力,降低应力集中,避免应力切断导电层12。
由于突部122与第三部分133相邻,因此,保护层14与第三部分133相连。

Claims (10)

  1. 一种二次电池的电极构件(1),包括绝缘基体(11)、导电层(12)及活性物质层(13);
    导电层(12)设置于绝缘基体(11)的表面,且导电层(12)包括主体部(121)和从主体部(121)延伸的突部(122),主体部(121)涂覆有活性物质层(13),突部(122)未涂覆活性物质层(13);
    活性物质层(13)包括第一部分(131)和第二部分(132),第一部分(131)位于活性物质层(13)的远离突部(122)的端部,第二部分(132)位于第一部分(131)靠近突部(122)的一侧,且第一部分(131)的厚度小于第二部分(132)的厚度。
  2. 根据权利要求1所述的电极构件(1),其特征在于,沿远离突部(122)的方向,第一部分(131)的厚度逐渐减小。
  3. 根据权利要求1所述的电极构件(1),其特征在于,沿高度方向(Z),第一部分(131)的尺寸与活性物质层(13)的总尺寸之比为3%~20%。
  4. 根据权利要求1所述的电极构件(1),其特征在于,第二部分(132)的密度大于第一部分(131)的密度。
  5. 根据权利要求1所述的电极构件(1),其特征在于,第一部分(131)的厚度与第二部分(132)的厚度之差为0.5μm~20μm。
  6. 根据权利要求1-5中任一项所述的电极构件(1),其特征在于,
    活性物质层(13)还包括第三部分(133),第三部分(133)位于第二部分(132)的靠近突部(122)的一侧,且第三部分(133)的厚度小于第二部分(132)的厚度;
    沿靠近突部(122)的方向,第三部分(133)的厚度逐渐减小。
  7. 根据权利要求6所述的电极构件(1),其特征在于,所述电极构件(1)还包括保护层(14),设置于突部(122)的远离绝缘基体(11)的一侧并与第三部分(133)相连。
  8. 根据权利要求1所述的电极构件(1),其特征在于,在相同作用力下,绝缘基体(11)的延展率与导电层(12)的延展率相差不超过4%。
  9. 根据权利要求8所述的电极构件(1),其特征在于,绝缘基体(11)的延展率小于10%。
  10. 一种二次电池,其特征在于,包括电极组件,电极组件包括权利要求1-9中任一项所述的电极构件(1)。
PCT/CN2018/117479 2018-10-17 2018-11-26 二次电池及其电极构件 WO2020077740A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021520320A JP7193626B2 (ja) 2018-10-17 2018-11-26 二次電池及びその電極部材
EP18932316.5A EP3719876A4 (en) 2018-10-17 2018-11-26 SECONDARY BATTERY AND ELECTRODE ELEMENT FOR IT
US16/817,278 US11444284B2 (en) 2018-10-17 2020-03-12 Secondary battery and electrode member thereof capable of being decreased bending deformation after rolling
US17/137,077 US11043677B2 (en) 2018-10-17 2020-12-29 Secondary battery and electrode member thereof having an electricity generation region with reduced curvature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811206647.4 2018-10-17
CN201811206647.4A CN110660956A (zh) 2018-10-17 2018-10-17 二次电池及其电极构件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/817,278 Continuation US11444284B2 (en) 2018-10-17 2020-03-12 Secondary battery and electrode member thereof capable of being decreased bending deformation after rolling

Publications (1)

Publication Number Publication Date
WO2020077740A1 true WO2020077740A1 (zh) 2020-04-23

Family

ID=69028833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117479 WO2020077740A1 (zh) 2018-10-17 2018-11-26 二次电池及其电极构件

Country Status (5)

Country Link
US (2) US11444284B2 (zh)
EP (1) EP3719876A4 (zh)
JP (1) JP7193626B2 (zh)
CN (1) CN110660956A (zh)
WO (1) WO2020077740A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224316B (zh) * 2018-10-11 2022-07-08 宁德时代新能源科技股份有限公司 二次电池及其电极构件
KR20220119699A (ko) * 2020-10-20 2022-08-30 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 전극 어셈블리, 전지 셀, 전지, 전력 소비 장치, 제조 방법 및 장비
CN115863536A (zh) * 2021-09-27 2023-03-28 宁德时代新能源科技股份有限公司 电极组件及制造方法和系统、电池单体、电池和用电装置
JP2024502222A (ja) * 2021-12-10 2024-01-18 寧徳時代新能源科技股▲分▼有限公司 複合集電体、電極シート、二次電池、電池モジュール、電池パック及び電気装置
CN117239058B (zh) * 2023-11-13 2024-03-01 珠海冠宇电池股份有限公司 极片、电芯以及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819080A (zh) * 2004-12-28 2006-08-16 Tdk株式会社 电化学装置
CN101640280A (zh) * 2008-07-31 2010-02-03 Nec东金株式会社 层叠型二次电池及其制造方法
EP3185339A1 (en) * 2015-12-22 2017-06-28 Samsung SDI Co., Ltd Electrode assembly and secondary battery using the same
CN107732146A (zh) * 2017-10-10 2018-02-23 中航锂电(洛阳)有限公司 一种锂离子电池极片及其制备方法,锂离子电池
CN108598491A (zh) * 2018-06-22 2018-09-28 宁德时代新能源科技股份有限公司 二次电池及其极片

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515286B2 (ja) * 1996-06-27 2004-04-05 三洋電機株式会社 二次電池用電極
JPH11102711A (ja) * 1997-09-25 1999-04-13 Denso Corp リチウムイオン二次電池
JP4205209B2 (ja) * 1998-07-02 2009-01-07 日機装株式会社 非水電解質二次電池
JP5260838B2 (ja) * 2005-08-30 2013-08-14 三洋電機株式会社 非水系二次電池
JP5347428B2 (ja) * 2008-10-23 2013-11-20 マツダ株式会社 二次電池
US8147565B2 (en) 2009-01-15 2012-04-03 Panasonic Corporation Method for manufacturing electrode plate for battery
DE102011004932A1 (de) * 2011-03-01 2012-09-06 Varta Microbattery Gmbh Spiralförmig gewickelte Elektrode, galvanisches Element und Herstellung derselben
JP2013026057A (ja) 2011-07-22 2013-02-04 Sharp Corp 集電体および非水系二次電池
KR101315672B1 (ko) * 2012-07-06 2013-10-08 (주)오렌지파워 전극 조립체, 이를 포함하는 전지 및 이의 제조 방법
US20150244017A1 (en) 2012-08-29 2015-08-27 Sharp Kabushiki Kaisha Electrode plate and secondary battery
CN105794022B (zh) * 2013-12-12 2018-07-17 Nec 能源元器件株式会社 二次电池及其制造方法
JP2016100170A (ja) 2014-11-20 2016-05-30 日立オートモティブシステムズ株式会社 非水電解液二次電池
JP6176500B2 (ja) 2015-04-21 2017-08-09 トヨタ自動車株式会社 二次電池及びその製造方法ならびに該電池に用いられる負極シートの製造方法
JP6859059B2 (ja) * 2015-09-30 2021-04-14 積水化学工業株式会社 リチウムイオン二次電池及びその製造方法
KR102124105B1 (ko) * 2016-03-29 2020-06-17 주식회사 엘지화학 전극 조립체 및 이를 포함하는 이차 전지
JP2017216160A (ja) 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 非水電解質二次電池
US20190280287A1 (en) * 2016-07-28 2019-09-12 Sanyo Electric Co., Ltd. Secondary battery and method for manufacturing the same
CN108428848B (zh) * 2017-11-22 2021-03-26 宁德时代新能源科技股份有限公司 电极构件、电极组件和充电电池
CN208955106U (zh) * 2018-10-17 2019-06-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819080A (zh) * 2004-12-28 2006-08-16 Tdk株式会社 电化学装置
CN101640280A (zh) * 2008-07-31 2010-02-03 Nec东金株式会社 层叠型二次电池及其制造方法
EP3185339A1 (en) * 2015-12-22 2017-06-28 Samsung SDI Co., Ltd Electrode assembly and secondary battery using the same
CN107732146A (zh) * 2017-10-10 2018-02-23 中航锂电(洛阳)有限公司 一种锂离子电池极片及其制备方法,锂离子电池
CN108598491A (zh) * 2018-06-22 2018-09-28 宁德时代新能源科技股份有限公司 二次电池及其极片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719876A4 *

Also Published As

Publication number Publication date
US11043677B2 (en) 2021-06-22
US20210143441A1 (en) 2021-05-13
US11444284B2 (en) 2022-09-13
EP3719876A4 (en) 2021-03-17
JP7193626B2 (ja) 2022-12-20
EP3719876A1 (en) 2020-10-07
US20200212449A1 (en) 2020-07-02
JP2022504846A (ja) 2022-01-13
CN110660956A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2020077740A1 (zh) 二次电池及其电极构件
WO2020073887A1 (zh) 二次电池及其制造方法、电极构件及其制造方法、集流体的制造方法
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
US20230378477A1 (en) Composite current collector, preparation method, and lithium ion battery
CN208955106U (zh) 二次电池及其电极构件
KR101969845B1 (ko) 가요성 이차 전지
US8530084B2 (en) Electrode structure for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR100929126B1 (ko) 비수전해질 전지 및 그 제조 방법
CN209183628U (zh) 二次电池及其极片
US11855304B2 (en) Secondary battery
CN113285055B (zh) 一种电极片及其应用
CN113285054B (zh) 一种电极片及其应用
US20230119014A1 (en) Electrode assembly of secondary battery, and secondary battery
US11101493B2 (en) Secondary battery and electrode member thereof
WO2009133652A1 (ja) 円筒形電池およびその製造方法
JP7469091B2 (ja) リチウムイオン二次電池
JP2002343439A (ja) 二次電池及びそれを搭載する携帯機器
JP7316520B2 (ja) 電池
CN115498366A (zh) 电化学装置及用电设备
JP7232229B2 (ja) 二次電池
CN218568941U (zh) 一种卷绕式电芯及电池
CN220753482U (zh) 集流单元、极片及电池
CN210403926U (zh) 二次电池及其电极构件
US20230163426A1 (en) Battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520320

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE