WO2020073785A1 - 一种锂合金负极材料及其制备方法 - Google Patents

一种锂合金负极材料及其制备方法 Download PDF

Info

Publication number
WO2020073785A1
WO2020073785A1 PCT/CN2019/106821 CN2019106821W WO2020073785A1 WO 2020073785 A1 WO2020073785 A1 WO 2020073785A1 CN 2019106821 W CN2019106821 W CN 2019106821W WO 2020073785 A1 WO2020073785 A1 WO 2020073785A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
metal
alloy
copper
molten
Prior art date
Application number
PCT/CN2019/106821
Other languages
English (en)
French (fr)
Inventor
李晶泽
贾维尚
姚泽宇
刘芋池
屈思吉
李超
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US16/955,064 priority Critical patent/US20200381705A1/en
Publication of WO2020073785A1 publication Critical patent/WO2020073785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • H01M4/0488Alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种锂合金负极材料及其制备方法,制备方法包括以下步骤:在露点不高于-50℃、氧含量不高于10ppm的环境中,将金属锂加热至熔融状态;将过渡金属加入熔融状态的金属锂中,保温5~15min,混匀,形成熔融的合金状态;将熔融状态的合金冷却至室温,制得锂合金负极材料。本发明制备方法简单可行,成本低,制备出的金属锂合金负极材料在锂电池中能够有效提高电池的库伦效率和循环寿命。

Description

一种锂合金负极材料及其制备方法 技术领域
本发明属于电池负极材料技术领域,具体涉及一种锂合金负极材料及其制备方法。
背景技术
由于金属锂具有最高的理论比容量与最低的氧化还原电位,使得金属锂可能作为负极材料满足锂电池提高能量密度的需求。因此金属锂负极的改性研究也成为了锂电池领域里面的热门方向。但是金属锂自身的高活性、大体积形变以及锂枝晶问题一直是限制金属锂负极面向应用的障碍。目前,金属锂作为锂电池负极主要存在的问题如下:(1)金属锂的化学活性非常高,容易和电解液发生不可逆的化学反应,消耗电解液与金属锂本身,从而降低负极容量和电池循环寿命;(2)金属锂在充放电过程中体积形变非常大,导致电池出现较大的膨胀和收缩;(3)金属锂在沉积的过程中由于动力学和热力学的原因容易生长锂枝晶,不仅会形成死锂降低负极容量和增加电池极化,还可能引起内部短路导致电池失效甚至起火爆炸。对此,已有很多研究从电解质、隔膜、表面修饰等方面致力于对金属锂负极进行改性以提高锂二次电池的性能与寿命,抑制锂枝晶的生长。但这些工艺较为复杂,不利于大规模的应用,现在仍未找到一种有效抑制锂枝晶生长的方法。
发明内容
针对现有技术中存在的上述问题,本发明提供一种锂合金负极材料及其制备方法,可有效解决金属锂负极材料在电池循环过程中金属锂枝晶的生长造成的库伦效率低、寿命短等问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种锂合金负极材料,其制备方法包括以下步骤:
(1)在露点不高于-50℃、氧含量不高于10ppm的环境中,将金属锂加热至200~800℃,使金属锂为熔融状态;此处的环境条件是要避免金属锂与空气中的水分或氧发生变化;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属加入熔融状态的金属锂中,保温5~15min,混匀,形成熔融的合金状态;其中,过渡金属为铜、镍、钪、钛、钒、铬、锰、钴和铌中的至少一种;
金属锂熔融时,其温度是低于过渡金属的熔点温度的。向熔融状态的金属锂中加入过渡金属后,金属锂会起到助溶剂的作用,使得金属锂与过渡金属在温度低于过渡金属熔融温度条件下也能很好的进行熔融混合。当金属锂熔融温度较高时,金属锂与过渡金属能够更快地形成熔融合金;当熔融温度适当降低时,两种金属也会形成熔融合金。在本发明的200~800℃,均可使得金属锂与过渡金属熔融混合,形成熔融合金。
(3)将步骤(2)所得物冷却至室温,制得锂合金负极材料。
在熔融合金冷却过程中过渡金属和金属锂均是以单质形式存在,且锂合金内部形成了均匀的过渡金属网络结构,这样的合金结构可以用作电池负极材料,可有效提高电池的性能。
进一步地,步骤(1)中在露点为-55℃、氧含量为5ppm的环境中对金属锂进行加热,加热温度为500℃。
进一步地,过渡金属与金属锂的原子个数比为1:100~2:3。
进一步地,过渡金属与金属锂的原子个数比为1:60。
进一步地,过渡金属为铜。
进一步地,步骤(3)中将步骤(2)所得物在5min之内冷却至室温。
本发明的制备原理是:将锂加热形成锂熔融态,然后将过渡金属加入熔融态的锂中,锂起到了助溶剂的作用,使得金属锂与过渡金属在温度低于过渡金属熔融温度条件下也能很好的进行熔融混合,此时的混合物是熔融混合的合金状态,微观结构下,锂原子和过渡金属原子均匀混合,而当温度冷却至室温的过程中,过渡金属如铜单质便形成了铜纳米线,锂单质填充在铜纳米线结构内部,两者也是混合在一起的。
本发明提供的锂合金负极材料及其制备方法,具有以下有益效果:
(1)本发明选择的过渡金属不与金属锂发生电化学反应,金属锂在熔融状态时,与过渡金属材料的亲和性更好,金属锂与过渡金属在一定的比例和温度范围内可以形成熔融合金,实现两种金属原子之间均匀混排,金属锂形成合金后改变了其内部微观结构,更易做成超薄金属锂合金负极带材。
(2)金属锂形成合金后并没有降低金属锂的电化学活性,并且会原位形成金属导电三维骨架结构,在充放电循环过程中金属锂的溶解和沉积不会造成负极材料的体积形变,且降低实际电流密度,从而降低电池极化的现象。
(3)本发明制备方法简单可行,成本低,制备出的金属锂合金负极材料在锂电池中能够有效提高电池的库伦效率和循环寿命。
(4)本发明制得的金属锂合金负极材料用于金属锂二次电池时,正极材料可采用常规的锂离子电池正极材料、有机正极材料、硫正极材料、空气/氧正极材料等,不用额外制备特殊的正极材料。
(5)本发明制得的锂合金负极材料能够有效抑制锂枝晶的生长,以锂铜合金为例,锂铜合金内部具有铜纳米线网络结构,当锂铜合金作为负极材料,在电池的放电过程中,锂铜合金内部的金属锂溶解消耗,露出锂铜合金内部的铜纳米线导电网络结构;在电池充电的过程中,正极材料脱锂,锂离子在负极 材料上电镀沉积,而锂铜合金的铜纳米线导电网络能够作为锂离子电镀沉积的导电三维集流体,降低实际的电流密度,抑制了锂枝晶的生长(锂枝晶的生长速度与电流密度成正比),并且锂离子电镀沉积在铜纳米线导电网络结构内部,限制了锂枝晶,铜纳米线网络为锂沉积提供了足够的空间,也抑制了金属锂沉积和溶解过程中电池体积的变化。
附图说明
图1为锂铜合金CuLi100的扫面电子显微镜(SEM)照片;其中,图1-1为锂铜合金CuLi100表面的SEM照片;图1-2为截面SEM照片。
图2为实施例4制得的锂铜合金CuLi60的SEM照片;其中,图2-1为锂铜合金CuLi60表面的SEM照片;图2-2为截面SEM照片。
图3为锂铜合金Cu2Li3的SEM照片;其中,图3-1为锂铜合金Cu2Li3表面的SEM照片;图3-2为截面SEM照片。
图4为锂铜合金CuLi80的SEM照片;其中,图4-1和4-2为锂铜合金CuLi80表面的SEM照片;图4-3和4-4为截面SEM照片。
图5为锂铜合金CuLi40的SEM照片;其中,图5-1和5-2为锂铜合金CuLi40表面的SEM照片;图5-3和5-4为截面SEM照片。
图6为锂铜合金CuLi20的SEM照片;其中,图6-1为锂铜合金CuLi20表面的SEM照片;图6-2为截面SEM照片。
图7为锂铜合金CuLi12的SEM照片。
图8为锂铜合金CuLi10的SEM照片;其中,图8-1为锂铜合金CuLi10表面的SEM照片;图8-2为截面SEM照片。
图9为锂铜合金CuLi6的SEM照片。
图10为锂铜合金CuLi3的SEM照片;其中,图10-1为锂铜合金CuLi3表 面的SEM照片;图10-2为截面SEM照片。
图11为锂铜合金Cu2Li3除去Li后的SEM照片;其中,图11-1为锂铜合金Cu2Li3除去Li后的表面SEM照片;图11-2为金属锂铜合金Cu2Li3除去Li后的截面SEM照片。
图12为锂铜合金CuLi60除去Li后的SEM照片;其中,图12-1为锂铜合金CuLi60除去Li后的表面SEM照片;图12-2为金属锂铜合金CuLi60除去Li后的截面SEM照片。
图13为锂铜合金CuLi60除去锂前后的X射线衍射(XRD)图谱。
图14为实验例1中采用1mol/L LiTFSI+2%LiNO 3+DOL:DME=1:1为电解液,电流密度为1mA/cm 2的Li-Cu电池分别采用铜箔和CuLi60除去锂后的铜纳米线的电池循环效率图。
图15为实验例2中的采用1mol/L LiTFSI+2%LiNO 3+DOL:DME=1:1为电解液,电流密度为2mA/cm 2的Li-Li电池分别采用锂箔和CuLi60的充放电曲线图。
图16为实验例3中的采用1mol/L LiPF 6+EC:DEC:DMC=1:1:1为电解液,电流密度为1C的Li-LCO电池分别采用锂箔和CuLi60的放电容量和库伦效率图。
图17为实验例4中的采用1mol/L LiPF 6+EC:DEC:DMC=1:1:1为电解液,电流密度为2C的Li-LTO电池分别采用锂箔和CuLi60的放电容量和库伦效率图。
具体实施方式
实施例1
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-50℃、氧含量为10ppm的环境中,对金属锂进行加热至200℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态 的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi100负极材料。
实施例2
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-60℃、氧含量为2ppm的环境中,对金属锂进行加热至200℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:60;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi60负极材料。
实施例3
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-70℃、氧含量为1ppm的环境中,对金属锂进行加热至800℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为2:3;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金Cu2Li3负极材料。
实施例4
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:60;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi60负极材料。
实施例5
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至300℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:80;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi80负极材料。
实施例6
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至400℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的 原子个数比为1:40;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi40负极材料。
实施例7
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至600℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:20;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi20负极材料。
实施例8
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至700℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:10;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi10负极材料。
实施例9
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至800℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铜加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铜和锂的原子个数比为1:5;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铜合金CuLi5负极材料。
实施例10
本实施例中铜和锂的原子个数比为1:12,其余过程与实施例4相同。
实施例11
本实施例中铜和锂的原子个数比为1:6,其余过程与实施例4相同。
实施例12
本实施例中铜和锂的原子个数比为1:3,其余过程与实施例4相同。
实施例13
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至200℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi100负极材料。
实施例14
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至300℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的原子个数比为1:80;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi80负极材料。
实施例15
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至400℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的原子个数比为1:60;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi60负极材料。
实施例16
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的 原子个数比为1:40;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi40负极材料。
实施例17
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至600℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的原子个数比为1:20;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi20负极材料。
实施例18
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至700℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的原子个数比为1:10;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi10负极材料。
实施例19
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至800℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属镍加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中镍和锂的原子个数比为1:5;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂镍合金NiLi5负极材料。
实施例20
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属钪加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中钪和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂钪合金ScLi100负极材料。
实施例21
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属钛加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中钛和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂钛合金TiLi100负极材料。
实施例22
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属钒加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中钒和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂钒合金VLi100负极材料。
实施例23
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铬加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铬和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂铬合金CrLi100负极材料。
实施例24
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃, 此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属锰加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中锰和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂锰合金MnLi100负极材料。
实施例25
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属钴加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中钴和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂钴合金CoLi100负极材料。
实施例26
一种金属锂合金负极材料,其制备方法包括以下步骤:
(1)在露点为-55℃、氧含量为5ppm的环境中,对金属锂进行加热至500℃,此时金属锂为熔融状态;
(2)在温度低于过渡金属熔点温度的条件下,将过渡金属铌加入熔融状态的金属锂中,保温10min,混匀,使金属锂形成熔融的合金状态,其中铌和锂的原子个数比为1:100;
(3)将步骤(2)中熔融态的金属锂合金在5min之内冷却至室温,制得锂 铌合金NbLi100负极材料。
将本发明制得的锂铜合金负极材料进行形貌观察,部分材料的SEM照片见图1-10,将制得的负极材料利用锂与水的反应将金属锂除去,分别得到铜纳米线材料,部分材料去除锂后的SEM照片见图11-12。
由图1-10可知,铜的含量越多,铜纳米线含量就越多,而且较大的铜颗粒含量较少,当铜含量降低时,铜颗粒含量减少,颗粒也越来越细,说明改变铜的含量会大大影响铜晶体的形状,当铜与锂的原子个数比为1:60时,材料中含有的铜纳米线更分散、更均匀、形状更规则。
从表观上看,实施例4所得锂铜合金CuLi60负极材料比实施例1-3具有分散、更均匀、形状更规则的铜纳米线,实施例4所得锂铜合金的SEM图见图2中的图2-1和图2-2,由图2-1和图2-2可知,铜纳米线非常均匀的分散在锂铜合金内部,锂溶解后获得的铜纳米线结构比表面积较大。
观察实施例4所得锂铜合金CuLi60负极材料除去锂后的形貌,结果见图12,其中图12-1为表面SEM图,图12-2为截面SEM图。由图12可知,金属铜纳米线作为骨架结构均匀分散在锂铜合金内部。
用X射线衍射(XRD)检测实施例4所得锂铜合金CuLi60负极材料除去锂前后的晶体成分,结果见图13,锂铜合金除去锂前后均有金属铜晶体存在,而除去锂前XRD图谱中也有锂的特征衍射峰。
实施例4所得锂铜合金CuLi60负极材料比改性前的金属锂负极材料在其他性能上优势更为显著,其测试见以下实验例:
实验例1
将实施例4所得的锂铜合金CuLi60除去锂后的铜纳米线结构用于锂-铜电池体系中,在无水无氧充满氩气的手套箱中组装锂-铜电池。
采用1mol/L LiTFSI+2%LiNO 3溶于DOL:DME=1:1电解液体系,将直径为8mm的金属锂箔作为负极,将直径为19mm的Celgard 2325作为隔膜,直径为12mm的铜纳米线结构或常规的铜箔作为对电极,封装于CR2032扣式电池中,进行恒流充放电测试,参数为电流密度为:1mA/cm 2,放电1h,然后充电至1V,结果见图14。
由图14可知,使用常规的铜作为对电极后,电池库伦效率较低,循环寿命较短;使用实施例4所得的锂铜合金CuLi60除去锂后的铜纳米线结构作为对电极后,电池库伦效率得到了提升,接近100%,循环寿命大大提升至500次循环,并且电化学阻抗较小。
实验例2
将实施例4所得的锂铜合金CuLi60负极材料用于锂-锂电池体系中,在无水无氧充满氩气的手套箱中组装锂-锂电池。
采用1mol/L LiTFSI+2%LiNO 3溶于DOL:DME=1:1电解液体系,将直径为15mm的锂铜合金CuLi60作为负极,将直径为19mm的Celgard 2325作为隔膜,直径为15mm的锂铜合金CuLi60或锂箔作为对电极,封装于CR2032扣式电池中,进行恒流充放电测试,参数为电流密度为:2mA/cm 2,充放电各为1小时,结果见图15。
由图15可知,使用锂箔组装的电池由于电荷转移阻抗较大导致极化较大,并且随着循环时间的增加电池极化增大较为明显,说明金属锂在循环过程中不断消耗电解液,阻抗持续增大,最后发生由于锂枝晶穿过隔膜造成的内部短路现象,电压突然减小;而采用锂铜合金CuLi60组装的电池极化较小,并且随着循环时间的增加电池极化增大较小,说明复合金属锂改性后的电荷转移阻抗较小,并且能够有效抑制金属锂与电解液不断反应,循环寿命也大大增加到600 小时以上。
实验例3
将实施例4所得的锂铜合金CuLi60负极材料用于锂-钴酸锂电池体系中,在无水无氧充满氩气的手套箱中组装锂-钴酸锂电池。
采用1mol/L LiPF 6溶于EC:DEC:DMC=1:1:1电解液体系,将直径为15mm的锂铜合金CuLi60作为负极,将直径为19mm的Celgard 2325作为隔膜,直径为10mm的钴酸锂电极片作为正极,封装于CR2032扣式电池中,进行1C倍率下恒流充放电测试测试,结果见图16。
由图16可知,采用锂铜合金CuLi60的电池比锂箔组装的电池的放电容量有较大提升,证明改性的金属锂合金负极对于全电池的性能提升具有很大的帮助。
实验例4
将实施例4所得的锂铜合金CuLi60负极材料用于锂-钛酸锂电池体系中,在无水无氧充满氩气的手套箱中组装锂-钛酸锂电池。
采用1mol/L LiPF 6溶于EC:DEC:DMC=1:1:1电解液体系,将直径为15mm的锂铜合金CuLi60作为负极,将直径为19mm的Celgard 2325作为隔膜,直径为10mm的钛酸锂电极片作为正极,封装于CR2032扣式电池中,进行2C倍率下恒流充放电测试测试,结果见图17。
由图17可知,采用锂铜合金CuLi60的电池比锂箔组装的电池的容量保持率和放电容量都有提升,证明改性的金属锂合金负极对于全电池的性能提升具有很大的帮助。

Claims (8)

  1. 一种锂合金负极材料的制备方法,其特征在于,包括以下步骤:
    (1)在露点不高于-50℃、氧含量不高于10ppm的环境中,将金属锂加热至熔融状态;其中,加热温度为200~800℃;
    (2)将过渡金属加入熔融状态的金属锂中,保温5~15min,混匀,形成熔融的合金;其中,过渡金属为铜、镍、钪、钛、钒、铬、锰、钴和铌中的至少一种;
    (3)将步骤(2)所得物冷却至室温,制得锂合金负极材料。
  2. 根据权利要求1所述的锂合金负极材料的制备方法,其特征在于,步骤(1)中在露点为-55℃、氧含量为5ppm的环境中对金属锂进行加热,加热温度为500℃。
  3. 根据权利要求1所述的锂合金负极材料的制备方法,其特征在于,过渡金属与金属锂的原子个数比为1:100~2:3。
  4. 根据权利要求3所述的锂合金负极材料的制备方法,其特征在于,过渡金属与金属锂的原子个数比为1:60。
  5. 根据权利要求1~4任一项所述的锂合金负极材料的制备方法,其特征在于,过渡金属为铜。
  6. 根据权利要求3所述的锂合金负极材料的制备方法,其特征在于,步骤(3)中将步骤(2)所得物在5min之内冷却至室温。
  7. 权利要求1~6任一项所述的方法制得的锂合金负极材料。
  8. 一种锂离子电池,其特征在于,包括权利要求7所述的锂合金负极材料。
PCT/CN2019/106821 2018-10-08 2019-09-20 一种锂合金负极材料及其制备方法 WO2020073785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/955,064 US20200381705A1 (en) 2018-10-08 2019-09-20 Lithium alloy as an anode material and a preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811166961.4A CN109326792B (zh) 2018-10-08 2018-10-08 一种锂合金负极材料及其制备方法
CN201811166961.4 2018-10-08

Publications (1)

Publication Number Publication Date
WO2020073785A1 true WO2020073785A1 (zh) 2020-04-16

Family

ID=65261628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106821 WO2020073785A1 (zh) 2018-10-08 2019-09-20 一种锂合金负极材料及其制备方法

Country Status (3)

Country Link
US (1) US20200381705A1 (zh)
CN (1) CN109326792B (zh)
WO (1) WO2020073785A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968174A (zh) * 2021-02-23 2021-06-15 电子科技大学 一种亲锂合金修饰层、复合锂负极材料及其制备方法和应用
CN114204001A (zh) * 2021-12-07 2022-03-18 电子科技大学 一种具有内嵌三维骨架结构的超薄富锂合金及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109326792B (zh) * 2018-10-08 2021-09-21 电子科技大学 一种锂合金负极材料及其制备方法
CN112928235B (zh) * 2019-12-06 2022-09-16 北京航空航天大学 超薄金属锂电极及其制备以及作为一次锂电池负极的用途
CN112928247B (zh) * 2019-12-06 2022-12-02 北京航空航天大学 超薄金属锂材、金属锂复合材料及其制备方法
CN111342142A (zh) * 2020-03-11 2020-06-26 电子科技大学 一种锂电芯结构、锂电池结构及其制备方法
CN112349882A (zh) * 2020-11-06 2021-02-09 燕山大学 金属锂电极的制备方法、三维网络状多孔金属骨架集电体的制备方法
CN113871597B (zh) * 2021-09-27 2023-11-10 电子科技大学长三角研究院(湖州) 一种表面具有三维骨架结构及预留空间的锂复合负极材料及其制备方法
CN114421029B (zh) * 2021-12-29 2023-09-01 华中科技大学 一种金属锂表面原位合金-sei层的筑构方法与应用
CN114843615A (zh) * 2022-05-13 2022-08-02 电子科技大学 一种具有合金界面层的全固态厚膜锂电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110721A (zh) * 1994-04-25 1995-10-25 北京有色金属研究总院 用于电池负极材料的锂铝合金及其制造方法
CN101339990A (zh) * 2008-08-27 2009-01-07 安泰科技股份有限公司 一种锂离子二次电池负极活性材料及其制备方法
CN108134049A (zh) * 2017-12-19 2018-06-08 成都亦道科技合伙企业(有限合伙) 负极层及其制备方法、锂电池电芯及锂电池
CN108461724A (zh) * 2018-03-05 2018-08-28 苏州大学 一种高安全性金属复合负极的制备方法
CN109326792A (zh) * 2018-10-08 2019-02-12 电子科技大学 一种锂合金负极材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551184A (en) * 1967-03-09 1970-12-29 Foote Mineral Co Method of bonding lithium to other metals
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode
JPH08153541A (ja) * 1994-11-28 1996-06-11 Mitsubishi Cable Ind Ltd リチウム二次電池
JP3985263B2 (ja) * 2001-11-09 2007-10-03 ソニー株式会社 負極活物質及びその製造方法、並びに非水電解質二次電池
CN100335661C (zh) * 2002-05-29 2007-09-05 株式会社三德 含稀土类金属的合金的制造系统
KR101215623B1 (ko) * 2010-05-12 2012-12-26 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지의 음극 활물질의 제조 방법
CN102487151B (zh) * 2010-12-02 2014-10-08 比亚迪股份有限公司 一种锂离子二次电池
US11145851B2 (en) * 2015-11-11 2021-10-12 The Board Of Trustees Of The Leland Stanford Junior University Composite lithium metal anodes for lithium batteries with reduced volumetric fluctuation during cycling and dendrite suppression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110721A (zh) * 1994-04-25 1995-10-25 北京有色金属研究总院 用于电池负极材料的锂铝合金及其制造方法
CN101339990A (zh) * 2008-08-27 2009-01-07 安泰科技股份有限公司 一种锂离子二次电池负极活性材料及其制备方法
CN108134049A (zh) * 2017-12-19 2018-06-08 成都亦道科技合伙企业(有限合伙) 负极层及其制备方法、锂电池电芯及锂电池
CN108461724A (zh) * 2018-03-05 2018-08-28 苏州大学 一种高安全性金属复合负极的制备方法
CN109326792A (zh) * 2018-10-08 2019-02-12 电子科技大学 一种锂合金负极材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968174A (zh) * 2021-02-23 2021-06-15 电子科技大学 一种亲锂合金修饰层、复合锂负极材料及其制备方法和应用
CN112968174B (zh) * 2021-02-23 2022-09-13 电子科技大学 一种亲锂合金修饰层、复合锂负极材料及其制备方法和应用
CN114204001A (zh) * 2021-12-07 2022-03-18 电子科技大学 一种具有内嵌三维骨架结构的超薄富锂合金及其制备方法和应用
CN114204001B (zh) * 2021-12-07 2023-08-29 电子科技大学 一种具有内嵌三维骨架结构的超薄富锂合金及其制备方法和应用

Also Published As

Publication number Publication date
CN109326792A (zh) 2019-02-12
US20200381705A1 (en) 2020-12-03
CN109326792B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2020073785A1 (zh) 一种锂合金负极材料及其制备方法
CN109244473B (zh) 一种锂合金带材及其制备方法
EP2403041B1 (en) Cathode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery containing same
JP5219339B2 (ja) リチウム二次電池
US8808916B2 (en) Cathode active material for lithium secondary batteries, method for preparing the same, and lithium secondary batteries comprising the same
CN106165178A (zh) 具有复合固体电解质的Li/金属电池
CN112151799A (zh) 一种三维多孔互联骨架锂金属电池负极材料及其制备方法
CN110600677A (zh) 锂金属负极及其制备方法和锂金属、锂硫、锂空气电池
KR20140058928A (ko) 비수계 고용량 리튬 이차전지
CN112928238A (zh) 超薄金属锂电极及其制备以及作为二次锂电池负极的用途
CN100466340C (zh) 非水电解质二次电池
US8420261B2 (en) Thin film alloy electrodes
Xie et al. Electrochemical lithiation and delithiation of FeSb2 anodes for lithium-ion batteries
JP4534263B2 (ja) 非水電解質二次電池
CN113793920B (zh) 一种金属锂表面原位锂铝合金层的筑构方法与应用
WO2021179219A1 (zh) 阳极极片及其制备方法、采用该极片的电池及电子装置
JP4561040B2 (ja) 非水電解質二次電池
CN112838208A (zh) 锂离子电池正极材料的制备方法及应用
CN111952595A (zh) 一种基于尖端效应的无枝晶金属负极载体及其制备方法
JP4056181B2 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
KR20180133786A (ko) 리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지
JP4534264B2 (ja) 非水電解質二次電池
CN115676888B (zh) 改性钽酸锂修饰石墨烯纳米材料及其制备方法和应用
WO2023201684A1 (zh) 多孔材料及其制备方法、集流体、二次电池及装置
KR101423652B1 (ko) 이차 전지용 음극 활물질 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870800

Country of ref document: EP

Kind code of ref document: A1