WO2023201684A1 - 多孔材料及其制备方法、集流体、二次电池及装置 - Google Patents

多孔材料及其制备方法、集流体、二次电池及装置 Download PDF

Info

Publication number
WO2023201684A1
WO2023201684A1 PCT/CN2022/088398 CN2022088398W WO2023201684A1 WO 2023201684 A1 WO2023201684 A1 WO 2023201684A1 CN 2022088398 W CN2022088398 W CN 2022088398W WO 2023201684 A1 WO2023201684 A1 WO 2023201684A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
porous material
alloy
pores
pore diameter
Prior art date
Application number
PCT/CN2022/088398
Other languages
English (en)
French (fr)
Inventor
王慢慢
葛销明
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280039719.9A priority Critical patent/CN117413080A/zh
Priority to EP22937920.1A priority patent/EP4317489A1/en
Priority to PCT/CN2022/088398 priority patent/WO2023201684A1/zh
Publication of WO2023201684A1 publication Critical patent/WO2023201684A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C3/00Removing material from alloys to produce alloys of different constitution separation of the constituents of alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present application relates to the technical field of metal materials, and in particular to a porous material and its preparation method, current collector, secondary battery and device.
  • secondary batteries are widely used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields.
  • energy storage power systems such as hydraulic, thermal, wind and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields.
  • secondary batteries have achieved great development, higher requirements have been placed on their energy density, cycle performance, etc.
  • Lithium metal is considered an attractive anode material for high-energy lithium-ion batteries due to its high theoretical specific capacity (3860 mAh/g) and low electrochemical potential.
  • batteries using metallic lithium as the negative electrode will have the following problems during the cycle: lithium dendrites are generated, chemical reactions occur with the electrolyte, and the volume of the lithium negative electrode expands infinitely during deposition and peeling. These problems will inevitably bring about battery safety risks and Low cycle efficiency seriously hinders the practical application of metallic lithium anodes.
  • This application was made in view of the above problems, and its purpose is to provide a new porous material and its preparation method, current collector, secondary battery and device.
  • the preparation method of porous materials innovatively uses multi-phase alloys containing ⁇ Mn phase and ⁇ Mn-M phase to obtain porous materials with multi-level pore size distribution.
  • the novel porous material with multi-level pore size distribution of the present application is particularly suitable for use in anode-free metal batteries (such as anode-free lithium metal batteries or anode-free sodium metal batteries) or batteries containing active metal/alloy anodes.
  • the present application provides a porous material, the porous material having pores of a first pore diameter and pores of a second pore diameter; the first pore diameter is n microns, 0.5 ⁇ n ⁇ 20; the second pore diameter is m nanometers, 10 ⁇ m ⁇ 400; the apparent volume of the porous material is V, the total pore volume of the pores with the first pore diameter is V 1 , and the total pore volume of the pores with the second pore diameter is V 2 ,
  • the porous material based on the above scheme has innovative multi-level pore size distribution characteristics.
  • the new porous material is particularly suitable for use in anode-free metal batteries (such as anode-free lithium metal batteries or anode-free sodium metal batteries) or batteries containing active metal/alloy anodes.
  • the inner wall of the hole with the first pore diameter (hereinafter referred to as the macropore) can serve as a substrate for active material deposition; in addition, another function of the macropore is to provide an electrolyte infiltration channel.
  • the inner wall of the hole with the second pore diameter (hereinafter referred to as the small hole) can serve as a base for active material deposition.
  • the small pores increase the specific surface area of the material, allowing the porous material to load more active substances; in addition, another role of the small pores is to serve as a template for the deposition of active substances.
  • the active material deposited in the pores has a nanoscale size.
  • the nanoscale active material has a high ionic conductivity due to its small size, which can improve the overall ionic conductivity of the electrode. rate, thereby improving the rate performance of the battery, and ultimately improving the capacity, cycle stability and rate performance of the battery as a whole; in addition, another function of the small holes is to limit the volume expansion of the active material and avoid its pulverization failure.
  • the total specific surface area of the porous material is S
  • the pore specific surface area of the pores with the first pore diameter is S 1
  • the porous material based on the above scheme has new pore specific surface area distribution characteristics.
  • the second pore diameter is m nanometers, 20 ⁇ m ⁇ 200.
  • Porous materials based on the above scheme have innovative pore size distribution characteristics.
  • the first pore diameter is n microns, 0.5 ⁇ n ⁇ 10.
  • Porous materials based on the above scheme have innovative pore size distribution characteristics.
  • the porous material is made of a metal element or alloy containing M element, and the M element is selected from copper, aluminum or a combination thereof.
  • Porous materials based on the above solutions have innovative compositions.
  • the present application provides a method for preparing porous materials, including
  • the multi-phase alloy contains an ⁇ Mn phase and a ⁇ Mn-M phase, and the M element is selected from copper, aluminum or a combination thereof;
  • the porous material has pores with a first pore diameter and pores with a second pore diameter; the first pore diameter is n microns, 0.5 ⁇ n ⁇ 20; the second pore diameter is m nanometers, 10 ⁇ m ⁇ 400; the porous material
  • the apparent volume is V
  • the total pore volume of the pores with the second pore diameter is V 2
  • the total pore volume of the pores with the first pore diameter is V 1
  • the above method innovatively deals with multi-phase alloys with unique microstructures and obtains porous materials with innovative pore distribution characteristics.
  • dealloying is used to remove at least 90 at.% or more, for example, more than 95 at.% of the Mn elements from the ⁇ Mn phase. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • dealloying is used to remove at least 90 at.% or more, such as 95 at.% or more, of the Mn elements from the ⁇ Mn-M phase. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the amount of M elements removed by the dealloying method is 10 at.% or less, for example, 5 at.% or less. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of Mn element in the ⁇ Mn phase is >99 at.%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of Mn element in the ⁇ Mn-M phase is 40-80 at.%, such as 40-50 at.%, 50-60 at.%, 60-70 at.% or 70-80 at.%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the ⁇ Mn-M phase is a solid solution. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of ⁇ Mn phase in the multi-phase alloy is 22-70 vol%, such as 25-30%, 30-40 vol%, 40-50 vol%, 50-60 vol%, 60-70 vol%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of the ⁇ Mn-M phase in the multi-phase alloy is 30-78 vol%, such as 30-40 vol%, 40-50 vol%, 50-60 vol%, 60-70 vol%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the average size of the ⁇ Mn phase is 0.5 to 10 microns.
  • the average size here can be understood as the average diameter of equal-area circles of the ⁇ Mn phase.
  • the average size of the ⁇ Mn-M phase is 0.5 to 10 microns.
  • the average size here can be understood as the average diameter of an equal-area circle of the ⁇ Mn-M phase.
  • the ⁇ Mn phase (appearing bright white on the metallographic structure) has an average size of 0.5 to 10 microns. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the ⁇ Mn phase and the ⁇ Mn-M phase are uniformly dispersed in the multiphase alloy. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the multi-phase alloy contains Mn element and M element, the content of the Mn element is 60%-90 at.%, for example, 70-80% at.%, and the content of the M element is 10 ⁇ 40 at.%, for example 20-30 at.% M element is selected from copper, aluminum or combinations thereof. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the method of dealloying is selected from chemical etching, electrochemical etching, or a combination thereof. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the method for preparing porous materials further includes the step of preparing a multi-phase alloy, specifically including:
  • alloy precursor contains M element and Mn element, and the M element is selected from copper, aluminum or combinations thereof,
  • the product of the previous step is subjected to a second heat treatment to obtain a second product, which contains an ⁇ Mn phase and a ⁇ Mn-M phase. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the first product containing the ⁇ Mn-M phase has excellent room temperature plasticity.
  • the temperature of the first heat treatment is 700-865°C, such as 700-730°C, 730-760°C, 760-790°C, 790-820°C or 820-850°C. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the time of the first heat treatment is more than 0.16 hours, such as 1-2 hours. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • cooling is performed at a cooling rate of 20 to 1000°C/s, such as water cooling. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of the ⁇ Mn-M phase in the first product is 95 to 100 vol%.
  • the first product containing the ⁇ Mn-M phase has good plasticity and can be processed into processed products of different shapes and sizes through plastic processing methods (forging, rolling, drawing, etc.).
  • the method further includes plastic processing the first product before performing the second heat treatment.
  • the temperature of the second heat treatment is 500-700°C, such as 550-600°C, 600-650°C. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the second heat treatment time is 1 to 4 hours, such as 2 to 3 hours. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • cooling is performed at a cooling rate of 20 to 1000°C/s, such as water cooling. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of ⁇ Mn phase in the second product is 22-70 vol%, such as 25-30%, 30-40 vol%, 40-50 vol%, 50-60 vol% or 60-70 vol%, ⁇ Mn -The content of the M phase is 30 to 78 vol%, such as 30-40 vol%, 40-50 vol%, 50-60 vol% or 60-70 vol%.
  • the alloy precursor is an ingot. Based on this, the method of preparing porous materials has lower cost. Based on this solution, porous materials with larger volumes can also be prepared.
  • the porous material obtained by the method has pores of a first pore diameter and pores of a second pore diameter; the second pore diameter is m nanometers, 10 ⁇ m ⁇ 400, for example, 20 ⁇ m ⁇ 200;
  • the first pore diameter is n microns, 0.5 ⁇ n ⁇ 20, for example, 0.5 ⁇ n ⁇ 10. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the total specific surface area of the porous material obtained by the method is S
  • the pore specific surface area of the pores with the first pore diameter is S 1
  • the present application provides a porous material prepared by any of the methods described above.
  • the present application provides a current collector including the porous material described in any one of the above.
  • the present application provides a secondary battery including the current collector described in any one of the above.
  • the present application provides a device including the secondary battery described in any one of the above, and the secondary battery provides electrical energy to the device.
  • the Mn-Cu binary alloy (Mn content 90-60 at.%) has a ⁇ -Mn single-phase structure in the temperature range of 700-865°C, and a single-phase structure of ⁇ in the temperature range of 500-700°C. / ⁇ biphasic structure. Therefore, the Mn-Cu alloy prepared by smelting can be annealed at high temperature (700-865°C) to obtain a ⁇ single-phase alloy with excellent plastic processing ability, and to prepare precursor alloys of different shapes. This is followed by low-temperature (500-700°C) aging treatment to form an ⁇ / ⁇ dual-phase structure, which is used to prepare the final porous material.
  • the method of preparing porous materials has lower cost.
  • the method of preparing porous materials can obtain large-sized porous materials, and the product after dealloying can maintain the shape and size of the parent body.
  • the first product containing ⁇ Mn-M phase has good plasticity and can be processed into different shapes and sizes through plastic processing methods (forging, rolling, drawing, etc.) Processed products.
  • the subsequent second heat treatment and dealloying operations on the processed product will basically not change the shape and size of the processed product.
  • the method of preparing a porous material can flexibly adjust the pore diameter and ratio of the pores with the second pore diameter and the pores with the first pore diameter in the porous material. For example, by adjusting the temperature and time of the second heat treatment, the content and size of the ⁇ Mn phase in the second product can be controlled, and thereby the content and pore size of the pores with the first pore size in the porous material can be controlled. For another example, by adjusting the dealloying corrosion temperature, the content and pore diameter of the pores with the second pore diameter in the porous material can be controlled.
  • the porous material of the present application has pores of a first pore size and pores of a second pore size.
  • the inner wall of the hole with the first pore diameter (hereinafter referred to as the macropore) can serve as a substrate for active material deposition; in addition, another function of the macropore is to provide an electrolyte infiltration channel.
  • the inner wall of the hole with the second pore diameter (hereinafter referred to as the small hole) can serve as a base for active material deposition.
  • the small pores increase the specific surface area of the material, allowing the porous material to load more active substances; in addition, another role of the small pores is to serve as a template for the deposition of active substances.
  • the active material deposited in the pores has a nanoscale size.
  • the nanoscale active material has a high ionic conductivity due to its small size, which can improve the overall ionic conductivity of the electrode. rate, thereby improving the rate performance of the battery, and ultimately improving the capacity, cycle stability and rate performance of the battery as a whole; in addition, another function of the small holes is to limit the volume expansion of the active material and avoid its pulverization failure.
  • Figure 1 (a) is the XRD diffraction pattern of the Mn-Cu alloy after the first heat treatment in some embodiments
  • Figure 1 (b) is the XRD diffraction pattern of the Mn-Cu alloy after the second heat treatment in some embodiments
  • Figure 2 is a scanning electron microscope photograph of the porous copper prepared in Example 1, in which (a) is a low magnification, and (b) is a high magnification;
  • Figure 3 is a scanning electron microscope photograph of the porous copper prepared in Example 2.
  • Figure 4 is a scanning electron microscope photograph of the porous copper prepared in Example 3.
  • Figure 5 is a scanning electron microscope photograph of the porous copper prepared in Example 4, in which (a) is a low magnification and (b) is a high magnification.
  • Figure 6 is a scanning electron microscope photograph of the porous copper prepared in the comparative example, in which (a) is a low magnification and (b) is a high magnification.
  • Figure 7 is a Cu-Mn alloy phase diagram.
  • Figure 8 is a schematic diagram of the porous structure of porous materials according to some embodiments of the present application.
  • FIG. 9 is an overall view and an exploded view of a secondary battery according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 12 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 11 .
  • FIG. 13 is a schematic diagram of a device using a secondary battery as a power source according to an embodiment of the present application.
  • Battery pack 1 upper box 2; lower box 3; battery module 4; secondary battery 5; case 51; electrode assembly 52; top cover assembly 53; three-dimensional porous skeleton 600; hole 601 with a first aperture; Hole 602 of second diameter.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, understand that ranges of 60-110 and 80-120 are also expected. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • step (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • the present application provides a porous material, which has pores of a first pore diameter and pores of a second pore diameter; the first pore diameter is n microns, 0.5 ⁇ n ⁇ 20; and the second pore diameter is n microns, 0.5 ⁇ n ⁇ 20;
  • the porous material based on the above scheme has innovative multi-level pore size distribution characteristics.
  • the porous material based on the above scheme has innovative multi-level pore size distribution characteristics.
  • the new porous material is particularly suitable for use in anode-free metal batteries (such as anode-free lithium metal batteries or anode-free sodium metal batteries) or metal or alloy anode batteries.
  • the inner wall of the hole with the first pore diameter (hereinafter referred to as the macropore) can serve as a substrate for active material deposition; in addition, another function of the macropore is to provide an electrolyte infiltration channel.
  • the inner wall of the hole with the second pore diameter (hereinafter referred to as the small hole) can serve as a base for active material deposition.
  • the small pores increase the specific surface area of the material, allowing the porous material to load more active substances; in addition, another role of the small pores is to serve as a template for the deposition of active substances.
  • the active material deposited in the pores has a nanoscale size.
  • the nanoscale active material has a high ionic conductivity due to its small size, which can improve the overall ionic conductivity of the electrode. rate, thereby improving the rate performance of the battery, and ultimately improving the capacity, cycle stability and rate performance of the battery as a whole; in addition, another function of the small holes is to limit the volume expansion of the active material and avoid its pulverization failure.
  • the value of (V 1 +V 2 )/V is 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, or 80- 90%.
  • the value of V2 /V is 20-30%, 30-40%, 40-50%, 50-60%, or 60-70%.
  • the total specific surface area of the porous material is S
  • the pore specific surface area of the pores with the first pore diameter is S 1
  • the porous material based on the above solution has pore specific surface area distribution characteristics.
  • the value of S 1 /S is 10-15%, 15-20%, 20-25%, or 25-30%.
  • the value of S 1 /S is 70-75%, 75-80%, 80-85%, or 85-90%.
  • the second pore diameter is m nanometers, 20 ⁇ m ⁇ 200.
  • Porous materials based on the above scheme have innovative pore size distribution characteristics.
  • the second pore diameter is m nanometers, and the value of m is 10-50, 50-100, 100-150, 150-200, 200-250, 250-300, 300-350 or 350-400 .
  • the first pore diameter is n microns, 0.5 ⁇ n ⁇ 10.
  • Porous materials based on the above scheme have innovative pore size distribution characteristics.
  • the first pore diameter is n microns, and the value of n is 0.5-1, 1-5, 5-10, 10-15 or 15-20.
  • the porous material is made of a metal element or alloy containing M element, and the M element is selected from copper, aluminum or a combination thereof.
  • Porous materials based on the above solutions have innovative compositions.
  • the porous material is prepared using a dealloying method.
  • the porous material is gas-permeable and/or liquid-permeable.
  • the present application provides a method for preparing porous materials, including
  • the multi-phase alloy contains an ⁇ Mn phase and a ⁇ Mn-M phase, and the M element is selected from copper, aluminum or a combination thereof;
  • the porous material has pores with a first pore diameter and pores with a second pore diameter; the first pore diameter is n microns, 0.5 ⁇ n ⁇ 20; the second pore diameter is m nanometers, 10 ⁇ m ⁇ 400; the porous material
  • the apparent volume is V
  • the total pore volume of the pores with the second pore diameter is V 2
  • the total pore volume of the pores with the first pore diameter is V 1
  • the above method innovatively deals with multi-phase alloys with unique microstructures and obtains porous materials with innovative pore distribution characteristics.
  • the Mn-Cu binary alloy (Mn content 90-60 at.%) has a ⁇ single-phase structure in the temperature range of 700-865°C, and has an ⁇ / ⁇ structure in the temperature range of 500-700°C. Dual phase structure. Therefore, the Mn-Cu alloy prepared by smelting can be annealed at high temperature (700-865°C) to obtain a ⁇ single-phase alloy with excellent plastic processing ability, and to prepare precursor alloys of different shapes. This is followed by low-temperature (500-700°C) aging treatment to form an ⁇ / ⁇ dual-phase structure, which is used to prepare the final porous material.
  • the method of preparing porous materials has lower cost.
  • the method of preparing porous materials can obtain large-sized porous materials.
  • the first product containing ⁇ Mn-M phase has good plasticity and can be processed into different shapes and sizes through plastic processing methods (forging, rolling, drawing, etc.) Processed products.
  • the subsequent second heat treatment and dealloying operations on the processed product will basically not change the shape and size of the processed product.
  • the method of preparing a porous material can flexibly adjust the pore diameter and ratio of the pores with the second pore diameter and the pores with the first pore diameter in the porous material. For example, by adjusting the temperature and time of the second heat treatment, the content and size of the ⁇ Mn phase in the second product can be controlled, and thereby the content and pore size of the pores with the first pore size in the porous material can be controlled. For another example, by adjusting the dealloying corrosion temperature, the content and pore diameter of the pores with the second pore diameter in the porous material can be controlled.
  • dealloying is used to remove at least 90 at.% of the Mn elements from the ⁇ Mn phase. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • dealloying is used to remove at least 90 at.% of the Mn elements from the ⁇ Mn-M phase. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the amount of M elements removed by the dealloying method is less than 10 at.%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of Mn element in the ⁇ Mn phase is >99 at.%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of Mn element in the ⁇ Mn-M phase is 40-80 at.%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the ⁇ Mn-M phase is a solid solution. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of ⁇ Mn phase in the multi-phase alloy ranges from 22 to 70 vol%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the content of the ⁇ Mn-M phase in the multi-phase alloy is 30 to 78 vol%. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the average size of the ⁇ Mn phase is 0.5 to 10 microns.
  • the average size here can be understood as the average diameter of equal-area circles of the ⁇ Mn phase.
  • the average size of the ⁇ Mn-M phase is 0.5 to 10 microns.
  • the average size here can be understood as the average diameter of an equal-area circle of the ⁇ Mn-M phase.
  • the ⁇ Mn phase appears bright white on the metallographic structure, with an average size of 0.5 to 10 microns. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the term "metallographic photograph” refers to a micrograph that can reflect the microstructure of a metal, especially the phase distribution.
  • Metallographic photos can be taken using an optical microscope or an electron microscope.
  • the ⁇ Mn phase and the ⁇ Mn-M phase are uniformly dispersed in the multiphase alloy. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the multi-phase alloy contains Mn element and M element, the content of the Mn element is 60%-90at.%, the content of the M element is 10-40at.%, and the M element is selected from copper , aluminum or combinations thereof. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the dealloying process is mainly based on the difference in standard electrochemical potential of the precursor components to selectively remove relatively active elements in the system, and the remaining metal atoms are connected to each other to obtain a porous material.
  • the method of dealloying is selected from chemical etching, electrochemical etching, or a combination thereof. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the method for preparing porous materials further includes the step of preparing a multi-phase alloy, specifically including:
  • alloy precursor contains M element and Mn element, and the M element is selected from copper, aluminum or combinations thereof,
  • the product of the previous step is subjected to a second heat treatment to obtain a second product, which contains an ⁇ Mn phase and a ⁇ Mn-M phase. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the first product containing the ⁇ Mn-M phase has excellent room temperature plasticity.
  • the temperature of the first heat treatment is 700-865°C. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the time of the first heat treatment is more than 0.16 hours, such as 1-2 hours. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • cooling is performed at a cooling rate of 20 to 1000°C/s, such as water cooling. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the first heat treatment is configured to obtain a first product having a ⁇ Mn-M phase content of 95 to 100 vol%.
  • the content of the ⁇ Mn-M phase in the first product is 95 to 100 vol%.
  • the method further includes plastic processing the first product before performing the second heat treatment.
  • the temperature of the second heat treatment is 500-700°C. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the second heat treatment time is 1 to 4 hours, such as 2 to 3 hours. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • a cooling rate of 20°C/s to 1000°C/s is used for cooling after the second treatment. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the second heat treatment is configured to convert a portion of the ⁇ Mn-M phase in the first product to an ⁇ Mn phase.
  • the content of ⁇ Mn phase in the second product is 22-70vol%, such as 22-30vol%, 30-40vol%, 40-50vol%, 50-60vol%, 60-70vol%, ⁇ Mn-
  • the content of the M phase is 30 to 78 vol%, for example, 30 to 40 vol%, 40 to 50 vol%, 50 to 60 vol%, or 60 to 78 vol%.
  • the alloy precursor is an ingot (eg, a smelted ingot). Based on this, the method of preparing porous materials has lower cost. Based on this solution, porous materials with larger volumes can also be prepared.
  • the porous material obtained by the method has pores of a first pore diameter and pores of a second pore diameter; the second pore diameter is m nanometers, 10 ⁇ m ⁇ 400, for example, 20 ⁇ m ⁇ 200;
  • the first pore diameter is n microns, 0.5 ⁇ n ⁇ 20, for example, 0.5 ⁇ n ⁇ 10. Based on this, the obtained porous material has innovative pore distribution characteristics.
  • the apparent volume of the porous material obtained by the method is V
  • the total pore volume of the pores with the second pore diameter is V 2
  • the total pore volume of the pores with the first pore diameter is V 1
  • the total specific surface area of the porous material obtained by the method is S
  • the pore specific surface area of the pores with the first pore diameter is S 1
  • the dimensions of the porous material in each direction are not less than 10 mm, such as not less than 5 mm, such as not less than 2 mm.
  • the present application provides a porous material prepared by any of the methods described above.
  • the present application provides a current collector including the porous material described in any one of the above.
  • the present application provides a secondary battery including the current collector described in any one of the above.
  • the present application provides a device including the secondary battery described in any one of the above, and the secondary battery provides electrical energy to the device.
  • ⁇ Mn is an allotrope of manganese with a cbcc structure.
  • ⁇ Mn is an allotrope of manganese with the fcc structure.
  • the ⁇ Mn-M phase is a solid solution phase formed by dissolving element M in ⁇ Mn.
  • the ⁇ Mn-Cu phase is a solid solution phase formed by the element Cu dissolved in ⁇ Mn.
  • a solid solution is a single-phase crystalline solid formed by dissolving one or more solute components into a crystalline solvent and retaining the solvent's crystal lattice type.
  • Secondary batteries also known as rechargeable batteries or storage batteries, refer to batteries that can be recharged to activate active materials and continue to be used after the battery is discharged.
  • a secondary battery normally includes a positive electrode plate, a negative electrode plate, a separator and an electrolyte.
  • active ions such as lithium ions
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows active ions to pass through.
  • the electrolyte is between the positive electrode piece and the negative electrode piece and mainly plays the role of conducting active ions.
  • the positive electrode sheet usually includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes a positive electrode active material.
  • a surface treatment composition may be disposed between the positive electrode current collector and the positive electrode film layer.
  • the positive electrode current collector has two surfaces opposite in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may contain any of the porous materials described above in this application.
  • the positive electrode current collector can also be a composite current collector.
  • it can be made by combining any of the above porous materials with a polymer material substrate (such as polypropylene (PP), polyethylene terephthalate (PET), poly(p-) It is composed of base materials such as butylene phthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the cathode active material may be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM333), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM523), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM211), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM622), LiNi 0.8 Co 0.1 Mn 0.1 O 2 (can also be abbreviated as NCM811), at least one of lithium nickel cobalt aluminum oxide (such as LiNi 0.85
  • lithium-containing phosphates with an olivine structure can include but are not limited to lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), composite materials of lithium manganese phosphate and carbon, manganese phosphate At least one composite material of lithium iron, lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate
  • manganese phosphate At least one composite material of lithium iron, lithium iron manganese phosphate and carbon.
  • the positive electrode film layer optionally further includes surface treatment.
  • surface treatments may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer At least one of copolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, surface treatment and any other components in a solvent (such as N- Methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N- Methylpyrrolidone
  • porous material of the present application can be directly used as the negative side current collector (or electrode) of anode-free metal batteries (such as anode-free lithium metal batteries or anode-free sodium metal batteries).
  • anode-free metal batteries such as anode-free lithium metal batteries or anode-free sodium metal batteries.
  • lithium-free negative electrode battery In a lithium-free negative electrode battery, all active lithium ions are initially stored in the positive electrode material. During the initial charging process, lithium ions are extracted from the positive electrode, moved to the negative electrode, and directly plated in situ on the negative electrode bare current collector to form lithium metal. negative electrode. Subsequently, during the discharge process, active lithium ions are stripped from the lithium metal negative electrode formed in situ and embedded into the positive electrode. Lithium anode batteries are small in size and have large energy density.
  • porous material of the present application can also be used as the negative electrode side current collector of batteries containing active metal/alloy negative electrodes.
  • the active metal/alloy is, for example, lithium metal or lithium alloy.
  • the negative electrode sheet of a lithium metal battery uses the porous material of the present application as the negative electrode current collector, and deposits a lithium metal layer on the outer surface and/or inside the pores of the porous material.
  • lithium alloy as used herein is intended to mean a substance capable of forming an alloy with lithium upon charging and capable of reversibly adsorbing and releasing lithium.
  • substances capable of forming an alloy with lithium include substances such as tin (Sn), silicon (Si), zinc (Zn), aluminum (Al), magnesium (Mg), indium (In), cadmium (Cd), lead (Pb) , bismuth (Bi) and antimony (Sb) metal elements and their compounds and their alloys (including alloys of lithium and these elemental metals).
  • other active metals/alloys besides lithium metal or lithium alloys include, for example, tin (Sn), silicon (Si), zinc (Zn), aluminum (Al), magnesium (Mg), indium (In ), cadmium (Cd), lead (Pb), bismuth (Bi) and antimony (Sb) metal elements and their compounds and alloys thereof (including alloys of lithium and these elemental metals).
  • methods such as electrodeposition, vapor deposition (such as physical/chemical vapor deposition), magnetron sputtering, etc. can be used to deposit active metals/alloys on the surface and inside the voids of porous materials to obtain the battery negative electrode.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is liquid and includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally also includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the secondary battery further includes a separator film.
  • a separator film There is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 9 is an overall view and an exploded view of a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • secondary batteries can be assembled into battery modules, and the number of secondary batteries contained in the battery module can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery module.
  • FIG. 10 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. The specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides a device, which includes at least one of the secondary battery, battery module, or battery pack provided by the present application.
  • the secondary battery, battery module, or battery pack may be used as a power source for the device or as an energy storage unit for the device.
  • the device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, electric Trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • Figure 13 is an example device.
  • the device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • battery packs or battery modules can be used.
  • the above-mentioned Mn-Cu alloy sample is subjected to the first heat treatment to obtain a single-phase alloy composed of ⁇ Mn-Cu phase (hereinafter referred to as ⁇ single-phase alloy).
  • the first heat treatment temperature is 750°C
  • the heat treatment time is 10 minutes
  • the cooling method is water cooling.
  • the XRD characterization results are shown in Figure 1 (a). As shown in the figure, the diffraction peak of the ⁇ Mn-Cu phase can be observed in the figure.
  • the Mn-Cu alloy is subjected to the second heat treatment to obtain a dual-phase alloy composed of ⁇ Mn phase and ⁇ Mn-Cu phase (hereinafter referred to as ⁇ / ⁇ dual-phase alloy).
  • the second heat treatment temperature is 650°C.
  • the heat treatment time is 1 hour
  • the cooling method is water cooling.
  • Figure 1 (b) As shown in the figure, the diffraction peaks of the ⁇ Mn phase and the ⁇ Mn-Cu phase can be observed in the figure.
  • the Mn-Cu alloy after the second heat treatment as an alloy precursor, place it in a sufficient amount of 0.1mol/L HCl aqueous solution, and carry out free corrosion dealloying at a temperature of 60°C. When no obvious bubbles escape, dealloying is completed, and porous copper with a multi-level porous structure is obtained.
  • the porous copper maintains a bulk morphology of 2 mm ⁇ 2 mm ⁇ 4 mm. As shown in the scanning electron microscope photograph shown in FIG. 2 , the porous copper has pores with a first pore diameter (hereinafter referred to as macropores) and pores with a second pore diameter (hereinafter referred to as small pores).
  • the first heat treatment temperature is 750°C
  • the heat treatment time is 10 minutes
  • the cooling method is water cooling.
  • the Mn-Cu alloy is subjected to a second heat treatment to obtain an ⁇ / ⁇ dual-phase alloy.
  • the second heat treatment temperature is 650°C
  • the heat treatment time is 4 hours
  • the cooling method is water cooling.
  • the porous copper has pores with a first pore diameter (hereinafter referred to as macropores) and pores with a second pore diameter (hereinafter referred to as small pores).
  • macropores pores with a first pore diameter
  • small pores pores with a second pore diameter
  • the first heat treatment temperature is 850°C
  • the heat treatment time is 10 minutes
  • the cooling method is water cooling.
  • the Mn-Cu alloy is subjected to a second heat treatment to obtain an ⁇ / ⁇ dual-phase alloy.
  • the second heat treatment temperature is 670°C
  • the heat treatment time is 1 hour
  • the cooling method is water cooling.
  • the Mn-Cu alloy after the second heat treatment as an alloy precursor, place it in a sufficient amount of 0.1 mol/L HCl aqueous solution, and carry out free corrosion dealloying at a temperature of 20°C. When no obvious bubbles escape, dealloying is completed, and porous copper with a multi-level porous structure is obtained.
  • the porous copper maintains a bulk morphology of 2 mm ⁇ 2 mm ⁇ 4 mm. As shown in the scanning electron microscope photograph shown in FIG. 4 , the porous copper has pores with a first pore diameter (hereinafter referred to as macropores) and pores with a second pore diameter (hereinafter referred to as small pores).
  • the first heat treatment temperature is 850°C
  • the heat treatment time is 10 minutes
  • the cooling method is water cooling.
  • the Mn-Cu alloy is subjected to a second heat treatment to obtain an ⁇ / ⁇ dual-phase alloy.
  • the second heat treatment temperature is 670°C
  • the heat treatment time is 1 hour
  • the cooling method is water cooling.
  • the Mn-Cu alloy after the second heat treatment as an alloy precursor, place it in a sufficient amount of 0.1 mol/L ascorbic acid aqueous solution, and carry out free corrosion dealloying at a temperature of 20°C. When no obvious bubbles escape, dealloying is completed, and porous copper with a multi-level porous structure is obtained.
  • the porous copper maintains a bulk morphology of 2 mm ⁇ 2 mm ⁇ 4 mm. As shown in the scanning electron microscope photograph shown in Figure 5, the porous copper has pores with a first pore diameter (hereinafter referred to as macropores) and pores with a second pore diameter (hereinafter referred to as small pores).
  • porous copper has only one size of pores, that is, small pores with an average pore diameter of 80 nanometers. As shown in Figure 6(b), the porous copper cannot form a block, and there are a large number of cracks inside.
  • the Mn-Cu alloy is fully dealloyed during the dealloying process, it can be reasonably inferred that all manganese elements in the Mn-Cu alloy are removed. After all the manganese elements in the ⁇ Mn phase of the Mn-Cu alloy are removed, the ⁇ Mn phase disappears, and a pore (hereinafter referred to as macropore) structure with a first pore diameter is correspondingly formed at the position of the ⁇ Mn phase.
  • macropore pore
  • small hole a hole with a second pore diameter is correspondingly formed on the ⁇ Mn-Cu phase.
  • the above-mentioned macroporous structure and small pore structure jointly constitute a multi-level porous structure of porous copper.
  • Figure 8 shows a partial schematic diagram of a porous material.
  • the porous material is shown having a three-dimensional porous skeleton 600.
  • the three-dimensional porous skeleton 600 has a macroporous structure between the skeletons, and the macroporous structure has pores 601 with a first pore diameter.
  • the skeleton surface of the three-dimensional porous skeleton 600 has a small pore structure, and the small pore structure has pores 602 with a second pore diameter.
  • V 1 /V the pore volume ratio of macropores
  • V 2 /V the pore volume ratio of small pores
  • x is the Mn content (at.%) in the alloy precursor
  • x ⁇ is the Mn content (at.%) in the ⁇ Mn-Cu phase
  • Example 1 0.80 0.60 0.504 0.303 80%
  • Example 2 0.80 0.60 0.504 0.303 80%
  • Example 3 0.65 0.55 0.226 0.434 65%
  • Example 4 0.90 0.68 0.690 0.213 90% Comparative ratio 0.80 0.80 - 0.803 -
  • the total specific surface area of porous copper is S (unit m 2 /g), of which the pore specific surface area of large pores is S 1 and the small pore specific surface area is S 2 .
  • V 1 /V and V 2 /V they can be respectively Calculate the values of S 1 /S and S 2 /S.
  • the values of the specific surface area of the macropores (S 1 ) and the specific surface area of the small pores S 2 are obtained by referring to the calculation formulas and methods provided in Celal Soyarslan, et al., Acta Materialia, (2016), 149, 326.
  • the total specific surface area S S 1 +S 2 .
  • Table 3 The relevant results are shown in Table 3 below
  • C 1 is an empirical constant, and its value can be found in Table 3 below;
  • ⁇ 1 is the macropore volume fraction V 1 /V.
  • V 1 /V the macropore volume fraction
  • L 1 is the average diameter of the ribs forming the three-dimensional skeleton of the macroporous structure
  • ⁇ Cu is the density of copper, its value is 8.9g/cm 3 ;
  • p is the atomic proportion of manganese element in the alloy
  • V is 1cm 3 .
  • C 2 is an empirical constant, and its value can be found in Table 2 below;
  • ⁇ 2 is the small pore volume fraction V 2 /V.
  • V 2 /V the small pore volume fraction
  • L 2 is the average diameter of the ribs forming the three-dimensional skeleton of the small hole structure
  • ⁇ Cu is the density of copper, its value is 8.9g/cm 3 ;
  • p is the atomic proportion of manganese element in the alloy
  • V is 1cm 3 .
  • porous material of the present application can indeed be successfully prepared using the preparation method of the porous material of the present application.
  • the preparation method of porous materials has the advantages of low cost, the ability to prepare large-sized products, and the ability to flexibly adjust the pore size and pore distribution of porous materials.
  • the porous material of this application has an innovative porous structure.
  • the porous material of the present application has pores of a first pore size and pores of a second pore size.
  • the inner wall of the hole with the first pore diameter (hereinafter referred to as the macropore) can serve as a substrate for active material deposition; in addition, another function of the macropore is to provide an electrolyte infiltration channel.
  • the inner wall of the hole with the second pore diameter (hereinafter referred to as the small hole) can serve as a base for active material deposition.
  • the small pores increase the specific surface area of the material, allowing the porous material to load more active substances; in addition, another role of the small pores is to serve as a template for the deposition of active substances.
  • the active material deposited in the pores has a nanoscale size.
  • the nanoscale active material has a high ionic conductivity due to its small size, which can improve the overall ionic conductivity of the electrode. rate, thereby improving the rate performance of the battery, and ultimately improving the capacity, cycle stability and rate performance of the battery as a whole; in addition, another function of the small holes is to limit the volume expansion of the active material and avoid its pulverization failure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供了一种多孔材料及其制备方法、集流体、二次电池及装置。所述多孔材料具有第一孔径的孔和第二孔径的孔;所述第二孔径为m纳米,10<m<400;所述第一孔径为n微米,0.5≤n≤20;多孔材料的表观体积为V,所述具有第二孔径的孔的总孔体积为V 2,所述具有第一孔径的孔的总孔体积V 1,所述多孔材料满足以下关系:(V 1+V 2)/V=20%~90%;V 2/V=15~70%;以及V 1/V=5~70%。

Description

多孔材料及其制备方法、集流体、二次电池及装置 技术领域
本申请涉及金属材料技术领域,尤其涉及一种多孔材料及其制备方法、集流体、二次电池及装置。
背景技术
近年来,随着二次电池的应用范围越来越广泛,二次电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于二次电池取得了极大的发展,因此对其能量密度、循环性能等也提出了更高的要求。
金属锂由于其高的理论比容量(3860mAh/g)和低的电化学电位而被认为是吸引人的高能锂离子电池负极材料。然而,以金属锂为负极的电池在循环过程中会产生以下问题:产生锂枝晶、与电解液产生化学发应、沉积剥离时锂负极体积无限膨胀,这些问题必将带来电池安全隐患和低的循环效率,严重阻碍金属锂负极的实际应用。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种新型的多孔材料及其制备方法、集流体、二次电池及装置。其中,多孔材料的制备方法创新地利用含有αMn相和γMn-M相多相合金,获得了具有多级孔径分布的多孔材料。本申请的新型的具有多级孔径分布的多孔材料特别适合应用于无负极(anode free)金属电池(例如无负极锂金属电池或无负极钠金属电池)或含活性金属/合金负极的电池。
在第一方面,本申请提供一种多孔材料,所述多孔材料具有第一孔径的孔和第二孔径的孔;所述第一孔径为n微米,0.5≤n≤20;所述第二孔径为m纳米,10<m<400;多孔材料的表观体积为V,所述具有第一孔径的孔的总孔体积V 1,所述具有第二孔径的孔的总孔体积为V 2,所述多孔材料满足以下关系:(V 1+V 2)/V=20%~90%;V 2/V=15~70%;以及V 1/V=5~70%。
基于上述方案的多孔材料具有创新的多级孔径分布特征。该新型多孔材料特别适合用于无负极(anode free)金属电池(例如无负极锂金属电池或无负极钠金属电池)或含活性金属/合金负极的电池。具有第一孔径的孔(以下简称大孔)的内壁可作为活性物质沉积的基底;此外,大孔的另一个作用是提供电解液浸润通道。具有第二孔径的孔(以下简称小孔)的内壁可作为活性物质沉积的基底。小孔提高了材料的比表面积,从而使多孔材料能装载更多的活性物质;此外,小孔的另一个作用是作为活性物质沉积的模板。具体来讲,受小孔尺寸的限制,沉积在小孔中的活性物质的具有纳米级尺寸,纳米级的活性物质因尺寸小而具有较高的离子电导率,进而能够提高电极整体的离子电导率,进而能够改善电池 的倍率性能,最终在整体上提高电池的容量、循环稳定性以及倍率性能;此外,小孔的另一个作用是限制活性材料的体积膨胀,避免其粉化失效。
在一些实施方式中,所述多孔材料的总比表面积为S,所述具有第一孔径的孔的孔比表面积为S 1,所述具有第二孔径的孔比表面积为S 2;其中,S 1/S=7~32%;其中,S 2/S=68~93%。基于上述方案的多孔材料具有新型孔比表面积分布特征。
在一些实施方式中,所述第二孔径为m纳米,20<m<200。基于上述方案的多孔材料具有创新的孔径分布特征。
在一些实施方式中,所述第一孔径为n微米,0.5≤n≤10。基于上述方案的多孔材料具有创新的孔径分布特征。
在一些实施方式中,所述多孔材料的材质为含有M元素的金属单质或合金,M元素选自铜、铝或其组合。基于上述方案的多孔材料具有创新的成分。
在第二方面,本申请一种多孔材料的制备方法,包括
提供多相合金,所述多相合金含有αMn相和γMn-M相,M元素选自铜、铝或其组合;
采用脱合金化的方法从所述αMn相去除至少部分Mn元素,以及从所述γMn-M相去除至少部分Mn元素;
所述多孔材料具有第一孔径的孔和第二孔径的孔;所述第一孔径为n微米,0.5≤n≤20;所述第二孔径为m纳米,10<m<400;多孔材料的表观体积为V,所述具有第二孔径的孔的总孔体积为V 2,所述具有第一孔径的孔的总孔体积V 1,所述多孔材料具有以下一项或多项特征:(1)(V 1+V 2)/V=20%~90%;(2)V 2/V=15~70%;(3)V 1/V=5~70%。
上述方法创新地对具有独特组织结构的多相合金进行了脱合金处理,获得了具有创新孔分布特征的多孔材料。
在一些实施方式中,以αMn相中的全部Mn元素为基准,采用脱合金化的方法从所述αMn相去除至少90at.%以上,例如95at.%以上的Mn元素。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,以γMn-M相中的全部Mn元素为基准,采用脱合金化的方法从所述γMn-M相去除至少90at.%以上,例如95at.%以上,的Mn元素。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,以多相合金中的全部M元素为基准,所述脱合金化的方法对M元素去除的量为10at.%以下,例如5at.%以下。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述αMn相中Mn元素的含量>99at.%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述γMn-M相中Mn元素的含量为40-80at.%,例如40-50at.%、50-60at.%、60-70at.%或70-80at.%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述γMn-M相为固溶体。基于此,获得的多孔材料具有创新的孔 分布特征。
在一些实施方式中,所述多相合金中αMn相的含量为22~70vol%,例如25-30%、30-40vol%、40-50vol%、50-60vol%、60-70vol%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述多相合金中γMn-M相的含量为30~78vol%,例如30-40vol%、40-50vol%、50-60vol%、60-70vol%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方案中,在所述多相合金的金相照片中,所述αMn相的平均尺寸为0.5~10微米。此处的平均尺寸可以理解为αMn相的等面积圆的平均直径。
在一些实施方案中,在所述多相合金的金相照片中,所述γMn-M相的平均尺寸为0.5~10微米。此处的平均尺寸可以理解为γMn-M相的等面积圆的平均直径。
在一些实施方式中,在所述多相合金的金相照片中,所述αMn相(在金相组织上呈现亮白色),平均尺寸为0.5~10微米。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,在所述多相合金的金相照片中,所述γMn-M相的(在金相组织上呈现黑灰色),平均尺寸为a微米×b微米,其中,a=0.89~5(例如1-2、1-2、3-4、4-5),b=0.89~1.75(例如1-1.5)。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述αMn相和所述γMn-M相均匀地分散在所述多相合金中。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述多相合金含有Mn元素和M元素,所述Mn元素的含量为60%-90at.%,例如70-80%at.%,所述M元素的含量为10~40at.%,例如20-30at.%M元素选自铜、铝或其组合。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述脱合金化的方法选自化学腐蚀、电化学腐蚀、或其组合。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,多孔材料的制备方法还包括制备多相合金的步骤,具体包括:
提供合金前驱体,所述合金前驱体含有M元素和Mn元素,所述M元素选自铜、铝或其组合,
对所述合金前驱体进行第一热处理,获得第一产物,所述第一产物含有γMn-M相;
对上一步产物进行第二热处理,获得第二产物,所述第二产物含有αMn相和γMn-M相。基于此,获得的多孔材料具有创新的孔分布特征。含有γMn-M相的第一产物具有出色的室温塑性。通过锻造、轧制、拉拔等塑性加工的方法加工第一产物,能够获得不同形状、尺寸的加工产物。该加工产物在后续的热处理及脱合金过程,能够保持形状与尺寸的稳定。
在一些实施方式中,所述第一热处理的温度700-865℃,例如700-730℃、730-760℃、760-790℃、790-820℃或820-850℃。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第一热处理的时间为0.16小时以上,例如1-2小时。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第一热处理后采用20~1000℃/s的冷却速度进行冷却,例如 水冷冷却。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第一产物中γMn-M相的含量为95~100vol%。含有γMn-M相的第一产物具有较好的塑性,可以通过塑性加工的方法(锻造、轧制、拉拔等)将其加工成为不同形状、尺寸的加工产物。
在一些实施方式中,所述方法还包括在进行所述第二热处理前对所述第一产物进行塑性加工的操作。
在一些实施方式中,所述第二热处理的温度500-700℃,例如550-600℃、600-650℃。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第二热处理的时间为1~4小时,例如2-3小时。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第二处理后采用20~1000℃/s的冷却速度进行冷却,例如水冷冷却。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第二产物中αMn相的含量为22~70vol%,,例如25-30%、30-40vol%、40-50vol%、50-60vol%或60-70vol%,γMn-M相的含量为30~78vol%,例如30-40vol%、40-50vol%、50-60vol%或60-70vol%。
在一些实施方式中,所述合金前驱体是铸锭。基于此,制备多孔材料的方法具有较低的成本。基于此方案,还能够制备获得具有较大体积的多孔材料。
在一些实施方式中,所述方法获得的多孔材料具有第一孔径的孔和第二孔径的孔;所述第二孔径为m纳米,10<m<400,例如20<m<200;所述第一孔径为n微米,0.5≤n≤20,例如0.5≤n≤10。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述方法获得的多孔材料的总比表面积为S,所述具有第一孔径的孔的孔比表面积为S 1,所述具有第二孔径的孔比表面积为S 2;其中,S 1/S=7~32%;其中,S 2/S=68~93%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,本申请提供一种多孔材料,由上述任一项所述的方法制备获得。
在一些实施方式中,本申请提供一种集流体,包括上述任一项所述的多孔材料。
在一些实施方式中,本申请提供一种二次电池,包括上述任一项所述的集流体。
在一些实施方式中,本申请提供一种装置,包括上述任一项所述的二次电池,所述二次电池向所述装置提供电能。
有益效果
根据Mn-Cu二元合金相图,Mn-Cu二元合金(Mn含量90-60at.%)在700-865℃温度区间为γ-Mn单相结构,而在500-700℃温度区间为α/γ双相结构。因此,熔炼制备的Mn-Cu合金可以先在高温(700-865℃)退火处理,得到塑性加工能力极佳的γ单相合金,制备出不同形状的前驱体合金。随后进行低温(500-700℃)时效处理,形成α/γ双相结构,用于制备最终的多孔材料。
本申请一项或多项实施方式具有以下一项或多项有益效果:
(1)制备多孔材料的方法具有较低的成本。
(2)制备多孔材料的方法能够获得大尺寸的多孔材料,脱合金后的产物能够保持母体的形状尺寸。
(3)制备多孔材料的方法中,含有γMn-M相的第一产物具有较好的塑性,可以通过塑性加工的方法(锻造、轧制、拉拔等)将其加工成为不同形状、尺寸的加工产物。后续再对加工产物实施第二热处理及脱合金的操作基本不会改变该加工产物的形状与尺寸。
(4)制备多孔材料的方法能够灵活地调整多孔材料中的具有第二孔径的孔和具有第一孔径的孔的孔径和比例。例如,通过调整第二热处理的温度和时间,可以实现调控第二产物中的αMn相的含量与尺寸,进而实现调控多孔材料中具有第一孔径的孔的含量与孔径。再例如,通过调整脱合金腐蚀温度,进而实现调控多孔材料中具有第二孔径的孔的含量与孔径。
(5)如图2~5示出的实施例的多孔材料的扫描电镜照片以及图8示出的多孔材料的示意图。本申请的多孔材料具有第一孔径的孔和第二孔径的孔。具有第一孔径的孔(以下简称大孔)的内壁可作为活性物质沉积的基底;此外,大孔的另一个作用是提供电解液浸润通道。具有第二孔径的孔(以下简称小孔)的内壁可作为活性物质沉积的基底。小孔提高了材料的比表面积,从而使多孔材料能装载更多的活性物质;此外,小孔的另一个作用是作为活性物质沉积的模板。具体来讲,受小孔尺寸的限制,沉积在小孔中的活性物质的具有纳米级尺寸,纳米级的活性物质因尺寸小而具有较高的离子电导率,进而能够提高电极整体的离子电导率,进而能够改善电池的倍率性能,最终在整体上提高电池的容量、循环稳定性以及倍率性能;此外,小孔的另一个作用是限制活性材料的体积膨胀,避免其粉化失效。
附图说明
图1的(a)是一些实施例第一热处理后的Mn-Cu合金的XRD衍射图谱;图1的(b)是一些实施例第二热处理后Mn-Cu合金的XRD衍射图谱;
图2是实施例1制备的多孔铜的扫描电镜照片,其中(a)为低放大倍数,(b)为高放大倍数;
图3是实施例2制备的多孔铜的扫描电镜照片;
图4是实施例3制备的多孔铜的扫描电镜照片;
图5是实施例4制备的多孔铜的扫描电镜照片,其中(a)为低放大倍数,(b)为高放大倍数。
图6是对比例制备的多孔铜的扫描电镜照片,其中(a)为低放大倍数,(b)为高放大倍数。
图7是Cu-Mn合金相图。
图8是本申请一些实施例的多孔材料的多孔结构的示意图。
图9是本申请一实施方式的二次电池整体图及分解图。
图10是本申请一实施方式的电池模块的示意图。
图11是本申请一实施方式的电池包的示意图。
图12是图11所示的本申请一实施方式的电池包的分解图。
图13是本申请一实施方式的二次电池用作电源的装置的示意图。
附图标记说明:
电池包1;上箱体2;下箱体3;电池模块4;二次电池5;壳体51;电极组件52;顶盖组件53;三维多孔骨架600;具有第一孔径的孔601;具有第二孔径的孔602。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的多孔材料及其制备方法、集流体、二次电池及装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。 例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[多孔材料]
在一些实施方式中,本申请提供一种多孔材料,所述多孔材料具有第一孔径的孔和第二孔径的孔;所述第一孔径为n微米,0.5≤n≤20;所述第二孔径为m纳米,10<m<400;多孔材料的表观体积为V,所述具有第一孔径的孔的总孔体积V 1,所述具有第二孔径的孔的总孔体积为V 2,所述多孔材料满足以下关系:(V 1+V 2)/V=20%~90%;V 2/V=15~70%;以及V 1/V=5~70%。基于上述方案的多孔材料具有创新的多级孔径分布特征。
基于上述方案的多孔材料具有创新的多级孔径分布特征。该新型多孔材料特别适合用于无负极(anode free)金属电池(例如无负极锂金属电池或无负极钠金属电池)或金属或合金负极电池。具有第一孔径的孔(以下简称大孔)的内壁可作为活性物质沉积的基底;此外,大孔的另一个作用是提供电解液浸润通道。具有第二孔径的孔(以下简称小孔)的内壁可作为活性物质沉积的基底。小孔提高了材料的比表面积,从而使多孔材料能装载更多的活性物质;此外,小孔的另一个作用是作为活性物质沉积的模板。具体来讲,受小孔尺寸的限制,沉积在小孔中的活性物质的具有纳米级尺寸,纳米级的活性物质因尺寸小而具有较高的离子电导率,进而能够提高电极整体的离子电导率,进而能够改善电池的倍率性能,最终在整体上提高电池的容量、循环稳定性以及倍率性能;此外,小孔的另一个作用是限制活性材料的体积膨胀,避免其粉化失效。
在一些实施方式中,(V 1+V 2)/V的值为20-30%、30-40%、40-50%、50-60%、60-70%、70-80%或80-90%。
在一些实施方式中,V 2/V的值为20-30%、30-40%、40-50%、50-60%或60-70%。
在一些实施方式中,所述多孔材料的总比表面积为S,所述具有第一孔径的孔的孔比表面积为S 1,所述具有第二孔径的孔比表面积为S 2;其中,S 1/S=7~32%;其中,S 2/S=68~93%。基于上述方案的多孔材料具有孔比表面积分布特征。
在一些实施方式中,S 1/S的值为10-15%、15-20%、20-25%或25-30%。
在一些实施方式中,S 1/S的值为70-75%、75-80%、80-85%或85-90%。
在一些实施方式中,所述第二孔径为m纳米,20<m<200。基于上述方案的多孔材料具有创新的孔径分布特征。
在一些实施方式中,所述第二孔径为m纳米,m的值为10-50、50-100、100-150、150-200、200-250、250-300、300-350或350-400。
在一些实施方式中,所述第一孔径为n微米,0.5≤n≤10。基于上述方案的多孔材料具有创新的孔径分布特征。
在一些实施方式中,述第一孔径为n微米,n的值为0.5-1、1-5、5-10、10-15或15-20。
在一些实施方式中,所述多孔材料的材质为含有M元素的金属单质或合金,M元素选自铜、铝或其组合。基于上述方案的多孔材料具有创新的成分。
在一些实施方案中,所述多孔材料是采用脱合金方法制备获得的。
在一些实施方案中,所述多孔材料为气体可透过的和/液体可透过的。
在第二方面,本申请一种多孔材料的制备方法,包括
提供多相合金,所述多相合金含有αMn相和γMn-M相,M元素选自铜、铝或其组合;
采用脱合金化的方法从所述αMn相去除至少部分Mn元素,以及从所述γMn-M相去除至少部分Mn元素;
所述多孔材料具有第一孔径的孔和第二孔径的孔;所述第一孔径为n微米,0.5≤n≤20;所述第二孔径为m纳米,10<m<400;多孔材料的表观体积为V,所述具有第二孔径的孔的总孔体积为V 2,所述具有第一孔径的孔的总孔体积V 1,所述多孔材料具有以下一项或多项特征:(1)(V 1+V 2)/V=20%~90%;(2)V 2/V=15~70%;(3)V 1/V=5~70%。
上述方法创新地对具有独特组织结构的多相合金进行了脱合金处理,获得了具有创新孔分布特征的多孔材料。
根据Mn-Cu二元合金相图,Mn-Cu二元合金(Mn含量90-60at.%)在700-865℃温度区间为γ单相结构,而在500-700℃温度区间为α/γ双相结构。因此,熔炼制备的Mn-Cu合金可以先在高温(700-865℃)退火处理,得到塑性加工能力极佳的γ单相合金,制备出不同形状的前驱体合金。随后进行低温(500-700℃)时效处理,形成α/γ双相结构,用于制备最终的多孔材料。
本申请一项或多项实施方式具有以下一项或多项有益效果:
(1)制备多孔材料的方法具有较低的成本。
(2)制备多孔材料的方法能够获得大尺寸的多孔材料。
(3)制备多孔材料的方法中,含有γMn-M相的第一产物具有较好的塑性,可以通过塑性加工的方法(锻造、轧制、拉拔等)将其加工成为不同形状、尺寸的加工产物。后续再对加工产物实施第二热处理及脱合金的操作基本不会改变该加工产物的形状与尺寸。
(4)制备多孔材料的方法能够灵活地调整多孔材料中的具有第二孔径的孔和具有第一孔径的孔的孔径和比例。例如,通过调整第二热处理的温度和时间,可以实现调控第二产物中的αMn相的含量与尺寸,进而实现调控多孔材料中具有第一孔径的孔的含量与孔径。再例如,通过调整脱合金腐蚀温度,进而实现调控多孔材料中具有第二孔径的孔的含量与孔径。
在一些实施方式中,以αMn相中的全部Mn元素为基准,采用脱合金化的方法从所述 αMn相去除至少90at.%以上的Mn元素。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,以γMn-M相中的全部Mn元素为基准,采用脱合金化的方法从所述γMn-M相去除至少90at.%以上的Mn元素。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,以多相合金中的全部M元素为基准,所述脱合金化的方法对M元素去除的量为10at.%以下。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述αMn相中Mn元素的含量>99at.%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述γMn-M相中Mn元素的含量为40-80at.%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述γMn-M相为固溶体。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述多相合金中αMn相的含量为22~70vol%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述多相合金中γMn-M相的含量为30~78vol%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方案中,在所述多相合金的金相照片中,所述αMn相的平均尺寸为0.5~10微米。此处的平均尺寸可以理解为αMn相的等面积圆的平均直径。
在一些实施方案中,在所述多相合金的金相照片中,所述γMn-M相的平均尺寸为0.5~10微米。此处的平均尺寸可以理解为γMn-M相的等面积圆的平均直径。
在一些实施方式中,在所述多相合金的金相照片中,所述αMn相在金相组织上呈现亮白色,平均尺寸为0.5~10微米。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,在所述多相合金的金相照片中,所述γMn-M相的在金相组织上呈现黑灰色,平均尺寸为a×b,其中,a=0.89~5微米,b=0.89~1.75微米。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,术语“金相照片”是指能够反映金属显微组织尤其是相分布的显微照片。金相照片可以采用光学显微镜或电子显微镜拍摄获得。
在一些实施方式中,所述αMn相和所述γMn-M相均匀地分散在所述多相合金中。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述多相合金含有Mn元素和M元素,所述Mn元素的含量为60%-90at.%,所述M元素的含量为10~40at.%,M元素选自铜、铝或其组合。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,脱合金过程主要基于前驱体组分标准电化学电位的差异,将体系中相对活泼的元素选择性去除,而剩余的金属原子相互连接,得到多孔材料。
在一些实施方式中,所述脱合金化的方法选自化学腐蚀、电化学腐蚀、或其组合。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,多孔材料的制备方法还包括制备多相合金的步骤,具体包括:
提供合金前驱体,所述合金前驱体含有M元素和Mn元素,所述M元素选自铜、铝或其组合,
对所述合金前驱体进行第一热处理,获得第一产物,所述第一产物含有γMn-M相;
对上一步产物进行第二热处理,获得第二产物,所述第二产物含有αMn相和γMn-M相。基于此,获得的多孔材料具有创新的孔分布特征。含有γMn-M相的第一产物具有出色的室温塑性。通过锻造、轧制、拉拔等塑性加工的方法加工第一产物,能够获得不同形状、尺寸的加工产物。该加工产物在后续的热处理及脱合金过程,能够保持形状与尺寸的稳定。
在一些实施方式中,所述第一热处理的温度700-865℃。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第一热处理的时间为0.16小时以上,例如1-2小时。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第一热处理后采用20~1000℃/s的冷却速度进行冷却,例如水冷冷却。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方案中,第一热处理被配置为获得γMn-M相的含量为95~100vol%的第一产物。
在一些实施方式中,所述第一产物中γMn-M相的含量为95~100vol%。
在一些实施方式中,所述方法还包括在进行所述第二热处理前对所述第一产物进行塑性加工的操作。
在一些实施方式中,所述第二热处理的温度500-700℃。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第二热处理的时间为1~4h,例如2-3h。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述第二处理后采用20~1000°℃/s的冷却速度进行冷却。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方案中,第二热处理被配置为将第一产物中的部分γMn-M相转化为αMn相。
在一些实施方式中,所述第二产物中αMn相的含量为22~70vol%,例如22-30vol%、30-40vol%、40-50vol%、50-60vol%、60-70vol%,γMn-M相的含量为30~78vol%,例如、30-40vol%、40-50vol%、50-60vol%、60-78vol%。
在一些实施方式中,所述合金前驱体是铸锭(例如熔炼铸锭)。基于此,制备多孔材料的方法具有较低的成本。基于此方案,还能够制备获得具有较大体积的多孔材料。
在一些实施方式中,所述方法获得的多孔材料具有第一孔径的孔和第二孔径的孔;所 述第二孔径为m纳米,10<m<400,例如20<m<200;所述第一孔径为n微米,0.5≤n≤20,例如0.5≤n≤10。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述方法获得的多孔材料的表观体积为V,所述具有第二孔径的孔的总孔体积为V 2,所述具有第一孔径的孔的总孔体积V 1,所述多孔材料具有以下一项或多项特征:(1)(V 1+V 2)/V=20%~90%;(2)V 2/V=15~70%;(3)V 1/V=5~70%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方式中,所述方法获得的多孔材料的总比表面积为S,所述具有第一孔径的孔的孔比表面积为S 1,所述具有第二孔径的孔比表面积为S 2;其中,S 1/S=7~32%;其中,S 2/S=68~93%。基于此,获得的多孔材料具有创新的孔分布特征。
在一些实施方案中,多孔材料在每一方向上的尺寸均不小于10mm,例如不小于5mm,例如不小于2mm。
在一些实施方式中,本申请提供一种多孔材料,由上述任一项所述的方法制备获得。
在一些实施方式中,本申请提供一种集流体,包括上述任一项所述的多孔材料。
在一些实施方式中,本申请提供一种二次电池,包括上述任一项所述的集流体。
在一些实施方式中,本申请提供一种装置,包括上述任一项所述的二次电池,所述二次电池向所述装置提供电能。
在一些实施方式中,αMn是具有cbcc结构的锰的同素异形体。
在一些实施方式中,γMn是具有fcc结构的锰的同素异形体。
在一些实施方式中,γMn-M相是元素M溶于γMn形成的固溶体相。
例如γMn-Cu相是元素Cu溶于γMn形成的固溶体相。
在一些实施方式中,固溶体是一种或多种溶质组元溶入晶态溶剂并保持溶剂的晶格类型所形成的单相晶态固体。
[二次电池]
二次电池又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性材料激活而继续使用的电池。
通常情况下,二次电池包括正极极片、负极极片、隔离膜及电解液。在电池充放电过程中,活性离子(例如锂离子)在正极极片和负极极片之间往返嵌入和脱出。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使活性离子通过。电解液在正极极片和负极极片之间,主要起到传导活性离子的作用。
[正极极片]
正极极片通常包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,正极膜层包括正极活性材料。正极集流体和正极膜层之间可设置有表面处理组合物。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极 集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,正极集流体可以含有本申请上述任一项的多孔材料。正极集流体还可以是复合集流体,例如可通过将上述任一项的多孔材料与高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)复合形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括表面处理。作为示例,表面处理可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、表面处理和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极集流体及负极极片]
本申请的多孔材料可以直接作为无负极(anode free)金属电池(例如无负极锂金属电池或无负极钠金属电池)的负极侧集流体(或电极)。
在无锂负极电池中,所有活性锂离子最初都存储在正极材料中,在初始充电过程中,锂离子从正极提取,移至负极,并直接原位电镀在负极裸集流体上,形成锂金属负极。随后,在放电过程中,将活性锂离子从原位形成的锂金属负极上剥离,并嵌入到正极中。无 锂负极电池的体积小,且具有较大的能量密度。
本申请的多孔材料还可以作为含活性金属/合金负极的电池的负极侧集流体。
在一些实施方案中,活性金属/合金例如是锂金属或锂合金。
在一些实施方案中,锂金属电池的负极极片以本申请多孔材料作为负极集流体,在多孔材料的外表面和/或孔隙内部沉积锂金属层。
本文中使用的术语“锂合金”旨在表示能够通过充电与锂形成合金并能够可逆地吸附和释放锂的物质。能够与锂形成合金的物质的实例包括诸如锡(Sn)、硅(Si)、锌(Zn)、铝(Al)、镁(Mg)、铟(In)、镉(Cd)、铅(Pb)、铋(Bi)和锑(Sb)的金属的元素及其化合物和其合金(包括锂与这些元素金属的合金)。可以通过适当的选择来适宜地使用这些物质中的一种或两种或更多种。
在一些实施方案中,除了锂金属或锂合金之外的其它活性金属/合金包括诸如锡(Sn)、硅(Si)、锌(Zn)、铝(Al)、镁(Mg)、铟(In)、镉(Cd)、铅(Pb)、铋(Bi)和锑(Sb)的金属的元素及其化合物和其合金(包括锂与这些元素金属的合金)。
在一些实施方案中,可以采用电沉积、气相沉积(如物理/化学气相沉积)、磁控溅射等方法将活性金属/合金沉积在多孔材料的表面和空隙内部,从而获得电池负极。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,电解质为液态的,且包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,电解液还可选地包括添加剂。作为示例,添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏 二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图9是作为一个示例的方形结构的二次电池5的整体图和分解图。
在一些实施方式中,参照图9,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图10是作为一个示例的电池模块4。参照图10,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图11和图12是作为一个示例的电池包1。参照图11和图12,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种装置,所述装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述装置的电源,也可以用作所述装置的能量存储单元。所述装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不 限于此。
作为所述装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图13是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
实施例1:
(1)按Mn:Cu=80:20(at.%)的比例提供纯铜和纯锰(纯度≥99.9%),真空感应熔炼制备Mn 80Cu 20(at.%)合金纽扣锭,尺寸
Figure PCTCN2022088398-appb-000001
从纽扣锭心部切取尺寸为2mm×2mm×4mm的Mn-Cu合金样品。
(2)将上述Mn-Cu合金样品进行第一热处理,得到由γMn-Cu相构成的单相合金(以下简称γ单相合金)。第一热处理温度为750℃,热处理时间为10分钟,冷却方式为水冷。XRD表征结果如图1的(a),如图所示,图中能够观察到γMn-Cu相的衍射峰。
(3)第一热处理后的Mn-Cu合金,再进行第二热处理,得到由αMn相和γMn-Cu相构成的双相合金(以下简称α/γ双相合金),第二热处理温度650℃,热处理时间为1小时,冷却方式为水冷。XRD表征结果如图1的(b),如图所述,图中能够观察到αMn相与γMn-Cu相的衍射峰。
(4)将第二热处理后的Mn-Cu合金作为合金前驱体,置于足量的0.1mol/L HCl水溶液中,进行自由腐蚀法脱合金,温度为60℃。待无明显气泡逸出,脱合金完成,即得到具有多级多孔结构的多孔铜,多孔铜保持2mm×2mm×4mm的块体形貌。如图2示出的扫描电子显微镜照片所示,多孔铜具有第一孔径的孔(以下简称大孔)和具有第二孔径的孔(以下简称小孔)。从扫描电子显微镜照片上选取50-100个大孔和50~100个小孔,分别测量大孔和小孔的孔径,分别计算平均值。结果显示,多孔铜的大孔平均孔径为1.4微米,小孔平均孔径为80纳米。
实施例2:
(1)按Mn:Cu=80:20(at.%)的比例提供纯铜和纯锰(纯度≥99.9%),真空感应熔炼制备Mn 80Cu 20(at.%)合金纽扣锭,尺寸
Figure PCTCN2022088398-appb-000002
从纽扣锭心部切取尺寸为2mm×2mm×4mm的Mn-Cu合金样品。
(2)将上述Mn-Cu合金样品进行第一热处理,得到γ单相合金。第一热处理温度为750℃,热处理时间为10分钟,冷却方式为水冷。
(3)第一热处理后的Mn-Cu合金,再进行第二热处理,得到α/γ双相合金,第二热处理温度650℃,热处理时间为4小时,冷却方式为水冷。
(4)将第二热处理后Mn-Cu合金作为合金前驱体,置于足量的0.01mol/L HCl+1mol/L KCl水溶液中,进行恒电位法电化学脱合金。电位为-0.6V(参比电极为Ag/AgCl电极,对 电极为纯Cu),温度为60℃。待电流将至10μA/mm 2以下,脱合金完成,即得到具有多级多孔结构的多孔铜,多孔铜保持2mm×2mm×4mm的块体形貌。如图3示出的扫描电子显微镜照片所示,多孔铜具有第一孔径的孔(以下简称大孔)和具有第二孔径的孔(以下简称小孔)。从扫描电子显微镜照片上选取50-100个大孔和50~100个小孔,分别测量大孔和小孔的孔径,分别计算平均值。结果显示,多孔铜的大孔平均孔径为2.7微米,小孔平均孔径为80纳米。
实施例3:
(1)按Mn:Cu=65:35(at.%)的比例提供纯铜和纯锰(纯度≥99.9%),真空感应熔炼制备Mn 65Cu 35(at.%)合金纽扣锭,尺寸
Figure PCTCN2022088398-appb-000003
从纽扣锭心部切取尺寸为2mm×2mm×4mm的Mn-Cu合金样品。
(2)将上述Mn-Cu合金样品进行第一热处理,得到γ单相合金。第一热处理温度为850℃,热处理时间为10分钟,冷却方式为水冷。
(3)第一热处理后的Mn-Cu合金,再进行第二热处理,得到α/γ双相合金,第二热处理温度670℃,热处理时间为1小时,冷却方式为水冷。
(4)将第二热处理后的Mn-Cu合金作为合金前驱体,置于足量的0.1mol/L HCl水溶液中,进行自由腐蚀法脱合金,温度为20℃。待无明显气泡逸出,脱合金完成,即得到具有多级多孔结构的多孔铜,多孔铜保持2mm×2mm×4mm的块体形貌。如图4示出的扫描电子显微镜照片所示,多孔铜具有第一孔径的孔(以下简称大孔)和具有第二孔径的孔(以下简称小孔)。从扫描电子显微镜照片上选取50-100个大孔和50~100个小孔,分别测量大孔和小孔的孔径,分别计算平均值。结果显示,多孔铜的大孔平均孔径为0.8微米,小孔平均孔径为25纳米。
实施例4:
(1)按Mn:Cu=90:10(at.%)的比例提供纯铜和纯锰(纯度≥99.9%),真空感应熔炼制备Mn 90Cu 10(at.%)合金纽扣锭,尺寸
Figure PCTCN2022088398-appb-000004
从纽扣锭心部切取尺寸为2mm×2mm×4mm的Mn-Cu合金样品。
(2)将上述Mn-Cu合金样品进行第一热处理,得到γ单相合金。第一热处理温度为850℃,热处理时间为10分钟,冷却方式为水冷。
(3)第一热处理后的Mn-Cu合金,再进行第二热处理,得到α/γ双相合金,第二热处理温度670℃,热处理时间为1小时,冷却方式为水冷。
(4)将第二热处理后的Mn-Cu合金作为合金前驱体,置于足量的0.1mol/L抗坏血酸水溶液中,进行自由腐蚀法脱合金,温度为20℃。待无明显气泡逸出,脱合金完成,即得到具有多级多孔结构的多孔铜,多孔铜保持2mm×2mm×4mm的块体形貌。如图5示出的扫描电子显微镜照片所示,多孔铜具有第一孔径的孔(以下简称大孔)和具有第二孔径的 孔(以下简称小孔)。从扫描电子显微镜照片上选取50-100个大孔和50~100个小孔,分别测量大孔和小孔的孔径,分别计算平均值。结果显示,多孔铜的大孔平均孔径为1.2微米,小孔平均孔径为20纳米。
对比例:
(1)按Mn:Cu=80:20(at.%)的比例提供纯铜和纯锰(纯度≥99.9%),真空感应熔炼制备Mn 80Cu 20(at.%)合金纽扣锭,尺寸
Figure PCTCN2022088398-appb-000005
从纽扣锭心部切取尺寸为2mm×2mm×4mm的Mn-Cu合金样品。
(2)将上述Mn-Cu合金样品进行热处理,得到γ单相合金。热处理温度为750℃,热处理时间为10分钟,冷却方式为水冷。
(3)将热处理后的Mn-Cu合金作为合金前驱体,置于足量的0.1mol/L HCl水溶液中,进行自由腐蚀法脱合金,温度为60℃。待无明显气泡逸出,脱合金完成,即得到多孔铜,如图6的(a)所示,多孔铜仅有一种尺寸的孔径,即平均孔径为80纳米的小孔。由图6的(b)所示,多孔铜不能形成块体,且内部存在大量裂纹。
结构和性能分析
1、根据实施例1~4和对比例的合金原始成分和热处理工艺,并结合图7示出的Cu-Mn合金相图,能够合理地推导出合金前驱体的相组成、相成分和相尺寸,详见表1。
表1合金前驱体的相组成、相成分和相尺寸
Figure PCTCN2022088398-appb-000006
2、根据实施例1~4和对比例的合金原始成分和热处理工艺,并结合图7示出的Cu-Mn合金相图,基于以下公式,能够合理地推导出多孔铜中大孔的总孔体积占多孔铜表观体积的百分比(V 1/V),多孔铜中小孔的总孔体积占多孔铜表观体积的百分比(V 2/V),大孔和小孔的总孔体积占多孔铜表观体积的百分比((V 1+V 2)/V),结果详见表2。考虑到在脱合金过程中Mn-Cu合金进行了充分的脱合金,因此可以合理地推知Mn-Cu合金中的锰元素被全部脱除。Mn-Cu合金的αMn相中的锰元素被全部脱除后,αMn相消失,在αMn相的位置上对应地形成了具有第一孔径的孔(以下简称大孔)结构。Mn-Cu合金的γMn-Cu相中的锰元素被脱除后,γMn-Cu相的锰金属消失,但铜金属得以保留,在γMn-Cu相上对 应地形成了具有第二孔径的孔(以下简称小孔)结构。上述大孔结构和小孔结构共同地构成多孔铜的多级多孔结构。
图8示出一个多孔材料的局部示意图。图中示出多孔材料具有三维多孔骨架600。三维多孔骨架600的骨架之间具有大孔结构,大孔结构上具有第一孔径的孔601。三维多孔骨架600的骨架表面具有小孔结构,小孔结构上具有第二孔径的孔602。
以多孔铜的表观体积为V,大孔的孔体积占比(V 1/V)和小孔的孔体积占比(V 2/V)可以通过下式计算:
Figure PCTCN2022088398-appb-000007
Figure PCTCN2022088398-appb-000008
x为合金前驱体中的Mn含量(at.%);
x γ为γMn-Cu相中的Mn含量(at.%);
1.045为Mn:Cu原子体积比。
表2
  x x γ V 1/V V 2/V (V 1+V 2)/V
实施例1 0.80 0.60 0.504 0.303 80%
实施例2 0.80 0.60 0.504 0.303 80%
实施例3 0.65 0.55 0.226 0.434 65%
实施例4 0.90 0.68 0.690 0.213 90%
对比例 0.80 0.80 - 0.803 -
另外,多孔铜的总比表面积为S(单位m 2/g),其中大孔的孔比表面积为S 1,小孔孔比表面积为S 2,根据V 1/V和V 2/V能够分别计算S 1/S和S 2/S的值。大孔的比表面积(S 1)和小孔的比表面积S 2的值分别参考文献Celal Soyarslan,et al.,Acta Materialia,(2018),149,326.中提供的计算公式和方法获得。总比表面积S=S 1+S 2。相关结果如下表3所示
大孔的比表面积S 1的计算公式如下
Figure PCTCN2022088398-appb-000009
C 1为经验常数,取值参照下表3;
Ψ 1为大孔体积分数V 1/V,取值参照上表2;
L 1为形成大孔结构的三维骨架的棱丝的平均直径;
ρ Cu为铜的密度,其值为8.9g/cm 3
p为合金中锰元素的原子占比;
V为1cm 3
小孔的比表面积S 2的计算公式如下:
Figure PCTCN2022088398-appb-000010
C 2为经验常数,取值参照下表2;
Ψ 2为小孔体积分数V 2/V,取值参照上表2;
L 2为形成小孔结构的三维骨架的棱丝的平均直径;
ρ Cu为铜的密度,其值为8.9g/cm 3
p为合金中锰元素的原子占比;
V为1cm 3
表3
  Mn原子占比p 大孔平均棱径L 1(μm) 大孔常数C 1 大孔比表面积S 1(m 2/g) S 1/S
实施例1 0.80 1.14 2.84 0.981 0.14
实施例2 0.80 1 2.84 1.072 0.16
实施例3 0.65 1.75 1.99 0.144 0.07
实施例4 0.90 0.89 2.48 2.708 0.32
  p 小孔平均棱径L 2(μm) 小孔常数C 2 小孔比表面积S 2(m 2/g) S 2/S
实施例1 0.80 0.1 2.48 4.255 0.86
实施例2 0.80 0.1 2.48 4.255 0.84
实施例3 0.65 0.08 2.75 1.082 0.93
实施例4 0.90 0.07 1.99 4.695 0.68
由以上实验数据可知,采用本申请的多孔材料的制备方法,确实成功制备的本申请的多孔材料。多孔材料的制备方法具有成本低,能够制备大尺寸产品,能够灵活调整多孔材料孔尺寸和孔分布的优点。本申请的多孔材料具有创新的多孔结构。
本申请的多孔材料具有第一孔径的孔和第二孔径的孔。具有第一孔径的孔(以下简称大孔)的内壁可作为活性物质沉积的基底;此外,大孔的另一个作用是提供电解液浸润通道。具有第二孔径的孔(以下简称小孔)的内壁可作为活性物质沉积的基底。小孔提高了材料的比表面积,从而使多孔材料能装载更多的活性物质;此外,小孔的另一个作用是作为活性物质沉积的模板。具体来讲,受小孔尺寸的限制,沉积在小孔中的活性物质的具有纳米级尺寸,纳米级的活性物质因尺寸小而具有较高的离子电导率,进而能够提高电极整体的离子电导率,进而能够改善电池的倍率性能,最终在整体上提高电池的容量、循环稳定性以及倍率性能;此外,小孔的另一个作用是限制活性材料的体积膨胀,避免其粉化失效。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (22)

  1. 一种多孔材料,所述多孔材料具有第一孔径的孔和第二孔径的孔;
    所述第一孔径为n微米,0.5≤n≤20;
    所述第二孔径为m纳米,10<m<400;
    多孔材料的表观体积为V,所述具有第一孔径的孔的总孔体积V 1,所述具有第二孔径的孔的总孔体积为V 2,所述多孔材料满足以下关系:
    (V 1+V 2)/V=20%~90%;
    V 2/V=15~70%;以及
    V 1/V=5~70%。
  2. 根据权利要求1所述的多孔材料,其中,所述多孔材料的总表面比为S,所述具有第二孔径的孔的孔比表面积为S 1,所述具有第二孔径的孔比表面积为S 2
    其中,S 1/S=7~32%;
    其中,S 2/S=68~93%。
  3. 根据权利要求1~2任一项所述的多孔材料,其具有以下一项或多项特征:
    (1)所述第二孔径为m纳米,20<m<200;
    (2)所述第一孔径为n微米,0.5≤n≤10。
  4. 根据权利要求1~3任一项所述的多孔材料,所述多孔材料的材质为含有M元素的金属单质或合金,M元素选自铜、铝或其组合。
  5. 一种多孔材料的制备方法,包括
    提供多相合金,所述多相合金含有αMn相和γMn-M相,M元素选自铜、铝或其组合;
    采用脱合金化的方法从所述αMn相去除至少部分Mn元素,以及从所述γMn-M相去除至少部分Mn元素;
    所述多孔材料具有第一孔径的孔和第二孔径的孔;
    所述第一孔径为n微米,0.5≤n≤20;
    所述第二孔径为m纳米,10<m<400;
    多孔材料的表观体积为V,所述具有第一孔径的孔的总孔体积V 1,所述具有第二孔径的孔的总孔体积为V 2,所述多孔材料满足以下关系:
    (V 1+V 2)/V=20%~90%;
    V 2/V=15~70%;以及
    V 1/V=5~70%。
  6. 根据权利要求5所述的方法,其特征在于以下一项或多项:
    (1)以αMn相中的全部Mn元素为基准,采用脱合金化的方法从所述αMn相去除至少90at.%以上的Mn元素;
    (2)以γMn-M相中的全部Mn元素为基准,采用脱合金化的方法从所述γMn-M相去除至少90at.%以上的Mn元素;
    (3)以多相合金中的全部M元素为基准,所述脱合金化的方法对M元素去除的量为10at.%以下;
  7. 根据权利要求5~6任一项所述的方法,其特征在于以下一项或多项:
    (1)所述αMn相中Mn元素的含量>99at.%;
    (2)所述γMn-M相中Mn元素的含量为40-80at.%。
  8. 根据权利要求5~7任一项所述的方法,所述γMn-M相为固溶体。
  9. 根据权利要求5~8任一项所述的方法,其特征在于以下一项或多项:
    (1)所述多相合金中αMn相的含量为22~70vol%;
    (2)所述多相合金中γMn-M相的含量为30~78vol%。
  10. 根据权利要求5~9任一项所述的方法,其特征在于以下一项或多项:
    (1)在所述多相合金的金相照片中,所述αMn相的平均尺寸为0.5~10微米;
    (2)在所述多相合金的金相照片中,所述γMn-M相的平均尺寸为0.5~5微米。
  11. 根据权利要求5~10任一项所述的方法,所述αMn相和所述γMn-M相均匀地分散在所述多相合金中。
  12. 根据权利要求5~11任一项所述的方法,所述多相合金含有Mn元素和M元素,所述Mn元素的含量为60%-90at.%,所述M元素的含量为10~40at.%,M元素选自铜、铝或其组合。
  13. 根据权利要求5~12任一项所述的方法,所述脱合金化的方法选自化学腐蚀、电化学腐蚀、或其组合。
  14. 根据权利要求5~13任一项所述的方法,还包括制备多相合金的步骤,具体包括:
    提供合金前驱体,所述合金前驱体含有M元素和Mn元素,所述M元素选自铜、铝或其组合,
    对所述合金前驱体进行第一热处理,获得第一产物,所述第一产物含有γMn-M相;
    对上一步产物进行第二热处理,获得第二产物,所述第二产物含有αMn相和γMn-M相。
  15. 根据权利要求14所述的方法,其具有以下一项或多项特征:
    (1)所述第一热处理的温度700-865℃;
    (2)所述第一热处理的时间为0.16小时以上;
    (3)所述第一热处理后采用20~1000℃/s的冷却速度进行冷却;
    (4)所述第一产物中γMn-M相的含量为95~100vol%;
    (5)所述方法还包括在进行所述第二热处理前对所述第一产物进行塑性加工的操作。
  16. 根据权利要求14~15任一项所述的方法,其具有以下一项或多项特征:
    (1)所述第二热处理的温度500-700℃;
    (2)所述第二热处理的时间为1~4小时;
    (3)所述第二热处理后采用20~1000℃/s的冷却速度进行冷却;
    (4)所述第二产物中αMn相的含量为22~70vol%,γMn-M相的含量为30~78vol%。
  17. 根据权利要求5~16任一项所述的方法,其中,所述合金前驱体是铸锭。
  18. 根据权利要求5~17任一项所述的方法,其中,所述方法获得的多孔材料的总表面比为S,所述具有第二孔径的孔的孔比表面积为S 1,所述具有第二孔径的孔比表面积为S 2
    其中,S 1/S=7~32%;
    其中,S 2/S=68~93%。
  19. 一种多孔材料,由权利要求5~18所述的方法制备获得。
  20. 一种集流体,包括权利要求1-4、19任一项所述的多孔材料。
  21. 一种二次电池,包括权利要求20所述的集流体;
    可选地,所述二次电池是无负极金属电池;
    可选地,所述二次电池的负极活性材料含有金属或合金。
  22. 一种装置,包括权利要求21所述的二次电池,所述二次电池向所述装置提供电能。
PCT/CN2022/088398 2022-04-22 2022-04-22 多孔材料及其制备方法、集流体、二次电池及装置 WO2023201684A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280039719.9A CN117413080A (zh) 2022-04-22 2022-04-22 多孔材料及其制备方法、集流体、二次电池及装置
EP22937920.1A EP4317489A1 (en) 2022-04-22 2022-04-22 Porous material and preparation method therefor, current collector, secondary battery and device
PCT/CN2022/088398 WO2023201684A1 (zh) 2022-04-22 2022-04-22 多孔材料及其制备方法、集流体、二次电池及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088398 WO2023201684A1 (zh) 2022-04-22 2022-04-22 多孔材料及其制备方法、集流体、二次电池及装置

Publications (1)

Publication Number Publication Date
WO2023201684A1 true WO2023201684A1 (zh) 2023-10-26

Family

ID=88418847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088398 WO2023201684A1 (zh) 2022-04-22 2022-04-22 多孔材料及其制备方法、集流体、二次电池及装置

Country Status (3)

Country Link
EP (1) EP4317489A1 (zh)
CN (1) CN117413080A (zh)
WO (1) WO2023201684A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277613A (ja) * 2006-04-04 2007-10-25 Hokkaido Univ 細孔を有する金多孔質体およびその製造方法
CN106467939A (zh) * 2015-08-19 2017-03-01 重庆润泽医药有限公司 一种多级孔金属制备方法
CN108793211A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种双重孔分布的大孔氧化铝及其制备方法
CN111057982A (zh) * 2019-12-09 2020-04-24 中国科学院合肥物质科学研究院 一种Mn-Cu基亚微/纳米多孔高阻尼合金及制备方法
CN112048635A (zh) * 2020-08-25 2020-12-08 西安理工大学 一种微纳米分级多孔铜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277613A (ja) * 2006-04-04 2007-10-25 Hokkaido Univ 細孔を有する金多孔質体およびその製造方法
CN106467939A (zh) * 2015-08-19 2017-03-01 重庆润泽医药有限公司 一种多级孔金属制备方法
CN108793211A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种双重孔分布的大孔氧化铝及其制备方法
CN111057982A (zh) * 2019-12-09 2020-04-24 中国科学院合肥物质科学研究院 一种Mn-Cu基亚微/纳米多孔高阻尼合金及制备方法
CN112048635A (zh) * 2020-08-25 2020-12-08 西安理工大学 一种微纳米分级多孔铜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOYARSLAN ET AL., ACTA MATERIALIA, vol. 149, 2018, pages 326

Also Published As

Publication number Publication date
EP4317489A1 (en) 2024-02-07
CN117413080A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
US9793541B2 (en) Composite silicon or composite tin particles
JP2005216601A (ja) 負極および電池
CN109244473A (zh) 一种锂合金带材及其制备方法
CN108736056B (zh) 一种锂金属界面保护结构及其制备和应用
JP2008243828A (ja) 負極および二次電池の製造方法
CN115832290A (zh) 负极活性材料及其制备方法、负极极片、二次电池、电池模块、电池包和用电装置
JP2005085632A (ja) 電池
KR20200062970A (ko) 리튬 기반의 하이브리드 음극재료, 이의 제조방법 및 이를 포함하는 리튬금속 이차전지
JP3707617B2 (ja) 負極およびそれを用いた電池
WO2023174050A1 (zh) 三元正极材料、其制造方法以及使用其的二次电池
WO2023201684A1 (zh) 多孔材料及其制备方法、集流体、二次电池及装置
WO2023173395A1 (zh) 一种碳纳米管及其制法、用途、二次电池、电池模块、电池包和用电装置
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
WO2024026620A1 (zh) 导电膜及其制备方法、电极、集流体、二次电池及装置
CN116936815B (zh) 负极集流体及其制备方法、负极极片、锂金属电池及用电装置
WO2023023984A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置
WO2024031243A1 (zh) 一种复合箔材及其制备方法、应用
WO2023216138A1 (zh) 负极活性材料及其制备方法、二次电池及用电装置
WO2023141954A1 (zh) 锂离子电池、电池模块、电池包和用电装置
JP7477707B2 (ja) 銅めっき液及びそれにより製造された負極複合集電体
WO2024044961A1 (zh) 负极极片、二次电池及其制备方法、电池模块、电池包和用电装置
WO2023133833A1 (zh) 一种二次电池、电池模块、电池包和用电装置
WO2023133882A1 (zh) 隔膜及其相关的二次电池、电池模块、电池包和用电装置
WO2024065255A1 (zh) 二次电池和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022937920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022937920

Country of ref document: EP

Effective date: 20231031

WWE Wipo information: entry into national phase

Ref document number: 202280039719.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937920

Country of ref document: EP

Kind code of ref document: A1