WO2020073767A1 - 一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法 - Google Patents

一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法 Download PDF

Info

Publication number
WO2020073767A1
WO2020073767A1 PCT/CN2019/105343 CN2019105343W WO2020073767A1 WO 2020073767 A1 WO2020073767 A1 WO 2020073767A1 CN 2019105343 W CN2019105343 W CN 2019105343W WO 2020073767 A1 WO2020073767 A1 WO 2020073767A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sodium
reducing agent
molten salt
alkali metal
Prior art date
Application number
PCT/CN2019/105343
Other languages
English (en)
French (fr)
Inventor
柯昌明
张锦化
王景然
秦智
李萌芮
熊思
Original Assignee
武汉科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811186001.4A external-priority patent/CN109251036A/zh
Priority claimed from CN201811185989.2A external-priority patent/CN109251035A/zh
Application filed by 武汉科技大学 filed Critical 武汉科技大学
Publication of WO2020073767A1 publication Critical patent/WO2020073767A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides

Definitions

  • the invention belongs to the technical field of boride ceramic powder. Specifically, it relates to a method for preparing TiB 2 or (Zr, Hf) B 2 ceramic powder.
  • TiB 2 and (Zr, Hf) B 2 have excellent characteristics such as high melting point, high hardness, high strength, chemical inertness, good wear resistance and excellent corrosion resistance, and no phase transition in the solid state. It has a wide range of applications in the fields of conductive ceramics, ceramic cutting tools and molds, cathode coating materials for aluminum electrolytic cells, cermets, ceramic matrix composite materials and so on. TiB 2 and (Zr, Hf) B 2 based materials have excellent mechanical, thermophysical, chemical and frictional properties and can be used in extreme environments, such as nuclear reactor cladding materials and ultra-sonic aircraft nose cone materials.
  • TiB 2 , (Zr, Hf) B 2 ceramic powder The particle size, particle size distribution, agglomeration and purity of TiB 2 , (Zr, Hf) B 2 ceramic powder are one of the key factors that affect the performance of ceramic products.
  • High-performance TiB 2 , (Zr, Hf) B 2 The synthesis and preparation of ceramic powders are the current research hotspots. There are many literature reports on the preparation methods of TiB 2 and (Zr, Hf) B 2 ceramic powders, such as magnesium thermal reduction method, boron thermal reduction method, molten salt electrolysis method, mechanical alloying method, high temperature self-propagating synthesis method .
  • Boron thermal reduction method is one of the common synthesis methods of TiB 2 powder, such as "a high-purity titanium diboride powder and its preparation method" (CN201610890116.6) using elemental boron or boron carbide as a reducing agent, reducing TiO 2 powder, TiB 2 ceramic powder with a particle size of less than 1 ⁇ m can be obtained by this method.
  • Another example is the use of sodium borohydride or sodium metal as a reducing agent to reduce TiCl 4 to produce nano-sized TiB 2 powder (Bates S E, Buhro W E, Frey C A. Synthesis of titanium boride (TiB 2 ) at a lower temperature nanocrystallites by solution-phase processing [J].
  • the high-temperature self-propagating synthesis method is also a main method for the synthesis of TiB 2 and (Zr, Hf) B 2 ceramic powders, through the self-propagating reaction of metallic magnesium with B 2 O 3 and TiO 2 or (Zr, Hf) O 2 synthesis of TiB 2 or (Zr, Hf) self-study [J] spread B 2 (Fu Zhengyi, Yuan Runzhang .TiB 2 high-temperature synthesis Ceramic Society, 1995 (1): 27-32, Zhang Tian Mei spread from magnesium. Preparation of high-purity zirconium diboride micropowder by thermal reduction method [D]. Harbin Institute of Technology, 2006.) However, the process control of the self-propagating reaction and the subsequent purification treatment of the reaction product are more complicated.
  • the carbothermal reduction method uses C as a reducing agent to reduce B 2 O 3 and ZrO 2 powders. Although this method is simple in process, low in cost and suitable for industrial production, this method has a high synthesis temperature and a long holding time.
  • the particle size of the powder is coarse and there are many impurities (Yang Lei, Sun Jing, Gui Tao, etc. The effect of additives on the particle size and morphology of ZrB2 prepared by carbothermal reduction reaction [J] .Rare Metals, 2017 (12): 1352- 1358.).
  • the mechanical alloying of metal elemental powder and B powder can also be used to prepare TiB 2 and (Zr, Hf) B 2 ceramic powder.
  • the main problem of mechanical alloying to prepare powder is the pollution caused by ball milling media and containers. Precisely control the stoichiometric ratio of products (Yan Bingyong. TiB 2 powder prepared by mechanical alloying [M]. Kunming University of Science and Technology, 2011.).
  • the existing TiB 2 or (Zr, Hf) B 2 ceramic powder synthesis methods have different degrees of problems, such as high raw material cost, high reaction temperature, synthetic TiB 2 or (Zr, Hf) B 2
  • the size of the ceramic powder is difficult to control, the activity is low, and the impurity content of the product powder is high.
  • the subsequent acid treatment purification and purification process has serious environmental pollution.
  • the present invention aims to overcome the defects of the prior art, and provides a method for preparing TiB 2 or (Zr, Hf) B 2 ceramic powder with easily available raw materials, simple process, low production cost, environmental friendliness and easy industrial production.
  • the TiB 2 or (Zr, Hf) B 2 ceramic powder prepared by the method has small particle size and narrow particle size distribution.
  • reducing agent titanium source: boron source: molten salt containing alkali metal compound
  • mass ratio of reducing agent: titanium source: boron source: molten salt containing alkali metal compound is 1.0: (0.7 ⁇ 1.2): (0.7 ⁇ 4.0): (0.2 ⁇ 20.0)
  • the reducing agent, the titanium source
  • the boron source and the alkali metal compound-containing molten salt are mixed evenly, heat-treated in a protective atmosphere at 600 ⁇ 1300 °C for 0.5 ⁇ 8h, and then dissolved in water or alkali solution at room temperature ⁇ 250 °C, washed and dried , TiB 2 ceramic powder was prepared;
  • (Zr, Hf) -containing compound: boron source: alkali metal compound-containing molten salt mass ratio is 1.0: (1.0 ⁇ 5.0): (0.7 ⁇ 4.0): (0.2 ⁇ 18.0)
  • the reduction Agent, the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 0.5 to 8 hours under a protective atmosphere at 600 to 1300 ° C, and then water or alkali
  • the solution is dissolved at room temperature ⁇ 250 °C, washed, dried to prepare (Zr, Hf) B 2 ceramic powder;
  • the reducing agent is one or more of silicon powder and aluminum powder
  • the titanium source is more than one of Ti powder and TiO 2 powder;
  • the boron source is at least one of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate;
  • the alkali metal compound-containing molten salt is one or more of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate, and sodium aluminate .
  • the (Zr, Hf) -containing compound is one or more of metal (Zr, Hf) powder and (Zr, Hf) O 2 powder;
  • the alkaline solution is one or more of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • the molar ratio of SiO 2 to Na 2 O in the sodium silicate is ⁇ 1.
  • the molar ratio of SiO 2 to K 2 O in the potassium silicate is ⁇ 1.
  • the molar ratio of SiO 2 to Li 2 O in the lithium silicate is ⁇ 1.
  • the present invention has the following positive effects compared with the prior art:
  • the present invention introduces a molten salt containing an alkali metal compound into the reaction system.
  • the molten salt containing an alkali metal compound can form a liquid phase at a lower temperature, strengthen the mass transfer process, improve the kinetic conditions of the chemical reaction, and increase the reduction reaction effectiveness.
  • the reaction proceeds in the liquid phase, the reaction conditions are mild, and the generated TiB 2 or (Zr, Hf) B 2 ceramic powder has the characteristics of small particle size and narrow particle size distribution.
  • the boron source used in the present invention can use boron-containing compounds such as boric acid, sodium tetraborate, potassium tetraborate, and lithium tetraborate as the boron source, which broadens the source of raw materials and reduces production costs.
  • boron-containing compounds such as boric acid, sodium tetraborate, potassium tetraborate, and lithium tetraborate as the boron source, which broadens the source of raw materials and reduces production costs.
  • the molten salt of the alkali metal compound used in the present invention participates in the chemical reaction, can improve the thermodynamic conditions of the chemical reaction, promote the progress of the reduction reaction, increase the yield and increase the recovery rate.
  • the products after heat treatment can be directly washed with water or alkali. The process is simple and the by-products can be recycled. It avoids the drawbacks of the traditional pickling process that causes serious pollution to the environment and is easy to industrialize.
  • the invention has the characteristics of low production cost, environmental friendliness and easy industrial production.
  • the prepared TiB 2 or (Zr, Hf) B 2 ceramic powder has the characteristics of small particle size and narrow particle size distribution.
  • Figure 2 is an SEM photograph of the TiB 2 ceramic powder shown in Figure 1;
  • FIG. 3 is an SEM photograph of TiB 2 ceramic powder shown in FIG. 3;
  • FIG. 7 is a SEM photograph of (Zr, Hf) B 2 ceramic powder shown in FIG. 6;
  • the molar ratio of SiO 2 to Na 2 O in the sodium silicate is ⁇ 1.
  • the molar ratio of SiO 2 to K 2 O in the potassium silicate is ⁇ 1.
  • the molar ratio of SiO 2 to Li 2 O in the lithium silicate is ⁇ 1.
  • the boron source is at least one of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the alkali metal compound-containing molten salt is one or more of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate, and sodium aluminate .
  • the alkaline solution is one or more of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: alkali metal compound-containing molten salt is 1.0: (0.7 ⁇ 1.0): (0.7 ⁇ 1.7): (0.2 ⁇ 5.0), The reducing agent, the titanium source, the boron source and the alkali metal compound-containing molten salt are mixed evenly, heat-treated under a protective atmosphere and under conditions of 1000-1300 ° C for 6-8 hours, and then with water at 95-200 ° C Dissolve, wash, and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is one or more of silicon powder and aluminum powder.
  • the titanium source is one or more of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: alkali metal compound-containing molten salt is 1.0: (0.7 ⁇ 1.0): (0.7 ⁇ 1.7): (0.2 ⁇ 5.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 6 to 8 hours under a protective atmosphere at 1000 to 1300 ° C, and then treated with an alkaline solution at 95 to 200 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the titanium source is Ti powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: alkali metal compound-containing molten salt is 1.0: (0.7 ⁇ 1.0): (0.7 ⁇ 1.7): (0.2 ⁇ 5.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 6 to 8 hours under a protective atmosphere at 1000 to 1300 ° C, and then treated with an alkaline solution at 95 to 200 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the titanium source is TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: alkali metal compound-containing molten salt is 1.0: (0.7 ⁇ 1.0): (0.7 ⁇ 1.7): (0.2 ⁇ 5.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 6 to 8 hours under a protective atmosphere at 1000 to 1300 ° C, and then treated with an alkaline solution at 95 to 200 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the titanium source is a mixture of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: molten salt containing alkali metal compound is 1.0: (0.7 ⁇ 1.0): (1.2 ⁇ 2.8): (4.5 ⁇ 10.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal compound-containing molten salt are mixed evenly, heat-treated for 4.5 to 7 hours under a protective atmosphere at 600 to 800 ° C, and then at 45 to 100 ° C with water Dissolve, wash, and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is one or more of silicon powder and aluminum powder.
  • the titanium source is one or more of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: molten salt containing alkali metal compound is 1.0: (0.7 ⁇ 1.0): (1.2 ⁇ 2.8): (4.5 ⁇ 10.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal compound-containing molten salt are mixed uniformly, heat-treated for 4.5 to 7 hours under a protective atmosphere at 600 to 800 ° C, and then treated with an alkaline solution at 45 to 100 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the titanium source is a mixture of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: molten salt containing alkali metal compound is 1.0: (0.7 ⁇ 1.0): (1.2 ⁇ 2.8): (4.5 ⁇ 10.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal compound-containing molten salt are mixed uniformly, heat-treated for 4.5 to 7 hours under a protective atmosphere at 600 to 800 ° C, and then treated with an alkaline solution at 45 to 100 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the titanium source is TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is: according to the mass ratio of reducing agent: titanium source: boron source: molten salt containing alkali metal compound is 1.0: (0.7 ⁇ 1.0): (1.2 ⁇ 2.8): (4.5 ⁇ 10.0),
  • the reducing agent, the titanium source, the boron source and the alkali metal compound-containing molten salt are mixed uniformly, heat-treated for 4.5 to 7 hours under a protective atmosphere at 600 to 800 ° C, and then treated with an alkaline solution at 45 to 100 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the titanium source is Ti powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (0.9-2.2): (9.5-15.0).
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 2.5 to 5.0 hours under a protective atmosphere and 750 to 1000 ° C, and then water is used at room temperature to 50 ° C Dissolve, wash and dry under the conditions to prepare TiB 2 ceramic powder.
  • the reducing agent is one or more of silicon powder and aluminum powder.
  • the titanium source is one or more of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (0.9-2.2): (9.5-15.0).
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 2.5 to 5.0 hours under a protective atmosphere and 750 to 1000 ° C, and then treated with an alkaline solution at room temperature to Dissolve, wash and dry at 50 ° C to prepare TiB 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the titanium source is a mixture of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (0.9-2.2): (9.5-15.0).
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 2.5 to 5.0 hours under a protective atmosphere and 750 to 1000 ° C, and then treated with an alkaline solution at room temperature to Dissolve, wash and dry at 50 ° C to prepare TiB 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the titanium source is Ti powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (0.9-2.2): (9.5-15.0).
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 2.5 to 5.0 hours under a protective atmosphere and 750 to 1000 ° C, and then treated with an alkaline solution at room temperature to Dissolve, wash and dry at 50 ° C to prepare TiB 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the titanium source is TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (1.5-4.0): (14.5-20.0) The reducing agent, the titanium source, the boron source and the alkali metal compound-containing molten salt are mixed evenly, heat-treated in a protective atmosphere at 850 to 1200 ° C for 0.5 to 3 hours, and then used water at 195 to 250 ° C Dissolve, wash, and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is one or more of silicon powder and aluminum powder.
  • the titanium source is one or more of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (1.5-4.0): (14.5-20.0)
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 0.5 to 3 hours under a protective atmosphere at 850 to 1200 ° C, and then treated with an alkaline solution at 195 to 250 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the titanium source is a mixture of Ti powder and TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (1.5-4.0): (14.5-20.0)
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 0.5 to 3 hours under a protective atmosphere at 850 to 1200 ° C, and then treated with an alkaline solution at 195 to 250 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the titanium source is TiO 2 powder.
  • a method for preparing TiB 2 ceramic powder is as follows: according to the reducing agent: titanium source: boron source: alkali metal compound-containing molten salt, the mass ratio is 1.0: (0.9-1.2): (1.5-4.0): (14.5-20.0)
  • the reducing agent, the titanium source, the boron source and the alkali metal-containing compound molten salt are mixed uniformly, heat-treated for 0.5 to 3 hours under a protective atmosphere at 850 to 1200 ° C, and then treated with an alkaline solution at 195 to 250 Dissolve at °C, wash and dry to prepare TiB 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the titanium source is Ti powder.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (1.0 ⁇ 2.5): (0.7 ⁇ 1.5): (0.2 ⁇ 5.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated at 1000-1300 ° C for 6-8 hours in a protective atmosphere, and then treated with an alkali solution at 95 Dissolve, wash and dry at ⁇ 200 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is any one of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate substance.
  • the alkali solution is a mixture of two or more of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (1.0 ⁇ 2.5): (0.7 ⁇ 1.5): (0.2 ⁇ 5.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated at 1000-1300 ° C for 6-8 hours in a protective atmosphere, and then at 95-200 Dissolve, wash and dry at °C to prepare (Zr, Hf) B2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any two substances in gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the alkali metal compound-containing molten salt is any two of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate, and sodium aluminate Mixture of substances.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (1.0 ⁇ 2.5): (0.7 ⁇ 1.5): (0.2 ⁇ 5.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and treated in a protective atmosphere at 1000 to 1300 ° C for 6 to 8 hours, and then treated with water at 95 to Dissolve at 200 °C, wash and dry to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the (Zr, Hf) -containing compound is metal (Zr, Hf) powder.
  • the boron source is a mixture of any three substances in gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any three of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate Mixture of substances.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (1.0 ⁇ 2.5): (0.7 ⁇ 1.5): (0.2 ⁇ 5.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 6 to 8 hours under a protective atmosphere at 1000 to 1300 ° C. Dissolve, wash and dry under the condition of 95 ⁇ 200 ° C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the compound containing (Zr, Hf) is a mixture of (Zr, Hf) powder and (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any four or more of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any four of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of the above.
  • the alkaline solution is any one of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) -containing compound: boron source: alkali metal compound-containing molten salt mass ratio is 1.0: (2.0 ⁇ 3.5): (1.0 ⁇ 2.5): (4.5 ⁇ 10.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 4.5 to 7 hours under a protective atmosphere at 600 to 800 ° C. Dissolve, wash and dry under the condition of 45 ⁇ 100 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is any one of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate substance.
  • the alkaline solution is any one of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) -containing compound: boron source: alkali metal compound-containing molten salt mass ratio is 1.0: (2.0 ⁇ 3.5): (1.0 ⁇ 2.5): (4.5 ⁇ 10.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated under a protective atmosphere at 600-800 ° C for 4.5-7 hours, and then with water at 45- Dissolve, wash and dry at 100 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any two substances among boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the alkali metal compound-containing molten salt is any two of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate, and sodium aluminate Mixture of substances.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) -containing compound: boron source: alkali metal compound-containing molten salt mass ratio is 1.0: (2.0 ⁇ 3.5): (1.0 ⁇ 2.5): (4.5 ⁇ 10.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated under a protective atmosphere at 600-800 ° C for 4.5-7 hours, and then with water at 45- Dissolve, wash and dry at 100 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the (Zr, Hf) -containing compound is metal (Zr, Hf) powder.
  • the boron source is a mixture of any three substances among boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing an alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of three substances.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) -containing compound: boron source: alkali metal compound-containing molten salt mass ratio is 1.0: (2.0 ⁇ 3.5): (1.0 ⁇ 2.5): (4.5 ⁇ 10.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 4.5 to 7 hours under a protective atmosphere at 600 to 800 ° C. Dissolve, wash and dry under the condition of 45 ⁇ 100 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the compound containing (Zr, Hf) is a mixture of (Zr, Hf) powder and (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any four or more of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing an alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of more than four substances.
  • the alkaline solution is a mixture of two or more substances in an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, and an aqueous solution of lithium hydroxide.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (3.0 ⁇ 4.5): (2.0 ⁇ 3.5): (9.0 ⁇ 14.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 2.5 to 5.0 hours under a protective atmosphere at 750 to 1000 ° C, and then water is used at room temperature Dissolve, wash and dry at ⁇ 50 ° C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is any one of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate substance.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (3.0 ⁇ 4.5): (2.0 ⁇ 3.5): (9.0 ⁇ 14.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 2.5 to 5.0 hours under a protective atmosphere at 750 to 1000 ° C, and then used with an alkaline solution Dissolve at room temperature to 50 ° C, wash, and dry to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any two substances among boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the alkali metal compound-containing molten salt is any two of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate, and sodium aluminate Mixture of substances.
  • the alkaline solution is any one of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (3.0 ⁇ 4.5): (2.0 ⁇ 3.5): (9.0 ⁇ 14.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 2.5 to 5.0 hours under a protective atmosphere at 750 to 1000 ° C, and then water is used at room temperature Dissolve, wash and dry at ⁇ 50 ° C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is aluminum powder.
  • the (Zr, Hf) -containing compound is metal (Zr, Hf) powder.
  • the boron source is a mixture of any three substances among boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any three of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate Mixture of substances.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (3.0 ⁇ 4.5): (2.0 ⁇ 3.5): (9.0 ⁇ 14.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 2.5 to 5.0 hours under a protective atmosphere at 750 to 1000 ° C, and then used with an alkaline solution Dissolve at room temperature to 50 ° C, wash, and dry to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the compound containing (Zr, Hf) is a mixture of (Zr, Hf) powder and (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any four or more of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing an alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of more than four substances.
  • the alkaline solution is a mixture of two or more substances in an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, and an aqueous solution of lithium hydroxide.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (4.0 ⁇ 5.0): (3.0 ⁇ 4.0): (13.0 ⁇ 18.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 0.5 to 3.0 hours under a protective atmosphere and at 850 to 1200 ° C. Dissolve, wash and dry at ⁇ 250 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is silicon powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is any one of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing an alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A substance.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (4.0 ⁇ 5.0): (3.0 ⁇ 4.0): (13.0 ⁇ 18.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 0.5 to 3.0 hours under a protective atmosphere at 850 to 1200 ° C, and then used with an alkaline solution (Zr, Hf) B 2 ceramic powder was prepared by dissolving, washing and drying at 195 ⁇ 250 °C
  • the reducing agent is aluminum powder.
  • the (Zr, Hf) -containing compound is (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any two substances among boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing an alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of two substances.
  • the alkaline solution is any one of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and lithium hydroxide aqueous solution.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (4.0 ⁇ 5.0): (3.0 ⁇ 4.0): (13.0 ⁇ 18.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 0.5 to 3.0 hours under a protective atmosphere and at 850 to 1200 ° C. Dissolve, wash and dry at ⁇ 250 °C to prepare (Zr, Hf) B 2 ceramic powder.
  • the reducing agent is a mixture of silicon powder and aluminum powder.
  • the (Zr, Hf) -containing compound is metal (Zr, Hf) powder.
  • the boron source is a mixture of any three substances among boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing an alkali metal compound is any one of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of three substances.
  • a preparation method of (Zr, Hf) B 2 ceramic powder is:
  • (Zr, Hf) containing compound: boron source: alkali metal compound containing molten salt mass ratio is 1.0: (4.0 ⁇ 5.0): (3.0 ⁇ 4.0): (13.0 ⁇ 18.0), the reducing agent 1.
  • the (Zr, Hf) -containing compound, the boron source, and the alkali metal-containing compound molten salt are mixed uniformly, dried, and heat-treated for 0.5 to 3.0 hours under a protective atmosphere at 850 to 1200 ° C, and then used with an alkaline solution (Zr, Hf) B 2 ceramic powder was prepared by dissolving, washing and drying at 195 ⁇ 250 °C.
  • the reducing agent is silicon powder.
  • the compound containing (Zr, Hf) is a mixture of (Zr, Hf) powder and (Zr, Hf) O 2 powder.
  • the boron source is a mixture of any four or more of boron gangue, boric acid, sodium tetraborate, potassium tetraborate and lithium tetraborate.
  • the molten salt containing alkali metal compound is any four of sodium hydroxide, sodium silicate, sodium carbonate, potassium hydroxide, potassium silicate, potassium carbonate, lithium hydroxide, lithium silicate, lithium carbonate and sodium aluminate A mixture of the above.
  • the alkaline solution is a mixture of two or more substances in an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, and an aqueous solution of lithium hydroxide.
  • this specific embodiment has the following positive effects:
  • the molten salt containing alkali metal compound is introduced into the reaction system.
  • the presence of the molten salt containing alkali metal compound can form a liquid phase at a lower temperature, strengthen the mass transfer process, and improve the kinetic conditions of the chemical reaction.
  • molten salts containing alkali metal compounds can participate in chemical reactions, improve the thermodynamic conditions of chemical reactions, promote the progress of reduction reactions, and increase the yield and recovery rate.
  • the reaction proceeds in the liquid phase, the reaction conditions are mild, and the generated TiB 2 or (Zr, Hf) B 2 ceramic powder has the characteristics of small particle size and narrow particle size distribution.
  • FIG. 1 is an XRD pattern of a TiB 2 ceramic powder prepared in Example 1. As can be seen from FIG. 1, no other miscellaneous phase is seen in the TiB 2 ceramic powder, and the calculated average grain size is about 65 nm;
  • FIG. 2 is an SEM photograph of the TiB 2 ceramic powder shown in FIG. 1. As can be seen from FIG. 2, the prepared TiB 2 powder has a uniform particle size and is a loose agglomerate.
  • FIG. 3 is an XRD pattern of a TiB 2 ceramic powder prepared in Example 11. As can be seen from FIG. 3, no other miscellaneous phase is seen in the TiB 2 ceramic powder, and the calculated average grain size is about 33 nm.
  • FIG. 4 is an SEM photograph of the TiB 2 ceramic powder shown in FIG. 3.
  • FIG. 4 the prepared TiB 2 powder has a uniform particle size and is a loose agglomerate.
  • FIG. 5 is an SEM photograph of a TiB 2 ceramic powder prepared in Example 16. As can be seen from FIG. 5, the prepared TiB 2 powder has a uniform particle size, and TiB 2 is more regular, with a typical hexagonal short columnar crystal morphology.
  • Fig. 6 is the XRD pattern of the (Zr, Hf) B 2 ceramic powder prepared in Example 18. As can be seen from Fig. 6, (Zr, Hf) B 2 ceramic powder has no other impurities, and the average is calculated The grain size is about 45nm;
  • Fig. 7 is the SEM photograph of (Zr, Hf) B 2 ceramic powder shown in Fig. 6, as can be seen from Fig. 7, the prepared (Zr, Hf) B 2 powder has a uniform particle size , A loose aggregate.
  • FIG. 8 is the XRD pattern of (Zr, Hf) B 2 ceramic powder prepared in Example 29. As can be seen from FIG. 3, (Zr, Hf) B 2 ceramic powder has no other impurity phases, and the average is calculated The grain size is about 62 nm.
  • this specific embodiment can use boron-containing compounds such as boric acid, sodium tetraborate, potassium tetraborate, and lithium tetraborate as the boron source, which broadens the source of raw materials and reduces production costs.
  • boron-containing compounds such as boric acid, sodium tetraborate, potassium tetraborate, and lithium tetraborate as the boron source, which broadens the source of raw materials and reduces production costs.
  • the molten salt containing the alkali metal compound used in this specific embodiment participates in the chemical reaction, which can improve the thermodynamic conditions of the chemical reaction, promote the progress of the reduction reaction, increase the yield and increase the recovery rate.
  • the products after heat treatment can be directly washed with water or alkali. The process is simple and the by-products can be recycled. It avoids the drawbacks of the traditional pickling process that causes serious pollution to the environment and is easy to industrialize.
  • This embodiment has the characteristics of low production cost, environmental friendliness and easy industrial production.
  • the prepared TiB 2 or (Zr, Hf) B 2 ceramic powder has the characteristics of small particle size and narrow particle size distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7-1.2)∶(0.7-4.0)∶(0.2-20.0)配料,混匀,在保护性气氛和600-1300℃条件下热处理0.5-8h,用水或碱溶液在室温-250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体;或按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0-5.0)∶(0.7-4.0)∶(0.2-18.0)配料,混匀,干燥,在保护性气氛和600-1300℃条件下热处理0.5-8h,用水或碱溶液溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。还原剂为硅粉和铝粉中的一种以上;钛源为Ti粉和TiO 2粉中的一种以上;硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的一种以上;含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种以上;含(Zr,Hf)化合物为金属(Zr,Hf)粉和(Zr,Hf) 2粉中一种以上。该制备方法具有生产成本较低、环境友好和易于工业化生产的特点,制备的制品粒径小、粒度分布窄。

Description

一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法 技术领域
本发明属于硼化物陶瓷粉体技术领域。具体涉及一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法。
背景技术
TiB 2、(Zr,Hf)B 2具有高熔点、高硬度、高强度、化学惰性、良好的耐磨和优异的耐腐蚀性以及固态下无相变等优良特性。在导电陶瓷、陶瓷切削刀具及模具、铝电解槽阴极涂层材料、金属陶瓷、陶瓷基复合材料等领域有着广泛的应用。TiB 2、(Zr,Hf)B 2基材料具有优异的力学、热物理、化学与摩擦性能,能在极限环境下服役,如核反应堆包壳材料、超高声速飞行器鼻锥材料等。
TiB 2、(Zr,Hf)B 2陶瓷粉体的粒径大小、粒径分布、团聚以及纯度等特征是影响陶瓷制品性能的关键因素之一,高性能TiB 2、(Zr,Hf)B 2陶瓷粉体的合成与制备是当前研究热点。TiB 2、(Zr,Hf)B 2陶瓷粉体的制备方法已有较多文献报道,如镁热还原法、硼热还原法、熔盐电解法、机械合金化法、高温自蔓延合成法等。
硼热还原法是TiB 2粉体常见的合成方法之一,如“一种高纯二硼化钛粉体及其制备方法”(CN201610890116.6)是以单质硼或碳化硼为还原剂,还原TiO 2粉体,通过该方法可以获得粒径小于1μm的TiB 2陶瓷粉体。又如以硼氢化钠或金属钠为还原剂,还原TiCl 4,可在较低温度下制得纳米级TiB 2粉体(Bates S E,Buhro W E,Frey C A.Synthesis of titanium boride(TiB 2)nanocrystallites by solution-phase processing[J].Journal of Materials Research,1995,10(10):2599-2612.,Gu Y,Qian Y,Chen L,et al.A Mild Solvothermal Route to Nanocrystalline Titanium Diboride.[J].Journal of Alloys&Compounds,2003,352(1):325-327.)。但上述方法原料成本较高,限制了商业化应。
高温自蔓延合成法也是TiB 2、(Zr,Hf)B 2陶瓷粉体合成的一种主要方法,是通过金属镁与B 2O 3和TiO 2或(Zr,Hf)O 2的自蔓延反应合成TiB 2或(Zr,Hf)B 2(傅正义,袁润章.TiB 2的自蔓延高温合成过程研究[J].硅酸盐学报,1995(1):27-32.,张田梅.自蔓延镁热还原法制备高纯度二硼化锆微粉[D].哈尔滨工业大学,2006.),但自蔓延反应的过程控制、反应 产物的后续净化处理较为复杂。
碳热还原法是以C为还原剂,还原B 2O 3和ZrO 2粉体,该方法虽工艺简单、成本较低和适宜工业化生产,但该方法合成温度高、保温时间长,制得的粉体粒径较粗、杂质较多(杨磊,孙静,桂涛,等.添加剂对碳热还原反应制备ZrB2粒径及形貌的影响[J].稀有金属,2017(12):1352-1358.)。
金属单质粉体与B粉的机械合金化也可用于制备TiB 2、(Zr,Hf)B 2陶瓷粉体,机械合金化制备粉体的主要问题是球磨介质和容器带来的污染,也无法精确控制产物的化学计量比(颜丙勇.机械合金化制备TiB 2粉末[M].昆明理工大学,2011.)。
在镁热还原反应的基础上,引入氯化物作为熔盐介质的熔盐镁热还原制备硼化物粉体也有研究报道(Zhang S,Khangkhamano M,Zhang H,et al.Novel Synthesis of ZrB2 Powder Via Molten-Salt-Mediated Magnesiothermic Reduction[J].Journal of the American Ceramic Society,2014,97(6):1686-1688.),制得的粉体粒径较小,粒度分布均匀,但反应副产物处理困难,会带来环境污染。
综合以上分析,现有TiB 2或(Zr,Hf)B 2陶瓷粉体的合成方法存在不同程度的问题,如原料成本高昂、反应温度较高、合成的TiB 2或(Zr,Hf)B 2陶瓷粉体尺寸难以控制、活性较低和产物粉体的杂质含量较高,后续酸处理净化提纯工艺环境污染严重等。
发明内容
本发明旨在克服现有技术缺陷,提供一种原料易得、工艺简单、生产成本低、环境友好和易于工业化生产的TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,用该方法制备的TiB 2或(Zr,Hf)B 2陶瓷粉体的粒径小和粒度分布窄。
为实现上述目的,本发明采用的技术方案是:
按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.2)∶(0.7~4.0)∶(0.2~20.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和600~1300℃条件下热处理0.5~8h,然后用水或碱溶液在室温~250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体;
或按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0~5.0)∶(0.7~4.0)∶(0.2~18.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼 源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和600~1300℃条件下热处理0.5~8h,然后用水或碱溶液在室温~250℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体;
所述还原剂为硅粉和铝粉中的一种以上;
所述钛源为Ti粉和TiO 2粉中的一种以上;
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的一种以上;
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种以上。
所述含(Zr,Hf)化合物为金属(Zr,Hf)粉和(Zr,Hf)O 2粉中的一种以上;
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的一种以上。
所述硅酸钠中的SiO 2与Na 2O的摩尔比≤1。
所述硅酸钾中的SiO 2与K 2O的摩尔比≤1。
所述硅酸锂中的SiO 2与Li 2O的摩尔比≤1。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
(1)本发明在反应体系中引入含碱金属化合物熔盐,含碱金属化合物熔盐能在较低的温度下形成液相,强化传质过程,改善化学反应的动力学条件,提高还原反应效率。此外,引入碱金属化合物熔盐后,反应在液相中进行,反应条件温和,生成的TiB 2或(Zr,Hf)B 2陶瓷粉体具有粒径小、粒度分布窄的特点。
(2)本发明采用的硼源除硼酐外,可使用硼酸、四硼酸钠、四硼酸钾、四硼酸锂等含硼化合物作为硼源,拓宽了原料来源,生产成本低。
(3)本发明采用的含碱金属化合物熔盐参与化学反应,能改善化学反应的热力学条件、促进还原反应进行、提高产率和提高回收率。热处理后的产物可直接水洗或碱洗,工艺简单,副产品可回收利用,避免了传统酸洗工艺对环境造成严重污染的弊端,易于工业化生产。
因此,本发明具有生产成本较低、环境友好和易于工业化生产的特点,制得的TiB 2或(Zr,Hf)B 2陶瓷粉体具有粒径小和粒度分布窄的特点。
附图说明
图1为本发明制备的一种TiB 2陶瓷粉体的XRD图谱;
图2为图1所示TiB 2陶瓷粉体的SEM照片;
图3为本发明制备的另一种TiB 2陶瓷粉体的XRD图谱;
图4为图3所示TiB 2陶瓷粉体的SEM照片;
图5为本发明制备的又一种TiB 2陶瓷粉体的SEM照片。
图6为本发明制备的一种(Zr,Hf)B 2陶瓷粉体的XRD图谱;
图7为图6所示(Zr,Hf)B 2陶瓷粉体的SEM照片;
图8为本发明制备的另一种(Zr,Hf)B 2陶瓷粉体的XRD图谱。
具体实施方式
为了更好的理解本发明,下面通过附图和实施例进一步阐述本发明的内容,但本发明不仅仅局限于下面的实施例。
为避免重复,先将本具体实施方式所涉及的物料统一描述如下,实施例中不再赘述:
所述硅酸钠中的SiO 2与Na 2O的摩尔比≤1。
所述硅酸钾中的SiO 2与K 2O的摩尔比≤1。
所述硅酸锂中的SiO 2与Li 2O的摩尔比≤1。
具体实施例1-16中所涉及的物料统一描述如下:
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的一种以上。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种以上。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的一种以上。
实施例1
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(0.7~1.7)∶(0.2~5.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和1000~1300℃条件下热处理6~8h,然后用水在95~200℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉中的一种以上。
所述钛源为Ti粉和TiO 2粉中的一种以上。
实施例2
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(0.7~1.7)∶(0.2~5.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和1000~1300℃条件下热处理6~8h,然后用碱溶液在95~200℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉。
所述钛源为Ti粉。
实施例3
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(0.7~1.7)∶(0.2~5.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和1000~1300℃条件下热处理6~8h,然后用碱溶液在95~200℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为铝粉。
所述钛源为TiO 2粉。
实施例4
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(0.7~1.7)∶(0.2~5.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和1000~1300℃条件下热处理6~8h,然后用碱溶液在95~200℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉的混合物。
所述钛源为Ti粉与TiO 2粉的混合物。
实施例5
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(1.2~2.8)∶(4.5~10.0),将所述 还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用水在45~100℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉中的一种以上。
所述钛源为Ti粉和TiO 2粉中的一种以上。
实施例6
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(1.2~2.8)∶(4.5~10.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用碱溶液在45~100℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉。
所述钛源为Ti粉和TiO 2粉的混合物。
实施例7
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(1.2~2.8)∶(4.5~10.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用碱溶液在45~100℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为铝粉。
所述钛源为TiO 2粉。
实施例8
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.0)∶(1.2~2.8)∶(4.5~10.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用碱溶液在45~100℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉的混合物。
所述钛源为Ti粉。
实施例9
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(0.9~2.2)∶(9.5~15.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用水在室温~50℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉中的一种以上。
所述钛源为Ti粉和TiO 2粉中的一种以上。
实施例10
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(0.9~2.2)∶(9.5~15.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用碱溶液在室温~50℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉。
所述钛源为Ti粉和TiO 2粉的混合物。
实施例11
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(0.9~2.2)∶(9.5~15.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用碱溶液在室温~50℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为铝粉。
所述钛源为Ti粉。
实施例12
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(0.9~2.2)∶(9.5~15.0),将所述 还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用碱溶液在室温~50℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉的混合物。
所述钛源为TiO 2粉。
实施例13
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(1.5~4.0)∶(14.5~20.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和850~1200℃条件下热处理0.5~3h,然后用水在195~250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉中的一种以上。
所述钛源为Ti粉和TiO 2粉中的一种以上。
实施例14
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(1.5~4.0)∶(14.5~20.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和850~1200℃条件下热处理0.5~3h,然后用碱溶液在195~250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉。
所述钛源为Ti粉和TiO 2粉的混合物。
实施例15
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(1.5~4.0)∶(14.5~20.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和850~1200℃条件下热处理0.5~3h,然后用碱溶液在195~250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为硅粉和铝粉的混合物。
所述钛源为TiO 2粉。
实施例16
一种TiB 2陶瓷粉体的制备方法。本实施例所述制备方法是:按还原剂∶钛源∶硼源∶含碱金属化合物熔盐按质量比为1.0∶(0.9~1.2)∶(1.5~4.0)∶(14.5~20.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和850~1200℃条件下热处理0.5~3h,然后用碱溶液在195~250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体。
所述还原剂为铝粉。
所述钛源为Ti粉。
实施例17
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0~2.5)∶(0.7~1.5)∶(0.2~5.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和1000~1300℃下热处理6~8h,然后用碱溶液在95~200℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意一种物质。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意一种物质。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的二种以上的混合物。
实施例18
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0~2.5)∶(0.7~1.5)∶(0.2~5.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和1000~1300℃下热处理6~8h,然后用水在95~200℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B2陶瓷粉体。
所述还原剂为铝粉。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意二种物质混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意二种物质的混合物。
实施例19
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0~2.5)∶(0.7~1.5)∶(0.2~5.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和1000~1300℃条件下处理6~8h,然后用水在95~200℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉与铝粉的混合物。
所述含(Zr,Hf)化合物为金属(Zr,Hf)粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意三种物质混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意三种物质的混合物。
实施例20
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0~2.5)∶(0.7~1.5)∶(0.2~5.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和1000~1300℃条件下热处理6~8h,然后用碱溶液在95~200℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉。
所述含(Zr,Hf)化合物为(Zr,Hf)粉和(Zr,Hf)O 2粉的混合物。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意四种以上物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意四种以上物质的混合物。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的任意一种物质。
实施例21
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(2.0~3.5)∶(1.0~2.5)∶(4.5~10.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用碱溶液在45~100℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为铝粉。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意一种物质。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意一种物质。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的任意一种物质。
实施例22
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(2.0~3.5)∶(1.0~2.5)∶(4.5~10.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用水在45~100℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉与铝粉的混合物。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意二种物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意二种物质的混合物。
实施例23
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(2.0~3.5)∶(1.0~2.5)∶(4.5~10.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用水在45~100℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉。
所述含(Zr,Hf)化合物为金属(Zr,Hf)粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意三种物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种任意三种物质的混合物。
实施例24
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(2.0~3.5)∶(1.0~2.5)∶(4.5~10.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和600~800℃条件下热处理4.5~7h,然后用碱溶液在45~100℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为铝粉。
所述含(Zr,Hf)化合物为(Zr,Hf)粉和(Zr,Hf)O 2粉的混合物。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意四种以上物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种任意四种以上物质的混合物。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的二种以上物质的混合物。
实施例25
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(3.0~4.5)∶(2.0~3.5)∶(9.0~14.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用水在室温~50℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉与铝粉的混合物。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意一种物质。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意一种物质。
实施例26
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(3.0~4.5)∶(2.0~3.5)∶(9.0~14.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用碱溶液在室温~50℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意二种物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意二种物质的混合物。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的任意一种物质。
实施例27
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(3.0~4.5)∶(2.0~3.5)∶(9.0~14.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用水在室温~50℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为铝粉。
所述含(Zr,Hf)化合物为金属(Zr,Hf)粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意三种物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意三种物质的混合物。
实施例28
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(3.0~4.5)∶(2.0~3.5)∶(9.0~14.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和750~1000℃条件下热处理2.5~5.0h,然后用碱溶液在室温~50℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉与铝粉的混合物。
所述含(Zr,Hf)化合物为(Zr,Hf)粉和(Zr,Hf)O 2粉的混合物。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意四种以上物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种任意四种以上物质的混合物。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的二种以上物质的混合物。
实施例29
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(4.0~5.0)∶(3.0~4.0)∶(13.0~18.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和850~1200℃条件下热处理0.5~3.0h,然后用水在195~250℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意一种物质。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种任意一种物质。
实施例30
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(4.0~5.0)∶(3.0~4.0)∶(13.0~18.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和850~1200℃条件下热处理0.5~3.0h,然后用碱溶液在195~250℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为铝粉。
所述含(Zr,Hf)化合物为(Zr,Hf)O 2粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意二种物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种任意二种物质的混合物。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的任意一种物质。
实施例31
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶ (4.0~5.0)∶(3.0~4.0)∶(13.0~18.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和850~1200℃条件下热处理0.5~3.0h,然后用水在195~250℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉与铝粉的混合物。
所述含(Zr,Hf)化合物为金属(Zr,Hf)粉。
所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意三种物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种任意三种物质的混合物。
实施例32
一种(Zr,Hf)B 2陶瓷粉体的制备方法。本实施例所述制备方法是:
按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(4.0~5.0)∶(3.0~4.0)∶(13.0~18.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和850~1200℃条件下热处理0.5~3.0h,然后用碱溶液在195~250℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体。
所述还原剂为硅粉。
所述含(Zr,Hf)化合物为(Zr,Hf)粉和(Zr,Hf)O 2粉的混合物。所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的任意四种以上物质的混合物。
所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的任意四种以上物质的混合物。
所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的二种以上物质的混合物。
本具体实施方式与现有技术相比具有如下积极效果:
1、本具体实施方式在反应体系中引入含碱金属化合物熔盐,含碱金属化合物熔盐的存在,能在较低的温度下形成液相,强化传质过程,改善化学反应的动力学条件,提高还原反应效率。此外,含碱金属化合物熔盐能参与化学反应,改善化学反应的热力学条 件,促进还原反应的进行,提高产率和回收率。引入碱金属化合物熔盐后,反应在液相中进行,反应条件温和,生成的TiB 2或(Zr,Hf)B 2陶瓷粉体具有粒径小和粒度分布窄的特点。
图1为实施例1制备的一种TiB 2陶瓷粉体的XRD图谱,从图1可以看出,所述TiB 2陶瓷粉体中未见其它杂相,计算得平均晶粒尺寸约为65nm;图2为图1所示TiB 2陶瓷粉体的SEM照片,从图2可以看出,制得的TiB 2粉体粒径均一,为松散团聚体。图3为实施例11制备的一种TiB 2陶瓷粉体的XRD图谱,从图3可以看出,所述TiB 2陶瓷粉体中未见其它杂相,计算得平均晶粒尺寸约为33nm,图4为图3所示TiB 2陶瓷粉体的SEM照片,从图4可以看出,制得的TiB 2粉体粒径均一,为松散团聚体。图5为实施例16制备的一种TiB 2陶瓷粉体的SEM照片,从图5可以看出,制得的TiB 2粉体粒径均一,TiB 2较为规则,呈六方短柱状典型晶体形态。
图6为实施例18制得的(Zr,Hf)B 2陶瓷粉体的XRD图谱,从图6可以看出,(Zr,Hf)B 2陶瓷粉体中未见其它杂相,计算得平均晶粒尺寸约为45nm;图7为图6所示(Zr,Hf)B 2陶瓷粉体的SEM照片,从图7可以看出,制得的(Zr,Hf)B 2粉体粒径均一,为松散团聚体。图8为实施例29制得的(Zr,Hf)B 2陶瓷粉体的XRD图谱,从图3可以看出,(Zr,Hf)B 2陶瓷粉体中未见其它杂相,计算得平均晶粒尺寸约为62nm。
2、本具体实施方式除硼酐外,可使用硼酸、四硼酸钠、四硼酸钾、四硼酸锂等含硼化合物作为硼源,拓宽了原料来源,生产成本低。
3、本具体实施方式采用的含碱金属化合物熔盐参与化学反应,能改善化学反应的热力学条件、促进还原反应进行、提高产率和提高回收率。热处理后的产物可直接水洗或碱洗,工艺简单,副产品可回收利用,避免了传统酸洗工艺对环境造成严重污染的弊端,易于工业化生产。
因此,本具体实施方式具有生产成本较低、环境友好和易于工业化生产的特点,制得的TiB 2或(Zr,Hf)B 2陶瓷粉体具有粒径小和粒度分布窄的特点。

Claims (5)

  1. 一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,其特征在于所述制备方法是:
    按还原剂∶钛源∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(0.7~1.2)∶(0.7~4.0)∶(0.2~20.0),将所述还原剂、所述钛源、所述硼源和所述含碱金属化合物熔盐混合均匀,在保护性气氛和600~1300℃条件下热处理0.5~8h,然后用水或碱溶液在室温~250℃条件下溶解,洗涤,干燥,制得TiB 2陶瓷粉体;
    或按还原剂∶含(Zr,Hf)化合物∶硼源∶含碱金属化合物熔盐的质量比为1.0∶(1.0~5.0)∶(0.7~4.0)∶(0.2~18.0),将所述还原剂、所述含(Zr,Hf)化合物、所述硼源和所述含碱金属化合物熔盐混合均匀,干燥,在保护性气氛和600~1300℃条件下热处理0.5~8h,然后用水或碱溶液在室温~250℃条件下溶解,洗涤,干燥,制得(Zr,Hf)B 2陶瓷粉体;
    所述还原剂为硅粉和铝粉中的一种以上;
    所述钛源为Ti粉和TiO 2粉中的一种以上;
    所述硼源为硼矸、硼酸、四硼酸钠、四硼酸钾和四硼酸锂中的一种以上;
    所述含碱金属化合物熔盐为氢氧化钠、硅酸钠、碳酸钠、氢氧化钾、硅酸钾、碳酸钾、氢氧化锂、硅酸锂、碳酸锂和铝酸钠中的一种以上。
    所述含(Zr,Hf)化合物为金属(Zr,Hf)粉和(Zr,Hf)O 2粉中的一种以上;
  2. 根据权利要求1所述TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,其特征在于所述碱溶液为氢氧化钠水溶液、氢氧化钾水溶液和氢氧化锂水溶液中的一种以上。
  3. 根据权利要求1所述TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,其特征在于所述硅酸钠中的SiO 2与Na 2O的摩尔比≤1。
  4. 根据权利要求1所述TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,其特征在于所述硅酸钾中的SiO 2与K 2O的摩尔比≤1。
  5. 根据权利要求1所述TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法,其特征在于所述硅酸锂中的SiO 2与Li 2O的摩尔比≤1。
PCT/CN2019/105343 2018-10-11 2019-09-11 一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法 WO2020073767A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811186001.4 2018-10-11
CN201811185989.2 2018-10-11
CN201811186001.4A CN109251036A (zh) 2018-10-11 2018-10-11 一种TiB2陶瓷粉体的制备方法
CN201811185989.2A CN109251035A (zh) 2018-10-11 2018-10-11 一种(Zr,Hf)B2陶瓷粉体的制备方法

Publications (1)

Publication Number Publication Date
WO2020073767A1 true WO2020073767A1 (zh) 2020-04-16

Family

ID=70164476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105343 WO2020073767A1 (zh) 2018-10-11 2019-09-11 一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法

Country Status (1)

Country Link
WO (1) WO2020073767A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3131739A1 (fr) 2022-01-11 2023-07-14 Saint-Gobain Centre De Recherches Et D'etudes Europeen Procede de synthese d’une poudre de diborure par voie seche

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929417A (en) * 1989-04-21 1990-05-29 Agency Of Industrial Science And Technology Method of manufacture metal diboride ceramics
CN103848619A (zh) * 2012-12-03 2014-06-11 南京理工大学 一种微纳米内晶复相颗粒体及其热爆反应合成法
CN106631033A (zh) * 2016-12-27 2017-05-10 北京有色金属研究总院 一种ZrB2粉体的制备方法
CN109251035A (zh) * 2018-10-11 2019-01-22 武汉科技大学 一种(Zr,Hf)B2陶瓷粉体的制备方法
CN109251036A (zh) * 2018-10-11 2019-01-22 武汉科技大学 一种TiB2陶瓷粉体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929417A (en) * 1989-04-21 1990-05-29 Agency Of Industrial Science And Technology Method of manufacture metal diboride ceramics
CN103848619A (zh) * 2012-12-03 2014-06-11 南京理工大学 一种微纳米内晶复相颗粒体及其热爆反应合成法
CN106631033A (zh) * 2016-12-27 2017-05-10 北京有色金属研究总院 一种ZrB2粉体的制备方法
CN109251035A (zh) * 2018-10-11 2019-01-22 武汉科技大学 一种(Zr,Hf)B2陶瓷粉体的制备方法
CN109251036A (zh) * 2018-10-11 2019-01-22 武汉科技大学 一种TiB2陶瓷粉体的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3131739A1 (fr) 2022-01-11 2023-07-14 Saint-Gobain Centre De Recherches Et D'etudes Europeen Procede de synthese d’une poudre de diborure par voie seche
WO2023135389A1 (fr) 2022-01-11 2023-07-20 Saint-Gobain Centre De Recherche Et D'etudes Europeen Procede de synthese d'une poudre de diborure par voie seche

Similar Documents

Publication Publication Date Title
CN109251036A (zh) 一种TiB2陶瓷粉体的制备方法
CN113353947A (zh) 一种低温微波碳热还原制备高活性硼化钛陶瓷粉体的方法
CN103950946A (zh) 一种硼化铌纳米粉体的制备方法
CN111039291A (zh) 利用熔盐歧化反应原位制备NbC和/或TaC粉体方法
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
CN112125686A (zh) 一种熔盐隔离制备碳化硅包覆石墨的方法
Li et al. Advances in molten salt synthesis of non‐oxide materials
Fang et al. Preparation and characterization of monoclinic rod-shaped ZrO2 whiskers via sulfate flux
WO2020073767A1 (zh) 一种TiB 2或(Zr,Hf)B 2陶瓷粉体的制备方法
Li et al. Synthesis of ZrB2 powders by molten-salt participating silicothermic reduction
CN109231231B (zh) 一种二硼化锆粉体的低温制备方法
CN114715925A (zh) 一种片状α氧化铝及其制备方法
CN104961137A (zh) 一种纳米碱土金属硼化物的制备方法
CN112592183B (zh) 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法
Wang et al. Preparations of lanthanum hexaboride (LaB6) and cerium hexaboride (CeB6)
CN108928822B (zh) 气态还原氧化钼制备碳化钼的方法
WO2020073806A1 (zh) 一种无定形硼粉的制备方法
Wang et al. A simple route for the direct conversion of waste plastic to hafnium carbide nanoparticles at low temperature
CN105777128A (zh) 一种熔盐辅助镁热还原低温合成碳化铪陶瓷粉体的方法
Khomane et al. Synthesis and characterization of lithium aluminate nanoparticles
CN103449463B (zh) 一种硼化锆-碳化硅复合粉体及其制备方法
CN103880425A (zh) 一种Al3BC3粉体及其制备方法
CN109251035A (zh) 一种(Zr,Hf)B2陶瓷粉体的制备方法
CN109251037A (zh) 一种基于钛硅铁合金的硼化钛陶瓷粉体的制备方法
CN101660204A (zh) 六方片氧化铝晶须材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870642

Country of ref document: EP

Kind code of ref document: A1