CN112592183B - 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 - Google Patents

一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 Download PDF

Info

Publication number
CN112592183B
CN112592183B CN202110005325.9A CN202110005325A CN112592183B CN 112592183 B CN112592183 B CN 112592183B CN 202110005325 A CN202110005325 A CN 202110005325A CN 112592183 B CN112592183 B CN 112592183B
Authority
CN
China
Prior art keywords
powder
metal
max phase
phase ceramic
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110005325.9A
Other languages
English (en)
Other versions
CN112592183A (zh
Inventor
陈子豪
刘国齐
李红霞
马渭奎
顾强
杨文刚
钱凡
于建宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Sinosteel Nanjing Environmental Engineering Technology Research Institute Co ltd
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Nanjing Environmental Engineering Technology Research Institute Co ltd, Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Sinosteel Nanjing Environmental Engineering Technology Research Institute Co ltd
Priority to CN202110005325.9A priority Critical patent/CN112592183B/zh
Publication of CN112592183A publication Critical patent/CN112592183A/zh
Application granted granted Critical
Publication of CN112592183B publication Critical patent/CN112592183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于高温结构陶瓷领域,涉及一种Zr‑Al‑C系MAX相陶瓷粉体制品的制备方法。涉及的一种熔盐法合成Zr‑Al‑C系MAX相陶瓷粉体制品的制备方法以金属Al粉,金属Zr粉,C粉为原料,以NaCl和KCl组成的碱金属盐为熔盐介质,将原料与金属卤盐机械混合后得到的混合粉料置于石墨坩埚中,在流通的氩气或者真空条件下升温、保温、洗涤、干燥:得到Zr3Al3C5与Zr2Al3C4的混合粉体或Zr3Al3C5粉体。本发明通过熔盐法合成Zr‑Al‑C系MAX相陶瓷粉体。与传统制备方法相比,合成温度低,合成速度快,工艺简单。

Description

一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法
技术领域
本发明属于高温结构陶瓷领域,主要涉及一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法。
背景技术
ZrC材料展现出优异的化学和物理性能,例如高熔点,高的抗折强度和良好的抗蠕变性;因此ZrC被广泛用作复合材料中增强颗粒的硬化相,同时也在机械工业,耐火材料,耐磨零件,切削工具等领域被广泛地应用。但是,由于缺乏保护性氧化产物和其特殊的晶格结构,直接导致了ZrC的抗氧化性差。这就限制了它在高温环境和其他工业领域中的应用前景。
而在1960年第一次发现的三元化合物MAX相(如Ti3SiC2,Ti2AlC,Nb2AlC等)为问题提供了解决方法,这一类碳化物具有Mn+1AXn的通式,M为过渡族元素,A为主族元素(主要为元素周期表中13-16列的元素),X为C或N。近年来,以MxX和AxX原子层为结构单元,原子层间交错形成的类MAX相也被大量发现(例如以(ZrC)nAl3C2为结构通式的Zr2Al3C4和Zr3Al3C5)。
MAX相因为其特殊的层状结构(其中A平面或者AxN平面充当MX陶瓷层之间的的原子层)以及特殊的原子间的键合方式(同时具有共价键,离子键,金属键),MAX相显示出结合了陶瓷和金属优点的独特性能,如高熔点和在高温下良好的机械性能,高硬度,优异的抗氧化抗腐蚀能力以及高的导热性和导电性。
Zr-Al-C系MAX相因具有良好的抗辐射性和较高的中子屏蔽性而受到核工业的关注;轻水反应堆的燃料包壳材料面临着高的机械和热负荷与高中子辐照剂量,同时也要面对强腐蚀性的严苛条件,Zr-Al-C系的MAX相被认为是有潜力的的候选材料;Zr–Al–C系MAX相也被认为是耐火材料中的一种新型抗氧化剂。由于其中的Al原子可以在氧化后形成保护性的Al2O3层,同时由于氧化产生的体积膨胀,Al2O3的形成还可以“弥补”裂缝产生自愈合效应,以进一步堵塞耐火材料中的孔隙并恢复材料的强度。
而在现有的Zr-Al-C系MAX相研究成果中,都是通过各种直接固相合成的方法,在高温下合成了具有简单几何形状和尺寸受限的致块体材料;高的烧结温度会影响材料性能产生过高的能耗,直接固相合成的方法复杂且不易控制;这样一来,就会在按比例制作大尺寸的陶瓷制品和低成本地制造Zr-Al-C系MAX相纯粉方面产生难题,这就成为了工业应用中的瓶颈;实际上,由于熔盐可以促进反应物的扩散,因此目标产物可在将原料与合适的金属卤化物盐混合后,于相对较低的温度下获得。因此被认为是生产Zr-Al-C系MAX相粉末的新方法。
发明内容
本发明的目的在于提出一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法,使其能解决现有的MAX相陶瓷生产中,高能耗和尺寸受限等问题。
本发明为完成上述目的采用如下技术方案:
一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法,Zr-Al-C系MAX相陶瓷粉体制品以金属Al粉,金属Zr粉,C粉为原料,以NaCl和KCl组成的碱金属盐为熔盐介质,制备方法具体包括如下步骤:
(1)干燥:将NaCl:KCl按照质量比为0.5~2:1进行混合,在大于100°C的条件下烘干超过6小时;
(2)混料:将金属Al粉、金属Zr粉,C粉机械混合之后得到反应物混合物;按照碱金属盐混合物:反应物混合物质量比大于2:1进行机械混合;
(3)热处理:将原料与金属卤盐机械混合后得到的混合粉料置于石墨坩埚中,在流通的氩气或者真空条件下以5~10 °C/min的升温速率升温至1 000 °C,之后以2~4 °C/min的升温速率升温至1 100~1 300 °C,保温超过2个小时;
(4)洗涤、干燥:将热处理后的试样自然冷却到室温,以质量分数为20%的盐酸洗涤一次,再以去离子水洗涤两次;最后在80~100 °C的条件下干燥超过6小时,随使用的碳源不用得到的产物也会不同,在石墨作为碳源时,可以得到Zr3Al3C5与Zr2Al3C4的混合粉体,而在炭黑和玻璃炭作为碳源时可以得到Zr3Al3C5粉体;其中相较于流动的氩气保护下得到的粉体真空条件下得到的Zr3Al3C5粉体纯度更高。
所述的反应物混合物中金属Al粉:金属Zr粉:C粉=6~9:2~3:4~5。
所述的C粉为石墨或炭黑或酚醛树脂热处理后得到的玻璃碳。
步骤(4)中用去离子水洗涤同时对物料进行超声处理,促进盐的溶解,提高粉体分散性。
本发明提出的一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法,采用上述技术方案,具有如下有益效果:
1、本发明通过熔盐法合成了Zr3Al3C5和Zr2Al3C4两种无杂质粉体,与传统固相合成方法相比,工艺简单,合成速度快,合成温度低,生产成本低;可得到高纯的粉末,本实验所得粉末粒径为8~10 μm。
2、可得到高纯的粉体,纯度可达到98%,本实验所得粉体,尺寸均匀分散性好,所制得粉体平均粒径为8~10 μm。
附图说明
图1为本发明实施例1所制得样品的X射线衍射图谱。
图2为本发明实施例1所制得样品的SEM照片。
具体实施方式
下面结合实例对本发明的技术方案做进一步的说明,但本发明的保护范围不限于此。
实例中所使用原料都为常规原料,所用设备均为常规设备,市购产品
实施例 1:
一种熔盐法合成Zr-Al-C系MAX相陶瓷粉体的方法,步骤如下:
(1)干燥:将16克NaCl和16克KCl机械混合,两种盐的比例为1:1,将混合后的金属卤盐置于鼓风干燥箱中,在100°C下烘干6小时;
(2)混料:称取3.24克金属Al粉、3.64克金属Zr粉,1.2炭黑之后进行机械混合,粉体中Zr:Al:C的质量比为2:6:5,之后将所得混合粉末与烘干后的金属卤盐机械混合,混合粉末与金属卤盐的质量比为1:4;
(3)热处理:将样品置于石墨坩埚中,之后将石墨坩埚置于卧式管式炉中部,在流通氩气的保护下以5 °C/min的升温速率升温至1 000 °C,之后以2 °C/min的升温速率升温至1 200 °C,保温2个小时。
(4)洗涤、干燥:将热处理后的试样自然冷却到室温,以质量分数为20%的盐酸洗涤一次,在超声清洗器中再以去离子水洗涤两次。最后在80 °C的条件下干燥8小时,即得到Zr3Al3C5粉体。
将本实例所制得的Zr3Al3C5粉体测试X射线衍射图谱和SEM照片,如图1、2所示。
由图1可知,所得粉体主要产物为Zr3Al3C5粉体,存在少量的Zr2Al3C4和ZrC杂质。由图2可知,晶体结构为六方晶系的MAX相发育良好,可清楚的观察到正六边形的片状结构,所制备粉体平均粒径为8~10μm。
实施例 2:
一种熔盐法合成Zr-Al-C系MAX相陶瓷粉体的方法,步骤如下
(1)干燥:将23克NaCl和46克KCl机械混合,两种盐的比例为1:2,将混合后的金属卤盐置于鼓风干燥箱中,在110°C下烘干24小时;
(2)混料:称取4.05克金属Al粉、3.64克金属Zr粉,0.96炭黑,之后进行机械混合,粉体中Zr:Al:C的质量比为2:7.5:4,之后将所得混合粉末与烘干后的金属卤盐机械混合,混合粉末与金属卤盐的质量比为1:8;
(3)热处理:将样品置于石墨坩埚中,之后将石墨坩埚置于卧式管式炉中部,在真空条件下以10 °C/min的升温速率升温至1 000 °C,之后以4 °C/min的升温速率升温至1100 °C,保温10个小时;
(4)洗涤、干燥:将热处理后的试样自然冷却到室温,以质量分数为20%的盐酸洗涤一次,在超声清洗器中再以去离子水洗涤两次。最后在80 °C的条件下干燥8小时,即得到纯度达到92%的Zr3Al3C5粉体。
实施例3:
(1)干燥:将74克NaCl和37克KCl机械混合,两种盐的比例为2:1,将混合后的金属卤盐置于鼓风干燥箱中,在110 °C下烘干12小时;
(2)混料:称取4.86克金属Al粉、5.46克金属Zr粉,1.08克石墨,之后进行机械混合,粉体中Zr:Al:C的质量比为3:9:4.5,之后将所得混合粉末与烘干后的金属卤盐机械混合,混合粉末与金属卤盐的质量比为1:10;
(3)热处理:将样品置于石墨坩埚中,之后将石墨坩埚置于卧式管式炉中部,在流通氩气的保护下以10 °C/min的升温速率升温至1 000 °C,之后以2 °C/min的升温速率升温至1 300 °C,保温2个小时。
(4)洗涤、干燥:将热处理后的试样自然冷却到室温,以质量分数为20%的盐酸洗涤一次,在超声清洗器中再以去离子水洗涤两次。最后在80 °C的条件下干燥8小时,即得到Zr3Al3C5与Zr2Al3C4的混合粉体。
实施例4:
一种熔盐法合成Zr-Al-C系MAX相陶瓷粉体的方法,步骤如下
(1)干燥:将55克NaCl和55克KCl机械混合,两种盐的比例为1:1,将混合后的金属卤盐置于鼓风干燥箱中,在110 °C下烘干24小时;
(2)混料:称取4.05克金属Al粉、5.46克金属Zr粉,1.08克酚醛树脂在800 °C热处理12小时候得到的玻璃炭,之后进行机械混合,粉体中Zr:Al:C的质量比为3:7.5:4.5,之后将所得混合粉末与烘干后的金属卤盐机械混合,混合粉末与金属卤盐的质量比为1:10。
(3)热处理:将样品置于石墨坩埚中,之后将石墨坩埚置于卧式管式炉中部,在真空条件下以10 °C/min的升温速率升温至1 000 °C,之后以2 °C/min的升温速率升温至1300 °C,保温10个小时。
(4)洗涤、干燥:将热处理后的试样自然冷却到室温,以质量分数为20%的盐酸洗涤一次,在超声清洗器中再以去离子水洗涤两次。最后在80 °C的条件下干燥8小时,即得到Zr3Al3C5粉体。通过对XRD图谱进行定量分析,可以证明此时Zr3Al3C5粉体的纯度可以达到98%。

Claims (3)

1.一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法,其特征在于:Zr-Al-C系MAX相陶瓷粉体制品以金属Al粉,金属Zr粉,C粉为原料,以NaCl和KCl组成的碱金属盐为熔盐介质,制备方法具体包括如下步骤:
(1)干燥:将NaCl:KCl按照质量比为0.5~2:1进行混合,在大于100°C的条件下烘干超过6小时;
(2)混料:将金属Al粉、金属Zr粉,C粉机械混合之后得到反应物混合物;按照碱金属盐混合物:反应物混合物质量比大于2:1进行机械混合;所述的反应物混合物中金属Al粉:金属Zr粉:C粉=6~9:2~3:4~5;
(3)热处理:将原料与金属卤盐机械混合后得到的混合粉料置于石墨坩埚中,在流通的氩气或者真空条件下以5~10 °C/min的升温速率升温至1 000 °C,之后以2~4 °C/min的升温速率升温至1 100~1 300 °C,保温超过2个小时;
(4)洗涤、干燥:将热处理后的试样自然冷却到室温,以质量分数为20%的盐酸洗涤一次,再以去离子水洗涤两次;最后在80~100 °C的条件下干燥超过6小时,发现Zr-Al-C混合粉末热处理后,随使用的碳源不用得到的产物也会不同,在石墨作为碳源时,可以得到Zr3Al3C5与Zr2Al3C4的混合粉体,而在炭黑和玻璃炭作为碳源时可以得到Zr3Al3C5粉体;其中相较于流动的氩气保护下得到的粉体真空条件下得到的Zr3Al3C5粉体纯度更高。
2.如权利要求1所述的一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法,其特征在于:所述的玻璃炭在酚醛树脂热处理后得到。
3.如权利要求1所述的一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法,其特征在于:步骤(4)中用去离子水洗涤同时对物料进行超声处理,促进盐的溶解,提高粉体分散性。
CN202110005325.9A 2021-01-05 2021-01-05 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 Active CN112592183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110005325.9A CN112592183B (zh) 2021-01-05 2021-01-05 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110005325.9A CN112592183B (zh) 2021-01-05 2021-01-05 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法

Publications (2)

Publication Number Publication Date
CN112592183A CN112592183A (zh) 2021-04-02
CN112592183B true CN112592183B (zh) 2022-04-19

Family

ID=75207849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110005325.9A Active CN112592183B (zh) 2021-01-05 2021-01-05 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法

Country Status (1)

Country Link
CN (1) CN112592183B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416863A (zh) * 2021-06-25 2021-09-21 福建工程学院 一种熔盐法制备max相金属陶瓷材料的方法
CN114669747A (zh) * 2022-03-21 2022-06-28 四川大学 以Cr、Zr或Nb为基的MnAlCn-1相粉末的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024577A (zh) * 2006-02-22 2007-08-29 中国科学院金属研究所 一种耐高温、抗氧化锆铝碳陶瓷粉体的制备方法
CN101024576A (zh) * 2006-02-22 2007-08-29 中国科学院金属研究所 一种原位反应热压制备锆铝碳陶瓷块体材料的方法
CN107935596A (zh) * 2017-12-22 2018-04-20 中国科学院上海硅酸盐研究所 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
DE102017006658A1 (de) * 2017-07-13 2019-01-17 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von nicht oxidischen, keramischen Pulvern
CN111549248A (zh) * 2020-06-12 2020-08-18 陕西科技大学 一种m位三元固溶型max相材料的制备方法
CN112159605A (zh) * 2020-09-09 2021-01-01 苏州北科纳米科技有限公司 一种基于熔盐法制备mxene材料的方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024577A (zh) * 2006-02-22 2007-08-29 中国科学院金属研究所 一种耐高温、抗氧化锆铝碳陶瓷粉体的制备方法
CN101024576A (zh) * 2006-02-22 2007-08-29 中国科学院金属研究所 一种原位反应热压制备锆铝碳陶瓷块体材料的方法
DE102017006658A1 (de) * 2017-07-13 2019-01-17 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von nicht oxidischen, keramischen Pulvern
CN110958995A (zh) * 2017-07-13 2020-04-03 于利奇研究中心有限公司 用于制备非氧化物陶瓷粉末的方法
CN107935596A (zh) * 2017-12-22 2018-04-20 中国科学院上海硅酸盐研究所 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN111549248A (zh) * 2020-06-12 2020-08-18 陕西科技大学 一种m位三元固溶型max相材料的制备方法
CN112159605A (zh) * 2020-09-09 2021-01-01 苏州北科纳米科技有限公司 一种基于熔盐法制备mxene材料的方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AlZrC2 synthesis;U. Leela-adisorn et al.;《Ceramics International》;20050608(第32期);第431–439页 *
Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics;Z.J. Lin et al.;《Acta Materialia》;20060627(第54期);第3843–3851页 *
First-principles studies on behaviors of He impurities in d-MAX phase Zr3Al3C5;Hui Tian et al.;《Journal of Nuclear Materials》;20201106(第544期);第1-8页 *
Synthesis, Physical, and Mechanical Properties of Bulk Zr3Al3C5 Ceramic;Lingfeng He et al.;《Journal of the American Ceramic Society》;20070430;第90卷(第4期);第1164-1170页 *

Also Published As

Publication number Publication date
CN112592183A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
Gonzalez‐Julian Processing of MAX phases: From synthesis to applications
CN107935596B (zh) 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
Fu et al. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications
Zhang et al. Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations
CN112592183B (zh) 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN110116213B (zh) 一种(Cr,Mo)2AlC固溶体材料及其制备方法
CN114180969B (zh) 含氮高熵max相材料和二维材料的制备方法及用途
Liu et al. Synthesis and characterization of nanosized Ti3AlC2 ceramic powder by elemental powders of Ti, Al and C in molten salt
CN105197952A (zh) 纳米单晶硼化镧的制备及其在电镜灯丝制备中的应用
Bigdeloo et al. Synthesis of high purity micron size boron carbide powder from B2O3/C precursor
CN109231231B (zh) 一种二硼化锆粉体的低温制备方法
Wang et al. Preparations of lanthanum hexaboride (LaB6) and cerium hexaboride (CeB6)
Li et al. Effect of Nb addition on the microstructure and mechanical properties of additively manufactured Ti2AlC MAX-phase ceramic matrix composites
CN116496103B (zh) 一种高强度、低密度碳化硅及其制备方法和应用
CN111763089A (zh) 具有层状结构的三元硼化物陶瓷材料制备方法及其制品
Fan et al. Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
CN112408394B (zh) 一种二硅化钽纳米粉末的制备方法
CN105777128A (zh) 一种熔盐辅助镁热还原低温合成碳化铪陶瓷粉体的方法
CN116178019A (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
Tang et al. Research status of titanium diboride high temperature ceramics
CN109231208B (zh) 一种过渡金属碳化物的制备方法
CN102701736A (zh) 一种TiAlZr/ZrO2深海热液区耐蚀陶瓷基复合材料及其制备方法
Su et al. Green synthesis, formation mechanism and oxidation of Ti3SiC2 powder from bamboo charcoal, Ti and Si
CN102530945A (zh) 一种制备高纯Ti3SiC2粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220602

Address after: 471039 No. 43, Xiyuan Road, Jianxi District, Henan, Luoyang

Patentee after: SINOSTEEL LUOYANG INSTITUTE OF REFRACTORIES RESEARCH Co.,Ltd.

Address before: No.70 Phoenix Road, Jiangning District, Nanjing City, Jiangsu Province (Jiangning Development Zone)

Patentee before: Sinosteel Nanjing Environmental Engineering Technology Research Institute Co.,Ltd.

Patentee before: Sinosteel Luoyang Refractory Research Institute Co., Ltd