CN110958995A - 用于制备非氧化物陶瓷粉末的方法 - Google Patents
用于制备非氧化物陶瓷粉末的方法 Download PDFInfo
- Publication number
- CN110958995A CN110958995A CN201880039486.6A CN201880039486A CN110958995A CN 110958995 A CN110958995 A CN 110958995A CN 201880039486 A CN201880039486 A CN 201880039486A CN 110958995 A CN110958995 A CN 110958995A
- Authority
- CN
- China
- Prior art keywords
- metal halide
- salt
- halide salt
- pellets
- pressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0602—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/907—Oxycarbides; Sulfocarbides; Mixture of carbides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5611—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
- C04B35/5615—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5611—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
- C04B35/5618—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
- C04B2235/445—Fluoride containing anions, e.g. fluosilicate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Carbon And Carbon Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明提供一种用于制备非氧化物陶瓷粉末的方法,该非氧化物陶瓷粉末包括氮化物、碳化物、硼化物或至少一个具有一般组成Mn+1AXn的MAX相,其中M=至少一种选自过渡元素族(Sc、Ti、V、Cr、Zr、Nb、Mo、Hf和Ta)中的元素,A=至少一种选自组(Si、Al、Ga、Ge、As、Cd、In、Sn、Tl和Pb)中的A族元素,X=碳(C)和/或氮(N)和/或硼(B)并且n=1、2或3。根据本发明,将相应量的单质起始材料或其它前体与至少一种金属卤素盐(NZ)混合、压制(丸粒)并且为了合成与金属卤素盐(NZ)一起加热。压制的丸粒首先用另外的金属卤素盐包覆,再次压制,置于盐浴中并与其一起加热到高于盐的熔化温度。任选地,可以加入熔融硅酸盐,这防止了盐在较高温度下蒸发。有利地,该方法可以在空气存在下进行。
Description
本发明涉及陶瓷粉末的制备,尤其涉及非氧化物陶瓷粉末的制备,所述陶瓷粉末包括氮化物、碳化物或硼化物,并且在此尤其也涉及MAX相粉末的合成。
现有技术
已知的是,非氧化物材料的合成总是在保护气氛中或在真空中进行,以抑制在存在氧的情况下的材料氧化。因此,不可避免的要求是,必须被保护以免受不期望的氧化的非氧化物材料的加工通常在氩气、氮气的保护气氛中或在真空中进行。
MAX相的合成目前同样在氩气下或在真空中在直至超过1000℃的温度下进行。MAX相被理解为通式Mn+1AXn的化合物,其中M=过渡元素(例如Ti、V、Cr、……),A=A族元素(Al、Si、……)、X=碳或氮,和n = 1、2或3。MAX相按照一般定义表示一类三元氮化物和碳化物。MAX相的制备通常以烧结步骤进行,所述烧结步骤通常也称为“反应性烧结”。然而在这种方法步骤中不能将MAX相制成为自由粉末,该自由粉末对于进一步的造型(konturgebende)工艺是必要的。
MAX相的第一个实例(Ti3SiC2)由Jeitschko和Nowotny首次制备,其中混合的氢化钛、硅和石墨在石墨坩埚中在2000℃下加热[1]。然而,这些高温使得大规模的MAX合成无利可图。
Barsoum等人使用例如钛、碳和碳化硅的混合粉末来制备MAX相(Ti3SiC2),其中,在1600℃下热压粉末混合物,并且在此设定40 MPa的单轴压力[2]。如此制备的MAX相是完全致密的,并且显示出简单的形状,其还须机器加工以用于进一步的造型。就此而言,为了借助上述方法由致密材料制备MAX相自由粉末,需要附加的研磨或磨削工艺。
整块Ti3SiC2也已经通过化学气相沉积(英文:chemical vapour deposition,CVD)法合成,其中使用了钛、硅和碳的氯化物前体[3]。
这种制备MAX相的方法的缺点通常是低的沉积速率和昂贵并经常有毒的前体。此外,CVD不适合合成粉末,而仅适合于在基材上沉积薄的膜或层。
所有上述方法都描述在氩气或氮气的保护气氛中或在真空下制备MAX相粉末。
通过熔融盐的氧化物和碳化物陶瓷粉末的合成路线也是已知的。然而在这种方法中,总是设定保护气氛或真空,这增加了这种合成的成本。
Guo等人已经在保护气体气氛(氩气)下通过由NaCl的熔融盐作为熔剂(Flussmittel)制备了Ti3SiC2 MAX相[4]。
Cr2AlC粉末也已经借助于熔融盐合成,对于所述熔融盐使用比例为1:1的NaCl和KCl的混合物作为熔剂。在真空下将反应混合物填充到石英管中并且在高温下热处理。该方法也总是需要保护气氛或真空,以促进高温下的反应。
由R. Yang等人的“Molten salt synthesis of Mo2C powder using amechanically milled powder”, Mater. Lett., 61, 2007, 4815-4817获知一种制备MO2C的方法,其中Mo-C粉末与NaCl和KCl混合,并由其制备样品。将它们添加到熔融盐中并在1000℃热处理60分钟。
此外,由X. Guo等人的“Preparation of Ti3SiC2 powders by the molten saltmethod”, Materials Letters 2013, 第111卷,第211-213页公开了MAX相的制备方法。这里,借助使用NaCl作为熔剂的熔融盐方法成功地获得Ti3SiC2粉末。通过在氩气气氛中烧结来实现氧隔绝。
目的和解决方案
本发明的目的是提供一种用于制备非氧化物陶瓷粉末,并且在此特别是MAX相粉末的替代合成路线,其与迄今为止的方法相比明显更便宜,并且此外还更易于操作。
本发明的目的通过具有主权利要求的特征的用于制备非氧化物陶瓷粉末的方法实现。该方法的有利扩展方案在引用其的权利要求中给出。
本发明的主题
在本发明的范围内已经发现,可以在制备非氧化物陶瓷粉末时免去使用迄今为止通常的保护气氛或者真空的使用,而不使非氧化物材料经历氧化。
本发明涉及包括氮化物、碳化物或硼化物的非氧化物陶瓷粉末的制备(合成),并且特别涉及包括所谓的MAX相的陶瓷粉末的制备。在本发明的方法中,将单质起始材料或其它前体作为粉末与至少一种金属卤素盐(Metallhalogensalz)混合,所述单质起始材料或其它前体具有用于形成所述非氧化物陶瓷材料所必需的元素,并且在空气或氧气存在下与至少一种金属卤素盐一起加热到超过其熔点,使得待合成的粉末置于熔融盐(熔池)中,所述熔融盐有效地防止任何氧带入到非氧化物陶瓷粉末。MAX相的典型合成温度在此为800至1400℃。
为此,优选可以将单质起始材料或其它前体作为粉末分散到非反应性的有机溶剂中或水中或也可以干式混合。
一起混合的金属卤素盐在高于其熔化温度的较高温度下形成熔融盐,并在此用作介质,在该介质中一方面起始材料或前体的各个原子可以容易地扩散,另一方面该介质充当针对存在的氧的保护。为此,熔融盐形成不可渗透的熔池,其具有几乎接近零的氧溶解度。由此,有效地抑制来自所存在的含氧气氛的氧溶解在熔池中。熔融盐在这方面起到在易于氧化的、非氧化物陶瓷粉末与包围它的含氧气氛之间的一种氧化屏障的作用。
根据本发明的方法特别适用于制备(合成)包括至少一个MAX相的粉末。MAX相具有Mn+1AXn的一般组成,其中M=至少一种选自过渡元素族(Sc、Ti、V、Cr、Zr、Nb、Mo、Hf和Ta)中的元素,A=至少一种选自组(Si、Al、Ga、Ge、As、Cd、In、Sn、Tl和Pb)中的A族元素,X=碳(C)和/或氮(N)和/或硼(B)并且其中n=1、2或3。在此,位置A、M和X可以分别被多于一种元素占据。
在本发明的范围内应注意,除了碳化物和氮化物之外,硼化物也应被集合名词MAX相所包括。虽然硼化物不具有与由现有技术已知的MAX相相同的晶体结构,而是存在作为M2AB2或MAB的规则成层。但是,由于它们的纳米层结构,它们与已知的MAX相具有一些共同的性质,因此,在本发明中概括在该术语中。
尽管根据本发明,至少一种非氧化物陶瓷粉末,例如MAX相,即还有多于一种MAX相,的合成可以在一个方法步骤中同时进行,但是出于简化的原因,以下在本申请中以MAX相的粉末为例公开了用于制备非氧化物陶瓷粉末的本发明方法,而其不应意味着对所公开的方法的限制。
本发明的方法包括通过在金属卤素盐(NZ)中或者在相应的金属卤素盐的混合物中加热纯单质或其它前体形式的相应粉末状起始材料来合成MAX相的步骤,其中N=至少一种选自组(Li、Na、K、Ru、Cs、Mg、Be、Ca、Sr、Ba)中的元素,和Z=至少一种选自组(F、Cl、Br、I)中的元素。
该方法可以有利地在空气或含氧气氛的存在下进行,从而可以有利地免去保护气体气氛或真空的使用。
MAX相粉末的合成在此通过熔融盐辅助进行。熔融盐的作用是,它一方面防止在高温处理(合成)期间非氧化物陶瓷材料的氧化(在此既防止粉末状起始材料的氧化,也防止合成MAX相的氧化),并且此外作为熔剂可以有利地降低合成温度。所使用的盐或熔融盐可以具有单一的盐或盐混合物,由此还有利地允许方法参数适配于相应的MAX相粉末的合成。已知的是,掺杂物的添加可能导致合成的改善。作为掺杂物例如考虑具有相对于非氧化物粉末最大25重量%比例的铝。
根据本发明的方法特别地使得不必使用在保护气体下操作的昂贵的炉或真空,并且因此通常降低生产成本。因此,通过本发明有利地提供一种用于,特别是大规模的,非氧化物陶瓷粉末、尤其是MAX相粉末的制造方法。
下面将更详细地描述本发明的方法。
根据本发明,将化学计量量(Mol)的包含作为纯单质粉末的M、A和X或相应前体的粉末状起始材料与至少一种金属卤素盐一起混合,其中钠或钾的氯化物或溴化物由于其低熔点和在水中的高溶解性作为金属卤素盐是特别有利的。
对于起始粉末与金属卤素盐的质量混合比可以选择非常大的范围,例如20:1至1:100。然而,为了使用于改善起始粉末的扩散的作为熔剂的混入的盐能够实现其功能,至少5重量%,更好地10重量%的比例是有利的。
然后混合该混合物,以确保起始粉末和盐的均匀分布。混合可以例如通过振荡或用磁力搅拌器搅拌来进行。在球磨机中研磨也是混合各组分的合适方法。
此外,起始粉末和盐的混合可以干式进行或在添加非反应性的有机溶剂和/或水的情况下进行。
起始粉末的颗粒大小在合成中仅起次要作用,并且因此可以有利地从非常宽的范围中选择,例如从纳米粉末直至具有毫米范围颗粒的粉末。但是,已经证实使用颗粒大小在μm范围内的粉末是特别有利的。
随后任选地干燥该混合物并将其固化成生坯(丸粒(Pellet)),其中首先在至多200℃的中等低温下,优选在室温下,在单侧单轴地施加压力,然后进行冷等静压压制。压制通常在10 MPa至1000 MPa、有利地50 MPa至500 MPa的压力下进行。
在此,混入的盐有助于压实所制造的生坯,并因此有助于所制造的生坯的密度。
在另一步骤中,用金属卤素盐包围生坯,例如通过在直径大于已压制的丸粒直径的压模中单轴压制或等静压压制已压制的丸粒来进行。为此所使用的金属卤素盐可以与丸粒中已经使用的盐相同。但这不是强制必需的。
用金属卤素盐完全包围(包覆)固化的陶瓷粉末材料有利地使得在存在的含氧气氛和生坯的粉末混合物的反应性组分之间形成屏障(Barriere)。内部反应性混合物的包覆层(Ummantelung)的气密性密封特别归功于包覆层的压制盐的高密度。
包覆层中的压制盐通常具有大于90%、有利地甚至大于95%的理论密度。压制盐此时虽然仍总是具有单个的孔,但是这些孔不是连贯的,因此总体上就嵌入其中的丸粒而言存在气密性的不透气密封。
就这点而言,KBr已被证实为特别适合用于包覆的金属卤素盐,这是因为其在室温下已经能够被非常好地压制直至理论密度,并因此形成包含在其中的生坯的非常好的气密性密封。此外,NaCl,甚至在添加一些水的情况下,在室温下也可以非常良好地,即基本上不透气地,压制成丸粒。
卤素盐(Halogensalze)可以被压实为超过其理论密度的95%的生坯密度。这种现象是由于卤素盐在室温下在一定压力条件下的延展性。生坯具有低的孔隙度,但这种孔隙度涉及封闭的孔,因此包覆层在本发明的范围内被视为不透气的。
对KBr片用氦气/空气进行的渗透性测量得到的渗透值为1.4 ∙ 10-7 hPa∙dm3∙s-1,其在本发明的意义上可以称为不透气的。
在本发明的第一实施方案中,将当前用盐包围的丸粒(生坯)放置在合适的容器(例如熔炼坩埚)中的金属卤素盐的床(盐床)中。为此所使用的金属卤素盐又可以与已经在丸粒中和/或用于包覆的金属卤素盐相同。但这不是强制必需的。
在本发明的范围内,放置在金属卤素盐床中意味着,在这种情况下丸粒完全被该金属卤素盐包围。在此,金属卤素盐床首先具有一定的孔隙度,该孔隙度在完全熔化时才丧失。
将带有盐浴和嵌在其中并被盐包覆的丸粒的熔炼坩埚一起加热。这例如可以在具有电阻加热的炉中进行。在该加热步骤中优选不施加额外的压力。在此加热到至少300℃,或者直至所使用的金属卤素盐的熔化温度。如果使用多种不同的金属卤素盐,则加热到至少使盐混合物熔融并形成液态熔融盐的温度。虽然非氧化物陶瓷粉末的合成在较低的温度下就已经进行,但是为了实现好的产率在个别情况下选择更高的温度。然而,通常不应超过1400℃的最高温度,这是因为否则存在所使用的金属卤素盐或所使用的金属卤素盐混合物以不可忽略的程度蒸发的风险。
金属卤素盐熔体在此还充当针对存在的氧的保护介质。为此,熔融盐形成不可渗透的熔池,其具有几乎接近零的氧溶解度。由此,有效地抑制来自存在的含氧气氛的氧溶解在熔池中。熔融盐在这方面起到在易于氧化的、非氧化物陶瓷粉末与包围它的含氧气氛之间的一种氧化屏障的作用。
就此而言,与迄今为止的现有技术不同,在这个方法步骤中有利的是,无需设定特别的惰性气氛。因此,该方法也可以在空气中进行。
在该方法步骤中,丸粒的气密性包覆特别用于将丸粒与氧隔离,否则在起先多孔的金属卤素盐堆料中的氧气在加热直到盐熔化或者直到所需的最高合成温度的过程中可能导致反应性起始粉末的不期望的氧化。
在加热步骤之后,再次冷却熔炼坩埚,并将内容物(在盐床中的合成MAX相)添加到液体中,优选添加到水浴中,其中盐溶解在液体中,并留下具有合成的非氧化物陶瓷MAX相粉末的丸粒。任选地,可以加热液体,特别是水,以改善盐的溶解度。作为液体,除了纯水之外还考虑水溶液或短链醇。在该方法步骤中,不仅来自盐浴的盐而且与已压制的丸粒一起再次压制的盐这样完全溶解在液体中,从而可以取出合成的非氧化物陶瓷的MAX相粉末。此外,由此还去除在开始时与起始粉末/前体混合的盐,使得仅存在纯的非氧化物陶瓷相,尤其是至少一个MAX相化合物。
在本发明的另一个有利的扩展方案中,类似于上述方法变型,具有至少一种金属卤素盐连同用该盐包覆的丸粒的熔炼坩埚首先被加热到高于盐浴的熔化温度。在此,随后也可以如在上述实施方案中那样进一步提高金属卤素盐浴的温度,例如提高到超过800℃。然而,总是应当避免加热到超过1400℃的温度。
平行于该方法步骤,任选地还可以在另一熔炼坩埚中加热至少一种硅酸盐,优选硅酸钠、硅酸钾或硅酸锂(Na2SiO3、K2SiO3或Li2SiO3)。有利地,该步骤在其中加热带有生坯的金属卤素盐熔池的同一炉中进行,使得熔融的硅酸盐和带有丸粒的熔融盐具有相同的温度。
在高于所用硅酸盐的熔化温度的温度下,即例如对于熔点Tm=1088℃的硅酸钠大约1100℃的温度下,将熔化的硅酸盐小心地施加到带有丸粒的盐浴的表面上,在最简单的情况下倾倒。由于盐浴的熔融金属卤素盐与熔融硅酸盐之间的密度差异以及由于相互之间的不溶性,熔融硅酸盐浮在熔融盐上。浮着的硅酸盐因此有利地防止了熔融盐从盐浴中不期望地蒸发。这样,如果需要,合成温度甚至可以提高到超过1400℃直到最大1600℃,而不会导致盐从盐浴中显著损失。
随后类似于第一实施方案,将金属卤素盐和优选所用的硅酸盐冷却并溶解在液体中。这样获得的丸粒现在才表现为所希望合成的非氧化物陶瓷粉末。
根据起始粉末的混合物的组成和设定的最高温度,获得或多或少纯的所需组成的粉末作为主相。未反应的起始粉末和掺杂物任选地作为次要相产生。就此而言,通过起始时使用相应化学计量量的相应的起始粉末或前体并根据金属卤素盐浴中的组成将温度设定为足够高,可以改善所需粉末的纯度。
再次指出,根据本发明的方法描述了提供(合成)由相应的起始材料或前体制备非氧化物陶瓷粉末,并且就此而言不包括烧结步骤。
本发明有利地避免了对于炉气氛的迄今为止必要的复杂控制所产生的高成本,并且因此使得能够实现用于非氧化物陶瓷粉末、尤其是包括至少一个MAX相的粉末或用于简单碳化物的便宜的大规模生产方案。这些可以有利地用于制造构件,尤其是进一步的造型、压实或加固。
具体描述部分
进一步地借助多个工作实施例详细阐述本发明,而这不应导致对宽的保护范围的限制。
为了根据本发明制备包括至少一个MAX相的非氧化物陶瓷粉末,将化学计量量/质量的单质起始材料或相应的前体与至少一种金属卤素盐混合并且在空气或氧气存在下分别加热到超过该金属卤素盐的熔化温度的温度,所述单质起始材料或相应的前体构成用于形成非氧化物陶瓷材料所必需的元素。
实施例1:
在本情况中,为了制备Ti3SiC2粉末,将Ti (99.9%纯度,-325目)、Si (99.9%纯度,-325目)和石墨(99.9%纯度)与NaCl混合,其中Ti/Si/C的质量比设定为3:1:2。Ti+Si+C与NaCl的质量比为1:1。
另外,为了改善最终产品的纯度,添加纯铝(99.9%纯度,-325目,对应于约40μm)作为掺杂剂。在此,最终产物中铝的比例在0.01至0.3 Mol%之间变化。
将粉末湿法,即在乙醇中,并借助于具有5 mm直径的锆球进行24小时的混合或研磨。随后将该浆料混合物在旋转蒸发器中于60℃预干燥,随后在炉中于70℃干燥另外24小时。
将干燥的粉末在200 MPa下单轴压制(丸粒)并且随后用NaCl包覆。为此,将丸粒添加到填充有NaCl且直径大于丸粒的坩埚中,用NaCl覆盖,随后在200 MPa下再次压制。另外,在300 MPa的压力下冷等静压压制如此用NaCl包覆的丸粒。
随后,将丸粒嵌入NaCl床中,并在熔炼坩埚中在空气中加热直至约1200℃的温度,并在该温度下保持一小时。纯NaCl的熔点是801℃。冷却后,用水洗掉盐,由此得到含反应性粉末混合物的丸粒。
粉末混合物的表征借助于X射线衍射进行。检测到Ti3SiC2作为具有近乎100%的纯度的主相,其中没有考虑铝掺杂。识别出TiSi2和微量物质(Tick)作为次生相。
实施例2:
在本情况中,为了制备Ti3AlC2粉末,将Ti (99.9%纯度,-325目)、Al (99.9%纯度,-325目)和石墨(99.99%纯度)与KBr混合,其中Ti/Al/C的摩尔比设定为3:1:2。Ti+Al+C与NaCl的质量比为1:1。
将粉末湿法,即在乙醇中,并借助于具有5 mm直径的锆球进行24小时的混合。随后将该浆料混合物在旋转蒸发器中于60℃预干燥,随后在炉中于70℃干燥另外24小时。
将干燥的粉末在200 MPa下单轴压制(丸粒),然后用KBr包覆。为此,将丸粒添加到填充有KBr且直径大于丸粒的坩埚中,用KBr覆盖,然后在200 MPa下再次压制。另外,将如此用KBr包覆的丸粒在300 MPa的压力下冷等静压压制。
随后,将丸粒嵌入KBr床中,在熔炼坩埚中在空气中加热直至约1250℃的温度,并在该温度保持一小时。纯KBr的熔点为734℃。冷却后,用水洗掉KBr盐,由此得到含反应性粉末混合物的丸粒。
粉末混合物的表征同样借助于X射线衍射进行。检测到Ti3AlC2作为具有高于98%的纯度的主相。识别出TiC作为次生相。
实施例3:
在本情况中,为了制备Cr2AlC粉末,将Cr (99.9%纯度,-60目)、Al (99.9%纯度,-325目)和石墨(99.99%纯度)与KBr混合,其中Cr/Al/C的摩尔比设定为2:1:1。Cr+Al+C与NaCl的质量比为1:1。
将粉末湿法,即在乙醇中,并借助于具有5 mm直径的锆球进行24小时的混合。随后将该浆料混合物在旋转蒸发器中于60℃预干燥,随后在炉中于70℃干燥另外24小时。
将干燥的粉末在200 MPa下单轴压制(丸粒),然后用KBr包覆。为此,将丸粒添加到填充有KBr且直径大于丸粒的坩埚中,用KBr覆盖,随后在200 MPa下再次压制。另外,将如此用KBr包覆的丸粒在300 MPa的压力下冷等静压压制。
随后,将丸粒嵌入KBr床中,并在铝熔炼坩埚中在空气中加热直至约1250℃的温度,并在该温度下保持一小时。冷却后,用水洗掉KBr盐,由此获得含反应性粉末混合物的丸粒。
粉末混合物的表征同样借助于X射线衍射进行。检测到Cr2AlC作为具有高于98%的纯度的主相。识别出Cr7C3作为次生相。
实施例4:
在本情况中,作为制备不是典型的MAX相粉末而是碳化物粉末的实例,将Ti (99.9%纯度,-325目)和石墨(99%纯度)与KBr混合,其中Ti/C的摩尔比设定为1:1。Ti+C与KBr的质量比同样为1:1。
将粉末湿法,即在乙醇中,并借助于具有5 mm直径的锆球进行24小时的混合。随后将该浆料混合物在旋转蒸发器中于60℃预干燥,随后在炉中于70℃干燥另外24小时。
将干燥的粉末在200 MPa下单轴压制为圆柱形的形式(丸粒),然后用KBr包覆。为此,将丸粒添加到填充有KBr且直径大于丸粒的坩埚中,用KBr覆盖,并在200 MPa下再次压制。另外,将如此用KBr包覆的丸粒在300 MPa的压力下冷等静压压制。
然后将丸粒嵌入KBr床中,在铝熔炼坩埚中在空气中加热直至约1200℃的温度,并在该温度下保持一小时。冷却后,用沸水洗掉KBr盐,由此获得含反应性粉末混合物的丸粒。
粉末混合物的表征同样借助于X射线衍射进行。检测到TiC作为唯一相。
除了迄今为止描述的用KBr包覆(该包覆已证实为特别合适的),也存在用NaCl包覆之前制造的丸粒的可能性。与KBr不同,NaCl不能通过纯压制被进一步压实直至理论密度的约95%。在存在相应盐,也即NaCl,的过饱和溶液的情况下,用NaCl包覆的丸粒可以在75%至85%的相对湿度下保持24小时。在此,在盐内部出现烧结效应,这导致在压实的盐包覆层中的至此仍敞开的孔被封闭[5]。
尽管该方法步骤非常耗时,但是其在相应的规模下总体来说会导致生产成本的降低。
在图1中示意性地示出了本发明的一种实施方案。在铝熔炼坩埚(1)中,将包含化学计量的起始粉末或前体和至少一种盐的丸粒(4)与含盐的包覆层(3)一起置入多孔盐床(2)中。在加热过程中,多孔金属卤素盐床(2)和颗粒(4)的包覆层(3)熔化。位于压制的丸粒中的盐也熔化并且然后用作熔剂,以利于起始粉末的扩散。盐床的体积缩小。在金属卤素盐床中盐的量在此这样测定,使得在盐熔化之后丸粒仍完全被金属卤素盐包围,从而可以杜绝将来自周围空气的氧带入颗粒。
在图2中示出本发明方法的另一个扩展方案,其中首先根据图1在铝熔炼坩埚(1)中,将包含化学计量的起始粉末或前体以及至少一种金属卤素盐的丸粒(4)与含盐的包覆层(3)一起置入多孔金属卤素盐床(2)中,并一起加热直至超过盐(2)的熔化温度的温度,并进一步加热直至超过所用硅酸盐(5)的熔化温度的温度。将同样熔融的硅酸盐(5)加入到熔融盐中,其中由于密度差有利地产生这样的层,其中熔融硅酸盐浮在熔融盐上。以这种方式,即使在高达1600℃的更高温度下也可以避免金属卤素盐的不利蒸发。
KBr是在室温下高延展性的碱金属卤化物盐。已经表明,钾盐(KCl)可以用手工变形。通过对室温冷压的4 mm厚度的KBr片测定密度和透气性来表明,KBr包封充当大气和前述盐熔体(Vorsalzschmelze)中的样品之间的屏障。该片以200 MPa单轴压制,然后以300MPa等静压压制。几何密度为理论值的98%。借助外力将KBr片放置在密封环上,以将其固定。引导氦气/空气混合物通过该KBr片,并在片的另一侧测量氦气/空气流出量。氦气和空气通过KBr片的渗透性值为 1.4∙10-7 hPa∙dm³∙s-1,这表明样品通过KBr包封为不透气的。
在图3中,对于不同的金属卤素盐,记录与温度相关的固态、液态和气态相,这使得能够由此选择用于根据本发明合成的合适的工艺窗口。
此外,对于使用KBr作为金属卤化物盐的Ti3SiC2体系(图4a和图4b),进行热分析(差示扫描量热法,DSC)和热重分析,其说明了在空气中合成时金属卤化物盐KBr的屏蔽作用。
在空气中对有和没有KBr包覆层的样品进行热分析(DSC)(图4a),以证实由于KBr包覆层的不透气作用而防止氧化。没有包覆层的样品显示出强烈的氧化和显著的质量增加,而另外被包覆的样品仅显示出少量氧化。在包封情况下,氧化明显更少并且在达到KBr的熔点之后结束。
在该申请中引用的文献:
[1]W. Jeitschko, H. Nowotny, Die Kristallstruktur von Ti3SiC2 - ein neuerKomplexcarbid-Typ, Monatshefte für Chemie - Chemical Monthly, 1967年3月,第98卷,第2期,第329–337页。
[2]Michael W. Barsoum, Tamnr el-Raghy, Synthesis and Characterizationof a Remarkable Ceramic: Ti3SiC2, Journal of the American Chemical Society,第79卷,第7期,1996年7月,第1953–1956页。
[3]T. Goto, T. Hirai, Chemically vapor deposited Ti3SiC2, MaterialsResearch Bulletin, 第22卷,第9期,1987年9月,第1195–1201页。
[4]Xue Guo, Junxia Wang, Shiyuan Yang, Long Gao, Bin Qian,Preparation of Ti3SiC2 powders by the molten salt method, Materials Letters,第111卷,2013年11月15日,第211–213页。
[5]Jing Guo, Hanzheng Guo, Amanda L. Baker, Michael T. Lanagan,Elizabeth R. Kupp, Gary L. Messing, and Clive A. Randall, Cold Sintering: AParadigm Shift for Processing and Integration of Ceramics, Angewandte Chemie,国际版,第55卷,第38期,在线记录版: 2016年8月11日。
Claims (15)
1.用于制备非氧化物陶瓷粉末的方法,
该非氧化物陶瓷粉末包括至少一种氮化物、碳化物、硼化物或至少一个具有Mn +1AXn的一般组成的MAX相,
- 其中M=至少一种选自过渡元素族(Sc、Ti、V、Cr、Zr、Nb、Mo、Hf和Ta)中的元素,
- 其中A=至少一种选自组(Si、Al、Ga、Ge、As、Cd、In、Sn、Tl和Pb)中的A族元素,
- 其中X=碳(C)和/或氮(N)和/或硼(B),并且
- 其中n=1、2或3,
其中,将化学计量量的单质起始材料或其它前体与至少一种金属卤素盐(NZ)混合并压制,所述单质起始材料或其它前体包含用于形成所述氮化物、碳化物、硼化物或所述至少一个MAX相所必需的元素,
其特征在于,
- 经压制的丸粒(4)用至少一种金属卤素盐包覆并且再次压制(3),和
- 随后在金属卤素盐床(NZ) (2)中加热。
2.根据权利要求1所述的方法,
其中起始材料或其它前体与金属卤素盐的混合在非反应性溶剂中或干式进行。
3.根据权利要求1至2中任一项所述的方法,
其中混合在球磨机中进行。
4.根据权利要求1至3中任一项所述的方法,
其中所述加热至少进行到高于所用金属卤素盐的熔化温度的温度。
5.根据权利要求1至4中任一项所述的方法,
其中使用N=至少一种选自组(Li、Na、K、Rb、Cs、Mg、Be、Ca、Ba)中的元素且Z=至少一种选自组(F、Cl、Br、I)中的元素的金属卤素盐(NZ)或相应金属卤素盐的混合物,特别是NaCl或KBr。
6.根据权利要求1至5中任一项所述的方法,
其中,将包含单质起始材料或其它前体和至少一种金属卤素盐的混合物作为干燥的混合物首先压制成丸粒(4)。
7.根据前述权利要求6所述的方法,
其中,首先单轴压制混合物,然后冷等静压压制混合物以形成丸粒(4)。
8.根据权利要求1至7中任一项所述的方法,
其中,对于压制步骤,使用10 MPa至1000 MPa,有利地50 MPa至500 MPa的压力。
9.根据权利要求1至8中任一项所述的方法,
其中,对于包覆物的压制步骤,使用10 MPa至1000 MPa,有利地50 MPa至500 MPa的压力。
10.根据权利要求1至9中任一项所述的方法,
其中,将包覆有(3)金属卤素盐的丸粒(4)放置在金属卤素盐浴(2)中,并一起加热到高于所述金属卤素盐熔化温度的温度。
11.根据权利要求1至10中任一项所述的方法,
其中在氧存在下加热所述金属卤素盐浴。
12.根据权利要求1至11中任一项所述的方法,
其中向带有丸粒(4)的熔融金属卤素盐浴(2)中还另外添加熔融硅酸盐,所述熔融硅酸盐作为层浮在所述熔融金属卤素盐浴上。
13.根据前述权利要求12所述的方法,
其中在将所述硅酸盐添加到所述金属卤素盐浴中之前,将所述熔融金属卤素盐浴和所述熔融硅酸盐加热到相同温度。
14.根据权利要求1至13中任一项所述的方法,
其中,所述金属卤素盐在冷却后溶解在液体中,从而可以取出所述丸粒。
15.根据前述权利要求14所述的方法,
其中,将所述金属卤素盐溶解在水或水溶液或短链醇中。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017006658.2A DE102017006658A1 (de) | 2017-07-13 | 2017-07-13 | Verfahren zur Herstellung von nicht oxidischen, keramischen Pulvern |
DE102017006658.2 | 2017-07-13 | ||
PCT/DE2018/000178 WO2019011358A1 (de) | 2017-07-13 | 2018-06-07 | Verfahren zur herstellung von nicht oxidischen, keramischen pulvern |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110958995A true CN110958995A (zh) | 2020-04-03 |
CN110958995B CN110958995B (zh) | 2022-07-26 |
Family
ID=62904210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880039486.6A Active CN110958995B (zh) | 2017-07-13 | 2018-06-07 | 用于制备非氧化物陶瓷粉末的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11542204B2 (zh) |
EP (1) | EP3652128B1 (zh) |
JP (1) | JP7204689B2 (zh) |
KR (1) | KR102588091B1 (zh) |
CN (1) | CN110958995B (zh) |
DE (1) | DE102017006658A1 (zh) |
WO (1) | WO2019011358A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112125686A (zh) * | 2020-09-30 | 2020-12-25 | 郑州大学 | 一种熔盐隔离制备碳化硅包覆石墨的方法 |
CN112592183A (zh) * | 2021-01-05 | 2021-04-02 | 中钢南京环境工程技术研究院有限公司 | 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 |
CN112794328A (zh) * | 2021-01-20 | 2021-05-14 | 四川大学 | 一种制备MXene材料的方法 |
CN112897500A (zh) * | 2021-01-20 | 2021-06-04 | 上海科技大学 | 一种空气中制备裂解碳的方法及应用 |
CN113248260A (zh) * | 2021-05-21 | 2021-08-13 | 北京航空航天大学 | 含氮新型max相材料和二维材料的制备方法及用途 |
CN114349014A (zh) * | 2022-01-25 | 2022-04-15 | 吉林大学 | 一种纳米二硼化钛片层粉体的高压熔盐可控制备方法 |
CN114516758A (zh) * | 2022-04-12 | 2022-05-20 | 西南交通大学 | 一种含碲三元层状硼化物及其制备方法 |
CN114920214A (zh) * | 2022-03-23 | 2022-08-19 | 北京交通大学 | 一种max相粉体的低温无保护气氛合成方法 |
CN114956081A (zh) * | 2021-02-26 | 2022-08-30 | 苏州北科纳米科技有限公司 | 一种过量Al掺杂MAX相陶瓷的制备方法 |
CN117964370A (zh) * | 2024-04-01 | 2024-05-03 | 中国科学技术大学 | 一种高纯度镓系层状碳/氮化物max相材料及其制备方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017006659A1 (de) * | 2017-07-13 | 2019-01-17 | Forschungszentrum Jülich GmbH | Verfahren zum Sintern von Metallen, nicht oxidischen Keramiken und anderen oxidationsempfindlichen Materialien |
CN112110731B (zh) * | 2020-08-14 | 2022-05-17 | 河南理工大学 | Sc2SC层状材料及其制备方法 |
CN113336553A (zh) * | 2021-06-29 | 2021-09-03 | 河南工业大学 | 一种微波烧结合成V2AlC块体材料及其制备方法和应用 |
CN114276146A (zh) * | 2021-11-11 | 2022-04-05 | 复旦大学 | 一种高纯度的致密WAlB MAB相陶瓷块体材料及其制备方法 |
CN114890422B (zh) * | 2022-05-07 | 2023-08-01 | 陕西科技大学 | 一种片状高熵max相材料及其制备方法 |
KR102685290B1 (ko) * | 2022-06-02 | 2024-07-17 | 주식회사 엘오티아이 | 저산소 맥스 상 합성 방법 |
CN115418592B (zh) * | 2022-08-01 | 2023-06-27 | 海南大学 | 一种耐氯化物熔盐腐蚀镀层及其制备方法 |
CN115872743B (zh) * | 2022-10-26 | 2023-10-20 | 中国科学院宁波材料技术与工程研究所 | 一种x位为磷属元素和/或硫属元素的max相材料及其制备方法 |
CN115595543B (zh) * | 2022-10-28 | 2024-06-07 | 西安理工大学 | 一种具有MAB相结构的MoAlB陶瓷薄膜及其制备方法 |
CN116040640B (zh) * | 2023-02-21 | 2024-05-28 | 哈尔滨工业大学 | 一种合成mab相陶瓷粉末的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1511807A (zh) * | 2002-12-27 | 2004-07-14 | 石油大学(北京) | 一种利用石油焦盐浴合成制备SiC微纳米陶瓷粉体的方法 |
CN1511803A (zh) * | 2002-12-27 | 2004-07-14 | 石油大学(北京) | 一种利用石油焦盐浴合成制备TiC微纳米陶瓷粉体的方法 |
CN1789203A (zh) * | 2005-12-27 | 2006-06-21 | 武汉理工大学 | 一种多元无机复合陶瓷均匀粉体合成方法 |
CN1884064A (zh) * | 2006-07-12 | 2006-12-27 | 中国科学院上海硅酸盐研究所 | 一种利用熔盐法制备铝碳二铬粉体的方法 |
US20110052925A1 (en) * | 2007-11-16 | 2011-03-03 | General Electric Company | Articles for high temperature service and methods for their manufacture |
CN102191394A (zh) * | 2009-11-09 | 2011-09-21 | 中南大学 | 孔结构参数可控的多孔CuAlMn形状记忆合金的制备方法 |
US20160265367A1 (en) * | 2014-12-22 | 2016-09-15 | General Electric Company | Environmental barrier coating with abradable coating for ceramic matrix composites |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2423164A1 (en) * | 2010-08-25 | 2012-02-29 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | General synthesis of metal borides in liquid salt melts |
-
2017
- 2017-07-13 DE DE102017006658.2A patent/DE102017006658A1/de not_active Withdrawn
-
2018
- 2018-06-07 US US16/622,312 patent/US11542204B2/en active Active
- 2018-06-07 WO PCT/DE2018/000178 patent/WO2019011358A1/de unknown
- 2018-06-07 KR KR1020197036060A patent/KR102588091B1/ko active IP Right Grant
- 2018-06-07 JP JP2019568335A patent/JP7204689B2/ja active Active
- 2018-06-07 CN CN201880039486.6A patent/CN110958995B/zh active Active
- 2018-06-07 EP EP18740091.6A patent/EP3652128B1/de active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1511807A (zh) * | 2002-12-27 | 2004-07-14 | 石油大学(北京) | 一种利用石油焦盐浴合成制备SiC微纳米陶瓷粉体的方法 |
CN1511803A (zh) * | 2002-12-27 | 2004-07-14 | 石油大学(北京) | 一种利用石油焦盐浴合成制备TiC微纳米陶瓷粉体的方法 |
CN1789203A (zh) * | 2005-12-27 | 2006-06-21 | 武汉理工大学 | 一种多元无机复合陶瓷均匀粉体合成方法 |
CN1884064A (zh) * | 2006-07-12 | 2006-12-27 | 中国科学院上海硅酸盐研究所 | 一种利用熔盐法制备铝碳二铬粉体的方法 |
US20110052925A1 (en) * | 2007-11-16 | 2011-03-03 | General Electric Company | Articles for high temperature service and methods for their manufacture |
CN102191394A (zh) * | 2009-11-09 | 2011-09-21 | 中南大学 | 孔结构参数可控的多孔CuAlMn形状记忆合金的制备方法 |
US20160265367A1 (en) * | 2014-12-22 | 2016-09-15 | General Electric Company | Environmental barrier coating with abradable coating for ceramic matrix composites |
Non-Patent Citations (3)
Title |
---|
RUISONG YANG等: "Molten salt synthesis of Mo2C powder using a mechanically milled powder", 《MATERIALS LETTERS》 * |
RUISONG YANG等: "Molten salt synthesis of tungsten carbide powder using a mechanically", 《INT. JOURNAL OF REFRACTORY METALS AND HARD MATERIALS》 * |
黄仲等: "熔盐法合成非氧化物陶瓷粉体", 《耐火材料》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112125686A (zh) * | 2020-09-30 | 2020-12-25 | 郑州大学 | 一种熔盐隔离制备碳化硅包覆石墨的方法 |
CN112592183B (zh) * | 2021-01-05 | 2022-04-19 | 中钢南京环境工程技术研究院有限公司 | 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 |
CN112592183A (zh) * | 2021-01-05 | 2021-04-02 | 中钢南京环境工程技术研究院有限公司 | 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 |
CN112794328A (zh) * | 2021-01-20 | 2021-05-14 | 四川大学 | 一种制备MXene材料的方法 |
CN112897500A (zh) * | 2021-01-20 | 2021-06-04 | 上海科技大学 | 一种空气中制备裂解碳的方法及应用 |
CN112794328B (zh) * | 2021-01-20 | 2021-08-17 | 四川大学 | 一种制备MXene材料的方法 |
CN114956081A (zh) * | 2021-02-26 | 2022-08-30 | 苏州北科纳米科技有限公司 | 一种过量Al掺杂MAX相陶瓷的制备方法 |
CN114180969A (zh) * | 2021-05-21 | 2022-03-15 | 北京航空航天大学 | 含氮新型max相材料和二维材料的制备方法及用途 |
CN113248260A (zh) * | 2021-05-21 | 2021-08-13 | 北京航空航天大学 | 含氮新型max相材料和二维材料的制备方法及用途 |
CN114349014A (zh) * | 2022-01-25 | 2022-04-15 | 吉林大学 | 一种纳米二硼化钛片层粉体的高压熔盐可控制备方法 |
CN114349014B (zh) * | 2022-01-25 | 2023-11-28 | 吉林大学 | 一种纳米二硼化钛片层粉体的高压熔盐可控制备方法 |
CN114920214A (zh) * | 2022-03-23 | 2022-08-19 | 北京交通大学 | 一种max相粉体的低温无保护气氛合成方法 |
CN114516758A (zh) * | 2022-04-12 | 2022-05-20 | 西南交通大学 | 一种含碲三元层状硼化物及其制备方法 |
CN117964370A (zh) * | 2024-04-01 | 2024-05-03 | 中国科学技术大学 | 一种高纯度镓系层状碳/氮化物max相材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3652128B1 (de) | 2022-09-28 |
JP7204689B2 (ja) | 2023-01-16 |
US20210147301A1 (en) | 2021-05-20 |
CN110958995B (zh) | 2022-07-26 |
KR20200028889A (ko) | 2020-03-17 |
WO2019011358A1 (de) | 2019-01-17 |
EP3652128A1 (de) | 2020-05-20 |
KR102588091B1 (ko) | 2023-10-16 |
US11542204B2 (en) | 2023-01-03 |
JP2020526468A (ja) | 2020-08-31 |
DE102017006658A1 (de) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110958995B (zh) | 用于制备非氧化物陶瓷粉末的方法 | |
US5942455A (en) | Synthesis of 312 phases and composites thereof | |
US5525560A (en) | Zirconia based composite material and method of manufacturing the same product | |
WO1997018162A9 (en) | Synthesis of 312 phases and composites thereof | |
US7566675B2 (en) | Corrosion-resistant material manufacturing method | |
US7022262B2 (en) | Yttrium aluminum garnet powders and processing | |
CN114180969B (zh) | 含氮高熵max相材料和二维材料的制备方法及用途 | |
CHERNIACK et al. | High‐temperature behavior of MoSi2 and Mo5Si3 | |
JP5113469B2 (ja) | 炭化物粉末被覆酸化物粉末の製造方法 | |
US6143677A (en) | Silicon nitride sinter having high thermal conductivity and process for preparing the same | |
JP2004517025A (ja) | 粉末状のセラミック材料 | |
Lim et al. | Solid state crystal growth of BiScO 3-Pb (Mg 1/3 Nb 2/3) O 3-PbTiO 3 | |
US5021368A (en) | Novel ceramic-metal compounds | |
JPS6385060A (ja) | 自己支持セラミック複合材料の製造方法 | |
KR960001691B1 (ko) | 복합산화 반응생성물 및 이를 포함한 세라믹체 제조방법 | |
CN110845229B (zh) | LaBiO3薄膜、LaBiO3陶瓷靶材及其制备方法 | |
CN110642609A (zh) | 一种高致密氧化铝/max相复合材料及其原位合成方法 | |
CN109534825B (zh) | 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法 | |
WO1987003866A1 (en) | Ceramics containing alpha-sialon | |
Sperisen et al. | Investigation of the displacement reaction in mixed AIN+ TiO 2 powders: Part I Microstructural changes at 1 atm N 2 | |
MacLaren et al. | Silica Glass Segregation in 3 wt% LiF‐Doped Hot‐Pressed Y2Si2O7 | |
JP2016160150A (ja) | S12a7エレクトライド化合物の製造方法、およびs12a7エレクトライド化合物の薄膜の製造方法 | |
JP2024515855A (ja) | 非常に低い電気抵抗率を有する炭化ケイ素の緻密な焼結材料 | |
US5346538A (en) | Molding of sintered strontium/calcium indate and the use thereof | |
US20240217883A1 (en) | Method for producing high-purity, dense sintered sic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |