CN114516758A - 一种含碲三元层状硼化物及其制备方法 - Google Patents

一种含碲三元层状硼化物及其制备方法 Download PDF

Info

Publication number
CN114516758A
CN114516758A CN202210383857.0A CN202210383857A CN114516758A CN 114516758 A CN114516758 A CN 114516758A CN 202210383857 A CN202210383857 A CN 202210383857A CN 114516758 A CN114516758 A CN 114516758A
Authority
CN
China
Prior art keywords
boride
tellurium
powder
ternary layered
teb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210383857.0A
Other languages
English (en)
Inventor
胡春峰
张奇强
冯庆国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210383857.0A priority Critical patent/CN114516758A/zh
Publication of CN114516758A publication Critical patent/CN114516758A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种含碲三元层状硼化物及其制备方法,该含碲三元层状硼化物的化学式为Hf2TeB,Hf2TeB的空间群为P63/mmc,晶格参数分别为
Figure DDA0003592917230000011
其中Hf原子位于(1/3,2/3,0.57505,Te原子位于(1/3,2/3,1/4),B原子位于(0,0,0)。本发明为首次发现的含Te的MAX相,新的三元层状化合物相Hf2TeB的发现与制备,对MAX相体系的完善有着重大的意义。

Description

一种含碲三元层状硼化物及其制备方法
技术领域
本发明属于新材料技术领域,具体涉及到一种含碲三元层状硼化物及其制备方法。
背景技术
Mn+1AXn相(n=1-3)作为一类三元层状化合物,最早由Nowotny等人在二十世纪六十年代首先提出,其中M为早期过渡族金属,A通常为主族元素,X为B、C或N元素。这一类化合物的结构特点在于Mn+1Xn层与A元素层交替排列,随着n值的不同有着不同的排列组合,分别称为211(n=1)、312(n=2)、413(n=3)相。Barsoum等人在二十世纪九十年代通过热压合成了致密的块体MAX相化合物Ti3SiC2并报道了其一系列独特的性能,包括高导热、导电能力,很好的机械强度及高温强度,优异的可加工性,非常好的抗腐蚀及抗氧化性等。随着研究的进一步深入,人们确认了这一族化合物同时具有金属及陶瓷的优异性能,这也让MAX相陶瓷在几十年来始终被研究人员所关注。作为一种元素可调的三元层状化合物,研究人员对这一族物质进行了大量的计算及预测,目前已有超过650种MAX相经计算确定为热力学稳定相,但遗憾的是,只有80多种MAX相在实验室中成功合成。
传统的MAX相材料主要集中在碳化物和氮化物体系,已经有了大量的研究基础,而MAX相硼化物体系研究起步很晚。2019年Rackl等人最先通过固相法合成了纯净的Nb2SB粉末,我们使用类似的工艺合成了纯度为99wt%的Hf2SB及纯度为85wt%的Zr2SB粉末,由此开启了MAX相硼化物的研究。随着近年来含Se的MAX相硼化物Zr2SeB和Hf2SeB被发现,MAX相硼化物已经初步形成了体系。
但目前尚未发现Te作为A层元素的MAX相,因此对于含Te的MAX相研究对MAX相家族的完善具有重大的意义。
发明内容
本发明的目的是提供一种含碲三元层状硼化物及其制备方法,该含碲三元层状硼化物的化学式为Hf2TeB,并通过X射线衍射、第一性原理计算、扫描电镜及透射电镜等检测分析方法,确定了新相的晶格结构及其原子位置。Hf2TeB是纳米层状结构的三元过渡金属硼化物,属于MAX相陶瓷中的211相,也是首次发现的含Te的MAX相。这一种新物质的发现证明了Te可以作为MAX相材料的A层元素,对MAX相家族的完善有重大的意义。
为达上述目的,本发明提供了一种含碲三元层状硼化物的制备方法,包括以下步骤:
(1)将Hf粉、Te粉和B粉按照摩尔比2:1-5:1称重后混合均匀;
(2)将步骤(1)混匀后的粉体升温烧结,冷却后破碎,制得含碲三元层状硼化物的粉体。
进一步地,混合的过程依次包括机械搅拌和球磨,机械搅拌的时间为10-15h。
进一步地,粉体的粒径为过200目筛。
进一步地,升温速率为1-3℃/s,烧结的温度为350-450℃,烧结的压力为18-22MPa。
进一步地,本发明还提供了一种采用含碲三元层状硼化物的制备方法制备得到的含碲三元层状硼化物。
进一步地,含碲三元层状硼化物的化学式为Hf2TeB,Hf2TeB的空间群为P63/mmc,晶格参数分别为
Figure BDA0003592917210000031
其中Hf原子位于(1/3,2/3,0.57505),Te原子位于(1/3,2/3,1/4),B原子位于(0,0,0)。
综上所述,本发明具有以下优点:
1、本发明发现了一种新的MAX相Hf2TeB,通过X射线衍射、第一性原理计算、扫描电镜及透射电镜等检测分析方法,确定了新相的晶格结构及其原子位置。
2、本发明为首次发现的含Te的MAX相,新的三元层状化合物相Hf2TeB的发现与制备,对MAX相体系的完善有着重大的意义。
附图说明
图1为实施例1中新的三元层状化合物相Hf2TeB陶瓷粉体和具有类似结构的Hf2SB与Hf2SeB陶瓷粉体的X射线衍射图谱对比。
图2为实施例1中新的三元层状化合物相Hf2TeB陶瓷粉体的SEM图。
图3为实施例1中新的三元层状化合物相Hf2TeB
Figure BDA0003592917210000032
面的TEM图。
图4为实施例1中新的三元层状化合物相Hf2TeB陶瓷粉体的Rietveld拟合图。
具体实施方式
本发明提供了一种含碲三元层状硼化物Hf2TeB的制备方法,包括以下步骤:
(1)将Hf粉、Te粉和B粉按摩尔配比2:1-1.5:1称重,混合后于滚筒式混料机上混料10-15h至混合均匀,将混合均匀的物料再使用球磨研磨,得到均匀混合粉体;
(2)将步骤(1)所得到的均匀混合粉体放入放电等离子体烧结炉(SPS),使用1-3℃/s左右的升温速率及18-22MPa的压力迅速升温至350-450℃,此时即会发生热爆炸烧结,样品随炉冷却后得到反应产物;
(3)将步骤(2)得到的小块样品使用万能破碎机破碎,过200目筛后,得到最终的粉体。
本发明还对得到的粉体进行了图谱检测和Rietveld拟合,具体包括以下步骤:
S1将粉体使用X射线衍射(XRD)进行基本物相检测,使用扫描电镜(SEM)进行微观形貌观测并使用高分辨率透射电镜(HRTEM)确定晶体的结构类型;
S2将S1得到的XRD图谱进行识别,结合EDS/TEM得到的目标陶瓷粉体的晶格结构,用Materials Studio软件建立模型并进行结构优化;
S3将XRD图谱与步S2优化后的晶格模型作为输入参数,在Full-Prof软件中进行Rietveld拟合,得到目标陶瓷粉体的晶格常数与原子位置。
以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供了一种含碲三元层状硼化物Hf2TeB的制备方法,包括以下步骤:
(1)将Hf粉(99.9%,400目)、Te粉(99.99%,200目)和硼粉(99%,2500目)按摩尔配比2:1:1称重,混合后于滚筒式混料机上混料12h至混合均匀,将混合均匀的物料再使用球磨研磨,得到均匀混合粉体;
(2)取步骤(1)所得到的均匀混合粉体25g放入到垫有石墨纸的石墨模具中,套上石墨毡,装载到SPS炉中,压力设置为20MPa,在真空下使用2℃/s的升温速率加热约200s,发生热爆炸烧结过程后,随炉冷却后得到反应产物;
(3)将步骤(2)得到的小块样品使用万能破碎机破碎,过200目筛后,得到最终的粉体。
本发明还对得到的粉体进行了图谱检测和Rietveld拟合,具体包括以下步骤:
S1将粉体使用X射线衍射(XRD)进行基本物相检测,如图1所示,标出了一系列的杂质相。
使用扫描电镜(SEM)进行微观形貌观测(如图2所示)并使用高分辨率透射电镜(HRTEM)确定晶体的结构类型。
S2将S1得到的XRD图谱进行识别,结合EDS/TEM得到的目标陶瓷粉体的晶格结构,用Materials Studio软件建立模型并进行结构优化得到Hf2TeB的稳定晶体结构,并与TEM图一一对应(如图3所示)。
S3将XRD图谱与步S2优化后的晶格模型作为输入参数,在Full-Prof软件中进行Rietveld拟合,得到的目标陶瓷粉体的Rietveld拟合图如图4所示,得到目标陶瓷粉体的晶格常数、原子位置(表1)以及不同晶面对应计算与实验的2θ、d、I值(表2)。
表1原子位置
Figure BDA0003592917210000051
表2不同晶面对应计算与实验的2θ、d、I值
Figure BDA0003592917210000061
如图1所示,实施例1所制备Hf2TeB的粉体X射线衍射具有一系列与MAX相硼化物Hf2SB和Hf2SeB相似的峰位,符合我们对它的预测。
如图2所示,实施例1所制备的粉体Hf2TeB具有一定的层状特征,可以观察到板条状的晶粒,即一定程度上具有典型的MAX相晶粒的特点。
如图3所示,实施例1所制备的粉体Hf2TeB的
Figure BDA0003592917210000062
面的TEM图,显示出明显的层状特征,也证明了其属于MAX相结构。
如图4所示,Hf2TeB样品的纯度为61.02wt%(其中含有27.17wt%的铪单质和11.81wt%的HfB2),其可靠性因子在合理范围内R-P=9.54%,R-WP=13.60%。
实施例2
本实施例提供了一种含碲三元层状硼化物Hf2TeB的制备方法,包括以下步骤:
(1)将Hf粉(99.9%,400目)、Te粉(99.99%,200目)和硼粉(99%,2500目)按摩尔配比2:1.5:1称重,混合后于滚筒式混料机上混料15h至混合均匀,将混合均匀的物料再使用球磨研磨,得到均匀混合粉体;
(2)取步骤(1)所得到的均匀混合粉体25g放入到垫有石墨纸的石墨模具中,套上石墨毡,装载到SPS炉中,压力设置为20MPa,在真空下使用3℃/s的升温速率加热约150s,发生热爆炸烧结过程后,随炉冷却后得到反应产物;
(3)将步骤(2)得到的小块样品使用万能破碎机破碎,过200目筛后,得到最终的粉体。
实施例3
本实施例提供了一种含碲三元层状硼化物Hf2TeB的制备方法,包括以下步骤:
(1)将Hf粉(99.9%,400目)、Te粉(99.99%,200目)和硼粉(99%,2500目)按摩尔配比2:1:1称重,混合后于滚筒式混料机上混料10h至混合均匀,将混合均匀的物料再使用球磨研磨,得到均匀混合粉体;
(2)取步骤(1)所得到的均匀混合粉体25g放入到垫有石墨纸的石墨模具中,套上石墨毡,装载到SPS炉中,压力设置为22MPa,在真空下使用1℃/s的升温速率加热约400s,发生热爆炸烧结过程后,随炉冷却后得到反应产物;
(3)将步骤(2)得到的小块样品使用万能破碎机破碎,过200目筛后,得到最终的粉体。
本发明采用合适配比混合了Hf、Te、B粉,在设置的升温速率及压力下这些粉体会在SPS炉中发生热爆炸烧结,得到目标小块体的Hf2TeB,这些小块体经过万能破碎机破碎后得到目标粉体。
本发明涉及到的是一种新的三元层状化合物相(含碲三元层状硼化物)Hf2TeB及其制备方法,采用本发明方法成功制备出了新的MAX相Hf2TeB陶瓷,并给出了Hf2TeB的晶格结构参数和X射线衍射数据,是首次报道的含Te的MAX相,对于MAX相家族的完善有重大的意义。
虽然对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (6)

1.一种含碲三元层状硼化物的制备方法,其特征在于,包括以下步骤:
(1)将Hf粉、Te粉和B粉按照摩尔比2:1-5:1称重后混合均匀;
(2)将步骤(1)混匀后的粉体升温烧结,冷却后破碎,制得含碲三元层状硼化物的粉体。
2.如权利要求1所述的含碲三元层状硼化物的制备方法,其特征在于,所述混合的过程依次包括机械搅拌和球磨,所述机械搅拌的时间为10-15h。
3.如权利要求1所述的含碲三元层状硼化物的制备方法,其特征在于,所述粉体的粒径为过200目筛。
4.如权利要求1所述的含碲三元层状硼化物的制备方法,其特征在于,所述升温速率为1-3℃/s,所述烧结的温度为350-450℃,所述烧结的压力为18-22MPa。
5.采用权利要求1-4任一项所述的含碲三元层状硼化物的制备方法制备得到的含碲三元层状硼化物。
6.如权利要求5所述的含碲三元层状硼化物,其特征在于,所述含碲三元层状硼化物的化学式为Hf2TeB,所述Hf2TeB的空间群为P63/mmc,晶格参数分别为
Figure FDA0003592917200000011
其中Hf原子位于(1/3,2/3,0.57505),Te原子位于(1/3,2/3,1/4),B原子位于(0,0,0)。
CN202210383857.0A 2022-04-12 2022-04-12 一种含碲三元层状硼化物及其制备方法 Pending CN114516758A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210383857.0A CN114516758A (zh) 2022-04-12 2022-04-12 一种含碲三元层状硼化物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210383857.0A CN114516758A (zh) 2022-04-12 2022-04-12 一种含碲三元层状硼化物及其制备方法

Publications (1)

Publication Number Publication Date
CN114516758A true CN114516758A (zh) 2022-05-20

Family

ID=81600398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210383857.0A Pending CN114516758A (zh) 2022-04-12 2022-04-12 一种含碲三元层状硼化物及其制备方法

Country Status (1)

Country Link
CN (1) CN114516758A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016202892A1 (en) * 2015-06-15 2016-12-22 Katholieke Universiteit Leuven Max phase ceramics and methods for producing the same
US20170057879A1 (en) * 2015-08-28 2017-03-02 Rolls-Royce High Temperature Composites, Inc. Ceramic Matrix Composite Including Silicon Carbide Fibers In a Ceramic Matrix Comprising a Max Phase Compound
US20170088429A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Mxene nanosheet and manufacturing method thereof
CN110958995A (zh) * 2017-07-13 2020-04-03 于利奇研究中心有限公司 用于制备非氧化物陶瓷粉末的方法
CN111333040A (zh) * 2020-03-11 2020-06-26 苏州北科新材料科技有限公司 一种制备二维层状过渡金属硫化物的制备方法
WO2021072150A1 (en) * 2019-10-11 2021-04-15 Drexel University Mxene compositions featuring five atomic layers
CN112830792A (zh) * 2021-01-22 2021-05-25 广东工业大学 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
CN112875703A (zh) * 2021-01-08 2021-06-01 北京航空航天大学 高熵二维材料、高熵max相材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016202892A1 (en) * 2015-06-15 2016-12-22 Katholieke Universiteit Leuven Max phase ceramics and methods for producing the same
US20170057879A1 (en) * 2015-08-28 2017-03-02 Rolls-Royce High Temperature Composites, Inc. Ceramic Matrix Composite Including Silicon Carbide Fibers In a Ceramic Matrix Comprising a Max Phase Compound
US20170088429A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Mxene nanosheet and manufacturing method thereof
CN110958995A (zh) * 2017-07-13 2020-04-03 于利奇研究中心有限公司 用于制备非氧化物陶瓷粉末的方法
WO2021072150A1 (en) * 2019-10-11 2021-04-15 Drexel University Mxene compositions featuring five atomic layers
CN111333040A (zh) * 2020-03-11 2020-06-26 苏州北科新材料科技有限公司 一种制备二维层状过渡金属硫化物的制备方法
CN112875703A (zh) * 2021-01-08 2021-06-01 北京航空航天大学 高熵二维材料、高熵max相材料及其制备方法
CN112830792A (zh) * 2021-01-22 2021-05-25 广东工业大学 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAI CHENG ET.AL: "Hidden spin polarization in the 1T-phase layered transition-metal dichalcogenides MX2 (M = Zr, Hf; X = S, Se, Te)", 《SCIENCE BULLETIN》 *
GENG LI ET.AL: "Lattice-matched heterojunctions between blue phosphorene and MXene Y2CX2 (X=F, O, and Y=Zr, Hf)", 《COMPUTATIONAL MATERIALS SCIENCE》 *
QIQIANG ZHANG ET.AL: "Rapidly synthesizing Hf2SB ceramics by thermal explosion", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
王兴悦 等: "超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展", 《物理学报》 *

Similar Documents

Publication Publication Date Title
Barsoum et al. High‐resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited
Zhou et al. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis
CN114315369B (zh) 一种三元层状硼化物陶瓷及其制备方法
Rigby-Bell et al. Synthesis of new M-layer solid-solution 312 MAX phases (Ta 1− x Ti x) 3 AlC 2 (x= 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes
CN114180969B (zh) 含氮高熵max相材料和二维材料的制备方法及用途
CN116463536A (zh) 高熵MXene材料
Riley et al. Self-propagating high-temperature synthesis of Ti 3 SiC 2 from 3Ti+ SiC+ C reactants.
CN110105069B (zh) 一种max相层状化合物
Hu et al. In-situ reaction synthesis and decomposition of Ta2AlC
US4141740A (en) Solid solution and process for producing a solid solution
Miao et al. A novel in situ synthesis of SiBCN-Zr composites prepared by a sol–gel process and spark plasma sintering
CN103113125A (zh) 层状化合物板状晶粒弥散增强的过渡金属碳化物复相材料及其超低温制备方法
CN104446496B (zh) 一种AlON粉体的制备方法及由其制备的透明陶瓷
CN114516758A (zh) 一种含碲三元层状硼化物及其制备方法
JP3906361B2 (ja) 金属性セラミック粉末の製造法
Ji et al. Synthesis and strengthening mechanism for (Ti, Nb) 3SiC2/Al2O3 ceramics: a combined experimental and first-principles investigation
CN112110731B (zh) Sc2SC层状材料及其制备方法
JP2005089252A (ja) 金属性セラミック焼結体チタンシリコンカーバイド及びその製造方法
AU2021261929B2 (en) Systems and methods for making ceramic powders and ceramic products
Walter et al. Synthesis and Characterization of Cobalt Monosilicide (CoSi) with CsCl Structure Stabilized by a β‐SiC Matrix
JP5907532B2 (ja) Na−Si−B組成を有するホウ化物、ホウ化物の多結晶反応焼結体及びその製造方法
JP2006298762A (ja) 金属性セラミック粉末の製造法
JI et al. Temperature-influenced Substitution of Si in Ti3 (Si, Al) C2 Solid Solution
CN116217232A (zh) 一种含铟三元层状碳化物陶瓷及其制备方法
Bagci et al. Synthesis of SiAlON‐type compounds by carbothermal reduction and nitridation of nanoparticulate geopolymers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220520

RJ01 Rejection of invention patent application after publication